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ABSTRACT 
 
 

In this contribution a new concept for the development of real-time audio 

processing on a general-purpose personal computer based on the Real-Time 

Linux Operating System (Knoppix3.3) is presented. To overcome important 

difficulties in Windows Operating System such as robustness and low 

latency, we applied RT-Linux (hard real-time) operating system as a platform. 

 

 This paper describes the Real Time Audio processing framework. First 

of all we discussed the objectives we pursue with its development and then 

we have given an overview of the system from both hardware and software 

point of view. Next we described the implementation details including 

hardware module, software module and host module (interfacing) and finally 

the applications. 
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                                             CHAPTER I   

                                

                                         INTRODUCTION 
    

Background and motivation 
Music, just a little word but makes a great impression on human mind. It 
keeps everybody on the run. From the beginning of the human race, men 
loved music. For this passion for music, we always thought a way to develop 
music with the help of modern technology. As a student of Electronics and 
Communication the idea came into our mind that we can process audio 
signals in real-time which will be great addition in music industry. We choose 
to process audio in Real-Time to make music composition more ease for the 
music composers. 
 

 To fulfill our target, we have made a research on current audio signal 

processing tools and we found many obstacles. Most of the audio signal 

processing software are used for commercial purposes which are very costly 

and are based on closed-source solution i.e. windows operating system. So, 

general availability of audio processing tools is far beyond. There is few 

audio signal processing tools is developed based on open-source solution 

i.e. Linux. But the signal processing is based on software, which are efficient 

but costly. Thus, we choose to develop a low cost and efficient audio signal 

processing tool consists of both hardware and software in hard Real-Time on 

Linux platform. 

 

Overview 

This project is pc based Real-Time audio signal processing which has done 

in hard real time using Knoppix3.3 as a RT-Linux operating system and 

consists of both hardware and software. For hardware we have used Data 



 

 

9 

Acquisition Card (DAQ card- AX5411H) where a microphone is connected to 

its input line and a speaker is connected to the output line and the DAQ 

Board is linked to the Host through ISA bus. Via an Application 

Programmable Interface (API) the host has access to the DAQ Board and 

various software used to perform the overall process. Special DAQ device 

driver for real-time operatio is used to make converse between DAQ card and 

RT-Linux. Because standard Linux has built in device driver but RT-Linux has 

not. we implemented GUI (Graphical User Interface ) consist of some 

controlling button to control the system, Vxscope shows the output signal and 

filtration program developed using C Language to filter the audio signal. To 

being alive all the processes in Real-Time the Thread Programming for real-

time operation has been used.  Since we work under RT-Linux  we have not 

enough permission to directly access. So we need Thread Program to get 

access in the RT-Linux. 

 

Objective 

In the computer music research field it is not possible to evaluate a given 

sound synthesis or processing algorithm without listening to its output. If the 

algorithm has real time control parameters, proper experimentation can only 

be done with a real time implementation and a human interpreter involved. 

We have done the audio processing in RT Linux. We can also do it using the 

Windows Operating System in real time but there are some major problems 

that we have to face in Windows OS like robustness, latency, and accuracy. 

Wherein RT-Linux we can get more accuracy and low latency, which is the 

most important thing in audio processing system. Another opportunity is RT-

Linux is a free operating system, which is machine independent. It is thus 

important to have a good application development framework, so that the 

loop time between the algorithm idea and its evaluation is reduced as much 

as possible. Converting a research application prototype into an application 

which can be used as a musical instrument in other scenarios should not be 

hard work if both the framework and the developer take enough care of 
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requirements such as efficiency, latency and robustness. This is what our 

framework aims to achieve. 

 

 

 

 

Thesis Outline 

In this paper we introduced a platform that aims real-time prototyping in the 

field of digital audio signal processing. We have described how we have 

successfully used it to implement an interactive sound processor which 

satisfied live performance requirement as well as preservation for long time 

through the following chapters accordingly. 

 

In chapter II, the system overview which gives a brief idea of the processing 

system described with a block diagram. 

Chapter III, implementation details consists of three parts operating system 

and Real-Time Kernel, hardware module and the software module described 

severally with necessary diagrams. 

Chapter IV, described the applications of Real-Time Audio signal processing. 

Chapter V, presents the conclusions of this project. 

Lastly chapter VI, gives some suggestions for future development. 
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                                        CHAPTER II 

 

                                  SYSTEM OVERVIEW 
 

The purpose of this project is to digitization of analog audio signal in Real-

Time Linux. To accomplished the target several steps to be done described 

by the following diagram: 

 
                                 FIGURE 2.1: Block Diagram Of The Sysytem 

 
According to the diagram input (analog audio signal) is recognized by 
SENSOR. The SENSOR senses the input signal (sound wave) and send it to 
VARIABLE CONVERSION. Actually the combination of SENSOR and 
VARIABLE CONVERSION is called TRANSDUCER which included the 
Microphone itself. The VARIABLE CONVERSION converts the sound wave to 
voltage form. Then the converted voltage is sent to the AMPLIFIER. The 
AMPLIFIER fixed the converted voltage level according to ADC requirement. 
The job of ADC is converted analog voltage level to Digital bit stream and 
send into PROCESSOR for filteration and preservation. Incase of online 
process (such as live performance) the PROCESSOR sends the digital data 
into DAC which converted into analog (voltage) form. Then VARIABLE 
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CONVERSION converted the voltage in sound form and AMPLIFIER 
amplifies the sound wave as required and send it to SPEAKER for listening. 
And all those functions perfom in Hard Real-time Linux where latency is 
totally undesirable.      
                                                

 

                                          CHAPTER III 

 

                              IMPLEMENTATION DETAILS  
 

Implementation Details describe a data acquisition system (DAQ) which is a 

combination of computer hardware and software that gathers, stores or 

processes data in order to control or monitor some sort of physical process in 

Hard Real-time Linux platform as an operating system. A typical data 

acquisition system comprises a computer system with DAQ hardware, 

wherein the DAQ hardware is typically plugged into one of the I/O slots of the 

computer system. The DAQ hardware is configured and controlled by DAQ 

software (the device driver for RT-Linux) executing on the computer system. 

Here we described those part separately as 

 (a) Operating System and Real-Time Kernel (3.1) 

 (b) Hardware module (3.2) and  

 (c) software Module (3.3)    

 

3.1 OPERATING SYSTEM AND REAL-TIME KERNEL 

An operating system is the interface between a user's program and the 

underlying computer hardware. It also manages the execution of user 

programs such that multiple programs can run simultaneously and access the 

same hardware. Everyone who uses a computer encounters an operating 

system, whether it is Windows, Mac, Linux, DOS, or Unix.  

