

VISUALIZATION OF SECURITY VULNERABILITIES
THROUGH

INTRUSION DETECTION SYSTEM

Ibrar Ahmed
Student ID: 03201079

Farhana Faruqe

Student ID: 03101094

1.1.1 Department of Computer Science and Engineering
1.2 September 2007

 1

DECLARATION

We, Ibrar Ahmed (ID: 03201079) and Farhana Faruqe (ID: 03101094) have completed

the thesis titled Visualization of Security Vulnerabilities through Intrusion Detection

System, under the course, CSE400, regarding the partial fulfillment of our undergraduate

degree of Bachelor in Computer Science and Engineering.

We, therefore, declare that this work has been published previously neither in whole nor

in part in any thesis work or any conference or journals. We also mentioned work found

by other researcher in the reference.

 ………………………………..

…..………………………… …..……………………………

Supervisor Authors

 2

ACKNOWLEDGEMENT

We are grateful to Allah for giving us the strength and energy to start this project and

finally finish it successfully.

We are really very grateful and take the honor to express our special thanks to our

supervisor Risat Mahmud Pathan, M. Sc. for all sorts of supportive suggestions and

opinions. Without his support, co-operation and resources the completion of our research

in this due time would not have been possible. He is a very industrious person and has

tried his best to help us complete our thesis work.

We would also like to thank the senior brothers of university and friends who helped us

in every possible way. Especially, we are very grateful to Mr. Tapan Biswas, an alumni

and present Lab Technical Officer for his advice and support.

Lastly, we give our special thanks to our department for giving us the opportunity and

honor to undertake this thesis, a partial fulfillment of the requirement for the Degree of

Bachelor of Science in Computer Science and Engineering and Bachelor of Science in

Computer Science.

 3
BRAC UNIVERSITY ABSTRACT OF
 BEACHOLOR’S
THESIS

Author: Farhana Faruqe and Ibrar Ahmed

Title: Visualization of Security Vulnerabilities through Intrusion Detection System

Date: September 5, 2007

Department: Department of Computer Science and Engineering

Supervisor: Risat Mahmud Pathan
Security in computer and computer network is of great importance now-a-days. Identifying

attacks and taking appropriate measure by system administrator is of special concern. This paper

is a study and proposal of an Intrusion Detection System (IDS) for a hypothetical computer

network that provides security to Transport and Network Layer attacks in a computer network

protocol stack. The proposed system uses visualization (Graphic User Interface) to notify a

System Security Officer (SSO) of possible threats and help him/her to take appropriate action to

mitigate the effect of attack or to protect the attack before harm is being done. A detailed design

of the network IDS has been proposed and criteria for evaluating an IDS is demonstrated.

Keywords: IDS, TCP/IP, Intrusion, Distributed system, Firewall, Visualization

Keywords: IDS, TCP/IP, Intrusion, Distributed system, Firewall, Visualization

Language: English

 4

Table of Contents

1 INTRODUCTION ... 5
2 OBJECTIVE: FOCUS OF RESEARCH .. 7

2.1 WHAT ARE THE POSSIBLE ATTACKS AND THEIR EFFECTS ON USERS? .. 7
2.2 HOW TO PROTECT?.. 10
2.3 HOW TO DETECT A POSSIBLE INTRUSION? ... 12
2.4 HOW TO REPORT INTRUSION? ... 14

3 LITERATURE REVIEW (PREVIOUS WORK) ... 17
4 NETWORK PROTOCOL STACK: POSSIBLE ATTACKS... 24

4.1 EXAMPLES OF ATTACKS .. 25
4.2 ATTACKS HANDLED .. 26

4.2.1 Transport layer .. 26
4.2.2 Network layer... 30

5 DESIGN... 32
5.1 DEFENSE MECHANISM ... 32
5.2 OVERALL ARCHITECTURE.. 34
5.3 NETWORK ARCHITECTURE... 37

6 THE OVERALL SYSTEM ... 40
7 IMPLEMENTATION ... 42

7.1 CLASS DIAGRAM ... 43
7.1.1 Generalization ... 43
7.1.2 Association multiplicity .. 45

7.2 LOGIC ... 46
7.3 GUI (GRAPHICAL USER INTERFACE)... 47
7.4 EVALUATION... 53

8 CONCLUSION AND FUTURE WORK... 55
APPENDIX ... 56
REFERENCE ... 83

 5

2 INTRODUCTION

In our daily lives, security is an issue of huge concern. We are worried
about security when we cross roads, when we exchange words on the telephone,
when we send our children to school, when we do monetary transactions and so
on. We are always worried about exposure to threats that trespass into our
privacies, obtain illegal accesses to resources and misuse illegally accessed
resources. The motive behind these threats varies from financial gains, political
gains, a feeling of power and importance or simply inquisitiveness. Therefore, we
strive everyday to protect our near and dear ones, our businesses and
organizations, our resources and ourselves from exposure to such threats.

The need for preventive measures varies from situation to situation and
organization to organization. We have to decide what kind of threats we are
vulnerable to and what preventive measures to take.

We use the term “security” in many ways in our daily lives. A “Financial
security” involves a set of investments that are adequately funded; we hope that
the investments will grow invaluably over time so that we have money to survive
later in life. And we speak of a child’s “physical security”, hoping he or she is safe
from any potential harm. Just as each of these terms has a very specific meaning
in the context of its use, so too dose the phrase “computer security.”

Security is a very difficult topic. Everyone has a different idea of what
``security'' is, and what levels of risk are acceptable. The key for building a
secured network is to define what security means to an organization. Once that
has been defined, everything that goes on with the network can be evaluated
with respect to that policy. Projects and systems can then be broken down into
their components, and it becomes much simpler to decide whether what is
proposed will conflict with your security policies and practices.

When we talk about “computer security,” we mean that we are addressing
three very important aspects of any computer-related system: confidentiality,
integrity and availability.

 6
Confidentiality ensures that computer-related assets are accessed only

by authorized parties. That is, only those who should have access to something
will actually get the access. By “access” we mean not only reading but also
viewing, printing, or simply knowing that a particular asset exists. Confidentiality
is sometimes called secrecy or privacy.

Integrity means that assets can be modified only by authorized parties or
only in authorized ways. In this context, modification includes writing, editing,
changing status, deleting and creating.

Availability means that assets are accessible to authorized parties at
appropriate times. In other words, if some person or system has legitimate
access to a particular set of objects, that access should not be prevented. For
this reason, availability is sometimes known by its opposite, denial of service.

As the world becomes more connected by networks, the significance of
network security will certainly continue to grow. Network security consists of the
provisions made in an underlying computer network infrastructure, policies
adopted by the network administrator to protect the network and the network-
accessible resources from unauthorized access and the effectiveness (or lack) of
these measures combined together.

Network security starts from authenticating any user. Once authenticated,
firewall enforces access policies such as what services are allowed to be
accessed by the network users. Though effective to prevent unauthorized
access, this component fails to check potentially harmful contents such as
computer worms being transmitted over the network.

An intrusion detection system (IDS) is a system of software and hardware
that ensure the security of a system by identifying malicious or suspicious events.
It raises an alarm when such a behavior is experienced. Based on the alarm and
response by a System Security Officer (SSO), changes are made to the IDS to
accommodate further newer threats. To raise an alarm, the IDS analyzes the
access made to a system and classifies either as a safe access or an intrusion.

An IDS can be classified as either stand-alone (or strictly-centralized) or
distributed IDS. Stand-alone IDS can either be host-based (residing on a single
host) or networked-based (obtaining data from the network traffic). A distributed
IDS collects data from various points in a network and sends it to a central host.

 7

3 OBJECTIVE: FOCUS OF RESEARCH

In our quest to the proposition of an IDS that will notify the concerned of
possible threats and advice to safeguard against then, we have focused our
attention on certain issues. We had come up with a few questions the answers to
which have led us to the understanding of threats, their effects, and detection of
and protection against such threats. Through the answers to these questions, we
have been able to direct our research towards our goal of proposition of visual
IDS.

3.1 What Are The Possible Attacks And Their Effects On Users?

Users are vulnerable to ever increasing threats. The variety of attacks
ranges from minor ones to severe ones based on the motives of attackers. The
most common types of attacks are those where a user is unable to use his
system as the system becomes too slow or it cannot fulfill request of the users.
This type of attacks kills invaluable time of users.

Another very common but much more severe case is one where the
attacker gains supreme control over a user’s system. In such cases, a user may
find himself a stranger to his own system. He may also send valuable information
to the attacker, breaching his privacy. A similar effect is instigated by spying
attacks where an attacker silently monitors each and every step of the user. Such
an attacker may intercept a user’s message, use it for his own gain or modify the
message.

There are attacks in which cases, a user loses data unknowingly. In
certain other threats, a user exchanges data with the attacker posing as a trusted
user to share data and information with. In such cases, users are left unprotected
against many kinds of vulnerabilities.

A user may also send and receive data without his consent as a result of
spamming. Spamming is a very irritating intrusion and it can also send personal
information to organizations or individuals without the consent of the user.

 8
Last, but not the least, a user may succumb to intrusion through social

engineering. Social engineering is obtaining a user’s information such as
password, secret questions, credit card numbers, etc through trickery. A user
may reveal such information to an intruder when the intruder puts the user in a
state of confusion or disguises himself or herself as an administrator or some
other official urgently needing the user’s information. This information is then
used by the imposter to hack into accounts, steal money off credit cards, and
cause numerous other monetary and/or social hazards.

CSI/FBI reports that the number of incidents of threats has not changed
much in 2006 from the previous year [13]. The report reveals that a huge number
of organizations and individuals are not sure whether they are vulnerable to
threats or not. This number accounts to 28% of all who have been surveyed
(Table 1). This is an issue of huge concern since they may not be aware of what
loss they have incurred through such threats. Moreover, about 48 % of all
surveyed organizations and individuals have detected between one to five
incidents. This number has increased by 14 % from 1999, an indication
beckoning urgent need of better security measures such as improved firewalls,
anti-viruses, IDS, Fraud Detection System (FDS, a subset of IDS) and so on.

The report also concludes that financial loss amounted to a little less than
sixteen million US dollars due to virus contamination. Figure 1 represents the
findings of the report which also states that other major losses are afflicted by
threats such as unauthorized access to information, theft of proprietary
information, denial of service (to be explained in Section 4) and financial fraud.

 9

Fig 1: Financial Loss in Millions of US Dollars

 10

From the above statistics, it is quite clear that the threats are increasing in

number and their effects of various threats can cause all kinds of damage
including financial. Therefore, it is very crucial to protect users from various
threats.

3.2 How to Protect?

Before we can discuss ways of protecting users from intrusions, threats

that we are concerned with for the purpose of this research, it is necessary to
define intrusion itself. There are various ways to express the meaning of
intrusion, but we take the definition of “wikipedia”, as part of their discussion of
IDS, as a formal definition for our purpose. In computer science, intrusions are
attacks against vulnerable services in a distributed (networked) system, data
driven attacks on applications, host based attacks such as privilege escalation,
unauthorized logins and access to sensitive files, and malware (viruses, trojan
horses, and worms) [12]. Keeping the definition in mind, we venture on various
ways to protect users against such attacks.

Users can be protected in variety of ways. Usually, more than one method
is combined to safeguard users from intruders/attackers. The methods vary, just
as attacks do, in a number of ways depending on the types of attacks.

The most effective method is a preventive measure where a user is
protected from various threats. The user must be educated about threats and
about safety measures against them. Users are enlightened with knowledge of

Table 1: Number of Incidents

How many incidents? (by %
of respondents) 1–5 6–10 >10 Don’t

know
2006 48 15 9 28
2005 43 19 9 28
2004 47 20 12 22
2003 38 20 16 26
2002 42 20 15 23
2001 33 24 11 31
2000 33 23 13 31
1999 34 22 14 29

 11
common tricks attackers play during social engineering. They must be taught
the importance of secrecy regarding their passwords, credit card numbers, and
other personal information. These methods would help them identify possible
social engineering techniques that may prove socially and/or monetarily
hazardous if ignored.

Additionally, various protective systems can be used that detect threats
and either take decisions on their own or inform users or an administrator or an
SSO about them. Such systems make use of software and/or hardware to uphold
users against intrusions. One of the most common systems used nowadays is a
firewall. This system acts as a barrier between a user’s system and the rest of
the network. The firewall allows only trusted data to reach a user.

