

1

PC BASED REAL-TIME AUDIO SIGNAL PROCESSING

A Thesis

Submitted to the Department of Computer Science and Engineering

of

BRAC University

of

 Kamru Faisal Ibne Jalal (ID:05310036)

 Md.Shahriar Parvez (ID:02201075)

 Md. Mamun vhuiyan (ID:01201073)

In Partial Fulfillment of the

Requirements for the Degree

of

Bachelor of Science in Electronics and Communication Engineering

September 2007

2

DECLARATION

We hereby declare that this thesis is based on the results found by

ourselves. Materials of work found by other researcher are mentioned by

reference. This thesis, neither in whole nor in part, has been previously

submitted for any degree.

Signature of Signature of
Supervisor Author

3

ACKNOWLEDGMENTS

This work would not have been possible without the contribution of many

people. We would specially like to thank DR. AKM Abdul Malek Azad for

boosting this work, and his ideas for the audio processing in Real-Time Linux.

We would also like to thank Mr. Rajob for his technical support with available

laboratory facilities and Mr. Jiko for assist us in implementation process as

well as his advice about RT-Linux operating system. We also like to thank

Mr.Suffat Younus for giving us traveling support and his best try to bring the

DAQ card from out side of Bangladesh.

4

ABSTRACT

In this contribution a new concept for the development of real-time audio

processing on a general-purpose personal computer based on the Real-Time

Linux Operating System (Knoppix3.3) is presented. To overcome important

difficulties in Windows Operating System such as robustness and low

latency, we applied RT-Linux (hard real-time) operating system as a platform.

 This paper describes the Real Time Audio processing framework. First

of all we discussed the objectives we pursue with its development and then

we have given an overview of the system from both hardware and software

point of view. Next we described the implementation details including

hardware module, software module and host module (interfacing) and finally

the applications.

5

TABLE OF CONTENTS
 Page

TITLE……………...…I

DECLARATION…...…II

ACKNOWLEDGEMENTS..II
I

ABSTRACT………...I
V

TABLE OF CONTENTS...…V-VI

LIST OF FIGURES………………………………………….…………………….VII

LIST OF TABLES…………………………………………………………………VIII

CHAPTER I. INTRODUCTION…………………………………………………1-3

CHAPTER II SYSTEM OVERVIEW……………………………………………....4
CHAPTER III. IMPLEMENTATION DETAILS……………………………………5

 3.1 OPERATING SYSTEM AND REAL-TIME KERNEL…………………..5

 3.1.1 Architecture of an Operating System………….................5-7
 3.1.2 Required Functionality for Real-

Time………………………..7
 3.1.3 Embedded vs. Real-Time Operating System……………….8
 3.1.4 Performance for Real-Time Operating

System……………..8
 3.1.5 POSIX Extensions for Real-Time Applications…………..…8
 3.1.6 RT-Linux System Structure……………………………….9-10

 3.2 HARDWARE MODULE……………………………………………….10

 3.2.1 Data Acquisition System…………………………………10-12
 3.2.2 General Architecture of Data Acquisition System.........12-

13
 3.2.3 AX5411H DAQ Board…………………………..………..13-15

 3.3 SOFTWARE MODULE…………..……………………………………..15

6

 3.3.1 DAQ Driver………………………………………………........16
 3.3.2 Filtration……………………………………………………16-17
 3.3.3 Graphical User Interface (GUI)………………………….17-

18
 3.3.4 Vxscope……………………………………………………18-19
 3.3.5 Real-Time Thread Programming………………………..19-

23

CHAPTER IV. CONCLUTION…………………………………………………….24

REFERENCES…………………………………………………………………25-27

APPENDICES………………………………………………………………………28

A. Filtration Program………………………………………………………28-35
B. AX5411H Driver Program….……………………………………….....35-38
C. GUI Program……………………………………………………………38-41

7

LIST OF FIGURES:

 2.1: Block Diagram of the System…..………………………………………4

 3.1: Operating System Architecture..……………………………………….6

 3.2: RT-Linux System Structure….…………………………………………9

 3.3: DAQ Architecture……….…….………………………………………..12

 3.4: AX5411H DAQ Board…..……………………………………………..13

 3.5: Visual Indicators developed in

GUI……..……………………………18

 3.6: Vxscope……………..…………………………………………………..18

LIST OF TABLES:

 3.1 Specifications of AX5411H DAQ Board……….……………………..14

8

 CHAPTER I

 INTRODUCTION

Background and motivation
Music, just a little word but makes a great impression on human mind. It
keeps everybody on the run. From the beginning of the human race, men
loved music. For this passion for music, we always thought a way to develop
music with the help of modern technology. As a student of Electronics and
Communication the idea came into our mind that we can process audio
signals in real-time which will be great addition in music industry. We choose
to process audio in Real-Time to make music composition more ease for the
music composers.

 To fulfill our target, we have made a research on current audio signal

processing tools and we found many obstacles. Most of the audio signal

processing software are used for commercial purposes which are very costly

and are based on closed-source solution i.e. windows operating system. So,

general availability of audio processing tools is far beyond. There is few

audio signal processing tools is developed based on open-source solution

i.e. Linux. But the signal processing is based on software, which are efficient

but costly. Thus, we choose to develop a low cost and efficient audio signal

processing tool consists of both hardware and software in hard Real-Time on

Linux platform.

Overview

This project is pc based Real-Time audio signal processing which has done

in hard real time using Knoppix3.3 as a RT-Linux operating system and

consists of both hardware and software. For hardware we have used Data

9

Acquisition Card (DAQ card- AX5411H) where a microphone is connected to

its input line and a speaker is connected to the output line and the DAQ

Board is linked to the Host through ISA bus. Via an Application

Programmable Interface (API) the host has access to the DAQ Board and

various software used to perform the overall process. Special DAQ device

driver for real-time operatio is used to make converse between DAQ card and

RT-Linux. Because standard Linux has built in device driver but RT-Linux has

not. we implemented GUI (Graphical User Interface) consist of some

controlling button to control the system, Vxscope shows the output signal and

filtration program developed using C Language to filter the audio signal. To

being alive all the processes in Real-Time the Thread Programming for real-

time operation has been used. Since we work under RT-Linux we have not

enough permission to directly access. So we need Thread Program to get

access in the RT-Linux.

Objective

In the computer music research field it is not possible to evaluate a given

sound synthesis or processing algorithm without listening to its output. If the

algorithm has real time control parameters, proper experimentation can only

be done with a real time implementation and a human interpreter involved.

We have done the audio processing in RT Linux. We can also do it using the

Windows Operating System in real time but there are some major problems

that we have to face in Windows OS like robustness, latency, and accuracy.

Wherein RT-Linux we can get more accuracy and low latency, which is the

most important thing in audio processing system. Another opportunity is RT-

Linux is a free operating system, which is machine independent. It is thus

important to have a good application development framework, so that the

loop time between the algorithm idea and its evaluation is reduced as much

as possible. Converting a research application prototype into an application

which can be used as a musical instrument in other scenarios should not be

hard work if both the framework and the developer take enough care of

10

requirements such as efficiency, latency and robustness. This is what our

framework aims to achieve.