 
 This chapter describes the architecture and then summarizes the 

requirements of a real-time operating system and RT-Linux system 

structure. 
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3.1.1 Architecture of an Operating System 

An operating system, or more specifically the core or kernel of the operating 

system, is always resident in memory and provides the interfaces between 

user programs and the computer hardware. This is shown schematically in 

Figure 3.1. The name kernel follows from the analogy of a nut, where the 

kernel is the very heart of the nut and, in the computing domain, the kernel 

is the very heart of the operating system. Continuing the analogy, protective 

layers around the kernel that provide user authorization and interaction are 

called shells.  

 The physical memory in the computer is partitioned into user space 

and kernel space, with the kernel space reserved for the kernel code. The 

kernel of a multi-tasking operating system can manage multiple user 

programs running simultaneously in user space so that each program thinks it 

has complete use of all of the hardware resources of the computer and, other 

than for intentional messages sent between programs, each program thinks 

that it has it's own memory space and is the only program running.  
 

 

 

 

 

 

 

 

 

 

                       

 

 

 

                             FIGURE 3.1: Operating System Architecture 
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Communication between user-space programs and the kernel code is 

achieved through system calls to the kernel code. These system calls 

typically are to access shared physical resources such as disk drives, 

serial/parallel ports, network interfaces, keyboards, mice, display screens, 

 and audio and video devices. One unifying aspect of Linux systems is that all 

the physical resources appear to the user programs as files and are 

controlled with the same system calls such as open(), close(), read(), write(). 

 

 All of the input/output activity is controlled by the kernel code so that 

the user-space programs do not have to be concerned with the details of 

sharing common physical resources. Device-specific drivers in the kernel 

manage those details. An operating system is thus tailored to run on specific 

computer hardware and it isolates user programs from the specifics of the 

hardware, allowing for portability of user-space application code. Linux is of 

such an operating system where modules can be loaded and unloaded into 

the kernel space by user-space commands.  

 

 The architecture of an operating system is thus a core or kernel that 

remains in memory at all times, a set of processes in user-space that support 

the kernel, plus various modules and utility programs that remain stored on 

disk until needed. The kernel manages simultaneous execution of multiple 

user programs and isolates user programs from the details of managing the 

specific hardware of the computer. 

 

3.1.2 Required Functionality for Real-Time 

Real-Time Operating Systems (RTOS) are those able to provide a required 

level of service in a bounded response time. They can deliver a response in a 

time less than a designated timing interval. The timing interval may be long in 

computing terms i.e. orders of seconds, or it may be short i.e. orders of 

microseconds. For example, a real-time process control system for a 

chemical or food plant may only sample a sensor and calculate a control 

command once a second. On the other hand, for smooth response, a stepper 
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motor must be serviced every few microseconds. A so-called hard real-time 

system is one that misses no timing deadlines, a soft real-time system can 

tolerate missing some timing deadlines. 

 

 

3.1.3 Embedded vs Real-Time Operating Systems 

Embedded programs are those that are a fixed and integral part of a device. 

For example, a hand-held computer, a telephone answering system, and the 

control computer for the engine of a car all have fixed programs that start up 

whenever power is turned on. These are called embedded applications. 

Depending on the required response time, the operating systems for 

embedded applications may or may not be considered real-time operating 

systems. Servicing human interactions does not in general require real-time 

performance, but controlling a machine tool, scientific experiment, or weapon 

system does. 
 

3.1.4 Measures of Performance for Real-Time Operating Systems 

The most vital characteristic of a real-time operating system is how 

responsive the operating system is in servicing internal and external events. 

These events include external hardware interrupts, internal software signals, 

and internal timer interrupts. One measure of responsiveness is latency, the 

time between the occurrence of an event and the execution of the first 

instruction in the interrupt code. A second measure is jitter, the variation in 

the period of nominally constant-period events. To be able to offer low 

latency and low jitter, the operating system must ensure that any kernel task 

will be preempted by the real-time task. 

 

3.1.5 POSIX Extensions for Real-Time Applications 

The POSIX real-time extensions provide an insight into the additional 

functionality that is required for a real-time operating system. These real time 

extensions add message queues (for communication between tasks), shared 

memory, counting semaphores (needed to synchronize accesses to shared 
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memory), priority-based execution scheduling, real-time signal extensions, 

and higher resolution timers. The timers can generate time intervals with at 

least one microsecond resolution. 

 

 

 

3.1.6 RT-Linux System Structure: 

The following diagram illustrates the structure of the real-time operating 

system. The diagram shows that Linux itself is treated just as another task to 

run, but with lowest priority. Linux in turn controls the running of its non-real-

time processes, such as editors, browsers, consoles, viewers, utilities, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

                               

 

                              FIGURE 3.2: RT-Linux System Structure 

 

The real-time requirements are met in RTLinux by the real-time kernel 

capturing all hardware interrupts. One consequence of Linux being relegated 

to lowest priority status is the possibility of Linux being completely \locked 

out" of operation. If the real-time processing engages all resources, such as 

the CPU, devices, and memory, then Linux will not get a chance to run. It will 
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appear to the user that the system has locked up completely, even though the 

real-time processing continues to execute. 

 

 

 Real-time tasks run at the kernel privilege level, giving them direct 

access to the computer resources, such as the CPU, memory, and hardware 

devices. Running at the kernel privilege level also gives the ability to change 

task priority, engage inter-process communication (IPC), run user de_ned 

IPC handlers, and execute user de_ned scheduling algorithms. With privilege 

however, come responsibility,... care must be taken when constructing real-

time programs so that the program does not make undesirable changes to the 

system that would otherwise not be possible without this privilege. Not only 

do real-time tasks run at the privilege level of the kernel, but they all exist and 

are run within the same kernel address space. One consequence of this, 

aside from the security issue mentioned, is that switching between real-time 

tasks is made easier and quicker, again reducing latency. 

 

3.2 HARDWARE MODULE 

The Hardware Module is based on DAQ Board (Data Acquisition Board) 

where a microphone is connected to its input line and a speaker is connected 

to the output line. And the DAQ Board is linked to the Host through ISA bus. 

Via an Application Programmable Interface (API) the host has access to the 

DAQ Board. Functionality such as opening a driver and obtaining information 

on the hardware setup provided. 

This chapter described the data acquisition system, summarized the DAQ 

system structure  and the proposed DAQ card. 
 

