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ABSTRACT 
 
Among different density estimation procedures, the kernel density estimation has attracted the most 
attention. In this paper, the choices for smoothing parameter is discussed when the widely used 
Gaussian kernel is used in implementing the kernel density estimate. A simulation study is 
conducted from several mixtures of normal distributions covering a wide range of distributional 
shapes. 
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1. Introduction 
 
This paper is revisited the exact and approximate 
mean integrated squares for the Gaussian kernel to 
estimate the best smoothing parameter. As stated in 
Silverman (1986), density estimation has become 
an integral part of non-parametric functional 
estimation procedures in statistics, where a density 
function is found from the observed data. In 
literature, such as, Silverman (1986) and Hart 
(1997) different methods for density estimation 
such as histograms, naïve estimator, nearest 
neighbor method, and orthogonal series estimator 
are shown, however the one we will take a closer 
look at is the kernel density estimation method.  
 

The kernel method is based off a kernel, , 
which is a symmetric and have properties of a 
density function. This method is a way of using a 
weighted average based on the importance of the 
observed data and its closeness to the estimated 
point to give a better estimate of the observed 
data’s properties, as shown in Hart (1997).  
 
The effectiveness of kernel method can be linked to 
the choice of smoothing parameter, bandwidth, or 
window width  depending on the literature. A 
smoothing parameter can be very large or small 

depending on the observed data. A larger 
smoothing parameter may over smooth the data 
and cause departure from the true population 
distribution of the data. On the other hand, a 
smaller smoothing parameter may capture all the 
random fluctuations in the data and cause departure 
from the true population distribution of the data. 
Hence a compromise is sought. To find the best 
smoothing parameter we need  that will minimize 
the true error associated with the data. 
 
According to Silverman (1986), in terms of  
as an estimator of the mean integrated square 
error, MISE, is the most popular method of finding 
the most accurate estimator, so minimizing the 
error with respect to  will give the best smoothing 
parameter. In this paper we will try to not only find 
the best choice of  from the MISE but also  
which will be the smoothing parameter estimate by 
minimizing the approximate MISE, AMISE.  
 
The paper is organized as follows:  In section 2 we 
will look at the kernel density estimation. Here we 
will explore the properties of kernels and 
smoothing parameters. In section 3 we will look at 
a simulation study of MISE and AMISE and the 
respective smoothing parameters. In section 4 will 
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look at an application of the methods described in 
this paper and in section 5 we will make some 
concluding remarks and will look at any further 
studies that could be done with this approach. 
 
2. The Choice of h in Kernel Density Estimation  
 
As stated in the introduction the kernel density 
estimation is a broad field that is extensively 
studied in statistics. Let  be a random 
sample be used to estimate the density function 
using the kernel density estimation in the form of a 
continuous density function . In this section 
we will not only discuss the basis of kernel density 
estimation, the kernel, but we will also discuss the 
importance of the smoothing parameters to the 
calculation of the density estimation.  
 
Then kernel estimation method is based off a 
kernel function,  where  and the 

kernel estimate of can be expressed as the 
following, as given in Rahman et al. (1996) 
 
  (2.1) 
 
According to Hart (1997), a kernel function must 
satisfy the following conditions which allow for the 
minimization of the mean integrated squared error. 
 
  

     

   

  (2.2) 
 
The first two conditions in (2.2) make it so that the 
kernel must be a probability density function and 
have a mean of zero. Satisfying these two 
properties allows the function to be symmetric and 
a maximum at zero, which are ideal properties for 
estimating data that has an unknown distribution. 
The final two conditions are to allow for the 
calculation of the MISE and AMISE as we will see 
in section 3. Silverman (1986) states that we must 
also have the kernel functions those are continuous 
and differentiable, so that  can also take on 
these properties. These properties are satisfied by 
many density functions, so in Table 2.1 we have 
listed some of the most popular choices as 
expressed in Silverman (1986). 

Table 2.1: Kernel Density Functions 
 

Kernel Function 
Gaussian  
Epanechnikov  
Uniform  
Triangular  
Quadratic  

 
In this paper we will focus our attention on the 
commonly used Gaussian kernel. Froelich (2009) 
showed that Gaussian kernel can be implemented 
more effectively than the Epanechnikov kernel 
when data are generated from the mixtures of 
normal distributions.  
  
If we take the final two properties from (2.2) the 
Gaussian kernel gives the following constraints 
needed to minimize MISE and AMISE in solving 
for  and , where  is the smoothing parameter 
which minimizes the MISE and  is the 
smoothing parameter which minimizes the AMISE. 
 