In most cases, a firewall only cannot prove sufficient in securing a system
against all kinds of threats. Layers of defense mechanisms are used to protect a
system from possible hazardous and seemingly less or non hazardous
intrusions. Various organizations and individuals adopt intrusion detections
systems (IDSs) to team up with firewalls to safeguard computers on a network. In
Table 2, some of the basic differences between IDS and firewall have been
stated.

IDS Firewall
Warn against suspicious traffic Drop proven attack packets

Logs packets Logs packets
Examines whole stream of

packets
Examines a single packet

Reassembles and normalizes
application messages

Does not do so

Deep packet inspection Does not do so
Generates alarms when attack

packets identified
Does not generate alarm while

dropping packet
Less precise (Alarm set off on

mere suspicion)
Precise (Packets dropped only

when sure)

Table 2: IDS Vs Firewall

 12

Moreover, users have to update themselves with information about new

severe threats and their methodologies with protection mechanisms against
these novel attacks. Failing to do so expose the user’s system to threats whose
effects may not be known until it is too late.

3.3 How to detect a possible intrusion?

To keep a system free from intrusions, the intrusions have to be detected

as early as possible. At the same time, it should also be ensured that valid and
harmless accesses to the system are not prevented or detected as intrusions
causing. Accordingly, various detection techniques can be used in order to keep
a system intrusion free without hampering its day-to-day activities. Similarly,
various tools ranging from anti-virus programs to firewalls and IDS can be used
to keep a system risk-free.

Fig 2: Distribution of Security Tools over a Network

 13

Intrusion detection can be achieved by misuse detection or anomaly

detection or a hybrid technique which is a mixture of both the mentioned
techniques [7].

Whatever the technique used in intrusion detection, the first activity that
has to be carried out is the collection of data. Data are collected from various
points in a network. Sensors are used to collect data from points that lead to
nodes that are more likely to be attacked [1, 7].

To provide security at its best, layers of security steps should be taken
providing defense in depth. A network’s doorkeeper is a border firewall that
prevents only those network traffic from an outside source (usually the internet)
which proven to be malicious. This is called ingress filtering [10]. Screening
router firewalls can also be used when traffic is routed from the outside world to
the inside. This router acts as the border firewall for a subnet of a bigger network,
but generally, a screening router firewall can be followed by the main firewall.
After this, an internal firewall can be used. A third layer of firewalls can be used
to protect individual hosts. This is called host firewalls and an example could be
ZoneAlarm. Host firewalls can be client host firewalls or server host firewalls.
Various servers, such as proxy server, file server, web server, and so on, can be
grouped together. This group is called “demilitarized zone” [10]. This makes it
easer to protect the servers by using sensors at the incoming links to be logged
for analysis by an IDS. Thus, IDS can be used with all these layers of firewalls to
engulf the system with yet another layer of protection. The choice of IDS can also
vary. A system can have host-based IDS. This means that the responsibility of
protection via detection lie at the hands of the individual hosts that may be
attacked. On the contrary, network-based IDS can be used where the protection
responsibilities do not lie solely on the hosts. Here, the whole networked is
attempted to be kept secured.

In addition to firewalls and IDS, anti-virus programs must be installed on
individual hosts, both clients and servers, to ensure protection against viruses
and Trojans. This protection is necessary as transfer of files by physical means
such as tapes, optical discs and mobile drives can spread such threats.
Additionally, physical guard is also necessary to ensure that sabotages of links
do not take place as this may render the whole system vulnerable if the

 14
sabotaged link disconnects one or more of the protective layers already
mentioned above.

Protection of systems from threats and vulnerabilities can take place using
a combination of layers mentioned above. What combination should be used
depends on an organization or an individuals priorities and the network
architecture used. An ideal security system could be using border firewalls,
network-based IDS and host firewalls and anti-virus programs. Using more layers
is a decision of the organization based on its priority between speed and security
because it is almost certain that increasing the number of layers of protection
keeps the possibility of fall in data transfer speed quite open. This is a trade-off
most organizations will gladly accept considering the severity of effects
successful threats can have.

The collected data is then used to analyze so as to be classified either as
intrusion or safe access. The analysis is carried out by various means depending
on the technique used. Most commonly, the collected data is used to check if it
satisfies with data obtained from previous safe accesses to the system and with
rules for other safe accesses. Signature and pattern matching can also be used
to check if the data collected indicates safe access. If the check fails, the access
is classified as intrusion.

3.4 How to report intrusion?

Once an intrusion has been detected, a report has to be generated. This
report is used to alert an SSO who can take appropriate decisions to confirm
safety of the system. The method of reporting to an SSO can also vary. An
intrusion can be reported actively or passively. An active report would notify the
SSO immediately by invoking an interrupt or alarm while a passive report may
involve storing of the intrusion related data in a log file so that the SA can look at
it whenever it suits him.

Whether it be active or passive, reporting to the SA about the intrusion is
very crucial and it should be formatted in a way that will enable him to make
appropriate decisions. The format of the report can be either textual or visual. In
a textual report, the data are arranged in a table while in a visual report, it can be
done using charts and figures. A visual report can be more productive since it

 15
can easily pinpoint vulnerabilities while a textual report can cause crucial data
to be missed or lost if the volume of data is too large. In Figure 3, an output for
RST attack (discussed in Section 4) has been shown. As can be seen, numerous
lines of packet information has been shown before the actual output is printed.
This may cause many to overlook most crucial data/output and not take proper
action or decision. On the contrary, Figure 4 and Figure 5 represent a visual
output and it precisely highlights the vividness a graphical output presents to an
SSO. To visualize a graph that indicates the output of analysis of network traffic,
visualization tool Tulip (Figure 4) can be chosen [16]. To perform the actual
detection, the lowest scoring accesses is visualized using this three dimensional
general graph. Figure 5 shows one of the views displayed in the tool called
Advanced Analytics. This is a tool use in paper [17] within the authors’
organization to perform visualizations with alert data.

2007081111:17:15:046 192.168.0.01 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:15:046 192.168.0.01 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:15:046 192.168.0.01 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:15:046 192.168.0.01 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:15:046 192.168.0.05 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:15:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:15:046 192.168.0.81 192.168.0.51 1089 80 4 20 60 TCP 0 010000 -
2007081111:17:15:046 192.168.0.91 192.168.0.51 1089 80 4 20 60 TCP 0 000001 -
2007081111:17:15:046 192.168.0.91 192.168.0.51 1089 80 4 20 60 TCP 0 010000 -
2007081111:17:15:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:59:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 TCP 0 000100 -
2007081111:17:59:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:59:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:59:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:59:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 TCP 0 000010 -
2007081111:17:59:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:59:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:59:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:59:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:59:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:59:046 192.168.0.50 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:59:046 192.168.0.49 192.168.0.51 1089 80 4 20 60 TCP 0 000010 -
2007081111:17:59:046 192.168.0.16 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:59:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 TCP 0 000010 -
2007081111:17:00:046 192.168.0.33 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:00:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:00:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:00:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:00:046 192.168.0.41 192.168.0.51 1080 80 4 20 60 ICMP 0 000010 8
2007081111:17:00:046 192.168.0.41 192.168.0.51 1089 80 4 20 60 ICMP 0 000010 8
2007081111:17:00:046 192.168.0.41 192.168.0.51 1099 80 4 20 60 ICMP 0 000010 8

REPORT
Attack Identified: PING

Flood (DoS)
At

Destination IP:
 192.168.0.51

Destination Port:
80

Type: Internal attacker
From

Source IP (port):
192.168.0.01 (1089)
192.168.0.05 (1090),
192.168.0.41 (1099),
192.168.0.50(1089) ,
192.168.0.16 (1099)

Advice

1. Add rule to ban the
above IPs.

2. Send Email
notification to user
of destination IP for
attack notification
and to attacker for
warning.

 Fig 3: Textual Output

 16

Fig 4: Graphical Output 1 (Spam Attack) by Tulip

Fig 5: Graphical Output 2 by Advanced Analytics

 17

4 LITERATURE REVIEW (PREVIOUS WORK)

Axelsson presents a research of protecting valuable computer resources

through intrusion detection that will most likely take on an increasing role in
protecting computer systems over the next few years [1]. The computer security
field is primarily concerned with protecting one particular resource: valuable data,
and ultimately valuable information. In this computer security section briefly
describe about CIA (confidentiality, integrity, availability) of computer security.
We have tried to keep these criteria in designing our proposed system. For
example, ping attack; the objective of ping attack is to make the resources
unavailable to the client; and in our system we have tried to detect this attack and
set the alarm to notify the security officer. Additionally, we have not extracted any
data/information from one or multiple packets that will give the SSO access to
confidential data. Stefan also lists six general, non-exclusive approaches to anti-
intrusion techniques: preemption, prevention, deterrence, detection deflection,
and countermeasures and describe them elaborately with a figure, which is very
useful. In our thesis we have borrowed this section and analyzed them to look for
areas where we could work and use in our research. Details of this have been
discussed in Section 5.

Furthermore, intrusion detection systems, as explained in the paper, are
designed to detect computer security violations made by important types of
attackers such as attackers using pre-packed ‘exploit scripts’ (Primarily
outsiders), attackers operating under the identity of a legitimate user, for example
by having stolen that user’s authentication information (password) (Outsiders and
insiders), insiders abusing legitimate privileges, etc. The author defines intrusion,
intrusion detection, malicious behavior, security policy, external agent, automated
detection and alarm, delivered to the proper authority, intrusion has taken place.
He groups intrusion detection systems into two overall classes: those that detect
anomalies, hereafter termed anomaly detection systems, and those that detect

 18
the signatures of known attacks, hereafter termed signature based systems.
Our proposed IDS can be classified as an anomaly detection system. In the
paper, a generic architectural model of an intrusion detection system describes
the figure of organization of a generalized IDS and its each and every part, such
as: audit collection, audit storage, processing, configuration data, reference data,
active/processing data and alarm. In designing our classes, we have tried to
include those units in our classes and packages.

Antilla discusses the background of the IDS [2]. The author states that the
number of companies that have intrusion detection systems have increased from
42 to 73 percent between years 1999 and 2003, according to the annual
computer crime and security survey released by the Computer Security Institute
(CSI) and FBI. On that same period, the number of companies that have firewalls
in place has increased from 91 to 98 percent. The paper categorizes IDS and
describes them elaborately. According to Gartner Group, 75 % of all attacks on
the Web occur at the application level. These statistics highlight the increased
need of security and this serves as the motivation behind our research.

The paper describes top ten attack classes (Application Buffer Overflow,
Backdoors and Debug Options, Cookie Poisoning, Cross Site Scripting, Forceful
Browsing, Hidden Field Manipulation, Known Vulnerabilities, Parameter
Tampering, Stealth Commanding, Third Party Misconfiguration) of application
layer with brief explanations how they could be executed. It does not describe
any attacks of other layers. The statistics provided have motivated us to direct
our thesis towards network-based IDS since most companies and organizations
which need extensive security would be most benefited from network-based IDS.
Also, after going through a discussion of the presentation layer attacks, we have
decided to skip application layer attacks to design our basic IDS. We have come
to the conclusion that to design network-based architecture, it would be best if we
started working at Network and TCP layers first and then later, incorporate other
attacks from other layers.

There is a discussion in the paper about product survey. The topic is
related to e-business environment. Internet Security Systems (ISS), Cisco
Systems, Symantec, Enterasys, NFR, Entercept / Network Associates, Intrusion,
Snort and other products have been described and then a list of all evaluated

 19
products is presented. The survey has given us an idea whether it is still fruitful
to work on IDS even at the presence of such softwares.

The most important part of paper [2] is the evaluation and analysis part.
The evaluation is divided into three phases where the product list is cut smaller
after every phase until there is the final solution to be implemented on the
reference system. There are certain criteria based on the reference system,
which limit the possible products. The reference system is a system whose
purpose is to provide web-based services for the customers who are accessing
the system from the public Internet. Presentation and business logic are
separated from the customer data. A number of rounds of checking are
discussed in the paper to evaluate whether they meet the above mentioned
criteria.

Paper [2] is a very useful one for e-business environment, and from it, we
have come with the criteria to keep in mind while designing the system. From this
review, we have analyzed the feasibility of implementation of IDS that should
possess certain criteria to satisfy the security measures of the referenced system
and to be feasible economically. The design of a system is only logical if the
implementation is feasible economically and competitively.

In order to make our system economically feasible and competitive, our
proposed system is extensible as it has a component-based design. This also
makes it possible to lower maintenance cost and since no specialized hardware
is used, the installation of the system is also expected to be less expensive.
Further advantages of the system have been discussed in Section 8.