3.2.1 Data Acquisition System 

Data acquisition systems through the DAQ Board are described broadly in 

the following: 
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 DAQ systems are hybrid electronic devices (analog & digital) with the 

main role of interfacing the digital signal processing systems to the 

environment. The key functions of a DAQ system is consists of 

                                             i). Signal Conditioning 

                                             ii). Analog to Digital conversion (ADC) 

                                             iii). Digital to Analog conversion (DAC) 

                                             iv). Digital I/O 

                                           

 

 

i) Signal Conditioning: 

Non-electrical signals coming from the environment are transformed in 

electrical signals (current and/or voltage) by transducers. Signal conditioning 

is further necessary to adapt the output scale range of the transducers to the 

input signal characteristics of the A/D converters. Programmable Gain 

Amplifiers (PGA) is usually used to adjust the scale range of the input 

electrical signal. 

ii) Analog to Digital conversion (ADC): 

Analog to digital conversion of signals is one of the main goals of a data 

acquisition system. A/D conversion is the set of operations that establish 

an exact correspondence between an analog electrical value (current, 

voltage) and a finite-length binary code. ADC is a three-phase process, all of 

them being currently performed sequentially by a monolithic device - the 

analog-to-digital converter. 

a) Sampling 

b) Quantization 

c) Binary coding 

 

iii) Digital to Analog conversion (DAC) 

Digital-to-analog conversion is the procedure reciprocal to ADC. With digital-

to-analog conversion, each binary code of bits length at the input is related to 

an electrical value (current or voltage). 
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 Similarly to ADC, the D/A operation requires a well-defined interval 

to perform the conversion (delay) which raises two issues: (a) what happens 

to the output electrical signal during a conversion period and (b) how can 

the resulting signal be shaped as close as possible to the desired contour of 

a natural, continuous signal. 

 

iv) Digital I/O: 

The digital I/O provided by the DAQ systems consists of serial interface and 

data buffering. The operation can be performed through one of the three 

independent 8-bidirectional data channels. Data transfer parameters are 

programmed into the on-board 8255 device for each separate channel. 

 Digital I/O applications include monitoring and control applications, 

video testing, chip verification, and pattern recognition. The most common 

digital I/O interface chip used is the 8255 programmable peripheral Interface 

(PPI). This PPI has three 8-bit digital ports (A, B, and C). When we configure 

a port that is part of an 8255 PPI, the 8255 PPI goes through a configuration 

phase, where all the ports within the same PPI chip get reset to logic low, 

regardless of the data direction. The data direction on other ports, however, 

is maintained. Each line in a port on an 8255 PPI has to be configured for the 

same direction; that is, all the lines in Port A have to be configured for either 

input or output. Port C on the 8255 can be configured as two 4-bit (nibble) 

ports, but this functionality is not accessible through the DAQ driver software. 

The registers on the 8255 must be accessed directly to implement this feature 

of the 8255 PPI. 

 

3.2.2 General Architecture of  Data Acquisition 

As presented in the figure above, common data acquisition architectures 

feature the following components: 
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                               FIGURE 3.3: DAQ Architecture 
 
a) One or more analog-to-digital signal conversion modules (ADCM) one or more 

digital-to-analog signal conversion modules (DACM) digital I/O module (IOM). 

b) Data acquisition command module (DAQCDM)  

c) Internal bus for data, address and command lines (IBUS) 

d) Communication interface with the controlling system (ICOMM). 

 

The A/D conversion module (ADCM) performs function (ii) and optionally (i) 

as described above, and it represents the key module of any DAQ system. Its 

main device is the A/D converter (ADC). 

  The D/A conversion module (DACM) performs function (iii) described 

above.The operational control function of the DAQ system is performed by the 

DAQ command Module (DAQCM). 

 

3.2.3 AX5411H DAQ Board 

In this project work we used AX5411H (DAQ Board) is a multifunction 

analog/digital input/output board. Analog input characteristics of the board 

are designed to allow user to sample data at high throughput. The 

combination of hardware auto-scanning multiplexer, a high-speed 
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sample/hold, and A/D converter allows input sampling speeds up to 60KHz. 

DMA transfer allows transferring of large amounts of data to memory at high 

speed. With programmable gains of 1, 2, 4, 8, and 16, and full scale ranges 

of 5V and 10V, user can define a particular range for each input 

corresponding to the signal level connected to that channel. Device driver 

program contained in appendices. 

 

 

 

 

 

 

 

 

                                   FIGURE 3.4: AX5411H DAQ Board 

                                                 Table 3.1 

                      The specifications are contained in the following:  
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           But, due to time constrained we could not managed the AX5411H 

card. Thus, to develop our frame work we used comuter parallel port 
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instead of AX5411H for data communication from the external environment.  

In computers, ports are used mainly for two reasons: Device control and 

communication. We programmed  PC's Parallel ports for data 

communication in real-time. Parallel ports are mainly meant for connecting 

the printer to the PC. But we can program this port for many more 

applications beyond that. In parallel port, all the 8 bits of a byte will be sent 

to the port at a time and a indication will be sent in another line. There will 

be some data lines, some control and some handshaking lines in parallel 

port. 

 

3.3 SOFTWARE MODULE 

Software, consisting of programs enables the computer to perform specific 

tasks, as opposed to its physical components (hardware) which can only do 

the tasks they are mechanically designed for. The term includes application 

software such as word processors which perform productive tasks for users 

and  system software such as operating systems described earlier , which 

interface with hardware to run the necessary services for user-interfaces 

and applications. 

        In this paper we present a new technique that enables the designer in 

the field of digital audio processing to concentrate on the development of 

algorithms for processes the data in the hardware independent buffers that 

the host provided, negotiate sample rate, buffer size and amount of input 

and output channels in order to create a Real-Time prototype. With this 

approach a high level programming language (‘C’) has been used also for 

Real-Time prototype. The new technique furthermore comprises mechanism 

for a Real-Time messaging   mechanism that especially in combination with 

a Graphical User Interface (GUI), will allow even the non-expert to optimize 

the parameters of the algorithm by simply clicking buttons. 

In this chapter we described each part of the software module accordingly. 

 
  
  3.3.1 DAQ Driver 
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A device driver is a computer program allowing higher-level computer 

programs to interact with a computer hardware device. 

 A driver typically communicates with the device through the computer 

bus or communications subsystem to which the hardware is connected. When 

a calling program invokes a routine in the driver, the driver issues commands 

to the device. Once the device sends data back to the driver, the driver may 

invoke routines in the original calling program. Drivers are hardware-

dependent and operating-system-specific. They usually provide the interrupt 

handling required for any necessary asynchronous time-dependent hardware 

interface. 

 Linux device drivers are built into the OS kernel, and thus get built for 

the appropriate bit-width automatically. Provided that sufficient technical 

information about the hardware is available, the Linux kernel team will write 

the drivers free of charge. This absolves both hardware vendors and end 

users from having to worry about drivers. But in this case non-vendors have 

written numerous device (AX5411H DAQ Board) drivers, mainly for use with 

Real-Time operation which has been used for this project work. 