Thesis Outline

In this paper we introduced a platform that aims real-time prototyping in the

field of digital audio signal processing. We have described how we have

successfully used it to implement an interactive sound processor which

satisfied live performance requirement as well as preservation for long time

through the following chapters accordingly.

In chapter II, the system overview which gives a brief idea of the processing

system described with a block diagram.

Chapter III, implementation details consists of three parts operating system

and Real-Time Kernel, hardware module and the software module described

severally with necessary diagrams.

Chapter IV, described the applications of Real-Time Audio signal processing.

Chapter V, presents the conclusions of this project.

Lastly chapter VI, gives some suggestions for future development.

11

 CHAPTER II

 SYSTEM OVERVIEW

The purpose of this project is to digitization of analog audio signal in Real-

Time Linux. To accomplished the target several steps to be done described

by the following diagram:

 FIGURE 2.1: Block Diagram Of The Sysytem

According to the diagram input (analog audio signal) is recognized by
SENSOR. The SENSOR senses the input signal (sound wave) and send it to
VARIABLE CONVERSION. Actually the combination of SENSOR and
VARIABLE CONVERSION is called TRANSDUCER which included the
Microphone itself. The VARIABLE CONVERSION converts the sound wave to
voltage form. Then the converted voltage is sent to the AMPLIFIER. The
AMPLIFIER fixed the converted voltage level according to ADC requirement.
The job of ADC is converted analog voltage level to Digital bit stream and
send into PROCESSOR for filteration and preservation. Incase of online
process (such as live performance) the PROCESSOR sends the digital data
into DAC which converted into analog (voltage) form. Then VARIABLE

12

CONVERSION converted the voltage in sound form and AMPLIFIER
amplifies the sound wave as required and send it to SPEAKER for listening.
And all those functions perfom in Hard Real-time Linux where latency is
totally undesirable.

 CHAPTER III

 IMPLEMENTATION DETAILS

Implementation Details describe a data acquisition system (DAQ) which is a

combination of computer hardware and software that gathers, stores or

processes data in order to control or monitor some sort of physical process in

Hard Real-time Linux platform as an operating system. A typical data

acquisition system comprises a computer system with DAQ hardware,

wherein the DAQ hardware is typically plugged into one of the I/O slots of the

computer system. The DAQ hardware is configured and controlled by DAQ

software (the device driver for RT-Linux) executing on the computer system.

Here we described those part separately as

 (a) Operating System and Real-Time Kernel (3.1)

 (b) Hardware module (3.2) and

 (c) software Module (3.3)

3.1 OPERATING SYSTEM AND REAL-TIME KERNEL

An operating system is the interface between a user's program and the

underlying computer hardware. It also manages the execution of user

programs such that multiple programs can run simultaneously and access the

same hardware. Everyone who uses a computer encounters an operating

system, whether it is Windows, Mac, Linux, DOS, or Unix.

 This chapter describes the architecture and then summarizes the

requirements of a real-time operating system and RT-Linux system

structure.

13

3.1.1 Architecture of an Operating System

An operating system, or more specifically the core or kernel of the operating

system, is always resident in memory and provides the interfaces between

user programs and the computer hardware. This is shown schematically in

Figure 3.1. The name kernel follows from the analogy of a nut, where the

kernel is the very heart of the nut and, in the computing domain, the kernel

is the very heart of the operating system. Continuing the analogy, protective

layers around the kernel that provide user authorization and interaction are

called shells.

 The physical memory in the computer is partitioned into user space

and kernel space, with the kernel space reserved for the kernel code. The

kernel of a multi-tasking operating system can manage multiple user

programs running simultaneously in user space so that each program thinks it

has complete use of all of the hardware resources of the computer and, other

than for intentional messages sent between programs, each program thinks

that it has it's own memory space and is the only program running.

 FIGURE 3.1: Operating System Architecture

14

Communication between user-space programs and the kernel code is

achieved through system calls to the kernel code. These system calls

typically are to access shared physical resources such as disk drives,

serial/parallel ports, network interfaces, keyboards, mice, display screens,

 and audio and video devices. One unifying aspect of Linux systems is that all

the physical resources appear to the user programs as files and are

controlled with the same system calls such as open(), close(), read(), write().

 All of the input/output activity is controlled by the kernel code so that

the user-space programs do not have to be concerned with the details of

sharing common physical resources. Device-specific drivers in the kernel

manage those details. An operating system is thus tailored to run on specific

computer hardware and it isolates user programs from the specifics of the

hardware, allowing for portability of user-space application code. Linux is of

such an operating system where modules can be loaded and unloaded into

the kernel space by user-space commands.

 The architecture of an operating system is thus a core or kernel that

remains in memory at all times, a set of processes in user-space that support

the kernel, plus various modules and utility programs that remain stored on

disk until needed. The kernel manages simultaneous execution of multiple

user programs and isolates user programs from the details of managing the

specific hardware of the computer.

3.1.2 Required Functionality for Real-Time

Real-Time Operating Systems (RTOS) are those able to provide a required

level of service in a bounded response time. They can deliver a response in a

time less than a designated timing interval. The timing interval may be long in

computing terms i.e. orders of seconds, or it may be short i.e. orders of

microseconds. For example, a real-time process control system for a

chemical or food plant may only sample a sensor and calculate a control

command once a second. On the other hand, for smooth response, a stepper

15

motor must be serviced every few microseconds. A so-called hard real-time

system is one that misses no timing deadlines, a soft real-time system can

tolerate missing some timing deadlines.

3.1.3 Embedded vs Real-Time Operating Systems

Embedded programs are those that are a fixed and integral part of a device.

For example, a hand-held computer, a telephone answering system, and the

control computer for the engine of a car all have fixed programs that start up

whenever power is turned on. These are called embedded applications.

Depending on the required response time, the operating systems for

embedded applications may or may not be considered real-time operating

systems. Servicing human interactions does not in general require real-time

performance, but controlling a machine tool, scientific experiment, or weapon

system does.

3.1.4 Measures of Performance for Real-Time Operating Systems

The most vital characteristic of a real-time operating system is how

responsive the operating system is in servicing internal and external events.

These events include external hardware interrupts, internal software signals,

and internal timer interrupts. One measure of responsiveness is latency, the

time between the occurrence of an event and the execution of the first

instruction in the interrupt code. A second measure is jitter, the variation in

the period of nominally constant-period events. To be able to offer low

latency and low jitter, the operating system must ensure that any kernel task

will be preempted by the real-time task.

3.1.5 POSIX Extensions for Real-Time Applications

The POSIX real-time extensions provide an insight into the additional

functionality that is required for a real-time operating system. These real time

extensions add message queues (for communication between tasks), shared

memory, counting semaphores (needed to synchronize accesses to shared

16

memory), priority-based execution scheduling, real-time signal extensions,

and higher resolution timers. The timers can generate time intervals with at

least one microsecond resolution.

