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ABSTRACT 
 
This paper investigates the post-buckling behavior of a slender axially inextensible elastic rod with 
pinned-fixed end. The set of five first order nonlinear ordinary differential equations with boundary 
conditions specified at both ends constitutes a complex two point boundary value problem. By 
using multisegment integration technique, the highly nonlinear boundary value problems are 
numerically solved. Results are presented in non-dimensional graphs for a range of prescribed 
loading condition. The secondary equilibrium paths and the post-buckling configurations of the rod 
are presented. 
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I. INTRODUCTION 
 
The elastic buckling of rods has always been a 
fundamental topic in structural mechanics. An 
originally straight rod would buckle if the axial 
compressive load exceeded a certain critical value. 
Traditionally buckling is used as a failure criterion. 
However, nowadays mechanical systems such as 
satellite tethers, marine cables, robotic arms, 
linkages, large antennas and so on, employ slender 
elements for transmission of forces, signals and 
power. They are usually designed to accept large 
displacements but deformations are kept within the 
elastic regime. Hence, the studies of post-buckling 
of elastic rods have wide engineering and applying 
backgrounds in recent days. 

 
Based on the assumption that the axial line of the 
rod is inextensible, Timoshenko et al. [1] examined 
the post-buckling of compressed rod with both 
ends simply supported and presented a solution in 
elliptical integral form. Wang [2] dealt with the 
buckling of the axial compressive rod with pinned-
fixed ends by using a shooting methods as well as a 
perturbation method, respectively. More recent 
studies on axially inextensible rods can be found in 
the literatures by Plaut et al. [3] and Lee [4]. 
Love’s [5] seminal textbook on theory of 
mathematical elasticity has been extensively used 
in many fields of applied mechanics, establishing 
the basic for most research on the equilibrium of 
elastic rods. The asymptotic approach of Koiter [6] 
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was a key development in the analysis of the initial 
post-buckling of a structure. With regard to 
extensibility (the stretching and contraction of the 
central axis), Stemple [7] and Antman [8] 
presented a consistent theory for extensional beam-
column and derived an exact post-buckling solution 
for an extensible beam subjected to an applied 
compressible axial load. Nagai et al. [9] presented 
experimental results on chaotic oscillations of a 
post buckled reinforced beam subjected to lateral 
excitations. The beam was clamped at both ends; 
however, the motion at once end was arranged to 
be axially restricted by an elastic spring.  
 
Analytical and experimental procedures were used 
by Tauchert and Lu [10] to investigate the large 
deformation of an initially imperfect elastic rod 
subjected to longitudinal and gravitational loads, 
where the ends of the rods rested on simple 
supports and were connected by a linear spring. 
Yin and Wang [11] studied the subcritical behavior 
of elastic clamped-free rods with constant original 
curvature under force load acting at the free end, 
where, in particular, the load displacement 
characteristics were examined. YuFeng and 
DeChao [12] developed the analytical solutions of 
rigid impact problems for two typical rod structures 
with elastic supports and thoroughly analyzed the 
boundary conditions effect on wave propagation 
and impact response. Li [13] presented a 
computational solution of elastica for a simply 
supported rod based on the theory of an extensible 
rod and gave a quantitative evaluation of the post-
buckling deformation and the buckling rod. The 
post-buckling of extensible elastic rod was studied 
by Filipich and Rosales [14] using nonlinear 
geometric models. The classical strength-of-
materials approach is compared and discussed with 
Lagrangian and Eulerian descriptions. Vaz and 
Silva [15] presented formulation and solution for 
the elastica of slender rods subjected to axial 
terminals forces and boundary conditions assumed 
hinged and elastically restrained with a rotational 
spring. Solutions for buckling, initial post-buckling 
(perturbation), large loads (asymptotic), and 
numerical integration were developed.  
 