 
 3.3.2 Filtration 

The most common processing approach in the time or space domain is 

enhancement of the input signal through a method called filtering. Filtering 

generally consists of some transformation of a number of surrounding 

samples around the current sample of the input or output signal. 

 Digital signal processing allows the inexpensive construction of a wide 

variety of filters. The signal is sampled and an analog to digital converter 

turns the signal into a stream of numbers. A computer program running on a 

CPU or a specialized DSP (or less often running on a hardware 

implementation of the algorithm) calculates an output number stream. This 

output is converted to a signal by passing it through a digital to analog 

converter. There are problems with noise introduced by the conversions, but 

these can be controlled and limited for many useful filters. Due to the 
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sampling involved, the input signal must be of limited frequency content or 

aliasing will occur. 

 The digital filter performs noiseless mathematical operations at each 

intermediate step in the transform. The primary source of noise in a digital 

filter is to be found in the initial analog-to-digital conversion (ADC) step, 

where in addition to any circuit noise introduced, the signal is subject to an 

unavoidable quantization error which is due to the finite resolution of the 

digital representation of the signal. 

Noted also that frequency components exceeding half the sampling rate of 

the filter (cf. Nyquist sampling theorem) will be confounded (or aliased) by the 

filter. Thus an anti-aliasing filter is usually placed ahead of the ADC circuitry 

to prevent these high-frequency components from aliasing. 

 To overcome from all those obstacles in digital signal processing and 

considering the well featured of digital filter, we were supposed to fit filtration 

into the processing algorithm as a vital part which has developed in a high 

level language ‘C’. Appendices contains some part of the filtration program.     

 
  3.3.3 Graphical User Interface (GUI) 

        A graphical user interface (GUI) is a type of user interface which allows 

people to interact with a computer and computer-controlled devices which 

employ graphical icons, visual indicators or special graphical elements 

called "widgets", along with text, labels or text navigation to represent the 

information and actions available to a user. The actions are usually 

performed through direct manipulation of the graphical elements. 

                   We also tried to make controlling the process flexible to the user 

using this advantages of GUI program have constructed a visual indicators 

which has shown below and a part of the GUI program is contained in the 

Appendices part. 
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                              Figure 3.5: Visual Indicators developed in GUI   

              

  

3.3.4 Vxscope      

        We also introduced Vxscope to visualize the graphical view of out put signal 

in various form such as sine wave and square wave developed in ‘C’ 

language programming which looks like the following photo. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                              
 
 
 
                                             Figure 3.6: Vxscope 
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             Vxscope means versatile XWindows scope. It displays a real-time signal 
on XWindow using shared memory. It polls the shared memory to get the valu 
and put it on screen. The value is updated by user process or program.The 
program is free software which can be redistributed and modified under the 
team of the GNU (General Public License). 
 
Compile and Executon   

        Compile the source code and creat a module using the GCC compiler. To 
simplify things, it is better to creat a Makefile. Then typing ‘make’ compile the 
code. Make file can be created by typing in the following line and file named 
Makefile. 
 
all: vxscope 

 

cdsm_nrt.o:  cdsm.c 

 gcc -c -O2 -o cdsm_nrt.o cdsm.c 

cbuf.o: cbuf.c 

 gcc -c -O2 -o cbuf.o cbuf.c  

vxscope: cdsm_nrt.o cbuf.o 

 gcc -O2 -c -o main.o main.c  `gtk-config --cflags` 

 gcc -o vxscope main.o cdsm_nrt.o cbuf.o `gtk-config --libs` 

clean: 

 rm -f *.o 

install: 

 make  

 cp -f vxscope.7.txt vxscope.7  

 gzip vxscope.7 

 mv -f vxscope.7.gz /usr/man/man7/ 

 cp -f vxscope /usr/local/bin/  
 
   
3.3.5 Real-Time Thread Programming 

A thread in computer science is short for a thread of execution. Threads are a 

way for a program to fork (or split) itself into two or more simultaneously (or 

pseudo-simultaneously) running tasks. Threads and processes differ from 
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one operating system to another, but in general, the way that a thread is 

created and shares its resources is different from the way a process does. 

 Multiple threads can be executed in parallel on many computer 

systems. This multithreading generally occurs by time slicing (similar to time-

division multiplexing), wherein a single processor switches between different 

threads, in which case the processing is not literally simultaneous, for the 

single processor is really doing only one thing at a time. This switching can 

happen so fast as to give the illusion of simultaneity to an end user. For 

instance, many PCs today only contain one processor core, but one can run 

multiple programs at once, such as typing in a document editor while listening 

to music in an audio playback program; though the user experiences these 

things as simultaneous, in truth, the processor quickly switches back and 

forth between these separate processes. On a multiprocessor or multi-core 

system, now coming into general use, threading can be achieved via 

multiprocessing, wherein different threads and processes can run literally 

simultaneously on different processors or cores. 

 Many modern operating systems directly support both time-sliced and 

multiprocessor threading with a process scheduler. The operating system 

kernel allows programmers to manipulate threads via the system call 

interface. 

 A real-time application is usually composed of several ``threads'' of 

execution. Threads are light-weight processes which share a common 

address space. In RTLinux, all threads share the Linux kernel address space. 

The advantage of using threads is that switching between threads is quite 

inexpensive when compared with context switch. 

 With the grate advantages of Real-Time Thread programming we have 

done our job in Real-Time successfully. The following example program 

clarify the real-time thread programming. 

Example program:  
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The best way to understand the working of a thread is to trace a real-time 
program. For example, the program shown below will execute once every 
second, and during each iteration it will value from printer port.  