3.1.6 RT-Linux System Structure:

The following diagram illustrates the structure of the real-time operating

system. The diagram shows that Linux itself is treated just as another task to

run, but with lowest priority. Linux in turn controls the running of its non-real-

time processes, such as editors, browsers, consoles, viewers, utilities, etc.

 FIGURE 3.2: RT-Linux System Structure

The real-time requirements are met in RTLinux by the real-time kernel

capturing all hardware interrupts. One consequence of Linux being relegated

to lowest priority status is the possibility of Linux being completely \locked

out" of operation. If the real-time processing engages all resources, such as

the CPU, devices, and memory, then Linux will not get a chance to run. It will

17

appear to the user that the system has locked up completely, even though the

real-time processing continues to execute.

 Real-time tasks run at the kernel privilege level, giving them direct

access to the computer resources, such as the CPU, memory, and hardware

devices. Running at the kernel privilege level also gives the ability to change

task priority, engage inter-process communication (IPC), run user de_ned

IPC handlers, and execute user de_ned scheduling algorithms. With privilege

however, come responsibility,... care must be taken when constructing real-

time programs so that the program does not make undesirable changes to the

system that would otherwise not be possible without this privilege. Not only

do real-time tasks run at the privilege level of the kernel, but they all exist and

are run within the same kernel address space. One consequence of this,

aside from the security issue mentioned, is that switching between real-time

tasks is made easier and quicker, again reducing latency.

3.2 HARDWARE MODULE

The Hardware Module is based on DAQ Board (Data Acquisition Board)

where a microphone is connected to its input line and a speaker is connected

to the output line. And the DAQ Board is linked to the Host through ISA bus.

Via an Application Programmable Interface (API) the host has access to the

DAQ Board. Functionality such as opening a driver and obtaining information

on the hardware setup provided.

This chapter described the data acquisition system, summarized the DAQ

system structure and the proposed DAQ card.

3.2.1 Data Acquisition System

Data acquisition systems through the DAQ Board are described broadly in

the following:

18

 DAQ systems are hybrid electronic devices (analog & digital) with the

main role of interfacing the digital signal processing systems to the

environment. The key functions of a DAQ system is consists of

 i). Signal Conditioning

 ii). Analog to Digital conversion (ADC)

 iii). Digital to Analog conversion (DAC)

 iv). Digital I/O

i) Signal Conditioning:

Non-electrical signals coming from the environment are transformed in

electrical signals (current and/or voltage) by transducers. Signal conditioning

is further necessary to adapt the output scale range of the transducers to the

input signal characteristics of the A/D converters. Programmable Gain

Amplifiers (PGA) is usually used to adjust the scale range of the input

electrical signal.

ii) Analog to Digital conversion (ADC):

Analog to digital conversion of signals is one of the main goals of a data

acquisition system. A/D conversion is the set of operations that establish

an exact correspondence between an analog electrical value (current,

voltage) and a finite-length binary code. ADC is a three-phase process, all of

them being currently performed sequentially by a monolithic device - the

analog-to-digital converter.

a) Sampling

b) Quantization

c) Binary coding

iii) Digital to Analog conversion (DAC)

Digital-to-analog conversion is the procedure reciprocal to ADC. With digital-

to-analog conversion, each binary code of bits length at the input is related to

an electrical value (current or voltage).

19

 Similarly to ADC, the D/A operation requires a well-defined interval

to perform the conversion (delay) which raises two issues: (a) what happens

to the output electrical signal during a conversion period and (b) how can

the resulting signal be shaped as close as possible to the desired contour of

a natural, continuous signal.

iv) Digital I/O:

The digital I/O provided by the DAQ systems consists of serial interface and

data buffering. The operation can be performed through one of the three

independent 8-bidirectional data channels. Data transfer parameters are

programmed into the on-board 8255 device for each separate channel.

 Digital I/O applications include monitoring and control applications,

video testing, chip verification, and pattern recognition. The most common

digital I/O interface chip used is the 8255 programmable peripheral Interface

(PPI). This PPI has three 8-bit digital ports (A, B, and C). When we configure

a port that is part of an 8255 PPI, the 8255 PPI goes through a configuration

phase, where all the ports within the same PPI chip get reset to logic low,

regardless of the data direction. The data direction on other ports, however,

is maintained. Each line in a port on an 8255 PPI has to be configured for the

same direction; that is, all the lines in Port A have to be configured for either

input or output. Port C on the 8255 can be configured as two 4-bit (nibble)

ports, but this functionality is not accessible through the DAQ driver software.

The registers on the 8255 must be accessed directly to implement this feature

of the 8255 PPI.

3.2.2 General Architecture of Data Acquisition

As presented in the figure above, common data acquisition architectures

feature the following components:

20

 FIGURE 3.3: DAQ Architecture

a) One or more analog-to-digital signal conversion modules (ADCM) one or more

digital-to-analog signal conversion modules (DACM) digital I/O module (IOM).

b) Data acquisition command module (DAQCDM)

c) Internal bus for data, address and command lines (IBUS)

d) Communication interface with the controlling system (ICOMM).

The A/D conversion module (ADCM) performs function (ii) and optionally (i)

as described above, and it represents the key module of any DAQ system. Its

main device is the A/D converter (ADC).

 The D/A conversion module (DACM) performs function (iii) described

above.The operational control function of the DAQ system is performed by the

DAQ command Module (DAQCM).

3.2.3 AX5411H DAQ Board

In this project work we used AX5411H (DAQ Board) is a multifunction

analog/digital input/output board. Analog input characteristics of the board

are designed to allow user to sample data at high throughput. The

combination of hardware auto-scanning multiplexer, a high-speed

21

sample/hold, and A/D converter allows input sampling speeds up to 60KHz.

DMA transfer allows transferring of large amounts of data to memory at high

speed. With programmable gains of 1, 2, 4, 8, and 16, and full scale ranges

of 5V and 10V, user can define a particular range for each input

corresponding to the signal level connected to that channel. Device driver

program contained in appendices.

 FIGURE 3.4: AX5411H DAQ Board

 Table 3.1

 The specifications are contained in the following:

22

 But, due to time constrained we could not managed the AX5411H

card. Thus, to develop our frame work we used comuter parallel port

23

instead of AX5411H for data communication from the external environment.

In computers, ports are used mainly for two reasons: Device control and

communication. We programmed PC's Parallel ports for data

communication in real-time. Parallel ports are mainly meant for connecting

the printer to the PC. But we can program this port for many more

applications beyond that. In parallel port, all the 8 bits of a byte will be sent

to the port at a time and a indication will be sent in another line. There will

be some data lines, some control and some handshaking lines in parallel

port.

3.3 SOFTWARE MODULE

Software, consisting of programs enables the computer to perform specific

tasks, as opposed to its physical components (hardware) which can only do

the tasks they are mechanically designed for. The term includes application

software such as word processors which perform productive tasks for users

and system software such as operating systems described earlier , which

interface with hardware to run the necessary services for user-interfaces

and applications.