 
 (2.3) 

 
The effectiveness of the kernel estimation method 
comes down to the selection of the smoothing 
parameter. One must be very careful in selecting 
the ideal  value. If smoothing parameter is chosen 
that is too large, this can cover up the features of a 
distribution. However, if a  value is chosen that is 
too small, this can overemphasize the data 
variability. Therefore in most cases the more 
structure a graph has the smaller the  value and 
the flatter the graph the larger the  value. The best 
choice of the smoothing parameter hinges on the 
sample size and the following three factors as 
described in Hart (1997): The smoothness of the 
density function; the distribution of the design 
points; and the amount of variability among the 
data. 
 
Since the smoothing parameter is a function of , 
the sample size will affect the bias of the solution 
through 

n

. For larger samples, the smoothing 
parameter is comparatively smaller as the data 
variation has to be closer to the population 
variation. That is, for larger samples, the smaller 
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smoothing parameter will help to reduce the bias 
and will adjust the weight function to obtain 
asymptotically unbiased estimates, Silverman 
(1986). By decreasing  this increases the 
integrated variance, however increasing  will 
increase the bias. Therefore in the selection of the 
smoothing parameter there is balance of systematic 
and random error that takes place. The way that we 
will be minimizing the error is by minimizing the 
exact and approximate mean integrated squared 
error. 
 
2.1 Using Approximate MISE 
 
As stated in Silverman (1986) mean integrated 
squared error is the most popularly used measure of 
accuracy of  and can be expressed as  

 (2.5) 
 
It has been shown in Parzen (1962) that from the 
MISE the minimization of the AMISE is defined 
by 

  

  

     (2.6) 
 
From the AMISE it is crucial that we find the 
optimal value of  so it was also shown in Parzen 
(1962) that this value is 

h

   

          *  (2.7) 

 
If the density function  of our observed data 
is known we may solve these approximation 
expressions by substitution. We have already 
solved for all terms in (2.6) and (2.7) except 

, which can be obtained by the 
integration of the second derivative squared of the  

. In most cases the density function of the 
observed data will be unknown so   will 
also be unknown. An estimate is needed for 

 and as Rahman et al. (1996) stated this 
will be defined as 

 (2.8) 

Here we will use the Gaussian kernel and a known 
distribution to find the AMISE and . As an 
example we will show how the AMISE and  
were found when the known distribution was 

. Since the distribution is known we can 
right the density functions as  
 

  (2.9) 

 
From this the second derivative is calculated and 
defined as 

 (2.10) 

 
Then the integration of this expression squared will 
give us the following 

 (2.11) 

 
For the Gaussian kernel we can use (2.11) and (2.3) 
and substitute them into (2.6) and (2.7) we can find 
AMISE and  to be  
 

 (2.12) 

 (2.13) 
  
Now we will use the Gaussian kernel with an 
unknown distribution to find the AMISE and  
iteratively. Since the distribution is unknown we 

will start with an initial , which is the 

 of the Gaussian kernel and standard normal 
density function.  As an example we will use a 
random sample from the standard normal density 
function. For the Gaussian kernel  is 
calculated by (2.8) as shown in Rahman et al. 
(1996) to be    

 

  

  (2.16) 
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Once   is calculated using the random 
sample,   can be calculated by (2.7) and 
substituting in (2.3) and (2.16). Now that we have  

 we will let this be our new  in (2.16) can 
continue to substitution until   converges to a 
solution. Once our approximate smoothing 
parameter is found we may then calculate the 
AMISE.  
 
2.2 Using Exact MISE 
 
In section 2.1 we showed how the MISE was 
defined in (2.5). As done in Rahman et al. (1996) 

we will let   and 
along with substitution of the density estimate from 
equation 2.1 and substituting it into the MISE the 
exact MISE becomes 
 

 

  (2.18) 
From this expression we can now focus on 
minimization of MISE. For the substitution method 
if the distribution of the observed data is known the 
minimization of the MISE will occur when the fist 
derivative with respect to  is equal to zero and the 
second derivative with respect to  is positive. 
Therefore to solve the only term we are missing is 

 therefore the intial  used will be the  from 
the AMISE. Then we will substitute this  into 
the first and second derivatives. If this was the best 

 then the first derivative would be equal to zero, 
however since  is just an approximation this is 
not the case. So by using the following equation 
similar to Newton Raphson Method the best  was 
found as 

  (2.19) 

 
As the first derivative limits to zero then  limits 
to the ideal  value for the minimization of the 
MISE. Finally the MISE can be found by 
substituting the ideal  back into (2.18). 
 