The Program code (file - sample.c):  
 
#include <linux/errno.h> 
#include <time.h> 
#include <rtl_sched.h> 
#include <rtl_fifo.h> 
#include <rtl.h> 
#include <pthread.h> 
#include <sys/io.h> 
#include "mbuff.h" 
 
#define LPT 0x379 
 
 
#define PERIOD 10000000 
 
 
 
void *sample_code(void *arg); 
 
pthread_t sample_thread; 
 
volatile int *y; 
 
 
/* module initialisation */ 
int init_module(void) 
{ 
 int module_status=0; 
 
 /* initialise shared memory */ 
 y = (volatile int*) mbuff_alloc("lab1",1024); 
  if (y == NULL) { 
  rtl_printf("Shared Memory Creation Failed\n"); 
  return -1; 
 } 
 
 module_status = 
pthread_create(&sample_thread,NULL,sample_code,0); 
 if (module_status != 0) { 
  rtl_printf("Thread initialisation failed: sample status 
%d\n",module_status); 
  return module_status; 
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 } 
 
 return 0; 
} 
 
 
/* module destroy */ 
void cleanup_module(void) 
{ 
 pthread_delete_np(sample_thread); 
 mbuff_free("lab1",(void*)y); 
} 
 
 
/* sampling thread code */ 
void *sample_code(void *arg) 
{ 
 struct sched_param p; 
 hrtime_t now; 
  
 now = gethrtime(); 
 
 pthread_setfp_np(pthread_self(),1); 
 p.sched_priority = 1; 
 pthread_setschedparam(pthread_self(),SCHED_FIFO,&p); 
 pthread_make_periodic_np(pthread_self(),now,PERIOD); 
 
 while(1) { 
 
 
   
 
 // take sample from ax5411 card 
 
 y=inb(LPT); 
 
  
 //print the value that get from printer port 
   
 rtl_printf("The value form Printer port= %d\n",y); 
 pthread_wait_np(); 
 
 } 
 
 return 0; 
} 
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Compiling and Executing: 

In order to execute the program, sample.c, (after booting rtlinux, of course) 
you must do the following:  

1. First we have to write “su” to get permission to work under RT-
LINUX.   

2. Then  we write “rtlinux start” in the console to get real time 
environment. 

3. To creat object file we write “gcc –c –o sample.o sample.c ’rtl --
config’” 

4.  After writing previous command the object file(sample.o) if there is 
no error in the file. 

5.      Then we should insert the object file in the real time kernel by 
write “insmod sample.o” 

6.    To see what happened inside the kernel we have to 
7. write “dmesg”. 
8. After write the previous command we just see the snap shot in the 

kernel.   
9. To see continuous changing inside the kernel we have to push 

“Ctrl+Alt+F5”  
10.     To get back again from Real-time environment to soft Real-time 

environment we have to push “Ctrl+Alt+F4”  
11.  To remove object file from kernel we should write “rmmod smple ” 
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                                                 CHAPTER IV 

 

                                          CONCLUSION 

 

In this paper, we introduced a platform that aims at Real-Time prototyping in 

the field of audio signal processing. The capabilities of general purpose PC, 

the DAQ card and specially the Real-Time Linux OS can be exploited to 

avoid time consuming development of new technology. In that cotext we 

proposed a technique that helps to simplify, most efficient and effective audio 

signal processing. We completely focused on Real-Time processing 

algorithm which does not consider any time delay. A powerful messaging 

mechanism rsupports run time user intraction for parameter optimization and 

verification, even controlled by a person who has no background in the field 

of digital signal processing. A very interesting feature of the applied 

technology is the possibility to use the same software and hardware 

component for offline processing where data have to preserved for long time 

and online processing for live performance. we have thus shown that a low 

cost software and hardware approach for high demand sound processing 

application is possible. 

 We have described a first version of development framework for hard 

real-time audio signal processing and how we have successfully implement 

an interactive sound processor which satisfied live performance requirements 

as well as long time preservation with a great accuracy and latency less.    
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                                      APPENDICES  

 

A.  

Filter.c 

/****************************************************************/ 
/*                                                              */ 
/* filter.c - ELEC2042                                          */ 
/*                                                              */ 
/* The main code for the filter program is contained within     */ 
/* this file. Functions associated with the setting up and      */ 
/* running of the GUI (using GTK) are contained within the      */ 
/* source file gui.c. The source files are compiled and         */ 
/* linked together using the make utility and the "Makefile"    */ 
/****************************************************************/ 
 
 
 
#include <stdio.h> 
#include <unistd.h> 
#include <gtk/gtk.h> 
#include <gtk/gtkhscale.h> 
#include <gtk/gtkvscale.h> 
#include <math.h> 
#include "mbuff.h"      // for shared memory 
#include "filter.h"     // contains digital filter definition and 
function declarations 
#include "gui.h"        // contains the gui data structure 
#include "cdsm.h"       // Common Data Shared Memory - for plotting 
 
 
 
/* main program - first thing run */ 
int main( int argc, char *argv[] ) 
{ 
 
 /* initialisation of gui and */ 
 if (gui_init() == -1) { 
  printf("Initialisation Problem - EXITING \n"); 
  return -1; 
 } 
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 /* initialise the digital filter data structure */ 
 df_init(); 
 
 /* initialise shared data (CDSM) for plotting */ 
 CDSM_init(); 
 
 /* set up the gui in 'gui_main' */ 
 /* GTK will 'sit' within this function until an event occurs 
such */ 
 /* as a mouse click, or a keyboard stroke on the GUI. Another 
event */ 
 /* which will cause GTK to 'break-out' of this function is a  
*/ 
 /* 'timeout' function which runs periodically. A timeout 
function */ 
 /* is set up inside 'gui_main' - called 'filter_run' */ 
 gui_main(); 
 
 /* log data before exiting */ 
 store_log(); 
 
        /* free up memory allocated to the digital filter structure 
'df' */ 
 /* Will learn more about this in further labs */ 
 mbuff_free("filter",(void *)df); 
 
 /* clean up shared data structure (CDSM) */ 
 CDSM_done(); 
 
 return 0; 
} 
 
 
 
/* initialise digital filter */ 
void df_init(void) 
{ 
 int i; 
 
        // declare digital filter - allocate space for it 
 df = (volatile dig_fil*) mbuff_alloc("filter",sizeof(dig_fil)); 
 
 df->n = 4; df->m = 4;     // maximum 4-th order 
 for(i=0; i<MAXSIZE; i++) {   // initial signals to zero 
  df->y[i] = 0; 
  df->u[i] = 0; 
 } 
 df->time = -1;            // time index to -1 (because time 
increments first thing) 
 df->timestep = 1;         // time step (discrete time interval) 
 df->mode = 0;             // in stop mode 
 df->input = 0;            // manual input 
        frequency = 0.5;          // set to 0.5Hz by default 
} 
 
 
 
/* Timeout function to run periodically */ 
/* This is the code that implements the digital filter difference 
equation */ 
int filter_run(void) 
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{ 
 int i; 
 float temp=0.0; 
 
 
 // only update if in start mode 
 if (df->mode) { 
 
  //increment time 
  df->time += 1; 
 
                // update input (if impulse) 
                if (df->input == 1) { 
                        if (df->time == 0) df->u[df->time] = 1; 
                        else df->u[df->time] = 0; 
                } 
 
                // update input (if step) 
                if (df->input == 2) df->u[df->time] = 1; 
 