 In this paper we present a new technique that enables the designer in

the field of digital audio processing to concentrate on the development of

algorithms for processes the data in the hardware independent buffers that

the host provided, negotiate sample rate, buffer size and amount of input

and output channels in order to create a Real-Time prototype. With this

approach a high level programming language (‘C’) has been used also for

Real-Time prototype. The new technique furthermore comprises mechanism

for a Real-Time messaging mechanism that especially in combination with

a Graphical User Interface (GUI), will allow even the non-expert to optimize

the parameters of the algorithm by simply clicking buttons.

In this chapter we described each part of the software module accordingly.

 3.3.1 DAQ Driver

24

A device driver is a computer program allowing higher-level computer

programs to interact with a computer hardware device.

 A driver typically communicates with the device through the computer

bus or communications subsystem to which the hardware is connected. When

a calling program invokes a routine in the driver, the driver issues commands

to the device. Once the device sends data back to the driver, the driver may

invoke routines in the original calling program. Drivers are hardware-

dependent and operating-system-specific. They usually provide the interrupt

handling required for any necessary asynchronous time-dependent hardware

interface.

 Linux device drivers are built into the OS kernel, and thus get built for

the appropriate bit-width automatically. Provided that sufficient technical

information about the hardware is available, the Linux kernel team will write

the drivers free of charge. This absolves both hardware vendors and end

users from having to worry about drivers. But in this case non-vendors have

written numerous device (AX5411H DAQ Board) drivers, mainly for use with

Real-Time operation which has been used for this project work.

 3.3.2 Filtration

The most common processing approach in the time or space domain is

enhancement of the input signal through a method called filtering. Filtering

generally consists of some transformation of a number of surrounding

samples around the current sample of the input or output signal.

 Digital signal processing allows the inexpensive construction of a wide

variety of filters. The signal is sampled and an analog to digital converter

turns the signal into a stream of numbers. A computer program running on a

CPU or a specialized DSP (or less often running on a hardware

implementation of the algorithm) calculates an output number stream. This

output is converted to a signal by passing it through a digital to analog

converter. There are problems with noise introduced by the conversions, but

these can be controlled and limited for many useful filters. Due to the

25

sampling involved, the input signal must be of limited frequency content or

aliasing will occur.

 The digital filter performs noiseless mathematical operations at each

intermediate step in the transform. The primary source of noise in a digital

filter is to be found in the initial analog-to-digital conversion (ADC) step,

where in addition to any circuit noise introduced, the signal is subject to an

unavoidable quantization error which is due to the finite resolution of the

digital representation of the signal.

Noted also that frequency components exceeding half the sampling rate of

the filter (cf. Nyquist sampling theorem) will be confounded (or aliased) by the

filter. Thus an anti-aliasing filter is usually placed ahead of the ADC circuitry

to prevent these high-frequency components from aliasing.

 To overcome from all those obstacles in digital signal processing and

considering the well featured of digital filter, we were supposed to fit filtration

into the processing algorithm as a vital part which has developed in a high

level language ‘C’. Appendices contains some part of the filtration program.

 3.3.3 Graphical User Interface (GUI)

 A graphical user interface (GUI) is a type of user interface which allows

people to interact with a computer and computer-controlled devices which

employ graphical icons, visual indicators or special graphical elements

called "widgets", along with text, labels or text navigation to represent the

information and actions available to a user. The actions are usually

performed through direct manipulation of the graphical elements.

 We also tried to make controlling the process flexible to the user

using this advantages of GUI program have constructed a visual indicators

which has shown below and a part of the GUI program is contained in the

Appendices part.

26

 Figure 3.5: Visual Indicators developed in GUI

3.3.4 Vxscope

 We also introduced Vxscope to visualize the graphical view of out put signal

in various form such as sine wave and square wave developed in ‘C’

language programming which looks like the following photo.

 Figure 3.6: Vxscope

27

 Vxscope means versatile XWindows scope. It displays a real-time signal
on XWindow using shared memory. It polls the shared memory to get the valu
and put it on screen. The value is updated by user process or program.The
program is free software which can be redistributed and modified under the
team of the GNU (General Public License).

Compile and Executon

 Compile the source code and creat a module using the GCC compiler. To
simplify things, it is better to creat a Makefile. Then typing ‘make’ compile the
code. Make file can be created by typing in the following line and file named
Makefile.

all: vxscope

cdsm_nrt.o: cdsm.c

 gcc -c -O2 -o cdsm_nrt.o cdsm.c

cbuf.o: cbuf.c

 gcc -c -O2 -o cbuf.o cbuf.c

vxscope: cdsm_nrt.o cbuf.o

 gcc -O2 -c -o main.o main.c `gtk-config --cflags`

 gcc -o vxscope main.o cdsm_nrt.o cbuf.o `gtk-config --libs`

clean:

 rm -f *.o

install:

 make

 cp -f vxscope.7.txt vxscope.7

 gzip vxscope.7

 mv -f vxscope.7.gz /usr/man/man7/

 cp -f vxscope /usr/local/bin/

3.3.5 Real-Time Thread Programming

A thread in computer science is short for a thread of execution. Threads are a

way for a program to fork (or split) itself into two or more simultaneously (or

pseudo-simultaneously) running tasks. Threads and processes differ from

28

one operating system to another, but in general, the way that a thread is

created and shares its resources is different from the way a process does.

 Multiple threads can be executed in parallel on many computer

systems. This multithreading generally occurs by time slicing (similar to time-

division multiplexing), wherein a single processor switches between different

threads, in which case the processing is not literally simultaneous, for the

single processor is really doing only one thing at a time. This switching can

happen so fast as to give the illusion of simultaneity to an end user. For

instance, many PCs today only contain one processor core, but one can run

multiple programs at once, such as typing in a document editor while listening

to music in an audio playback program; though the user experiences these

things as simultaneous, in truth, the processor quickly switches back and

forth between these separate processes. On a multiprocessor or multi-core

system, now coming into general use, threading can be achieved via

multiprocessing, wherein different threads and processes can run literally

simultaneously on different processors or cores.

 Many modern operating systems directly support both time-sliced and

multiprocessor threading with a process scheduler. The operating system

kernel allows programmers to manipulate threads via the system call

interface.

 A real-time application is usually composed of several ``threads'' of

execution. Threads are light-weight processes which share a common

address space. In RTLinux, all threads share the Linux kernel address space.

The advantage of using threads is that switching between threads is quite

inexpensive when compared with context switch.

 With the grate advantages of Real-Time Thread programming we have

done our job in Real-Time successfully. The following example program

clarify the real-time thread programming.

Example program:

29

The best way to understand the working of a thread is to trace a real-time
program. For example, the program shown below will execute once every
second, and during each iteration it will value from printer port.