In their papers, Hedbom et al say that security extensions are usually put
into operation on a perceived notion of benefit without any consideration of the
risks [3]. It presents an overview of the functionality of three different security
extensions, i.e., anti-malware softwares, firewalls, and intrusion detection
systems (IDS). Anti-malware tool acts as an internal defense mechanism.
Roughly, three different defense strategies may be used: activity monitoring,
scanning, and integrity checking in this tool. Firewalls are typically of two different
kinds: packet filters and proxies. In section 3, they discuss the possible
vulnerable points of these three mechanisms. When an anti-malware tool is
installed on a computer system, there is always a risk that the system owner and
its users believe that they are more or less immune to virus attacks. This is a

 20
false sense of security because there are some risks and dangers such as
early activation, Unknown Viruses and Signature Files, and Dynamic Files. In
case of firewalls, they discuss about some of the important issues of risks:
Configuration Files, The Negative Side of Chokepoints, One-Way Protection,
Problems with Proxies. Then they describe the IDS with some important points:
detection policy, log files, the problem of alteration and distribution. The paper
also attempts towards a framework for classification of the risks that they believe
are added to the system. They have divided the risks into two categories: system
risks and privacy risks. These categories are each further divided into three sub-
categories: high, medium, and low. The research further says that security
extensions cannot be added to an insecure system or used to patch
shortcomings in the underlying system if they are dependent on that system for
their own security. We think this is really a good point. We can relate this point to
our design where currently we have not considered the security of the log and
referenced file. This has provided motivation for further research which is beyond
our current research. Additionally, the problems of anti-malware tools and of
firewalls have helped us in deciding to design network-based IDS and not host
based IDS. Also, through this, we have included in our design, a filtering
mechanism through a firewall to provide layers of protection.

Hedbom in another paper addresses the self-protection problem and
discusses how to avoid the risks and dangers of employing security extensions
[4]. His paper gives some definitions of the terminology used in this thesis such
as computer security, intrusion, attacker or intruder, object, subject, detection
policy, filtering policy, distributed vs interconnected systems, network operating
systems, security mechanism and security extension. This section also discusses
possible risks and shortcomings in security extensions and elaborates on some
of the security issues involved in distributing security extensions. They have
discussed about firewalls, IDS, risks of security extensions, distributing security
extensions. When the packet comes from the internet we use firewall in our
system for partial filtering. Distributed attacks have been discussed and
suggested that cooperating security extensions may be used as part of defense
against them.

 21
Lindqvis et al illustrates the complexity of the system characteristics that

makes intrusions possible, and thereby to shed light on the corresponding
intrusion process, which in turn may help to design tools for intrusion detection
[5]. Their paper presents the schemes used for description of intrusions. In the
analysis of such complex events as computer security intrusions, it is important
to determine exactly what dimension (aspect, attribute) of the event the analysis
concerns. It gives a straightforward presentation of five intrusions on three
different systems like a database system: Ordering of records, UNIX: Keyboard
snooping etc. It further presents a refined analysis of the underlying flaws. In
most cases, there are two or three types of reasons why intrusion is possible:
related to the design of a specific functional (software) module, integration and
setting up of the system, and the administration and use of the system. Some of
the intrusions presented early in the paper have been re-investigated in view of
this decomposition. A part of the paper discusses the outcome of this analysis
and the problem of referring an intrusion to a single cause. It is said that tools are
available for both the packet authentication problem in Novell, the xterm logging
vulnerability and the keyboard snooping flaw in UNIX. Such tools make it
possible for even a user with minimal system knowledge to abuse system
security. Paper [5] clearly shows that an intrusion is a function of not only one,
but a number of vulnerabilities and characteristics of the system and the
organization. This makes the problem quite complex, but complexity is a problem
not only for developers and integrators but also for users and administrators, as
we have seen in this work by Lindqvis et al. It should also be noted that none of
the problems that have been presented here are really technically difficult to
solve. Solutions exist, but the problem is to spread this knowledge, use it, and
use it correctly.

In our research, the complexity issue has been given special attention to.
We have add a visual tool in the IDS to monitor the referenced system with very
little complexity. The time it takes an SSO to respond to an intrusion matters
greatly in maintaining the security of the over network system. The reduced
complexity in monitoring the system helps reduce the time it takes to interpret an
attack. The discussion of the intrusion process has also helped in our design of
the analysis engine that has the responsibility of identifying and classifying
intrusions.

 22
Hedbom et al in another of their papers address the security

implications and requirements that the IDA (Intrusion Detection Architecture) puts
on the IDS (Intrusion Detection System) in various distributed environments [6].
The paper claims that, although they are more accentuated in what we call a fully
distributed architecture, these requirements hold for any type of IDS that consists
of interconnected cooperating components. The authors also believe that those
requirements have in large part been overlooked in today’s systems as a
consequence of the bias toward detection mechanisms. The paper also
highlights some terminology like target, detection policy, nodes, domain, and
events. There are a number of different architectures for intrusion detection
systems like centralized and distributed architectures and combinations thereof.
The paper also discusses the “knowledge” of distributed IDS within these topics.
It discusses distributed knowledge of the detection policy, distributed knowledge
of security events and audit logs, and confidentiality concerns in distributed IDS.
A part of paper [6] basically discusses the knowledge needed by different
components in an IDS and the flow of information between components that this
knowledge produces in different IDAs. It further presents a number of security
requirements for an IDS based on the flow of information and security
implications previously discussed in other section. “Information dominance -
Toward a stronger notion of security for IDS” this is a very useful topic for our
thesis. The meaning of information dominance for IDS according to the author is
that, information (knowledge) contained within an intrusion detection entity must
be kept private to malicious adversaries (confidentiality requirement). In addition,
the information must be protected from unauthorized alteration, fabrication and
deletion (integrity requirement) as it may lower the operational advantage of the
IDS. They propose that the property of information dominance for IDS should
include: Confidentiality of audit data, confidentiality of the detection policy,
integrity of audit data, and integrity of the detection policy. These properties are
then explained in details. The paper also compares modern IDS’ in order to
judge how well they adhere to the requirements presented in paper [6]. It
analyzes the information flow induced by organizing event collection and
detection in various intrusion detection architectures (IDA). The knowledge
needed, and the information flow produced by components of an IDA, lead to
new security implications.

 23

We have acknowledged the need for privacy and security of various

components of the IDS, but for the purpose of this research, we have overlooked
these for the time being. We have, however, discussed this briefly in our section
“Future Work” and stressed the importance these activities. Moreover, the
proposed IDS has been designed keeping in mind that with only a few changes
or addition, various components of the IDS can be secured and kept invisible
from other users some of which may be prospective threats or outsiders
accessing the referenced system through internet or extranet.

Based on these studies, we have identified attacks, created our design
and implemented the design. In the next section, we have discussed the network
protocol we have considered, the possible attacks at different layers and the
attacks we have handled.

 24

5 NETWORK PROTOCOL STACK: POSSIBLE ATTACKS

Network is built as layers. The job of each layer is to offer services to
higher layers, and hide from those higher layers the details of how the services
are implemented. Protocols of the various layer is called the protocol stack.

The figure below shows a comparison of the Open Systems
Interconnection (OSI) model and the TCP/IP protocol suite. The TCP/IP set of
protocols maps to a four-layer conceptual model: application, transport, Internet
and network interface. This model is referred to as the Internet Protocol Suite or
the ARPA model. As shown below, each layer in the darker green Internet
Protocol Suite corresponds to one or more layers of the white OSI model.

The original TCP/IP reference model consists of 4 layers , but is now

viewed by many as a 5-layer model . It is called the Internet protocol suite
(Table 3) which is the set of communications protocols that implement the
protocol stack on which the Internet and most commercial networks run. It has
also been referred to as the TCP/IP protocol suite, which is named after two of
the most important protocols in it: the Transmission Control Protocol (TCP) and
the Internet Protocol (IP), which were also the first two networking protocols

Fig 6: OSI Model and TCP/IP Protocol Stack

 25
defined. Today's IP networking represents a synthesis of two developments
that began in the 1970s, namely LANs (Local Area Networks) and the Internet,
both of which have revolutionized computing. But the OSI model describes a
fixed, seven-layer stack for networking protocols. Comparisons between the OSI
model and TCP/IP can give further insight into the significance of the
components of the IP suite.

In our thesis we follow the 5 layers of TCP/IP model because we think it’s

simpler and more independent. The abstraction of layer is more pronounced in
this model and unnecessary layers are minimized into less making it easier to
manage.

5.1 Examples of Attacks

Attack can cause damage to a system at different layers discussed in the

sub-section above. Through a survey, we have find out the following attacks that
can exploit a system at its different network layers.

Physical Layer: Cable cut, Spectrum, and Jamming/fade.
Data Link Layer: Flooding Attacks, and Topology Engagement Attacks.
Network Layer: DOS (Denial of Service), Spoofing, Smurfing and Sequence
Number Guessing (part of spoofing).

Layer Protocol

Application layer DHCP, DNS, FTP, Gopher, HTTP, IMAP4, IRC, POP3, SIP, SMTP

Transport layer TCP, UDP, DCCP, SCTP, RSVP

Network Layer IP (IPv4, IPv6), IGMP, ICMP, OSPF, ISIS

Data link layer 802.11, ATM, DTM, Token Ring, Ethernet, FDDI, Frame Relay,
GPRS

Physical layer Ethernet physical layer, ISDN, Modems, PLC, SONET/SDH, G.709

Table 3: Five Layer TCP/IP Model

 26
Transport Layer: ACK Denial-Of-Service Attack, Sniffing, SYN Attack, RST
Attack, FIN Attack, Tear Drop Attack, Session Hijacking Attack, Port Scan.
Application Layer: Vulnerable CGI Programs, Spam (for Email), Nimda worm &
Mutations, Malicious URLs, Spyware and Ad ware Attacks, Back door, Trojan
horses, FTP Bounce Attack.

5.2 Attacks Handled

We have worked on providing safeguards against intrusions at the
software level and have not considered hardware-level protections. We have also
safely assumed that a stand-alone PC not connected to a network is not
vulnerable to intrusions. Therefore, we have tried to establish methods to
safeguard systems on a network, a hypothetical network for our research, from
intrusions.

Of all the attacks, we have tried to work on some of those affecting
Network Layer and TCP Layer. We have tried to identify some of the most severe
attacks at the mentioned layers and have examined how they are constructed
and carried out. We have worked on the following attacks: RST Attack and FIN
Attack (in TCP Layer), PING (Flood) Attack (in Internet Layer).

5.2.1 Transport layer

SYN Flooding: The basis of the attack is to not complete the 3-way
handshake necessary to establish communication. Specifically the attacker
(client machine A in figure 6) refusing to send the ACK signal to the host server
(B) after receiving the SYN/ACK from Host B. Such a connection is called a half
open connection.

Instead of sending an ACK, attacker A sends another SYN signal to the
victim server. The server again acknowledges it with a SYN/ACK and B again
refuses to send the final ACK signal. By repeating this several times the attacker
tries to overflow the data structure of the host server. The data structure is built in
the memory of the host server with the purpose of keeping records of
connections to be completed (or half open connections). Since the data structure

 27
is of a finite size, it is possible to overflow it by establishing a large number of
open connections.

Once overflow occurs the host server will not be able to accept new
connections thus resulting in a denial of service. There is however a time-out
associated with each of the connections (approximately 3 minutes) after which
the host server will automatically drop the half open connection and can start
accepting new connections. If the attacker can request connections at a rate
higher than the victim servers ability to expire the pending connections then it is
possible to crash the server.

Attacker
1.34.150.37

SY SY SY SY SY

Victim
60.168.47.47

Attacker Sends Flood of SYN Segments Victim
Sets Aside Resources for Each Victim Crashes

or Victim Becomes Too Overloaded to Respond
to the SYNs from Legitimate Uses

Fig 8: DoS Attack - SYN Flood

Fig 7: Attacker A flooding Host B with SYN

 28

Thus the objective of SYN flooding is to disable one side of the TCP connection
which will result in one or more of the following:

 The server is unable to accept new connections.
 The server crashes or becomes inoperative.
 Authorization between servers is impaired.

Reset (RST) Attack: Whereas SYN flooding attacks are carried out at the

beginning of the connection, RST attacks usually occur in the middle of it. The
RST flag in the TCP packet is used to reset the connection. If two machines C
and B are in the middle of a connection and an attacker A decides to attack
machine C then all he has to do is calculate/guess the correct sequence number
using the methods described above. (there is no ACK in a RST packet). After
that the attacker can disrupt the connection by sending a spoofed packet with
RST flag set to B. The attacker then assumes B's identity and starts attacking C.