An iterative method was used to find the ideal 
smoothing parameter for MISE when the 

distribution of the observed data was unknown. 
Since the distribution is unknown we substitute 

 for  in (2.18) to get the following 
approximation as in Rahman et al. (1996) to be  
 

 

    (2.20) 
 
Then the first derivative of (2.20) gives us the 
following expression 
 

 

  

   (2.21) 
 
As done in Rahman et al. (1996), (2.21) can be 
rearranged to solve for , which can be expressed 
as  
 

 (2.22) 

 
 Solving (2.22) iteratively will give the ideal  
value that can be substituted in to (2.20) to solve 
for the minimum MISE.   
   
First we will use the Gaussian kernel and a known 
distribution to find the MISE and  by the 
substitution method. As an example we will show 
how the MISE and  were found when the data’s 
density function was known to be . To find 
the MISE for the Gaussian kernel the method as 
shown in Marron and Wand (1992) was the 
following 
 

  
 

 

  

     (2.22) 
where 

   (2.23) 
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and 
 

                    *  

                    *   (2.24) 
 
By using this method we found that the MISE of a 
known standard normal density, 1=r , gave us the 
following 
 

 

                   *  

                    (2.25) 
 
From this equation the first and second derivatives 
were found to be 
 

 

              *  

                     (2.26) 
 

                

                   *  

                          (2.27) 

 
Now these expressions can be used to find the best 
smoothing parameter using (2.19) and then once  
is found it can be used to find the minimized 
MISE. 
  
Now we will use the Gaussian kernel and a random 
data set with an unknown distribution to find the 
MISE and . For the Gaussian iterative method we 

will start with an initial , which is the 

 of the Gaussian kernel and standard normal 
density function as shown in section 2.1.  Again as 
our unknown data set we will use a random sample 

from the standard normal density function as an 
example. To solve for (2.20) and (2.22) the 
following equations were calculated as in Rahman 
et al. (1996), 
 

  

             

             

             (2.36) 

 
 

              

     

    (2.37) 

 

   (2.38) 

 
 

  (2.39) 

 
 

  (2.40) 

 

 

  (2.41) 

 
Now (2.38) – (2.40) can be substituted in (2.22) 
and the ideal  value can be found iteratively. 
While the minimized MISE can be found by using 
this  value along with (2.38) – (2.41) in (2.20). 
  
2.3 Mixtures of Normal Family of Distributions 
 
There are many different types of normal family 
distributions which all have their own properties. 
We have chosen the following four densities in the 
following table, which were also used in Rahman 
et al. (1996). 
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Table 2.2: Mixtures of Normal Family of 
Density Functions 
 

Density 
 
#1 – Standard Normal 

 
 
#2 – Skewed Unimodal 

 
 
#3 – Skewed Bimodal 

 
#4 – Asymmetric Claw 

 
 
As stated by Marron and Wand (1992) there are 
many different classes of normal mixtures, which 
can each create unique problems for curve 
estimation. Here we only have four distributions, 
each representing their own class. For more normal 
mixtures refer to Marron and Wand (1992) for a 
list of 15 mixtures. The first density is the standard 
normal distribution that represents a class of 
unimodal and symmetric densities. A graph of this 
normal density is shown in the following graph. 
 
Figure 2.3: Standard Normal Density Graph 
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 0.

 
 
 0.

 
 
 0.

 
 
 
The next density is the skewed unimodal density, 
which represents the unimodal and asymmetric 
class of densities and is shown in the following 
graph.  

Figure 2.4: Skewed Unimodal Density Graph 
 0.

-4 -3 -2 -1 0 1 2 3 4
0

1

2

3

4

5

6

7

 
 0.

 
 0.

 
 0.

 
 0.

 
 0.

 
 
0.

 
 
The third distribution is the skewed bimodal 
density that represents the bimodal density class 
and is shown in the next graph. 
 
Figure 2.5: Skewed Bimodal Density Graph 
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The final distribution is the asymmetric claw 
density is an example from the multimodal and 
skewed density classes and is shown in the 
following graph. 
 
Figure 2.6: Asymmetric Claw Density Graph 
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We will use these four distributions to determine 
any similarities or differences between the normal 
families. This variety will give distributions that 
have different types of structure and parameters, 
which in turn may help us identify the methods that 
work best in finding the smoothing parameter and 
minimizing the MISE for specific families. 
 