                // update input (if sinusoid) 
                if (df->input == 3) df->u[df->time] = 
sin(2*3.1416*frequency*df->timestep*df->time); 
 
  // update input (if manual) - why do we do this? 
  if (df->input == 0) df->u[df->time] = df->u[df->time-1]; 
 
  // numerator 
  for (i=0;i<=df->m;i++) 
   if ((df->time-i)>=0) temp += df->b[i]*df->u[df-
>time-i]; 
 
  // denominator 
  for (i=1;i<=df->n;i++) 
   if ((df->time-i)>=0) temp -= df->a[i]*df->y[df-
>time-i]; 
 
  // store in buffer 
  df->y[df->time] = temp; 
 
  // print signals out to console 
  printf("Time: %d \t Input: %4.3f \t Output: %4.3f \n",df-
>time,df->u[df->time],df->y[df->time]); 
 
 } 
 
 // set value in CDSM structure for plotting - scaled by 1000 as 
CDSM stores integers 
 CDSM_set(0,(1*temp)); 
 CDSM_set(1,(1*df->u[df->time])); 
 
 // need to return TRUE otherwise timeout function will cease to 
run 
 return TRUE; 
} 
 
 
 
/* callback function for start button */ 
void start_function( GtkAdjustment *adj, int *arg) 
{ 
 df->mode = 1;  // set to start mode 
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} 
 
 
 
/* callback function for stop button */ 
void stop_function( GtkAdjustment *adj, int *arg) 
{ 
 int i; 
 
 /* save data */ 
 store_log(); 
 
 // set to stop mode and reset the signals 
 for(i=0; i<MAXSIZE; i++) { 
  df->y[i] = 0; 
  df->u[i] = 0; 
 } 
 df->time = -1;  // reset time 
 df->mode = 0;   // reset mode to stop 
 df->input = 0;  // reset input to manual 
 
        // reset timestep back to 1.0second and change timeout 
function period 
        df->timestep = 1.0; 
 gtk_timeout_remove(flag); 
 flag = gtk_timeout_add( (1*df->timestep), 
(GtkFunction)filter_run, NULL ); 
 
 /* set input back to zero */ 
 gtk_adjustment_set_value( GTK_ADJUSTMENT(lab1gui.adjust[8]) , 0 
); 
 
} 
 
 
 
/* callback function for impulse button */ 
void impulse_function( GtkAdjustment *adj, int *arg) 
{ 
 df->input = 1; 
 df->mode = 1; 
} 
 
 
 
/* callback function for step button */ 
void step_function( GtkAdjustment *adj, int *arg) 
{ 
 df->input = 2; 
 df->mode = 1; 
} 
 
 
 
/* callback function for sinusoid button */ 
void sinusoid_function( GtkAdjustment *adj, int *arg) 
{ 
 df->mode = 1; 
        df->input = 3; 
 
        // run the sinusoidal signal faster (0.01 sec) 
        df->timestep = 0.01; 
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 gtk_timeout_remove(flag); 
 flag = gtk_timeout_add( (1*df->timestep), 
(GtkFunction)filter_run, NULL ); 
 
} 
 
 
 
/* callback function for changing input field */ 
void input_change( GtkAdjustment *adj, int *arg) 
{ 
 // change input at t=time to value of widget 
 df->input = 0; 
 df->u[df->time] = adj->value; 
} 
 
 
 
/* callback function for changing frequency */ 
void freq_change( GtkAdjustment *adj, int *arg) 
{ 
        frequency = adj->value; 
} 
 
 
 
/* callback function for changing 'b' parameter */ 
void b_parameter_change( GtkAdjustment *adj, int *arg) 
{ 
 // change b coefficient to widget value 
 df->b[arg[0]] = 2.0; 
} 
 
 
 
/* callback function for changing 'a' parameter */ 
void a_parameter_change( GtkAdjustment *adj, int *arg) 
{ 
 // change a coefficient to widget value 
 if (arg[0] != 0) df->a[arg[0]] = 1.0; 
} 
 
 
 
/* callback function for changing time step */ 
void time_step_change( GtkAdjustment *adj, int *arg) 
{ 
 // change time step 
 df->timestep = adj->value; 
 gtk_timeout_remove(flag); 
 flag = gtk_timeout_add( (1*df->timestep), 
(GtkFunction)filter_run, NULL ); 
} 
 
 
 
/* function to log data to a file `filterdata' */ 
int store_log(void) 
{ 
 
 int i; 
 FILE *fd_open; 
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 float u,y; 
 
 fd_open = fopen("filterdata", "w+"); 
 if (fd_open == NULL) { 
  printf("Error opening file \n"); 
  return -1; 
 } 
 
 for (i=0;i<df->time;i++) { 
  u = df->u[i]; y = df->y[i]; 
  fprintf(fd_open, "%4.3f \t %4.3f \n",u,y); 
 } 
 
 fclose(fd_open); 
 
 return 0; 
} 
 
 
 
/* end filter.c program */ 
 
 
 
 
 
 
 
Filter.h 
 
 
#include <gtk/gtk.h> 
#include <gtk/gtkhscale.h> 
#include <gtk/gtkvscale.h> 
 
/* define the maximum size of data arrays */ 
#define MAXSIZE 2000 
 
/* type definitions of our digital filter */ 
 
typedef struct dig_filter  
{ 
 int n,m;        // order of denominator/numerator 
 float b[10];    // numerator coefficients 
 float a[10];    // denominator coefficients 
 int time;       // time index 
 float timestep; // time step 
 int mode;       // mode - start (1), stop (0) 
 int input;      // 0 - manual, 1 - impulse, 2 - step, 3 - 
sinusoid; 
 
 float y[MAXSIZE];  // output sequence 
 float u[MAXSIZE];  // input sequence 
 
} dig_fil; 
 
 
 
/* declare digital filter object - for shared memory */ 
volatile dig_fil *df; 
 
/* declare flag for timeout function */ 
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int flag; 
 
/* declare sinusoidal frequency */ 
float frequency; 
 
 
 
/* Function declarations used in filter.c */ 
 
/* initialise digital filter */ 
void df_init(void); 
 
/* Timeout function to run periodically */ 
/* This is the code that implements the digital filter difference 
equation */ 
int filter_run(void); 
 
/* callback function for start button */ 
void start_function( GtkAdjustment *adj, int *arg); 
 
/* callback function for stop button */ 
void stop_function( GtkAdjustment *adj, int *arg); 
 
/* callback function for impulse button */ 
void impulse_function( GtkAdjustment *adj, int *arg); 
 
/* callback function for step button */ 
void step_function( GtkAdjustment *adj, int *arg); 
 
/* callback function for sinusoid button */ 
void sinusoid_function( GtkAdjustment *adj, int *arg); 
 