FIN Attack: It is similar to RST attack, the analyzer obtains packet

information from the log file to find out if a packet containing the FIN bit of the
FLAG field set has been sent from a source IP which never actually sent a SYN
packet in the “Three Way Handshaking” rule of opening [8]. This scenario is
represented in Figure 10.

Attacker
1.34.150.37

RST

Victim
60.168.47.47

Attacker sends one RST Segment. Victim
looks up connection table but can’t find

source. Victim is unsure of what to do and
crashes.

Fig 9: RST Attack

Established Connections
Source(S) IP S.Port Port
192.168.0.5 4444 321
1.34.150.36 2021 80
1.34.150.35 1111 23

 29

Attacker
1.34.150.37

FIN

Victim
60.168.47.47

Attacker sends one FIN Segment. Victim
looks up connection table but can’t find

source. Victim is unsure of what to do and
crashes.

Fig 10: FIN Attack

Established Connections
Source(S) IP S.Port Port
192.168.0.5 4444 321
1.34.150.36 2021 80
1.34.150.35 1111 23

Fig 11: TCP State Diagram

 30

A FIN attack is used to disconnect the client. However it concentrates on
the end state of a TCP connection. The attacker tries to establish a series of new
connections and closing them immediately without any data transfers. The idea is
to keep the server busy maintaining the connection rather than actual or needed
connections and eventually crash it with a large number of open and close
connection requests.

5.2.2 Network layer

Ping Flood: Attacker simply sends a huge number of "ICMP Echo
Requests" to the victim. This is an easy attack because many ping utilities
support this operation, and the hacker doesn't need much knowledge. However,
since it tends to overload network links, it is usually as detrimental to the attacker
as to the victim, unless the attacker has a MUCH faster link than the victim

To reduce the effects of a ping flood, a victim can use a firewall to filter the
incoming ICMP Echo Request packets entirely, or if a large number of requests
are received at one time. Refusing to send ICMP Echo Reply packets produces
two benefits:

 Less bandwidth is wasted by not answering these packets.
 It is more difficult for the attacker to measure the effectiveness of the

attack.

Attacker
1.34.150.37

Type=8 Type=8

Type=8

Type=8

Type=8

Victim
60.168.47.47

Attacker Sends Flood of ICMP packets with type
= 8. Victim keeps responding to ping request
through ICMP packets with type=0. Victim

Crashes or Victim Becomes Too Overloaded to
Respond to other legitimate users

Fig 12: DoS Attack - PING Flood

Type=0 Type=0

Type=0

Type=0

Type=0

 31

However, such a filter will also prevent the measuring of latency from

legitimate users which may be undesirable. A compromise solution may be to
only filter large ICMP Echo Request packets, or to limit the rate at which your
firewall will pass ICMP Echo Request packets.

Note that one cannot trust the source IP address to be the address of
which the packets are originating from since it can be spoofed to make it appear
as if it is coming from another address. Each packet can also be spoofed to
contain a randomly generated address.

After evaluating the mechanisms of the above mentioned attacks, we tried
to chalk out procedures that would identify such attacks, pinpoint vulnerabilities
and take preventive measures. To do so, we started with the design of the
proposed system, which has been discussed in the next section.

After identifying the attacks, understanding their mechanisms and
identifying possible detection techniques, we discuss the design of the system in
the next section.

 32

6 DESIGN

The design of the system was initiated with the evaluation of various anti-

intrusion techniques and then choosing from them the ones that could be used.
Next, the overall architecture of the system was finalized and based on this
architecture, components of the IDS has been placed at different points of a
hypothetical network giving us the network architecture for the system. Finally,
logics for the attacks that we have handled were worked out.

6.1 Defense Mechanism

According to [1], there are six general, non-exclusive approaches to anti-
intrusion techniques: preemption, prevention, deterrence, detection deflection,
and countermeasures (see Figure 13).

Fig 13: Anti-intrusion techniques (from [1]) or Defense Mechanism

 33
 Pre-emption- This approach involves striking of against the threat before it

can launch its own attack. This is an aggressive approach, but can be socially
and legally inadvisable as both the prospective attacker and the innocent may
fall victim. One way we are using preemption in our system is making the
switch drop packets after it has reached it. This way, a preemption is enacted
that stops the passage of malicious packets in a network before it reaches the
destination.

 Prevention- This requires a system to undergo certain measures that
eradicates any possibility of an experience to an attack. For example, for fear
of external attacks, a system may be forced not to use the Internet or if a
firewall is used restrictions are imposed on the system. These may ensure
safety, but it can be expensive and awkward at the same time. In our system
the use of firewall makes it possible to facilitate prevention. Firewall filters out
the most obvious attacks preventing a possible attack. We have also used a
preventive measure after the system has been infiltrated by an intrusion. The
source IP from where the attack has been originated is recorded in a file by
the analyzer and the switch that sniffs (sensor) for packets looks up the file
when the same source sends more packets. In that case, the switch acts
intelligently by dropping the packet from the attacking source preventive a
possible attack.

 Deterrence- This approach is used to persuade a prospective attacker from
launching an attack or an attacker in action to discontinue an attack. This is
done by a number of ways varying from warning banners and alarms that
threaten an attacker of server consequences to legal ways restricting
computer crimes. This is technique has been used in our system as the SSO
can send warning to the attacker or the domain under which the attacker is
logged in if the attacker is unreachable. The warning can be sent in email or
by phone. This step may scare the attacker and he may not attack the
network afterwards.

 Detection- It identifies possible intrusion attempts and vulnerable hosts and
data links so that suitable responses can be made. This takes place once an
attack has been launched. During this, it is ensured that false alarms or
inability to raise an alarm is avoided. Detection is used to identify a successful
or an attempted security breach. The proposed system is primarily based on

 34
this technique. Our system generates an alarm once an attack has been
launched the first time. The system works more on the detection of threats
and informing the SSO about them.

 Deflection-It is a method that tricks the attacker away from an area of a
system, where he could effectively cause damage. It is very difficult to use
this approach in diverting attentions of an experienced attacker for a
considerable length of time. In our system, to divert attention of the attackers,
the SSO can use a machine as “honey pot” which means a machine to attract
attackers. He can set a rule in the firewall or configure the switches in such a
way that any packet to the machine set as “honey pot” is sent directly to it and
not any other machine. If the attackers see that that machine can easily be
attacked, they will direct their attacks towards that direction. Additionally, the
SSO can change the name of the machine to one that shows it is a very
important machine. Examples of such names could be “Financial Server”,
“database server” and so on. This way the attackers will forget about
attacking other machines which may be very important to the network.

 Countermeasures-This is another aggressive approach where intrusions are
‘actively’ and ‘autonomously’ countered. In this approach, it is not taken into
consideration whether a user of attack is a legitimate one or an intruder. For
such scenarios, detection is not needed. An SSO using the proposed system
this paper presents makes use of the report that highlights the attacker IP and
Port. Even if an attacker cannot successfully attack after the firewall has been
tuned to block such attacks, the attacker may render the firewall unusable by
sending too many packets that the firewall cannot handle. This way the firewall
will be too busy dropping packet. In such cases, countermeasures have to be
taken by attacking the attacker whose IP address and port numbers has been
obtained from the report. As already mentioned, innocent IP addresses being
spoofed by an original attacker may also suffer, but it would be necessary to do
so as otherwise, the network may get jammed with too much attacks.
Moreover, this technique will scare the attacker off permanently.

6.2 Overall Architecture

 35
Figure 14 illustrates some of the most essential components of a ‘typical’ IDS.
We use the term a ‘typical’ IDS because this illustration is based on some of the
available ones in the field. Please, keep in mind that the diagram does not show
all data/control flows but only the important ones.

Fig14: Organisation of a generalised intrusion detection system

The components are:

 Audit collection- It is also called collecting log data which is used to make
intrusion detection decisions. In the proposed system, switches are assigned
responsibility to collect audit.

 Audit Storage-The collected data is permanently or temporarily stored in log
files which are extremely large. These files are very important components in
any IDS. Some researchers consider this as one of the problems in most IDS
and an area which is not as often answered as it should be [7]. We have gone

 36
by the advice of these researchers and have kept a included a logging
module in our system. To decide what kind of data to store, we used Ethereal,
a packet sniffing tool, to gather information about network traffic. Based on
this, decisions regarding the type of data to be audited have been made.

 Processing- This is the core of an IDS. It uses various algorithms and
techniques to detect traces of intrusion. In our proposed system, this is
basically a program containing a number of classes written in Java. This
program can be stored in a different machine connected to the server or in
the server itself. Details of this step will be discussed in the next section.

 Configuration Data- This data is used to control the operations of an IDS. It
provides information about the location and process of collecting data, how to
attend to intrusions, what type for response, active or passive, is required,
etc. This data can also be secretly used by attackers who use it to modify the
IDS’ behavior to suit their needs. Therefore, this data should also be
protected from possible attacks. In our system, we have kept this category of
data static as the SSO will not be able to modify this data to change any of
the settings. This is an issue we are considering for future research.

 Reference Data- This stores data about previously encountered and identified
types of intrusion. It reflects signatures and patterns of known intrusion types.
Moreover, through the course of time, it is advisable that this data is updated
when new intrusions are detected. To do so, information from an outside
source is used. The research IDS uses a file to store information of the types
of attack we have worked on. This information tells the analysis engine
whether one or more packets contribute to a threat.

 Active/processing Data- This state helps in storing intermediate results. An
example can be information about partially fulfilled intrusion signatures or
patterns. This data can grow to a great volume, which has to be kept in mind
when an IDS is designed. This is another area, we haven’t been able to work
on due to lack of resources.

 Alarm- This state handles outputs from the system and can be either passive,
an interrupt generated to acquire immediate attention of an SSO and/or a
report that he can view at a time of convenience to him, or active that
responds automatically without the SSO’s involvement. Our work involves

 37
passive reaction to an attack. The proposed tool simulates the attack in
graphical representation which will be discussed later in the paper.

To sum the whole architecture of the IDS used in our system, we have
included audit collection, audit storage, processing, reference data and alarm at
the moment and kept the option of combining the remaining two units:
configuration data and active/processing data open for the future. At the end of
the discussion of the design of the network architecture, a mapping has been
provided showing at what points of the referenced network, these components
have been used.

6.3 Network Architecture

The design of the “proposed” system is based on hypothetical network,

following a star network topology, which is similar to the architectures typically
followed in Bangladesh. A hypothetical network architecture has been selected
due to lack of time and access to a real network. Moreover, the chosen
architecture can be considered as a subset to almost any type of architecture.
The chosen network architecture is composed of a server computer, a number of
switches and host computers. Therefore, if a proposed IDS for such a network is
successful, other IDS’ based on similar design will also be successful in
effectively safeguarding a system from intrusions. Figure 3 represent such a
network with various units of our IDS.

There are two possible scenarios of attacks: an external attack via the
internet or an internal attack via another host of the same system. In our
research, we have tried to work on some of the attacks generated both externally
and internally.

In Figure 15, the “Filter” unit is for the purpose of external attacks. External
packets entering into the system via the internet are first filtered. Proven harmful
packets, such as packets coming from blocked addresses, are blocked while
allowing the rest. The server then disseminates the packets within its system.
Audit collection, as mentioned in above in Figure 14, is achieved by placing
sensors at various points to capture network data (packets) by these sensors and
logged in a file lying at a remote computer used by the SSO for maintaining

 38
security. In order to do so, the data collected by the sensors are then sent to
the remote host where they are stored in text files in a specified format.

The “Analysis Engine” uses the logged data from log files called as “Audit

Storage” in Figure 14. The analysis is done based on these logged data. Once
the analysis is done, an alarm and/or report is generated. Based on the IDS
Configuration, an alarm and report is generated when the SSO wants an active
reporting while only a report is generated when a passive report is desired.

Client Client Client Client Client Client Client Client Client

Internet

F
I
L
T
E
R

Sensor Analyzer
&

Report

Server

Switch

Se
ns

or

Se
ns

or

Switch

Switch Switch

Log Generator

Fig 15: Hypothetical Network Architecture

Se
ns

or

 39
The distribution of the various components of the IDS is very crucial in

determining the expected performance from the IDS. The actual distribution may
vary from network to network . For example, the placement of sensors can vary
depending on points crucial to the security of the network. The “Report
Generator” and the “Analysis Engine” can be placed in the server or on a
different host depending on the requirement of the SSO and the system
administrator of the network.

Figure 15 represent a mapping of various components of the network
architecture with those of the IDS architecture. Audit collection is carried out by
sensor in the network architecture. Audit storage is done by the log generator
while the processing is done using reference data from a file is carried out by the
Analyzer. The Report Generator is responsible for generating alarms (and
reports) existing in the IDS architecture.