3. Simulation Study 
 
In this section we will explore the methods of the 
minimization of MISE and AMISE, along with 
finding the ideal smoothing parameter. In the 
simulation study we explored the substitution 
method and iterative method for Gaussian kernel. 
We took sample sizes of 25, 50, 100, 200, and 500 
for each of the four normal density distributions in 
table 2.2.  
 
The following table is the substitution method of 
the Gaussian kernel as explained in section 2.1 and 
2.2. 
 
Table 3.1: Exact Gaussian Kernel by Density 
Substitution 
 

    
#1 25 0.6094 0.01373 
  50 0.5199 0.00869 
  100 0.4455 0.00541 
  200 0.3830 0.00332 
  500 0.3150 0.00172 
#2 25 0.4251 0.02113 
  50 0.3591 0.01336 
  100 0.3054 0.00830 
  200 0.2611 0.00509 
  500 0.2136 0.00262 
#3 25 0.5549 0.02219 
  50 0.4085 0.01508 
  100 0.3179 0.00972 
  200 0.2572 0.00606 
  500 0.2012 0.00314 
#4 25 0.6657 0.03587 
  50 0.5231 0.03094 
  100 0.2016 0.02289 
  200 0.1436 0.01597 
  500 0.0929 0.00960 

Table 3.2: Approximate Gaussian Kernel by 
Density Substitution 
 

    

#1 25 0.5564 0.02535 

  50 0.4844 0.01456 

  100 0.4217 0.00836 

  200 0.3671 0.00480 

  500 0.3056 0.00231 

#2 25 0.3730 0.03781 

  50 0.3247 0.02172 

  100 0.2827 0.01247 

  200 0.2461 0.00716 

  500 0.2049 0.00344 

#3 25 0.3248 0.04343 

  50 0.2828 0.02494 

  100 0.2462 0.01432 

  200 0.2143 0.00822 

  500 0.1784 0.00395 

#4 25 0.0706 0.19983 

  50 0.0614 0.11477 

  100 0.0535 0.06592 

  200 0.0466 0.03789 

  500 0.0388 0.01819 
 
In table 3.1 it is observed that MISE, AMISE,  
and  all decrease as sample size increases as 
expected. Also the AMISE is greater than the exact 
MISE, which means that the  values are less 
accurate than the  values. The MISE increases as 
the amount of structure increases with normal 
density function.  
 
Next we will examine the iterative method of the 
Gaussian kernel as explained in sections 2.1 and 
2.2. In table 3.2 will be the data collected for the 

,  and their standard deviations from the 
simulations of the Gaussian kernel with random 
samples of the four density functions. 

65 



Daniel F. Froelich and Mezbahur Rahman 

Table 3.3: Exact Gaussian Kernel Smoothing 
Parameter by Density Substitution with 
Standard Deviation 
 

    

#1 25 0.524054 0.088838 

  50 0.401463 0.049727 

  100 0.314427 0.028519 

  200 0.250957 0.016713 

  500 0.191487 0.008181 

#2 25 0.432541 0.073874 

  50 0.338654 0.044161 

  100 0.229979 0.023589 

  200 0.180986 0.014252 

  500 0.138397 0.006643 

#3 25 0.597667 0.082582 

  50 0.443332 0.048126 

  100 0.333842 0.031732 

  200 0.251828 0.023138 

  500 0.178267 0.013316 

#4 25 0.592336 0.087852 

  50 0.453302 0.051224 

  100 0.352296 0.028575 

  200 0.272101 0.018726 

  500 0.183549 0.014232 

 
In this table we observe that as the sample size 
increases both  and  decrease as we 
expected. We also see that the standard deviation 
decreases as the sample size increases as expected. 
Next we have the data collected for the , 

 and their standard deviations from the 
simulations of the Gaussian kernel with random 
samples of the four density functions. 
 

Table 3.3: Exact Gaussian Kernel MISE by 
Density Substitution with Standard Deviation 
 

    
#1 25 0.015789 0.003540 
  50 0.011009 0.001871 
  100 0.007448 0.000945 
  200 0.004870 0.000459 
  500 0.002679 0.000185 
#2 25 0.019846 0.004465 
  50 0.013439 0.002390 
  100 0.010472 0.001447 
  200 0.006916 0.000728 
  500 0.003771 0.000270 
#3 25 0.013935 0.002909 
  50 0.010483 0.001863 
  100 0.007730 0.001313 
  200 0.005447 0.000826 
  500 0.003219 0.000349 
#4 25 0.013873 0.002551 
  50 0.009851 0.001553 
  100 0.006873 0.000975 
  200 0.005124 0.000702 
  500 0.003803 0.000534 

 
As we saw with the  and , the , 

 and their standard deviations all decrease as the 
sample size increase. The iterative method also 
gives us smaller  compared to the 

 and  a larger  compared 

to   as we saw with the substitution method. In 
the approximate iterative method we have greater 
standard deviations compared to that of the exact 
iterative method, which we should expect to 
happen.  
  