/* callback function for input change field */ 
void input_change( GtkAdjustment *adj, int *arg); 
 
/* callback function for changing frequency */ 
void freq_change( GtkAdjustment *adj, int *arg); 
 
/* callback function for changing 'b' parameter */ 
void b_parameter_change( GtkAdjustment *adj, int *arg); 
 
/* callback function for changing 'a' parameter */ 
void a_parameter_change( GtkAdjustment *adj, int *arg); 
 
/* callback function for changing time step */ 
void time_step_change( GtkAdjustment *adj, int *arg); 
 
 
Makefile 
 
all: filter  
 
filter: filter.o gui_f.o cdsm.o 
 gcc -o filter filter.o gui_f.o cdsm.o `gtk-config --libs` 
 
filter.o: filter.c 
 gcc -c -o filter.o filter.c  `gtk-config --cflags` 
 
gui_f.o: gui_f.c 
 gcc -c -o gui_f.o gui_f.c `gtk-config --cflags` 
 
cdsm.o: cdsm.c 
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 gcc -c -o cdsm.o cdsm.c 
 
clean: 
 rm filter 
 rm *.o 
 
 
Cdsm.c 
 
File name: cdsm.c 
  
 Data Sharing  interface 
  
*/ 
  
#include "cdsm.h" 
#ifdef __KERNEL__ 
#include <mbuff.h> 
#include <linux/malloc.h> 
#endif 
 
inline void CDSM_init() { 
 
  CDSM_data = (volatile long*)mbuff_alloc(CDSM_DATA_SI, 
     CDSM_NUMBER_OF_CHANNEL*sizeof(long)); 
  
} 
    
inline void CDSM_done() { 
  mbuff_free(CDSM_DATA_SI,(void*)CDSM_data); 
 
} 
 
inline void CDSM_set(int chan, long data) 
{ 
 *(CDSM_data+chan) = data; 
} 
 
inline long CDSM_get(int chan) 
{ 
 return *(CDSM_data+chan); 
} 
 
 
Cdsm.h 
 
CDSM - Common Data Sharing Mechanism 
  
 written by: Linh Vu 
 (C) 2002 
  
*/ 
  
#ifndef __CDSM_H__ 
#define __CDSM_H__ 
 
// maximum of 16 channel, can change to any number 
#define CDSM_NUMBER_OF_CHANNEL 128 
 
// data in string id 
#define CDSM_DATA_SI  "CDSM_DATA_SI" 
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// mechanism: 
// common data sharing mechanism (CDSM) 
// 
// data will be shared among modules 
// by read/write to an array of long type elements (also pointer) 
 
 
volatile long *CDSM_data; 
 
inline void CDSM_init(); 
inline void CDSM_done(); 
inline void CDSM_set(int chan, long data); 
inline long CDSM_get(int chan); 
 
 
#endif 
 
 

B. 

AX5411H.c 

// ax5411.c 
//      Implementation of various das 16 functions 
// 
#include "ax5411.h" 
 
 
// init() 
//      Initialise the AX5411 card 
// 
void init(void) 
{ 
 // get permission to use I/O device (in non-RT) 
 // only compile if used in non-real-time 
#ifndef __RTL__ 
 ioperm(BASE, 16, 1);  
#endif __RTL__ 
 
 /* reset control and status registers */ 
 outb(0, CONTROL); 
 outb(0, STATUS); 
} 
 
// ax5411() 
// This function is used to either read a A/D value (should only 
do 
//  this when you received an interrupt) or write a D/A value to a 
specified 
//  channel (There are 2 write and 16 read channels we can use for 
the card) 
// The format of the function is as follows: 
//   inout: specify whether the operation is a read or a write 
//   'a' = write 
//   'm' = read 
//   channel: specify which channel to read or write 
//                 (use channel 0 for both read and write) 
//   value: what value to write to the DAS 16 card (only 
significant 
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//   if you are performing a write operation) 
// The function returns a value which is only signifcant if you 
are 
//  performing a read operation, or you try to write an invalid 
value to 
//  to DAS 16 card 
// 
int ax5411(char inout, int chan, int value) 
{ 
        int ch; 
 int ilo, ihi; 
 int dataL, dataH; 
 
 // User wants to do a write operation 
 // 
 if (inout == 'a') { 
         // check make sure the value we are writing to the DAS 
16 
         // card is valid 
         // 
         if ( (value > 4095) || (value < 0)) { return (value); } 
   
  // Split the value into a lower 4 bits, and higher 8 bits 
  dataL = (value << 4) & 0x00F0; 
  dataH = (value >> 4) & 0x00FF; 
   
  // write our lower 4 bits to the D/A register 
  outb( dataL, (BASE+4+chan) ); 
 
  // write our higher 8 bits to the D/A register 
  outb( dataH, (BASE+5+chan) ); 
 } 
  
  
 // User wants to perform a read operation 
 // 
 else if ( (inout == 'm') && (value == 0) ) { 
         // mask out the higher 4 bits 
         ch = chan & 0x000F; 
  
  ch = ch + (ch << 4); 
 
  // Select our channel by writing our value to the MUX 
  //  ==> we start and finish on the same channel 
  // 
  outb( ch, (BASE+2) ); 
   
  // clear to A/D register 1st 
  outb( 0, BASE); 
   
  // wait until the A/D conversion is complete (shouldn't 
  // be necessary 
  // 
  while (inb(BASE+8) & 0x80) {}; 
   
  // read our least significant 4 bits 
  ilo = (inb(BASE) >> 4) & 0x000F; 
   
  // read our most significant 8 bits 
  ihi = (inb(BASE+1) << 4) & 0x0FF0; 
   
  // combine our results and return the value 
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  value = (ihi | ilo); 
 } 
 return (value); 
} 
 
 
 
 

AX5411.h 

// ax5411.h 
//      header files and defintions of various functions 
// 
 
#include <sys/io.h> 
 
#define   BASE          0x320 /* base address of ax5411 */ 
#define   STATUS        BASE+8 /* status for ax5411  */ 
#define   CONTROL       BASE+9 /* control for ax5411 */ 
 
 
/////////////////////////////////////////////////////////////////////
//////// 
// Here are the function defined in the file 
// 
 
 
// init(void) 
//  function to initialise the AX5411 card 
//      call within Linux task - NOT RT-Linux  
void init(void); 
 
// ax5411() 
//      read or write some values to the das16 card 
int ax5411(char inout, int channel, int value); 
 

 

C. 