In the next section, we discuss the overall system based on the designs of
this section. The system, in principle, follows the components of a typical IDS.

IDS Architecture
Referenced

Hypothetical Network
Architecture

Audit Collection Sensor

Audit Storage Log Generator

Processing Analyzer

Configuration Data

Reference Data

Active/Processing
Data

Alarm Report Generator

Fig16 : Mapping of IDS Components with Referenced Network Components

 40

7 THE OVERALL SYSTEM

Our proposed system is based on a topic that has not yet been
researched on as much. We have tried to design a system that will effectively tell
an SSO which areas of the network has been compromised and what should be
done in order to maintain the security of the overall system. This is done using
Graphical User Interface. Diagrams modeling computers, servers and switches
will indicate the operation of the network. Compromised hosts are marked in red
and an advice note is attached at the bottom of the model in a list. Based on the
advise note, an SSO takes action. The reports generated by the system will have
data on types of attacks, source IP (attacker or intermediate node IP), destination
(victim) IP, port numbers, and other useful information.

The whole system has been divided into a number of units, based on the
organization of a typical IDS [1]. The units are:

1. Sensor: This is a program that sniffs packets from the network. Since
we haven’t had the opportunity to use a real network for data collection, this
module is essentially a Client-Server program using Socket programming in
Java. This program is used in a switch which receives data by opening one of its
socket. To simulate sending of malicious packet, we have used another program
that transforms packet information, both safe and malicious, into streams of bytes
which is sent to the sensor. The sensor collects this information and simply
forwards this to the recipient and the logging unit, the “Log Generator”.

This unit also transforms the switch into an intelligent one by reading a file
where the Analysis Engine writes. The file contains IP addresses of source
machines that have previously launched attacks on the system. The switch uses
this program to drop packets from such sources or allow those from others.

2. Log Generator: This unit takes data sent by the “Sensor” and filters
those out that are for sure not attacking packets. In our case, every UDP
containing IP packets are safe, so the unit filters them out. Thus, the remainder
of the packets, both safe and unsafe, is logged.

3. Analyzer: This is the analysis engine, the heart of the system. It reads
logged data and compares them to referenced data. Based on this comparison, it

 41
comes to decision whether one packet or a collection of packets are aimed at
intrusion. It also classifies an intrusion as one of the types: PING Flood (DOS),
FIN Attack or RST Attack. It sends the information back to the “Network IDS
Simulator”.

4. Network IDS Simulator: This is the interface between the SSO and the
system. This is the control center of the whole system. The graphical window
shows models of the computers in the network, a static representation for the
time being. It has simulating dialogs to create and send safe packets and packets
aimed at an attack. It has the responsibility to generate alarms originated by the
“Analyzer”. It simulates the whole scenario in GUI modeling of a network. It
simulates the movement of packets, as they move along the network. It highlights
through use of colors (for example, red for attack, green for safe) and alphabets
safe packets or attack packets. It also sets off the alarm by highlighting the victim
host in red and adding an alert to a list of alerts at the bottom of the window.
Moreover, it manages reports. It also is used to simulate creation of one or more
packets aimed at attack or a safe packet. The actual IDS should not have this
feature, but since this is a simulator and we haven’t had the opportunity to send
real attack packets, we have used this to send information of attack and some
safe packets to the switch.

5. Report & Alarm: The report generation is part of the responsibilities of
the “Network IDS Simulator”, but it is treated as a different unit. There are two
types of reporting used in the system. One is a report of all the threats since the
simulator is started and the other is a report of all the threats the system has
encountered in its lifetime. The alarm indicates movement of alphabets, “F”, “R”
or “P”, in red from source to the destination and Log Generator and Analyzer via
the switch simulating the passage of one or more attack packets being moved
over the network in reality.

The overall system is more technically discussed in the next section.
There, we discuss the development components used such as class diagrams,
logic and so on.

 42

8 IMPLEMENTATION

The design of our system “Visualization of Security Vulnerabilities through

Intrusion Detection System” is component and class based. During class design,
special attention was given to the basic components of a typical IDS and the
designed classes incorporate these components. As already mentioned, an
object-oriented principle has been used in the design, the resulting classes of the
design represent an IDS with its attributes and functionalities.

The system has the following packages as shown in Figure 17:

 P: Package

Fig 17: Packages of system

Each Package consists of several classes which are given in Table 4. The
packages Networking and Analysis consists the components of the IDS.
Additionally, the Networking package has classes that look after the simulation
and the GUI. The package Communication consists of classes that help in
establishing connections among remote hosts. The package Packet emulates
frames and packets of Transport and Network layers of the TCP/IP protocol
stack.

P Packet P Networking P Analysis P Communication

System (IDS Visualization)

 43
Table 4 : classes per package

Packet Networking Communication Analysis

 IpPacket
 ProtocolPa

cket
 IcmpPacket
 TcpPacket
 UdpPacket

 Droppage
 LogGenerator
 Network
 Node
 OutputAttacks
 Path
 SimulatorDial

og
 Switch
 ShowToday

 Client
 ForwardSer

ver
 Server
 ServerClient

Thread

 Attack
 FinAttack
 PingAttack
 RstAttack
 Analysis
 Output

8.1 Class Diagram

Classes and objects do not exist in isolation from one another. Class Diagram shows a
relationship which represents a connection among things. In UML, there are different
types of relationships. Here we will represents two of them, which are: Generalization
and Association Multiplicity. [19] [20]

8.1.1 Generalization

Fig 18: Attak Inheritance

Attack

FinAttack RstAttack PingAttack

Super Class

Sub Class

 44

Fig 19: Server Inheritance

Fig 20: Node Inheritance

Fig 21: ProtocolPaket Inheritance

Node

Computer Switch

Super Class

Sub Classes

ProtoolPacket

IcmpPacket TcpPacket UdpPacket

Super Class

Sub Classes

ForwardServer

Server

Super Class

Sub Class

 45
8.1.2 Association multiplicity

Fig 22: Relation between classes

1

1

1
1

1

1

1 1 1

1

1

1…*

1…*

1…*

1

1

1

1

1

1

1
1

1

1…*

1
1…*

1

1…*

1…*

1…*

1*

1…*

1…*

1…

1…*

1 1 1
1

1 1

1

1

1

1…*

1

1…*

1…*

1
1

1…*

1…*

1…*

1…*
1…*

1…*

1

1

1

1 1

1

1…*

1…*
1

Network
Computer

OutputAttacks

IcmpPacket

ShowToday

LogGenerator

SimulatorDialog

Droppage

Switch

Path

TcpPacket

UdpPacket

Node

ProtocolPacket

Client

IpPacket

ForwardServ
er

Analysis

ServerClientThread Server

RstAttack

FinAttack

PingAttac
k

 46

8.2 Logic

PING FLOOD

Input: packets from log file, information from reference file

Process:

 read the ping attack row from reference file and take time limit, service type

and maximum number of packets (which is safe within this time limit)
 read arrival time, source IP, destination IP, destination port of each packet

from log file
 if service type is ping type (8) then count the number of packets from the

arrival time of each packet to within time limit, which destination IP and
destination port is same; also save the source IP of those packets

 check the number of packets with the maximum number of packets (from
reference file)

 if it is greater than set alarm

Output: saved source IP

FIN ATTACK

Input: packets from log file, information from reference file

Process:

 read the fin attack row from the reference file and take fin flag, ack flag
 read ack flag from log file and create a table (for currently established

connection)
 read fin flag from log file and create another table
 read source IP. destination IP, destination port from both of the table
 check the IPs and port of fin table with the the IPs and port of ack table,

whether requested fin has a valid connection or not

 47
 if the connection is not valid then save the source IP. destination IP,

destination port of fin table and set alarm
Output: saved source IP. destination IP, destination port

RST ATTACK

Input: packets from log file, information from reference file

Process:

 read the rst attack row from the reference file and take rst flag, ack flag
 read ack flag from log file and create a table (for currently established

connection)
 read rst flag from log file and create another table
 read source IP. destination IP, destination port from both of the table
 check the IPs and port of rst table with the the Ips and port of ack table,

whether requested fin has a valid connection or not
 if the connection is not valid then save the source IP. destination IP,

destination port of rst table and set alarm

Output: saved source IP. destination IP, destination port

8.3 GUI (graphical User Interface)

The software, IViS (acronym for Intrusion Visual Simulator) opens with a
front window as shown in Figure 23. The components of the window are as
follows: menu bar at the top, which gives the SSO the option of simulating
generation of attack and safe packets and viewing of reports through the
following options: Attack, Safe and View, list of alarms at the bottom, which
includes all the alarms set off since the software is started and the main portion
where the graphical simulation takes place.

At the left-bottom corner above the list of alarms, there is a legend that
informs the SSO the meaning of each symbols used in the simulation. For
example, a red “F” or “R” means FIN attack or RST attack respectively (as

 48
already explained in the earlier section). Additionally, the red circle is carved
over a host indicating the host has been attacked and should be disconnected
from the network.

When the window starts, the middle portion draws a sub-set of the
hypothetical network used in the research. In the center lies the switch with IP
address 192.168.0.2 and right at it’s top is the log generator and analyzer, a
computer with IP address 192.168.0.3. The other three computers are clients.

Figure 23: Front Window of IViS

 49

Upon clicking on the item pointed by the mouse as shown in Figure 24, a dialog
opens an example of which is the one in Figure 25. In the dialog, the user has
selected one of the clients (hosts) as source, which is attacker and another as
destination, which is victim. The user also has to choose port numbers, both

Fig 24 : Front Window of IViS

Fig 25: Dialog to Generate FIN Attack

 50
source and destination to launch attack. Once the “OK” button is pressed, the
attack is launched and the actual task of the packet generation, transfer, sniffing,
logging, analyzing and alerting begin. Other attack and safe packets can also be
generated using similar dialog boxes.

In figure 26, the packet generated earlier is traced by the software. The
network is yet does not know whether this packet sent from 192.168.0.1 (Figure
26) to 192.168.0.4 is FIN attack. So, the software shows its passage with a green
colored S, meaning safe, from source to the switch.

The packet received by the switch is forwarded to the destination, taking it

to be safe (green colored “S” in Figure 27). It also forwards a copy to the log
generator/analyzer and it is represented as a blue “?” mark. This means that the
network, more particularly, the analyzer does not know what type of packet it is:
safe or attack.

Fig 26: Packet from Host to Switch

 51

After every interval of ten seconds, the analyzer gets log data from a file

and analyzes the packets to check for attacks. For our example of FIN attack
generation, the analyzer classifies the packet correctly as FIN attack. This is
shown in Figure 28. Here, the packet transmission from attacker to victim is re-
simulated but with real identity of the packet. An “F” in red is animated from
attacker (192.168.0.1) via the switch (192.168.0.2) to the victim (192.168.0.4).
Also, a copy of the packet is also traced, symbolized with a blue “?” mark, from
the switch to the log generator/analyzer (192.168.0.3) showing that it does not
worry about the identity of the packet until the analysis is done. This alert is
generated by the Report Generator (in the background) which takes data from
the analyzer and displays it on the main window. Moreover, the victim is marked
with a circle in red attracting the attention of the SSO. A message is appended in
the list at the bottom of the window showing the attacker and victim’s IP
addresses and port numbers, the date and time of the attack and an advice note.

Similar to the FIN attack of our example, PING and RST attacks are
simulated except that the PING attack is show as a flood of packets. In the same
way, safe packet are simulated with the exception that no alert is generated
indicating precaution taken by the system against false alarms.

If an attacker is identified, its IP address is stored in a file by the analyzer.
This file is used by the switch to use in the preemption and preventive techniques
discussed in Section 5. If such an attacker sends packets into the network via the
switch, no matter what type of packets are these, looks up its IP address in the
file and since it exists there, drops all maintaining the safety of the network
(Figure 29). The question mark shows ignorance about the contents of the
packet while dropping keeping safety as the first priority.

As Figures 30 and 31 show, we have two reports generated by the

software for the time being. The first shows the IP addresses of hosts which have
been blocked. The second shows history of all attacks. Currently, no sorting and
searching options are available, but we plan to add them in the future.

 52

Fig 27: Packets Forwarded to Destination and Log Generator/Analyzer

Fig 29: Packets Dropped

Fig 30: Report—Blocked Ips

 53

8.4 Evaluation

The proposed system is very useful in serving as the prototype of a full-
fledged IDS. The system has some unique features and other positive sides. At
the same time, there are some short-comings that have to be overcome in the
future.