The Program code (file - sample.c):

#include <linux/errno.h>
#include <time.h>
#include <rtl_sched.h>
#include <rtl_fifo.h>
#include <rtl.h>
#include <pthread.h>
#include <sys/io.h>
#include "mbuff.h"

#define LPT 0x379

#define PERIOD 10000000

void *sample_code(void *arg);

pthread_t sample_thread;

volatile int *y;

/* module initialisation */
int init_module(void)
{
 int module_status=0;

 /* initialise shared memory */
 y = (volatile int*) mbuff_alloc("lab1",1024);
 if (y == NULL) {
 rtl_printf("Shared Memory Creation Failed\n");
 return -1;
 }

 module_status =
pthread_create(&sample_thread,NULL,sample_code,0);
 if (module_status != 0) {
 rtl_printf("Thread initialisation failed: sample status
%d\n",module_status);
 return module_status;

30

 }

 return 0;
}

/* module destroy */
void cleanup_module(void)
{
 pthread_delete_np(sample_thread);
 mbuff_free("lab1",(void*)y);
}

/* sampling thread code */
void *sample_code(void *arg)
{
 struct sched_param p;
 hrtime_t now;

 now = gethrtime();

 pthread_setfp_np(pthread_self(),1);
 p.sched_priority = 1;
 pthread_setschedparam(pthread_self(),SCHED_FIFO,&p);
 pthread_make_periodic_np(pthread_self(),now,PERIOD);

 while(1) {

 // take sample from ax5411 card

 y=inb(LPT);

 //print the value that get from printer port

 rtl_printf("The value form Printer port= %d\n",y);
 pthread_wait_np();

 }

 return 0;
}

31

Compiling and Executing:

In order to execute the program, sample.c, (after booting rtlinux, of course)
you must do the following:

1. First we have to write “su” to get permission to work under RT-
LINUX.

2. Then we write “rtlinux start” in the console to get real time
environment.

3. To creat object file we write “gcc –c –o sample.o sample.c ’rtl --
config’”

4. After writing previous command the object file(sample.o) if there is
no error in the file.

5. Then we should insert the object file in the real time kernel by
write “insmod sample.o”

6. To see what happened inside the kernel we have to
7. write “dmesg”.
8. After write the previous command we just see the snap shot in the

kernel.
9. To see continuous changing inside the kernel we have to push

“Ctrl+Alt+F5”
10. To get back again from Real-time environment to soft Real-time

environment we have to push “Ctrl+Alt+F4”
11. To remove object file from kernel we should write “rmmod smple ”

32

 CHAPTER IV

 CONCLUSION

In this paper, we introduced a platform that aims at Real-Time prototyping in

the field of audio signal processing. The capabilities of general purpose PC,

the DAQ card and specially the Real-Time Linux OS can be exploited to

avoid time consuming development of new technology. In that cotext we

proposed a technique that helps to simplify, most efficient and effective audio

signal processing. We completely focused on Real-Time processing

algorithm which does not consider any time delay. A powerful messaging

mechanism rsupports run time user intraction for parameter optimization and

verification, even controlled by a person who has no background in the field

of digital signal processing. A very interesting feature of the applied

technology is the possibility to use the same software and hardware

component for offline processing where data have to preserved for long time

and online processing for live performance. we have thus shown that a low

cost software and hardware approach for high demand sound processing

application is possible.

 We have described a first version of development framework for hard

real-time audio signal processing and how we have successfully implement

an interactive sound processor which satisfied live performance requirements

as well as long time preservation with a great accuracy and latency less.

33

 REFERENCES

[1] S.K. Mitra, Digital Signal Processing: A Computer-Based Approach,
New York, NY: McGraw-Hill, 1998.

[2] A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing,
Upper Saddle River, NJ: Prentice-Hall, 1999.

[3] J.F. Kaiser, Nonrecursive Digital Filter Design Using the Io-sinh
Window Function, Proc. 1974 IEEE Int. Symp. Circuit Theory, pp. 20-23,
1974.

[4] S.W.A. Bergen and A. Antoniou, Design of Nonrecursive Digital Filters
Using the Ultraspherical Window Function, EURASIP Journal on Applied
Signal Processing, vol. 2005, no. 12, pp. 1910-1922, 2005.

[5] L. R. Rabiner, J.H. McClellan, and T.W. Parks, FIR Digital Filter
Design Techniques Using Weighted Chebyshev Approximation, Proc.
IEEE, vol. 63, pp. 595-610, Apr. 1975.

[6] A.G. Deczky, Synthesis of Recursive Digital Filters Using the Minimum
p-Error Criterion, IEEE Trans. Audio Electroacoust., vol. AU-20, pp. 257-
263, Oct. 1972.

[7] Rabiner, Lawrence R., and Gold, Bernard, 1975: Theory and
Application of Digital Signal Processing (Englewood Cliffs, New Jersey:
Prentice-Hall, Inc.) ISBN 0139141014.

[8] A. Antoniou (1993). Digital Filters: Analysis, Design, and Applications.
McGraw-Hill, New York, NY. ISBN 0070021171.

[9] S.K. Mitra (1998). Digital Signal Processing: A Computer-Based
Approach. McGraw-Hill, New York, NY. ISBN 0072865466. .

[10] file:///C:/Documents%20and%20Settings/Thesis/Desktop/jn-
24.7/THESIS/report/Data%20acquisition%20systems.htm

[11] software. (n.d.). Dictionary.com Unabridged (v 1.1). Retrieved 2007-
04-13, from Dictionary.com website:
http://dictionary.reference.com/browse/software

34

[12] file:///C:/Documents%20and%20Settings/Thesis/Desktop/jn-
24.7/THESIS/report/Developing%20a%20realtime%20Linux%20data%20
acquisition%20application.htm

[13] http://tldp.org/HOWTO/RTLinux-HOWTO-5.html

[14] Motorola, Inc., "MSC8101 Reference Manual: 16-Bit Digital Signal
Processor", MSC8101RM/D, Rev. 1, June 2001.

[15] Texas Instruments, Inc., "SM320C80 Digital Signal Processor Data
Sheet", SGUS021, August 1996.

[16] Motorola, Inc., "DSP56000: 24-Bit Digital Signal Processor Family
Manual", DSP56KFAMUM/AD, 1995.

[17] E. C. Ifeachor, B. W. Jervis, "Digital Signal Processing: A Practical
Approach", Addison-Wesley, 1993.

[18] J. A. Stankovic, "Real-Time Computing", Invited paper, BYTE, pp.

(155-160), August 1992.

[19] J. A. Stankovic, "Distributed Real-Time Computing: The Next
Generation", Invited keynote paper, Special issue of "Journal of the
Society of Instrumentation and Control Engineers of Japan", Vol. 31, No.
7, pp. (726-736), 1992.

[20] K. Ghosh, B. Mukherjee, K. Schwan, "A Survey of Real-Time
Operating Systems", Technical Report GIT-CC-93/18, College of
Computing, Georgia Institute of Technology, Atlanta, Georgia, February
1994.

[21] M. V. Micea, "Signal Acquisition and Conditioning Systems:
Laboratory Workshops", ("Sisteme de achizitie numerica a datelor:
Indrumator de laborator"), Comanda 270/2000, Centrul de multiplicare al
Universitatii POLITEHNICA Timisoara, 2000.

[22] L. Toma, "Digital Signal Acquisition and Processing Systems",
("Sisteme de achizitie si prelucrare numerica a semnalelor"), Editura de
Vest, Timisoara, 1996.

[23] Pentek, Inc., "Digital Signal Processing and Data Acquisition", Product
Catalog, 1996.