GUI.c 

#include <stdio.h> 
#include <unistd.h> 
#include <gtk/gtk.h> 
#include <gtk/gtkhscale.h> 
#include <gtk/gtkvscale.h> 
#include "gui.h" 
#include "ax5411.h" 
 
 
// declare state of motor: 0 - off, 1 - on 
int state = 0; 
 
// declare a variable for the motor input 
float input = 0; 
 
 
/* main program - first thing run */ 
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int main(int argc, char *argv[]) 
{ 
 
 /* initialise GTK */ 
 gtk_init (&argc, &argv); 
 
 /* initialise ax5411 card */ 
 init(); 
 
 /* gui_main */ 
 gui_main(); 
 
 return 0; 
} 
 
 
 
/* callback for start/stop */ 
void start_function( GtkAdjustment *adj, int *arg) 
{ 
 /* turn on */ 
 state = 1; 
 
 /* send current input to D/A - channel 0 */ 
 ax5411('a',0,(int)(4095*input)); 
 
} 
 
/* callback for start/stop */ 
void stop_function( GtkAdjustment *adj, int *arg) 
{ 
 /* turn off */ 
 state = 0; 
 
 /* send a zero to the motor to turn off */ 
 ax5411('a',0,0); 
} 
 
 
/* callback for changing input */ 
void input_change( GtkAdjustment *adj, int *arg) 
{ 
 int dtoa;  
 
 /* retrieve value from widget */ 
 input = adj->value; 
 
 /* scale to 0-4095 */ 
 dtoa = (int)(input*4095); 
 
 /* if ON then send to D/A - channel 0 */ 
 if (state) ax5411('a',0,dtoa); 
 
} 
 
 
/* This callback quits the program */ 
gint delete_event( GtkWidget *widget, GdkEvent  *event, gpointer   
data ) 
{ 
    gtk_main_quit (); 
    return(FALSE); 
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} 
 
 
/* idle function to run when nothing else is happening */ 
int idle_run(void) 
{ 
 if (state) printf("Input = %f\n",input); 
 return TRUE; 
} 
 
 
 
 
/* main gui function - run from main */ 
void gui_main(void) 
{ 
 
 /* Create a new window */ 
 window = gtk_window_new (GTK_WINDOW_TOPLEVEL); 
 gtk_widget_set_uposition (window, 0, 0); 
 
 /* Set the window title */ 
 gtk_window_set_title (GTK_WINDOW (window), "MOTOR GUI"); 
 
 /* Set a handler for delete_event that immediately exits GTK. 
*/ 
 gtk_signal_connect(GTK_OBJECT(window),"delete_event",GTK_SIGNAL
_FUNC (delete_event), NULL); 
 
 /* Sets the border width of the window. */ 
 gtk_container_set_border_width (GTK_CONTAINER (window), 20); 
 
 /* Create a 4x3 table */ 
 table = gtk_table_new (4, 3, TRUE); 
 gtk_table_set_row_spacings (GTK_TABLE (table), 15); 
 gtk_table_set_col_spacings (GTK_TABLE (table), 25); 
 
 /* Put the table in the main window */ 
 gtk_container_add (GTK_CONTAINER (window), table); 
 
 /* Put in label */ 
 label = gtk_label_new("Motor Input"); 
 gtk_label_set_justify(GTK_LABEL(label),GTK_JUSTIFY_LEFT); 
 gtk_table_attach_defaults (GTK_TABLE(table), label, 0, 2, 0, 
1); 
 gtk_widget_show (label); 
 
 /* Adjustment for input. The arguments are: */ 
 /* (start value, minimum, maximum, step increment, page 
increment, page size) */ 
 adjust = gtk_adjustment_new( 0, 0, 1, 0.01, 0.1, 0); 
 
 /* Put in widget for changing input */ 
 /* Connect it to adjustment */ 
 spin = gtk_spin_button_new( GTK_ADJUSTMENT(adjust), 0.01, 2); 
 gtk_signal_connect(GTK_OBJECT (adjust), "value_changed", 
GTK_SIGNAL_FUNC (input_change), NULL); 
 gtk_table_attach_defaults (GTK_TABLE(table), spin, 0, 3, 1, 2); 
 gtk_widget_show(spin); 
 
 /* Separator */ 
 separator = gtk_hseparator_new (); 
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 gtk_table_attach_defaults (GTK_TABLE(table), separator, 0, 3, 
2, 3); 
 gtk_widget_show(separator); 
 
 
 /* Put in buttons - start button */ 
 button = gtk_button_new_with_label ("Start"); 
 gtk_signal_connect(GTK_OBJECT (button), "clicked", 
GTK_SIGNAL_FUNC (start_function), NULL); 
 gtk_table_attach_defaults (GTK_TABLE(table), button, 0, 1, 3, 
4); 
 gtk_widget_show (button); 
 
 /* Put in buttons - start button */ 
 button = gtk_button_new_with_label ("Stop"); 
 gtk_signal_connect(GTK_OBJECT (button), "clicked", 
GTK_SIGNAL_FUNC (stop_function), NULL); 
 gtk_table_attach_defaults (GTK_TABLE(table), button, 1, 2, 3, 
4); 
 gtk_widget_show (button); 
 
 /* Put in buttons - Quit button */ 
 button = gtk_button_new_with_label ("Quit"); 
 gtk_signal_connect(GTK_OBJECT (button), "clicked", 
GTK_SIGNAL_FUNC (delete_event), NULL); 
 gtk_table_attach_defaults (GTK_TABLE(table), button, 2, 3, 3, 
4); 
 gtk_widget_show (button); 
 
 /* add in idle function to run when nothing else is running - 
IMPORTANT */ 
 flag = gtk_idle_add( (GtkFunction)idle_run, NULL ); 
 
 gtk_widget_show(table); 
 gtk_widget_show(window); 
        
 
 gtk_main(); 
 
} 
 
 
/* end gui program */ 
 

 

GUI.h 

// type definitions of our gui 
 
typedef struct gtk_gui 
{ 
 GtkWidget *window[3]; 
 GtkWidget *table[2]; 
 GtkWidget *label[4]; 
 GtkWidget *button; 
 GtkWidget *radio[4]; 
 GSList *group[2]; 
 GtkObject *adjust[20]; 
 GtkWidget *separator; 
 GtkWidget *spin[20]; 
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 GtkWidget *textbox; 
 GtkWidget *hbox; 
 GtkWidget *vscrollbar; 
} guiobj; 
 
/* This callback quits the program */ 
gint delete_event( GtkWidget *widget, GdkEvent  *event, gpointer   
data ); 
 
/* function to initialise gui */ 
int gui_init(void); 
 
/* main gui function - run from main */ 
void gui_main(void); 
 
 
/* declare gui object */ 
guiobj lab1gui; 
 
 

 