The system has both textual and visual output. A visual output where the
SSO can pin-point the problem graphically is very helpful in presenting the attack
more vividly which would be hard to miss as usually with the case with textual
output. Additionally, the outputs are stored in a file as history. This history stores
information about all the attacks that have been experienced by the network.

As this IDS is network-based, it protects the overall network from both
inside and outside attacks. Moreover, since the logging unit and analysis engine
are centrally located and only the sensors are distributed, it would be easier to
provide safety to the components of the IDS. This is so because it would be

Fig 31: Report----History of Attacks

 54
easier to isolate the machines hosting these units from the rest of the host
machines as only the sensors would know where to send data for logging and
only the IDS console would know the whereabouts of the analyzer and the report
generator. Otherwise, the IDS itself would be very vulnerable to intrusions.

The proposed IDS is built on object-oriented principles making it easy to
maintain and add new features and components such as configuration data and
active/process data. Another important advantage of the system is that, classes
for new attacks can be written and easily incorporated in the system increasing
the scope of handling attacks. Similar expansions are possible in report
generation.

The proposed IDS is expected to be cheaper than the ones available in
the market. The use of open-source programs such as ethereal makes it
economically feasible to use them in the system without worrying about buying
them. The system does not use any special hardware apart from existing
machines such as switches, routers and computers. Therefore, no added cost of
hardware will have to be borne. The cost of maintenance is also expected to be
low due to lower complexity in adding components and features.

As already mentioned, besides the advantages, there are also some
short-comings of the system. This includes a small volume of reference data that
is suitable to handle only limited number of attacks. The number of attacks
handled should be increased before the system can be used in reality. Also, it
has not been possible to test the system on a real network. One other
disadvantage of the system is that currently, no module has been written or
included that can sniff real packets from the network. This has been further
discussed in the next section.

 55

9 CONCLUSION AND FUTURE WORK

The basic goal of the proposed system is to serve as a stepping-stone to a

much efficient IDS. Moreover, the design issues of the system have been
considered keeping companies and organizations of Bangladesh in mind. Due to
lack of resources such accessibility of sensitive system resources and
permission to conduct mock attacks, the implementation of the proposed system
has not been carried out. The designed and implemented system has some
unique features which can be utilized to develop a full-fledged IDS with a visual
simulator to prevent and detect attacks and manage reports and alarms so that
the three aspects of a system: confidentiality, integrity and availability can be
maintained.

This system can serve as a prototype of a full-fledged IDS and a visual
tool for generating alarms and reports of threats. More types of attacks can be
handled by adding modules in the already existing basic one. Moreover, real
packet sniffers, such as Ethereal which is an open source utility, can be used to
detect packets from the network card. On the contrary, a module for the purpose
can be written and included in the existing system.

Another issue that needs more research is in the area of logging. It is an
issue of huge importance and an area of target by attackers [7]. The log and
reference files should be secured by encryption or any other mechanism.
Additionally, a configuration unit is also required to add dynamics to the system.

 56

APPENDIX

Classes
P ANALAYSIS

Attack

private:
sourceIp: String
destIp: String
protected:
attackOutputs: Vector
public:
Attack(String sourceIp,String destIp)
getDestIp():String
setDestIp(String destIp): void
getSourceIp():String
setSourceIp(String sourceIp): void
getAttackOutputs():Vector

FinAttack
private:
finflag: String
ackFlag: String
info: String

public:
String sip,String dip)
checkAttack(Vector v): int
reference(String fileName): void
getAckFlag() : String
setAckFlag(String ackFlag) : void
getFinflag() : String
setFinflag(String finflag) : String
toString():String

PingAttack
private:
limit: int
time: int
info: String

 57
public:
checkAttack(Vector v): int
reference(String fileName): void
getLimit() : int
setLimit(int limit) : void
getTime() : int
setTime(int time): void
toString():String

RstAttack
private:
rstflag: String
ackFlag: String
info: String
dport: int
public:
checkAttack(Vector v): int
reference(String fileName): void
getAckFlag() : String
setAckFlag(String ackFlag) : void
setRstflag() : void
setRstflag(String rstflag): void
toString():String

Analysis
private:
output[]: String
numAttack: int
parent: Node
period: int
filename: String
attackOutputs: Vetor
numFile: String
lineCount: int
newAttack: Boolean
public:
run(): void
getOutput():String[]
main(String args[]): void
packetGeneration(String fileName): void
defineAttack(Vector v): void

Output
privae:
sourceIp: String

 58
destinationIp: String
sourcePort: int
destinationPort: int
attackType: String
public:
Output(String sourceIp, String destinationIp, int sourcePort, int destinationPort, String
attackType)
getAttackType() : String
getDestinationIp(): String
getDestinationPort():int
getSourceIp():String
getSourcePort():int
toString():String

P PACKET

IpPacket

private:
 version: int
headerLen: int
totalLen: int
protocol: String
source: String
destination: String
protocolPacket: ProtocolPacket
dateTime: String

public:
getDestination():String
setDestination(String destination): void
getHeaderLen(): int
setHeaderLen(int headerLen): void
getProtocol(): String
setProtocol(String protocol): void
getSource(): String
setSource(String source) : void
getTotalLen(): int
setTotalLen(int totalLen): void
getVersion(): int
setVersion(int version): void
getProtocolPacket() : ProtocolPacket
setProtocolPacket(ProtocolPacket protocolPacket) : void
getDateTime() : String

 59
setDateTime(String dateTime) : void
toString():String

ProtoolPacket
private:
source: int
destination: int
public:
getDestination(): int
setDestination(int destination) : void
getSource() : int
setSource(int source) : void
toString() : String

IcmpPacket
private:
sequence: int
type: int
private:
getSequence():int
getSequence(int sequence): void
getType():int
setType(int type): void
toString():String

TcpPacket
private:
sequence: int
headerLen: int
flag: String
public:
getFlag():String
setFlag(String flag) : void
getHeaderLen():int
setHeaderLen(int headerLen): void
getSequence():int
setSequence(int sequence) : void
toString():String

 60
P COMMUNICATION

Client
private:
clientSocket: Socket
message: String
public:
waitForMessage(): void
send(String message): void
getClientSocket(): Socket
setClientSocket(Socket clientSocket): void

DriverClient
private:
client: Client

public:
sendMessage(String message): void
waitForMsg(): void
main(String args[]): void

ForwardServer
private:
caller: Node

public:
caller: Node
obtainMessage(ServerClientThread thread,String message): void

Server
private:
serverSocket: ServerSocket
clients: Vector
clientMessage: String

public:
run(): void
sendMessage(String remoteHost, String message): int
broadcast(String[] receipients,String message): void
obtainMessage(ServerClientThread thread,String message): void
getClientMessage(): String
setClientMessage(String clientMessage): void

 61
ServerClientThread
private:
socket: Socket
server: Server
message: String
public:
run(): void
send(String message): void
getServer(): Server
setServer(Server server): void
getSocket(): Socket
setSocket(Socket socket): void

P NETWORKING

Computer
private:
img: Image
public:
Computer(String name, Network parent, int x, int y,String role)
getImg(): Image

Droppage
private:
Node source: Node
Type: String
G: Graphics
public:
Droppage(Node node, String type, Graphics g)
annimate(int sourceX, int sourceY, String symbol,Color symbolColor,
Font font): void
run(): run

LogGenerator
private:
logFile: String
packet: IpPacket
public:
LogGenerator(String logFile)
generate(String packetString): void
stringToPacket(String packetString): IpPacket
main(): void

Network
private:
name: String

 62
nodes: Vector
forwarder: String
analyzerLogger: String
display: list
aLPort: int
netClientPort: int
thread: Vector
menuBar: JMenuBar
public:
ipHLen: Vector
tcpHLen: Vector
udpHLen: int
switchPort: int
public:
Network(String name)
actionPerformed(ActionEvent e): void
draw(Graphics g): void
addComputer(String name,int x, int y,String role,Graphics g): void
addComputer(String name,int x, int y,String role,Graphics g): void
paint(Graphics g): void
tracePath(String source, String destination,String type): void
dropPacket(String source, String type): void
getComputer(String ip): Computer
getAnalyzerLogger(): String
setAnalyzerLogger(String analyzerLogger): void
getForwarder(): String
setForwarder(String forwarder): void
getReport(String output[]): void
generateAlarm(Vector attackOutputs): void
markNode(String victim): void
addThread(Thread th): void
main(): void

private:
innitializeNodes(): void

Node
private:
parentNet: Network
xPos: int
yPos: int
connectedNode: Vector
server: ForwardServer
clients: Vector
clientIps: Vector
client: lient
bannedIpFil: String

proteted:
name: Sting
public:
role: String

 63
public:
Node(String name,Network parent,int x, int y,String role)
getName(): String
getRole(): String
setRole(String rol): void
setName(String name): void
getXPos): int
setXPos(int pos): void
getYPos(): int
setYPos(int pos): void
getConnectedNode(): Vector
setConnectedNode(Node connectedNode): void
makeServer(int port): void
makeClient(String remoteHost,int remotePort): void
getClient(): Client
setClient(Client client): void
stringToPacket(String packetString): IpPacket
forwardMessage(String receivedMsg): void
sendPacket(IpPacket packet): void
runAnalyzer(): void
passAttackOutputs(Vector attackOutputs): void
getClients(): Vector
setClients(Vector clients): void
getParentNet():Network
authenticateIp(String sourceIp): Network

OutputAttacks
private:
outputTable: JTable
public:
OutputAttacks(String title, Frame parent)

Path
private:
source: Node
destination: Node
nodes: Vector
type: String
g: Graphics
delta: int
public:
Path(Node source, Node destination, String type, Graphics g)
private:
annimate(float gradient,int sourceX, int sourceY, int destinationX,
int destinationY,String symbol,Color symbolColor, Font font): void
run(): void

PathTracer

 64
private:
source: Node
destination: Node
sw: Node
la: Node
start: Node
end: Node
type: String
g: Graphics
delta: int
maxSymbol: nt
count: int
symbolCount: int
public:
PathTracer(Node from, Node to, Node sw,Node la,String type, Graphics
g)
PathTracer(Node from, Node to,String type, Graphics g,int count,int
symbolCount): constructor
run(): void
initialize(Node from, Node to): void
private:
annimate(float gradient,int sourceX, int sourceY, int destinationX,
int destinationY,String symbol,Color symbolColor, Font font): void

SimulatorDialog
private:
chSource: Choice
chDestination: Choice
txtSrcPort: TextField
txtDstPort: TextField
clientList: List
public:
SimulatorDialog(String title, Frame parent)
getClientsServer(): void
actionPerformed(ActionEvent ae): void
getChSource() : Choice
setChSource(Choice chSource): Choice
getClientList():List
setClientList(List clientList): void
getChDestination():Choice
setChDestination(Choice chDestination): void
getTxtDstPort(): TextField
setTxtDstPort(TextField txtDstPort): TextField
getTxtSrcPort(): extField
setTxtSrcPort(TextField txtSrcPort): void

Switch
pivate:
img: Image
public:
Switch(String name, Network parent, int x, int y)

 65
getImg(): Image

ShowToday

public:
today():String
demo():void
easyDateFormat (String format): String

Codes used in analysis of attacks

Class : Analysis

package analysis;

import java.util.Timer;
import java.util.Date;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileInputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.RandomAccessFile;
import java.util.*;
import java.io.PrintWriter;
import java.io.FileWriter;
import java.io.FileOutputStream;

import packet.*;
import networking.*;
/***
 *
 * this is the class for analysis and detect the intusion type
 */
public class Analysis extends Thread{
 private String output[];
 private final int numAttack=3;
 private Node parent;
 private static int period=10;
 private static String fileName="log.txt";
 private Vector attackOutputs;
 private String numFile="LineNum.txt";
 private static int lineCount;
 private boolean newAttack=false;
 private final String bannedIpFile="Banned.txt";
 public Analysis(Node parent){
 output=new String[numAttack];