[24] National Instruments Corporation, "DAQ Designer 99 CD-ROM: The
Interactive Configuration Advisor for PC-Based Data Acquisition", 1999.

35

[25] V. Cretu, M. V. Micea, "Data Acquisition System - from Design to
Real-Life Applications Integration", Proceedings of the International
Conference on Engineering and Modern Electric Systems EMES'99,
Computer Section, University of Oradea, May 26-29, 1999, pp. (154-
162).

[26] J. G. Proakis, D. G. Manolakis, "Digital Signal Processing: Principles,
Algorithms and Applications", 3-rd Edition, Prentice-Hall, 1996.

[27] A. V. Oppenheim, R. W. Schafer, "Digital Signal Processing",
Prentice-Hall, 1996.

[28] A. V. Oppenheim, R. W. Schafer, "Discrete-Time Signal Processing",
Prentice-Hall, 1989.

[29] P. A. Lynn, W. Fuerst, "Introductory Digital Signal Processing with
Computer Applications", John Wiley & Sons, 1992.

[30] P. Denbigh, "System Analysis and Signal Processing: With Emphasis
on the Use of MATLAB", Addison Wesley Longman, 1998.

[31] M. Shnier, "Dictionary of PC Hardware and Data Communications Terms",
O'Reilly & Associates, Online, 1996. Available: http://www.ora.com/
reference/dictionary.

[32] aRts-project. http://www.arts-projects.org.

[33] Audacity. http://jackit.sourceforge.net.

36

 APPENDICES

A.

Filter.c

/**/
/* */
/* filter.c - ELEC2042 */
/* */
/* The main code for the filter program is contained within */
/* this file. Functions associated with the setting up and */
/* running of the GUI (using GTK) are contained within the */
/* source file gui.c. The source files are compiled and */
/* linked together using the make utility and the "Makefile" */
/**/

#include <stdio.h>
#include <unistd.h>
#include <gtk/gtk.h>
#include <gtk/gtkhscale.h>
#include <gtk/gtkvscale.h>
#include <math.h>
#include "mbuff.h" // for shared memory
#include "filter.h" // contains digital filter definition and
function declarations
#include "gui.h" // contains the gui data structure
#include "cdsm.h" // Common Data Shared Memory - for plotting

/* main program - first thing run */
int main(int argc, char *argv[])
{

 /* initialisation of gui and */
 if (gui_init() == -1) {
 printf("Initialisation Problem - EXITING \n");
 return -1;
 }

37

 /* initialise the digital filter data structure */
 df_init();

 /* initialise shared data (CDSM) for plotting */
 CDSM_init();

 /* set up the gui in 'gui_main' */
 /* GTK will 'sit' within this function until an event occurs
such */
 /* as a mouse click, or a keyboard stroke on the GUI. Another
event */
 /* which will cause GTK to 'break-out' of this function is a
*/
 /* 'timeout' function which runs periodically. A timeout
function */
 /* is set up inside 'gui_main' - called 'filter_run' */
 gui_main();

 /* log data before exiting */
 store_log();

 /* free up memory allocated to the digital filter structure
'df' */
 /* Will learn more about this in further labs */
 mbuff_free("filter",(void *)df);

 /* clean up shared data structure (CDSM) */
 CDSM_done();

 return 0;
}

/* initialise digital filter */
void df_init(void)
{
 int i;

 // declare digital filter - allocate space for it
 df = (volatile dig_fil*) mbuff_alloc("filter",sizeof(dig_fil));

 df->n = 4; df->m = 4; // maximum 4-th order
 for(i=0; i<MAXSIZE; i++) { // initial signals to zero
 df->y[i] = 0;
 df->u[i] = 0;
 }
 df->time = -1; // time index to -1 (because time
increments first thing)
 df->timestep = 1; // time step (discrete time interval)
 df->mode = 0; // in stop mode
 df->input = 0; // manual input
 frequency = 0.5; // set to 0.5Hz by default
}

/* Timeout function to run periodically */
/* This is the code that implements the digital filter difference
equation */
int filter_run(void)

38

{
 int i;
 float temp=0.0;

 // only update if in start mode
 if (df->mode) {

 //increment time
 df->time += 1;

 // update input (if impulse)
 if (df->input == 1) {
 if (df->time == 0) df->u[df->time] = 1;
 else df->u[df->time] = 0;
 }

 // update input (if step)
 if (df->input == 2) df->u[df->time] = 1;

 // update input (if sinusoid)
 if (df->input == 3) df->u[df->time] =
sin(2*3.1416*frequency*df->timestep*df->time);

 // update input (if manual) - why do we do this?
 if (df->input == 0) df->u[df->time] = df->u[df->time-1];

 // numerator
 for (i=0;i<=df->m;i++)
 if ((df->time-i)>=0) temp += df->b[i]*df->u[df-
>time-i];

 // denominator
 for (i=1;i<=df->n;i++)
 if ((df->time-i)>=0) temp -= df->a[i]*df->y[df-
>time-i];

 // store in buffer
 df->y[df->time] = temp;

 // print signals out to console
 printf("Time: %d \t Input: %4.3f \t Output: %4.3f \n",df-
>time,df->u[df->time],df->y[df->time]);

 }

 // set value in CDSM structure for plotting - scaled by 1000 as
CDSM stores integers
 CDSM_set(0,(1*temp));
 CDSM_set(1,(1*df->u[df->time]));

 // need to return TRUE otherwise timeout function will cease to
run
 return TRUE;
}

/* callback function for start button */
void start_function(GtkAdjustment *adj, int *arg)
{
 df->mode = 1; // set to start mode

39

}

/* callback function for stop button */
void stop_function(GtkAdjustment *adj, int *arg)
{
 int i;

 /* save data */
 store_log();

 // set to stop mode and reset the signals
 for(i=0; i<MAXSIZE; i++) {
 df->y[i] = 0;
 df->u[i] = 0;
 }
 df->time = -1; // reset time
 df->mode = 0; // reset mode to stop
 df->input = 0; // reset input to manual

 // reset timestep back to 1.0second and change timeout
function period
 df->timestep = 1.0;
 gtk_timeout_remove(flag);
 flag = gtk_timeout_add((1*df->timestep),
(GtkFunction)filter_run, NULL);

 /* set input back to zero */
 gtk_adjustment_set_value(GTK_ADJUSTMENT(lab1gui.adjust[8]) , 0
);

}

/* callback function for impulse button */
void impulse_function(GtkAdjustment *adj, int *arg)
{
 df->input = 1;
 df->mode = 1;
}

/* callback function for step button */
void step_function(GtkAdjustment *adj, int *arg)
{
 df->input = 2;
 df->mode = 1;
}

/* callback function for sinusoid button */
void sinusoid_function(GtkAdjustment *adj, int *arg)
{
 df->mode = 1;
 df->input = 3;

 // run the sinusoidal signal faster (0.01 sec)
 df->timestep = 0.01;

40

 gtk_timeout_remove(flag);
 flag = gtk_timeout_add((1*df->timestep),
(GtkFunction)filter_run, NULL);