4. An Example 
 
In this chapter we will take a data set and run it 
through the programs that were made in chapter 3. 
The data set we will be using is the waist 
circumference in cm from a set of 40 females from 
Triola (2008). We then ran the sample through the 
iterative program, which returned the following 
results in the following table. 
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Table 4.1: Table for Application Data 
Estimations 
 

 Gaussian 

 7.800720 

 5.923840 

 0.001041 

 4.239083 

 0.002080 
 
With this table we can see that our exact MISE was 
less than our AMISE, which is what we wanted. 
Also each kernel gave us similar answers. Once we 
have our h values for each kernel we can then find 
the density function for each smoothing parameter 
of the observed data. To do this we took 1000 
evenly distributed points within 4 standard 
deviations of the mean and used (2.1), 

. Once the density 
function was found it returned the following graphs 
of the density estimations of the Gaussian kernel 
when graphed with the data. 
 
Figure 4.1: Gaussian Kernel Density Functions 
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Even through Table 4.1 depicts that it does not 
matter which kernel we chose the figures paint a 
different picture. From the figures it seems as if the 
Gaussian kernel does a much better job in 
displaying the observed data. Within the Gaussian 
figure we can see that the three density functions 
each do a nice job giving the entire structure of the 
data. Figure 4.1 is a wonderful illustration of the 
difference the smoothing parameter makes. As 
discussed in section 2 the smaller the  value the 
variability it shows. In figure 4.1 the smallest 

smoothing parameter is the  value, which has 
the steepest slopes and brings out all the peaks and 
valleys of the observed data. However the  and  
values follow through the data with a much 
smoother and less varying curve. Being a small set 
of observed data the best choice would be the  
value, because this also gave us the smaller 
integrated error.  With figure 4.2 the  value 
should be the choice of smoothing parameter due to 
the fact that it gave the smallest integrated square 
error and the other two densities have a much 
smaller smoothing parameter, which is bringing out 
the data variability in this small data set. This 
example also shows us that the approximate values 
are a great place to start, but are not necessarily the 
best choice. 
 
5. Concluding Remarks and Future Study 
 
Since density estimation is a very important field in 
statistics there is always new ways to improve the 
techniques of density estimation. Since there are 
many kernels and we have only looked at one, we 
have only scratched the surface. These techniques 
could be used to analyze all of the other kernels as 
well. Another option is that with these two kernels 
different normal family density functions could be 
analyzed as done in Marron and Wand (1992).  

60 70 80 90 100 110 120 130
0

0.005

01

0.015

02

0.025

03

0.035

 

 

Data

h

hahat

hhat
 

 
BIBLIOGRAPHY 

 
Silverman, B. W. (1986). “Density Estimation for 

Statistics and Data Analysis”, Chapman and 
Hall Ltd., New York. 

 
Hart, J. D. (1997). “Nonparametric Smoothing and 

Lack-of-Fit Tests”, Springer-Verlag New 
York, Inc., New York. 

 
Rahman, M., Arnold, B. C., Gokhale, D. V., and 

Ullah, A. (1996). “Data-based Selection of the 
Smoothing Parameter in Kernel Density 
Estimation using Exact and Approximate 
MISE”,  Technical Report #229, Department 
of Statistics, University of California, 
Riverside. 

 
Froelich, D. F. (2009). “Mean Integrated Squared 

Error in the Kernel Density Function 
Estimation”, Alternative Plan Paper, 
Minnesota State University, Mankato. 

67 



Daniel F. Froelich and Mezbahur Rahman 

Parzen, E. (1962). “On Estimation of a Probability 
Density Function and Mode”. Annals of 
Mathematical Statistics, 33, 1065-1076. 

 
Marron, J. S. and Wand, M. P. (1992). “Exact 

Mean Integrated Squared Error”, The Annals 

of Statistics, 20(2), 712-736. 
 
Triola, M. F. (2008). “Essentials of Statistics”, 

Third Edition, Pearson Education, Inc., 
Boston, MA.  

 

68 