 66
 this.parent=parent;
 attackOutputs=new Vector();
 }
 public void run(){
 while(true){
 try {
 Thread.sleep(period*1000);
 attackOutputs.removeAllElements();
 packetGeneration(fileName);
 if(newAttack)
 parent.passAttackOutputs(attackOutputs);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 ////////////////////////// Packet Generation
/////////////////////////////
 ///
////////
 public void packetGeneration(String fileName){
 /////variable declaration
 int srcPort,destPort,seq,hlen,type,ver,tlen;
 IpPacket iPacket=new IpPacket();
 Vector v=new Vector();
 BufferedReader bf=null;
 newAttack=false;

 try {
 BufferedReader numberReader=new BufferedReader(new
InputStreamReader(new FileInputStream(numFile)));
 try {

 lineCount=Integer.parseInt(numberReader.readLine());
 numberReader.close();
 } catch (NumberFormatException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 bf = new BufferedReader(new InputStreamReader(
 new FileInputStream(fileName)));
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 FileInputStream reader=null;
 String line=null;
 try {
 for(int i=0;i<lineCount;i++)
 line=bf.readLine();
 line=bf.readLine();
 v.removeAllElements();
 while(line!=null){
 newAttack=true;

 67
 lineCount++;
 String c[]=line.split(" ");
 /////////////////have to check////////
 srcPort=Integer.parseInt(c[3]);
 destPort=Integer.parseInt(c[4]);
 seq=Integer.parseInt(c[9]);
 hlen=Integer.parseInt(c[6]);
 ver=Integer.parseInt(c[5]);
 tlen=Integer.parseInt(c[7]);
 ///////////////////////
 ProtocolPacket pPacket=new
ProtocolPacket(srcPort,destPort);
 //create protocol(tcp/icmp) packet
 if(c[8].equalsIgnoreCase("tcp")){
 TcpPacket tp=new
TcpPacket(srcPort,destPort,seq,hlen,c[10]);
 iPacket=new
IpPacket(ver,hlen,tlen,c[8],c[1],c[2],tp,c[0]);
 v.add(iPacket);
 }
 else if(c[8].equalsIgnoreCase("icmp")){

 type=Integer.parseInt(c[11]);
 IcmpPacket icp=new
IcmpPacket(srcPort,destPort,seq,type);
 iPacket=new
IpPacket(ver,hlen,tlen,c[8],c[1],c[2],icp,c[0]);
 v.add(iPacket);
 }
 line=bf.readLine();
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 ////////// call defineAttack Funtion,v=vetor
pakets///////////////////////////////////
 if(newAttack)
 defineAttack(v);
 try {
 PrintWriter numWriter=new PrintWriter(new
FileOutputStream(numFile));
 String currentLine=""+lineCount;
 numWriter.write(currentLine);
 numWriter.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 }

 ///////////////////Define
Attack///
 ///
////////////
 public void defineAttack(Vector v){

 68
 IpPacket packet;
 TcpPacket tcp;
 IcmpPacket icmp;
 Vector vicmp=new Vector(); //vector for icmp
 Vector vtcp=new Vector(); //vetor for tcp
 ///////////////
 for(int x=0;x<v.size();x++){
 packet=(IpPacket)(v.elementAt(x));
 String protocol=packet.getProtocol();
 if(protocol.equalsIgnoreCase("icmp")){
 vicmp.addElement(packet);
 } //if icmp
 else if(protocol.equalsIgnoreCase("tcp")){
 vtcp.addElement(packet);
 } //if tcp
 }//for
 RstAttack rAttack=new RstAttack(null,null,0);
 FinAttack fAttack=new FinAttack(null,null);
 PingAttack pAttack=new PingAttack(null,null);

 if(pAttack.checkAttack(vicmp)>=1){
 output[0]=pAttack.toString();
 Vector output=pAttack.getAttackOutputs();
 for(int i=0;i<output.size();i++){
 attackOutputs.addElement(output.elementAt(i));
 }
 }
 if(rAttack.checkAttack(vtcp)==1){
 output[1]=rAttack.toString();
 Vector output=rAttack.getAttackOutputs();
 for(int i=0;i<output.size();i++){
 attackOutputs.addElement(output.elementAt(i));
 }
 }
 if(fAttack.checkAttack(vtcp)==1){
 output[2]=fAttack.toString();
 Vector output=fAttack.getAttackOutputs();
 for(int i=0;i<output.size();i++){
 attackOutputs.addElement(output.elementAt(i));
 }
 }
 File file=new File(bannedIpFile);
 RandomAccessFile raf=null;
 try {
 raf = new RandomAccessFile(file,"rw");
 raf.seek((raf.length()));
 for(int i=0;i<attackOutputs.size();i++){
 Output
output=(Output)attackOutputs.elementAt(i);
 raf.writeBytes(output.getSourceIp()+"\n");

 }

 raf.close();

 69
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 catch (IOException e) {
 e.printStackTrace();
 }

 }
 public String[] getOutput() {
 return output;
 }

}
//
Class: Attack

package analysis;

import java.util.Vector;
public class Attack {
 String sourceIp;
 String destIp;
 protected Vector attackOutputs;
 public Attack(String sourceIp,String destIp){
 this.sourceIp=sourceIp;
 this.destIp=destIp;
 attackOutputs=new Vector();
 }
 public String getDestIp() {
 return destIp;
 }
 public void setDestIp(String destIp) {
 this.destIp = destIp;
 }
 public String getSourceIp() {
 return sourceIp;
 }
 public void setSourceIp(String sourceIp) {
 this.sourceIp = sourceIp;
 }
 public Vector getAttackOutputs() {
 return attackOutputs;
 }

}
///

Class: FinAttack
package analysis;

import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileNotFoundException;

 70
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;

import packet.*;

public class FinAttack extends Attack {

 String finflag,ackFlag,info=" ";

 FinAttack(String sip,String dip){
 super(sip,dip);
 }
 public int checkAttack(Vector v){

 IpPacket packet;
 TcpPacket tPacket;
 reference("reference.txt");
 Vector finAttack=new Vector();
 Vector ackVec=new Vector();

 for(int x=0;x<v.size();x++){
 packet=(IpPacket)(v.elementAt(x));
 tPacket=(TcpPacket)(packet.getProtocolPacket());

 if(tPacket.getFlag().equalsIgnoreCase(this.getFinflag())){
 finAttack.add(packet);
 }

 if(tPacket.getFlag().equalsIgnoreCase(this.getAckFlag())){
 ackVec.add(packet);
 }
 }
 String sip,dip;
 int dport;

 int y=0;
 for(;y<finAttack.size();y++){

 packet=(IpPacket)(finAttack.elementAt(y));
 tPacket=(TcpPacket)(packet.getProtocolPacket());
 sip=packet.getSource();
 dip=packet.getDestination();
 dport=tPacket.getDestination();
 for(int z=0;z<ackVec.size();z++){
 packet=(IpPacket)(ackVec.elementAt(z));

 tPacket=(TcpPacket)(packet.getProtocolPacket());
 if((sip.equalsIgnoreCase(packet.getSource()))

 &&(dip.equalsIgnoreCase(packet.getDestination()))

 &&(dport==tPacket.getDestination())){

 71
 finAttack.remove(y);
 y--;
 }
 }

 }

if(finAttack.size()>0){
 for(int i=0;i<finAttack.size();i++){
 packet=(IpPacket)(finAttack.elementAt(i));

 tPacket=(TcpPacket)(packet.getProtocolPacket());

 info=info+packet.getSource()+"
"+packet.getDestination()+" "+tPacket.getSource()
 +" "+tPacket.getDestination()+"\n";
 Output attack=new
Output(packet.getSource(),packet.getDestination(),

 tPacket.getSource(),tPacket.getDestination(),"FIN");
 attackOutputs.add(attack);
 }
 return 1;
 }
 else
 return 0;
 }
 public void reference(String fileName){
 BufferedReader bf=null;
 try {
 bf = new BufferedReader(new InputStreamReader(
 new FileInputStream(fileName)));
 } catch (FileNotFoundException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 FileInputStream reader=null;
 String line=null;
 String c[]=null;
 try {
 line=bf.readLine();
 while(line!=null){

 c=line.split(" ");

 if(c[0].equalsIgnoreCase("fin")){
 this.setFinflag(c[2]);
 this.setAckFlag(c[5]);

 }

 line=bf.readLine();
 }

 72
Class: Output

package analysis;

public class Output {
 private String sourceIp;
 private String destinationIp;
 private int sourcePort;
 private int destinationPort;
 private String attackType;
 public Output(String sourceIp, String destinationIp, int
sourcePort, int destinationPort, String attackType) {
 super();
 this.sourceIp = sourceIp;
 this.destinationIp = destinationIp;
 this.sourcePort = sourcePort;
 this.destinationPort = destinationPort;
 this.attackType = attackType;
 }
 public String getAttackType() {
 return attackType;
 }
 public String getDestinationIp() {
 return destinationIp;
 }
 public int getDestinationPort() {
 return destinationPort;
 }
 public String getSourceIp() {
 return sourceIp;
 }
 public int getSourcePort() {
 return sourcePort;
 }
 @Override
 public String toString() {
 // TODO Auto-generated method stub
 return sourceIp+" "+destinationIp+" "+sourcePort+"
"+destinationPort+" "+attackType;
 //return super.toString();
 }

}
////////////////////////////////////
Class: PingAttack

package analysis;

import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;

 73
import java.util.*;

import packet.*;

/**
 *
 * class for detect PING Attack
 */
 public class PingAttack extends Attack{

 int limit,time;
 String info=" ";
 public PingAttack(String sourceIp,String destIp){
 super(sourceIp,destIp);
 }
 ///////////////////////////// detect the attack
///

 ///
///////////////////////
 public int checkAttack(Vector vpacket){
 this.reference("reference.txt");
 int second,time=0,dport=0,count=0;;
 String dip;
 Vector vping=new Vector();
 IpPacket packet;
 IcmpPacket ipak;
 //Vector temp=new Vector();
 Vector temp1=new Vector();
 for(int x=0;x<vpacket.size();x++){
 packet=(IpPacket)vpacket.elementAt(x);
 ipak=(IcmpPacket)packet.getProtocolPacket();
 if(ipak.getType()==8){
 vping.add(packet);
 temp1.add(packet);
 }
 }
 //int z=0
 int test=-1;
 while(!vping.isEmpty()){
 packet=(IpPacket)vping.firstElement();
 ipak=(IcmpPacket)packet.getProtocolPacket();
 String time1[]=packet.getDateTime().split(":");
 second=Integer.parseInt(time1[2]);
 dip=packet.getDestination();
 dport=ipak.getDestination();
 // System.out.println("ref
"+packet.getDateTime()+" "+dip+" "+dport);
 test++;

 for(int y=0;y<this.getTime();y++){
 for(int z=0;z<vping.size();z++){

 packet=(IpPacket)vping.elementAt(z);

 74

 ipak=(IcmpPacket)packet.getProtocolPacket();
 String
time2[]=packet.getDateTime().split(":");
 time=Integer.parseInt(time2[2]);
 // System.out.println("time2
"+packet.getDateTime()+" "+packet.getDestination()+"
"+ipak.getDestination());
 // System.out.println("second
"+second+"time+y "+(time+y));
 if(second==((time+y)%60)){

 if((dip.equalsIgnoreCase(packet.getDestination())&&(dport==ipak.g
etDestination()))){
 count++;

 packet=(IpPacket)vping.elementAt(z);
 //
 System.out.println("ount "+count);
 //
 System.out.println(packet.getDateTime());
 //info=info+"\nSource
IP: "+packet.getSource();

 info=info+packet.getSource()+" "+packet.getDestination()+"
"+ipak.getSource()
 +"
"+ipak.getDestination()+"\n";
 Output attack=new
Output(packet.getSource(),packet.getDestination(),

 ipak.getSource(),ipak.getDestination(),"PING");

 attackOutputs.add(attack);
 vping.remove(z);
 z--;
 }
 }
 }
 }//for
 if(test==(this.getTime()-1)){

 //System.out.println("dfkjndkfndjkcfndnn"+count);
 if(count>=this.getLimit()){

 //System.out.println("PINGGGGGGGGGGGGGGGGGGGGGG "+count);
 return 1;
 }
 else
 count=0;
 }
 }//while

 75

 /*int z=0;
 for(int y=0;y<this.getTime();y++){
 while(!vping.isEmpty()){
 packet=(IpPacket)vping.firstElement();

 ipak=(IcmpPacket)packet.getProtocolPacket();
 String
time1[]=packet.getDateTime().split(":");
 second=Integer.parseInt(time1[2]);
 dip=packet.getDestination();
 dport=ipak.getDestination();
 System.out.println("ref
"+packet.getDateTime()+" "+dip+" "+dport);

 for(z=0;z<vping.elementNO;z++){

 packet=(IpPacket)vping.elementAt(z);

 ipak=(IcmpPacket)packet.getProtocolPacket();
 String
time2[]=packet.getDateTime().split(":");
 time=Integer.parseInt(time2[2]);
 System.out.println("time2
"+packet.getDateTime()+" "+packet.getDestination()+"
"+ipak.getDestination());
 System.out.println("second
"+second+"time+y "+(time+y));
 if(second==((time+y)%60)){

 if((dip.equalsIgnoreCase(packet.getDestination())&&(dport==ipak.g
etDestination()))){
 count++;

 packet=(IpPacket)vping.elementAt(z);