}

/* callback function for changing input field */
void input_change(GtkAdjustment *adj, int *arg)
{
 // change input at t=time to value of widget
 df->input = 0;
 df->u[df->time] = adj->value;
}

/* callback function for changing frequency */
void freq_change(GtkAdjustment *adj, int *arg)
{
 frequency = adj->value;
}

/* callback function for changing 'b' parameter */
void b_parameter_change(GtkAdjustment *adj, int *arg)
{
 // change b coefficient to widget value
 df->b[arg[0]] = 2.0;
}

/* callback function for changing 'a' parameter */
void a_parameter_change(GtkAdjustment *adj, int *arg)
{
 // change a coefficient to widget value
 if (arg[0] != 0) df->a[arg[0]] = 1.0;
}

/* callback function for changing time step */
void time_step_change(GtkAdjustment *adj, int *arg)
{
 // change time step
 df->timestep = adj->value;
 gtk_timeout_remove(flag);
 flag = gtk_timeout_add((1*df->timestep),
(GtkFunction)filter_run, NULL);
}

/* function to log data to a file `filterdata' */
int store_log(void)
{

 int i;
 FILE *fd_open;

41

 float u,y;

 fd_open = fopen("filterdata", "w+");
 if (fd_open == NULL) {
 printf("Error opening file \n");
 return -1;
 }

 for (i=0;i<df->time;i++) {
 u = df->u[i]; y = df->y[i];
 fprintf(fd_open, "%4.3f \t %4.3f \n",u,y);
 }

 fclose(fd_open);

 return 0;
}

/* end filter.c program */

Filter.h

#include <gtk/gtk.h>
#include <gtk/gtkhscale.h>
#include <gtk/gtkvscale.h>

/* define the maximum size of data arrays */
#define MAXSIZE 2000

/* type definitions of our digital filter */

typedef struct dig_filter
{
 int n,m; // order of denominator/numerator
 float b[10]; // numerator coefficients
 float a[10]; // denominator coefficients
 int time; // time index
 float timestep; // time step
 int mode; // mode - start (1), stop (0)
 int input; // 0 - manual, 1 - impulse, 2 - step, 3 -
sinusoid;

 float y[MAXSIZE]; // output sequence
 float u[MAXSIZE]; // input sequence

} dig_fil;

/* declare digital filter object - for shared memory */
volatile dig_fil *df;

/* declare flag for timeout function */

42

int flag;

/* declare sinusoidal frequency */
float frequency;

/* Function declarations used in filter.c */

/* initialise digital filter */
void df_init(void);

/* Timeout function to run periodically */
/* This is the code that implements the digital filter difference
equation */
int filter_run(void);

/* callback function for start button */
void start_function(GtkAdjustment *adj, int *arg);

/* callback function for stop button */
void stop_function(GtkAdjustment *adj, int *arg);

/* callback function for impulse button */
void impulse_function(GtkAdjustment *adj, int *arg);

/* callback function for step button */
void step_function(GtkAdjustment *adj, int *arg);

/* callback function for sinusoid button */
void sinusoid_function(GtkAdjustment *adj, int *arg);

/* callback function for input change field */
void input_change(GtkAdjustment *adj, int *arg);

/* callback function for changing frequency */
void freq_change(GtkAdjustment *adj, int *arg);

/* callback function for changing 'b' parameter */
void b_parameter_change(GtkAdjustment *adj, int *arg);

/* callback function for changing 'a' parameter */
void a_parameter_change(GtkAdjustment *adj, int *arg);

/* callback function for changing time step */
void time_step_change(GtkAdjustment *adj, int *arg);

Makefile

all: filter

filter: filter.o gui_f.o cdsm.o
 gcc -o filter filter.o gui_f.o cdsm.o `gtk-config --libs`

filter.o: filter.c
 gcc -c -o filter.o filter.c `gtk-config --cflags`

gui_f.o: gui_f.c
 gcc -c -o gui_f.o gui_f.c `gtk-config --cflags`

cdsm.o: cdsm.c

43

 gcc -c -o cdsm.o cdsm.c

clean:
 rm filter
 rm *.o

Cdsm.c

File name: cdsm.c

 Data Sharing interface

*/

#include "cdsm.h"
#ifdef __KERNEL__
#include <mbuff.h>
#include <linux/malloc.h>
#endif

inline void CDSM_init() {

 CDSM_data = (volatile long*)mbuff_alloc(CDSM_DATA_SI,
 CDSM_NUMBER_OF_CHANNEL*sizeof(long));

}

inline void CDSM_done() {
 mbuff_free(CDSM_DATA_SI,(void*)CDSM_data);

}

inline void CDSM_set(int chan, long data)
{
 *(CDSM_data+chan) = data;
}

inline long CDSM_get(int chan)
{
 return *(CDSM_data+chan);
}

Cdsm.h

CDSM - Common Data Sharing Mechanism

 written by: Linh Vu
 (C) 2002

*/

#ifndef __CDSM_H__
#define __CDSM_H__

// maximum of 16 channel, can change to any number
#define CDSM_NUMBER_OF_CHANNEL 128

// data in string id
#define CDSM_DATA_SI "CDSM_DATA_SI"

44

// mechanism:
// common data sharing mechanism (CDSM)
//
// data will be shared among modules
// by read/write to an array of long type elements (also pointer)

volatile long *CDSM_data;

inline void CDSM_init();
inline void CDSM_done();
inline void CDSM_set(int chan, long data);
inline long CDSM_get(int chan);

#endif

B.

AX5411H.c

// ax5411.c
// Implementation of various das 16 functions
//
#include "ax5411.h"

// init()
// Initialise the AX5411 card
//
void init(void)
{
 // get permission to use I/O device (in non-RT)
 // only compile if used in non-real-time
#ifndef __RTL__
 ioperm(BASE, 16, 1);
#endif __RTL__

 /* reset control and status registers */
 outb(0, CONTROL);
 outb(0, STATUS);
}

// ax5411()
// This function is used to either read a A/D value (should only
do
// this when you received an interrupt) or write a D/A value to a
specified
// channel (There are 2 write and 16 read channels we can use for
the card)
// The format of the function is as follows:
// inout: specify whether the operation is a read or a write
// 'a' = write
// 'm' = read
// channel: specify which channel to read or write
// (use channel 0 for both read and write)
// value: what value to write to the DAS 16 card (only
significant

45

// if you are performing a write operation)
// The function returns a value which is only signifcant if you
are
// performing a read operation, or you try to write an invalid
value to
// to DAS 16 card
//
int ax5411(char inout, int chan, int value)
{
 int ch;
 int ilo, ihi;
 int dataL, dataH;

 // User wants to do a write operation
 //
 if (inout == 'a') {
 // check make sure the value we are writing to the DAS
16
 // card is valid
 //
 if ((value > 4095) || (value < 0)) { return (value); }

 // Split the value into a lower 4 bits, and higher 8 bits
 dataL = (value << 4) & 0x00F0;
 dataH = (value >> 4) & 0x00FF;

 // write our lower 4 bits to the D/A register
 outb(dataL, (BASE+4+chan));