 System.out.println("ount "+count);

 System.out.println(packet.getDateTime());
 vping.remove(z);
 z--;
 }
 }
 }
 }
 }
*/
 return count;

 }

///////////////////////////////////////Reference///////////////////////
//
 public void reference(String fileName){

 76
 BufferedReader bf=null;
 try {
 bf = new BufferedReader(new InputStreamReader(
 new FileInputStream(fileName)));
 } catch (FileNotFoundException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 FileInputStream reader=null;
 String line=null;
 String c[]=null;
 try {
 line=bf.readLine();
 while(line!=null){
 //System.out.println(line);
 c=line.split(" ");
 if(c[0].equalsIgnoreCase("ping_dos")){
 this.setTime(Integer.parseInt(c[4]));
 this.setLimit(Integer.parseInt(c[5]));
 }
 line=bf.readLine();
 }
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 public String toString(){
 //String str= "\nType of Attack: PING DOS
Attack"+"\nSource IP: "+this.getSourceIp()+"\nDestination IP:
"+this.getDestIp();
 return info;
 }

 public int getLimit() {
 return limit;
 }

 public void setLimit(int limit) {
 this.limit = limit;
 }

 public int getTime() {
 return time;
 }

 public void setTime(int time) {
 this.time = time;
 }

 }

 77

 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 public String getAckFlag() {
 return ackFlag;
 }
 public void setAckFlag(String ackFlag) {
 this.ackFlag = ackFlag;
 }
 public String getFinflag() {
 return finflag;
 }
 public void setFinflag(String finflag) {
 this.finflag = finflag;
 }
 public String toString(){
 return info;
 }

}

Class: RstAttack

package analysis;

import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;

import packet.*;

public class RstAttack extends Attack{

 String rstflag,ackFlag,info="";
 int dport;
 RstAttack(String sip,String dip,int dport){
 super(sip,dip);
 this.dport=dport;
 }

 public int checkAttack(Vector v){
 IpPacket packet;
 TcpPacket tPacket;

 78
 reference("reference.txt");
 Vector rsAttack=new Vector();
 Vector ackVec=new Vector();

 for(int x=0;x<v.size();x++){
 packet=(IpPacket)(v.elementAt(x));
 tPacket=(TcpPacket)(packet.getProtocolPacket());

 if(tPacket.getFlag().equalsIgnoreCase(this.getRstflag())){
 rsAttack.add(packet);
 }

 if(tPacket.getFlag().equalsIgnoreCase(this.getAckFlag())){
 ackVec.add(packet);
 }
 }

//
 System.out.println("///
///////////////////////////////////");
// for(int i=0;i<rsAttack.elementNO;i++){
// packet=(IpPacket)(rsAttack.elementAt(i));
// tPacket=(TcpPacket)(packet.getProtocolPacket());
// System.out.println(" rst SourceIP:
"+packet.getSource()+" Destination IP: "+packet.getDestination()
// +" Destination Port:
"+tPacket.getDestination()+"");
// }
//
//
 System.out.println("///
///////////////////////////////////");
//
// for(int i=0;i<ackVec.elementNO;i++){
// packet=(IpPacket)(ackVec.elementAt(i));
//
 tPacket=(TcpPacket)(packet.getProtocolPacket());
// System.out.println("rstack SourceIP:
"+packet.getSource()+" Destination IP: "+packet.getDestination()
// +" Destination Port:
"+tPacket.getDestination()+""+"");
// }
//
//
 String sip,dip;
 int dport;
 int y=0;
 for(;y<rsAttack.size();y++){

 packet=(IpPacket)(rsAttack.elementAt(y));//elementAt(y));
 tPacket=(TcpPacket)(packet.getProtocolPacket());
 sip=packet.getSource();
 dip=packet.getDestination();
 dport=tPacket.getDestination();

 79
 for(int z=0;z<ackVec.size();z++){
 packet=(IpPacket)(ackVec.elementAt(z));

 tPacket=(TcpPacket)(packet.getProtocolPacket());
// System.out.println(" loop SourceIP: "+sip+"
Destination IP: "+dip
// +" Destination Port:
"+dport+"\n");
//
// System.out.println(" matching SourceIP:
"+packet.getSource()+" Destination IP: "+packet.getDestination()
// +" Destination Port:
"+tPacket.getDestination()+"\n");
//
 if((sip.equalsIgnoreCase(packet.getSource()))

 &&(dip.equalsIgnoreCase(packet.getDestination()))

 &&(dport==tPacket.getDestination())){
 //System.out.println("FVFDVFDVFDVF
"+y);
 //if(y<0)
 //return 0;
// System.out.println(" matching SourceIP:
"+packet.getSource()+" Destination IP: "+packet.getDestination()
// +" Destination Port:
"+tPacket.getDestination()+"\n");
 rsAttack.remove(y);
 y--;
//
 }
 }
 //System.out.println("FVFDVFDVFDVF "+y);

 }

 /*System.out.println("///
/////////////////////////////////////");

 for(int i=0;i<rsAttack.elementNO;i++){
 packet=(IpPacket)(rsAttack.elementAt(i));
 tPacket=(TcpPacket)(packet.getProtocolPacket());
 System.out.println(" SourceIP:
"+packet.getSource()+" Destination IP: "+packet.getDestination()
 +" Destination Port:
"+tPacket.getDestination()+"\n");
 }

 System.out.println("///
///////////////////////////////////");
 for(int i=0;i<ackVec.elementNO;i++){
 packet=(IpPacket)(ackVec.elementAt(i));
 tPacket=(TcpPacket)(packet.getProtocolPacket());

 80
 System.out.println(" SourceIP:
"+packet.getSource()+" Destination IP: "+packet.getDestination()
 +" Destination Port:
"+tPacket.getDestination()+"\n");
 }

 System.out.println("///
///////////////////////////////////");
 */
 //System.out.println(rsAttack.elementNO+"\n");
 if(rsAttack.size()>0){

 for(int i=0;i<rsAttack.size();i++){
 packet=(IpPacket)(rsAttack.elementAt(i));

 tPacket=(TcpPacket)(packet.getProtocolPacket());
 info=info+packet.getSource()+"
"+packet.getDestination()+" "+tPacket.getSource()
 +" "+tPacket.getDestination()+"\n";
 Output attack=new
Output(packet.getSource(),packet.getDestination(),

 tPacket.getSource(),tPacket.getDestination(),"RST");
 attackOutputs.add(attack);
 }
 return 1;
 }
 else
 return 0;
 /*int f=0,tr=0;
 for(int i=0;i<v.elementNO;i++){

 rPacket=(IpPacket)(v.elementAt(i));
 rtPacket=(TcpPacket)(rPacket.getProtocolPacket());

 if(rtPacket.getFlag().equalsIgnoreCase(this.getRstflag())){
 System.out.println("RST "+this.getRstflag()+"
"+rtPacket.getFlag());
 tr++;
 for(int j=0;j<v.elementNO;j++){
 packet=(IpPacket)(v.elementAt(j));

 tPacket=(TcpPacket)(packet.getProtocolPacket());
 System.out.println("
"+this.getAckFlag()+" "+tPacket.getFlag());
 System.out.println("
"+rPacket.getSource()+" "+packet.getSource());
 //System.out.println("
"+tPacket.getFlag());

 if((tPacket.getFlag().equalsIgnoreCase(this.getAckFlag()))

 &&(rPacket.getSource().equalsIgnoreCase(packet.getSource())

 81

 &&(tPacket.getDestination()==rtPacket.getDestination())

 &&(rPacket.getDestination().equalsIgnoreCase(packet.getDestinatio
n())))){
 System.out.println("No Attack");
 f++;

 }

 }
 } //1st if

 } //for

 if((tr-f)>0){
 return 1;

 }
 else
 return 0;
 //System.out.println("TEST"+tr+" "+f);
*/

 }

 public String toString(){
 return info;
 }
 public void reference(String fileName){
 BufferedReader bf=null;
 try {
 bf = new BufferedReader(new InputStreamReader(
 new FileInputStream(fileName)));
 } catch (FileNotFoundException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 FileInputStream reader=null;
 String line=null;
 String c[]=null;
 try {
 line=bf.readLine();
 while(line!=null){
 //System.out.println(line);

 c=line.split(" ");
 // System.out.println("-----------");

 if(c[0].equalsIgnoreCase("rst")){
 this.setRstflag(c[2]);
 this.setAckFlag(c[5]);
 }

 82

 line=bf.readLine();
 }
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public String getAckFlag() {
 return ackFlag;
 }

 public void setAckFlag(String ackFlag) {
 this.ackFlag = ackFlag;
 }

 public String getRstflag() {
 return rstflag;
 }

 public void setRstflag(String rstflag) {
 this.rstflag = rstflag;
 }

}

 83

REFERENCE

[1] Stefan Axelsson. Aspects of the Modelling and Performance of Intrusion

Detection. Technical Report no. 319L. Department of Computer Engineering,
Chalmers University of Technology, SE-412 96 G¨oteborg, Sweden.

[2] Janne Anttila . Intrusion detection in critical e-business environment. Thesis

subbmitted in partial fulfillment of the requirements for the degree of Master of
Science of Engineering, Espoo 6.3.2004. Helsinki University of Technology,
Department of Computer Science and Engineering.

.

[3] Hans Hedbom, Stefan Lindskog, and Erland Jonsson. Risks and Dangers of

Security Extensions. Depar tment of Computer Engineering, Chalmers University
of Technology, SE-412 96 G¨oteborg, Sweden.

[4] Hans Hedbom. On the Self-Protection of Firewalls and Distributed Intrusion

Detection systems. Technical Report 398L. Department of Computer
Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden.

[5] Ulf Lindqvis, Ulf Gustafson, Erland Jonsson. Analysis of Selected Computer

Security Intrusions: In Search of the Vulnerability. Technical Report No. 275.
Department of Computer Engineering, Chalmers University of Technology, SE-
412 96 Göteborg, Sweden.

[6] Hans Hedbom, Håkan Kvarnstöm and Erland Jonsson. Security Implications of

Distributed Intrusion Detection Architectures. In Proceedings of Fourth Nordic
Workshop on Secure IT Systems, NordSec’99, Stockholm, Sweden, November1–2
1999.

[7] Emilie Lundin Barse and Erland Jonsson, Setting the scene for intrusion

detection, Technical report 04-05, August 2004, Department of Computer
Engineering, Chalmers University of Technology, G¨oteborg, Sweden.

[8] Behrouz A. Forouzan, Data Communications and Networking, Fourth Edition, pg

724, 727.

[9] http://www.phatak.com/Network-Layer-DoS.php

[10] Raymond R. Panko, Corporate Computer and Network Security, Chapter 5.

 84

[11] Raymond R. Panko, Corporate Computer and Network Security, Chapter 5.

[12] www.wikipedia.org/wiki/ids

[13] Lawrence A. Gordon, Martin P. Loeb, William Lucyshyn and Robert Richardson,
11th Annual CSI/FBI COMPUTER CRIME AND SECURITY SURVEY, 2006

[14] http://en.wikipedia.org/wiki/Tcp/ip_model

[15]
http://images.google.com.bd/imgres?imgurl=http://whatis.techtarget.com/digitalguide/im
ages/Misc/fsimage2a.jpg&imgrefurl=http://whatis.techtarget.com/definition/0,,sid9_gci9
89915,00.html&h=300&w=503&sz=37&hl=en&start=10&um=1&tbnid=FYy7tn30WtC
KHM:&tbnh=78&tbnw=130&prev=/images%3Fq%3Dtcp/ip%2Bmodel%26svnum%3D
10%26um%3D1%26hl%3Den%26sa%3DG

[16] Understanding Intrusion Detection Through Visualisation by

STEFAN AXELSSON, Thesis for the degree of Doctor of Philosophy,
Department of Computer Science and Engineering , Chalmers University of
Technology, Sweden

[17] A Framework for Effective Alert Visualization by Uday Banerjee Jon Ramsey,

SecureWorks 11 Executive Park Dr Atlanta, GA 30329

[18] http://www.necommunications.com/images/diagram_security.jpg

[19] http://student.bu.ac.bd/~shadid/summer06/cse470/index.html

[20] http://www.codeproject.com/library/WinSNMPWrapper/class_diagram.png