 // write our higher 8 bits to the D/A register
 outb(dataH, (BASE+5+chan));
 }

 // User wants to perform a read operation
 //
 else if ((inout == 'm') && (value == 0)) {
 // mask out the higher 4 bits
 ch = chan & 0x000F;

 ch = ch + (ch << 4);

 // Select our channel by writing our value to the MUX
 // ==> we start and finish on the same channel
 //
 outb(ch, (BASE+2));

 // clear to A/D register 1st
 outb(0, BASE);

 // wait until the A/D conversion is complete (shouldn't
 // be necessary
 //
 while (inb(BASE+8) & 0x80) {};

 // read our least significant 4 bits
 ilo = (inb(BASE) >> 4) & 0x000F;

 // read our most significant 8 bits
 ihi = (inb(BASE+1) << 4) & 0x0FF0;

 // combine our results and return the value

46

 value = (ihi | ilo);
 }
 return (value);
}

AX5411.h

// ax5411.h
// header files and defintions of various functions
//

#include <sys/io.h>

#define BASE 0x320 /* base address of ax5411 */
#define STATUS BASE+8 /* status for ax5411 */
#define CONTROL BASE+9 /* control for ax5411 */

///
////////
// Here are the function defined in the file
//

// init(void)
// function to initialise the AX5411 card
// call within Linux task - NOT RT-Linux
void init(void);

// ax5411()
// read or write some values to the das16 card
int ax5411(char inout, int channel, int value);

C.

GUI.c

#include <stdio.h>
#include <unistd.h>
#include <gtk/gtk.h>
#include <gtk/gtkhscale.h>
#include <gtk/gtkvscale.h>
#include "gui.h"
#include "ax5411.h"

// declare state of motor: 0 - off, 1 - on
int state = 0;

// declare a variable for the motor input
float input = 0;

/* main program - first thing run */

47

int main(int argc, char *argv[])
{

 /* initialise GTK */
 gtk_init (&argc, &argv);

 /* initialise ax5411 card */
 init();

 /* gui_main */
 gui_main();

 return 0;
}

/* callback for start/stop */
void start_function(GtkAdjustment *adj, int *arg)
{
 /* turn on */
 state = 1;

 /* send current input to D/A - channel 0 */
 ax5411('a',0,(int)(4095*input));

}

/* callback for start/stop */
void stop_function(GtkAdjustment *adj, int *arg)
{
 /* turn off */
 state = 0;

 /* send a zero to the motor to turn off */
 ax5411('a',0,0);
}

/* callback for changing input */
void input_change(GtkAdjustment *adj, int *arg)
{
 int dtoa;

 /* retrieve value from widget */
 input = adj->value;

 /* scale to 0-4095 */
 dtoa = (int)(input*4095);

 /* if ON then send to D/A - channel 0 */
 if (state) ax5411('a',0,dtoa);

}

/* This callback quits the program */
gint delete_event(GtkWidget *widget, GdkEvent *event, gpointer
data)
{
 gtk_main_quit ();
 return(FALSE);

48

}

/* idle function to run when nothing else is happening */
int idle_run(void)
{
 if (state) printf("Input = %f\n",input);
 return TRUE;
}

/* main gui function - run from main */
void gui_main(void)
{

 /* Create a new window */
 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_widget_set_uposition (window, 0, 0);

 /* Set the window title */
 gtk_window_set_title (GTK_WINDOW (window), "MOTOR GUI");

 /* Set a handler for delete_event that immediately exits GTK.
*/
 gtk_signal_connect(GTK_OBJECT(window),"delete_event",GTK_SIGNAL
_FUNC (delete_event), NULL);

 /* Sets the border width of the window. */
 gtk_container_set_border_width (GTK_CONTAINER (window), 20);

 /* Create a 4x3 table */
 table = gtk_table_new (4, 3, TRUE);
 gtk_table_set_row_spacings (GTK_TABLE (table), 15);
 gtk_table_set_col_spacings (GTK_TABLE (table), 25);

 /* Put the table in the main window */
 gtk_container_add (GTK_CONTAINER (window), table);

 /* Put in label */
 label = gtk_label_new("Motor Input");
 gtk_label_set_justify(GTK_LABEL(label),GTK_JUSTIFY_LEFT);
 gtk_table_attach_defaults (GTK_TABLE(table), label, 0, 2, 0,
1);
 gtk_widget_show (label);

 /* Adjustment for input. The arguments are: */
 /* (start value, minimum, maximum, step increment, page
increment, page size) */
 adjust = gtk_adjustment_new(0, 0, 1, 0.01, 0.1, 0);

 /* Put in widget for changing input */
 /* Connect it to adjustment */
 spin = gtk_spin_button_new(GTK_ADJUSTMENT(adjust), 0.01, 2);
 gtk_signal_connect(GTK_OBJECT (adjust), "value_changed",
GTK_SIGNAL_FUNC (input_change), NULL);
 gtk_table_attach_defaults (GTK_TABLE(table), spin, 0, 3, 1, 2);
 gtk_widget_show(spin);

 /* Separator */
 separator = gtk_hseparator_new ();

49

 gtk_table_attach_defaults (GTK_TABLE(table), separator, 0, 3,
2, 3);
 gtk_widget_show(separator);

 /* Put in buttons - start button */
 button = gtk_button_new_with_label ("Start");
 gtk_signal_connect(GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (start_function), NULL);
 gtk_table_attach_defaults (GTK_TABLE(table), button, 0, 1, 3,
4);
 gtk_widget_show (button);

 /* Put in buttons - start button */
 button = gtk_button_new_with_label ("Stop");
 gtk_signal_connect(GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (stop_function), NULL);
 gtk_table_attach_defaults (GTK_TABLE(table), button, 1, 2, 3,
4);
 gtk_widget_show (button);

 /* Put in buttons - Quit button */
 button = gtk_button_new_with_label ("Quit");
 gtk_signal_connect(GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (delete_event), NULL);
 gtk_table_attach_defaults (GTK_TABLE(table), button, 2, 3, 3,
4);
 gtk_widget_show (button);

 /* add in idle function to run when nothing else is running -
IMPORTANT */
 flag = gtk_idle_add((GtkFunction)idle_run, NULL);

 gtk_widget_show(table);
 gtk_widget_show(window);

 gtk_main();

}

/* end gui program */

GUI.h

// type definitions of our gui

typedef struct gtk_gui
{
 GtkWidget *window[3];
 GtkWidget *table[2];
 GtkWidget *label[4];
 GtkWidget *button;
 GtkWidget *radio[4];
 GSList *group[2];
 GtkObject *adjust[20];
 GtkWidget *separator;
 GtkWidget *spin[20];

50

 GtkWidget *textbox;
 GtkWidget *hbox;
 GtkWidget *vscrollbar;
} guiobj;

/* This callback quits the program */
gint delete_event(GtkWidget *widget, GdkEvent *event, gpointer
data);

/* function to initialise gui */
int gui_init(void);

/* main gui function - run from main */
void gui_main(void);

/* declare gui object */
guiobj lab1gui;