A relatively new numerical technique is the 
Multisegment integration method. Kalnins and 
Lestingi [16] introduced this method in the late 
sixties for solving linear and nonlinear system of 
ordinary differential equations. Multisegment 
integration technique is used to solve those 
boundary value problems of nonlinear ordinary 

differential equations, which cannot be solved by 
direct integration, because the latter loses its 
accuracy in the process of subtraction of almost 
equal numbers in evaluating the unknown 
boundary values. Using this technique, the present 
paper solves the post-buckling problem of an 
elastic slender rod with one end fixed and the other 
end pinned. Finally, the equilibrium paths of the 
buckled rod are numerically obtained and the 
effects of load parameters on the buckling response 
are discussed. 
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Figure 1. (a) The buckled rod, (b) elemental segment 
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II. GOVERNING EQUATIONS 
 
Let us consider a long, slender, straight rod of 
initial undeformed length L, made of physically 
linear isotropic elastic material with the reference 
axis (x-axis) through the centroid of the rod cross-
section. Transverse deformations (bending) are 
permitted, but shearing deformations are neglected. 
Figure 1(a) shows the deflected rod subjected to an 
axial load, p at the pinned end. There exists a 
horizontal reactive force h at the pin. Let a 
Cartesian coordinate system (x, y) be located at 
fixed end. Let s be the arc length from that end and 
θ be the local angle of inclination. The governing 
equations are derived from the geometrical 
compatibility, equilibrium of forces and moments 
and constitutive relations.  

By analyzing the geometric relationship of the 
deformation of element dx to element ds as shown 
in Fig 1(b), it is easy to derive the geometric 
relations, 

dx cos
ds

= θ  (1) 

dy sin
ds

= θ  (2) 

The general definition of the curvature κ is 
d
ds
θ
= κ  (3) 

Equilibrium of forces in the x- and y- direction 
(ΣFx = 0 and ΣFy = 0) results in a constant reaction 
force component h and p acting on the rod end. 
Therefore 

dh 0
ds

=  and dp 0
ds

=  (4) 

Equilibrium of moments on the infinitesimal 
element of Fig. 1 gives 
( )M dM M h dx pdy 0+ − + + =  (5) 

where M is the bending moment. Dividing Eq. (5) 
by ds and employing Eq. (1) and (2) yields 

dM psin h cos 0
ds

+ θ+ θ =  (6) 

Hooke’s law applies for linear elastic materials and 
M = EIκ, where E is the Young modulus of 
elasticity and I is the cross-sectional area of inertia. 
For the sake of generality, the following non-
dimensional terms are introduced: 

xX
L

=  (7a) 

yY
L

=  (7b) 

sS
L

=  (7c) 

K L= κ (7d) 
2pLP

EI
=  (7e) 

2hLH
EI

=  (7f) 

The governing equations (1), (2), (3), (4) and (6) 
can be transformed into the non-dimensional forms 
as follows: 

dX cos
dS

= θ  (8a) 

dY sin
dS

= θ  (8b) 

d K
dS
θ
=  (8c) 

dK Psin H cos
dS

= − θ− θ  (8d) 

dH 0
dS

=   (8e) 

A set of the boundary conditions must be specified: 
X(0) = 0 (9a) 
Y(0) = 0 (9b) 
θ (0) = 0 (9c) 
Y(1) = 0 (9d) 
K(1) = 0  (9e) 

Eqs. (9a)-(9c) represents non movable boundary 
conditions for fixed end whereas Eqs. (9d) and (9e) 
refer to a pinned condition at the upper end 
allowing movement in the x axis. 
 

III. BUCKLING LOADS 
 
Calculation of buckling loads follows 
straightforward approximation of moment 
equilibrium equation by assuming small 
displacement, i.e. sinθ ≈ θ, cosθ ≈ 1. If small 
displacements are assumed, then the governing 
equation (8d) reduces to 

4 2

4 2
d Y d YP 0
dX dX

+ =   (10) 

Four boundary conditions must be applied: 

Y(0) = 0 and ( )dY 0 0
dX

=  (11a) 

Y(1) = 0 and ( )
2

2
d Y 1 0
dX

=  (11b) 

Solution of Eq. (10) with boundary conditions 
(11a, b) are found in the published literature (Saha 
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and Banu [17]). Hence the critical load is expressed 
by the following relation, Pcr = 20.19. 

 
IV. NUMERICAL PROCEDURE 

 
It is very cumbersome to obtain any analytical 
solutions of the complicated problem Eqs. (8) 
about the initial parameter vectors due to the 
inclusion of strong non-linearity and coupling in it. 
The associated boundary conditions are given at 
both ends, which characterize a two point boundary 
value problem. Several techniques can be 
employed for this problem (e.g. finite difference 
schemes, finite element methods, and energy 
methods). The finite difference method of solution 
or finite-element method of formulation of the 
nonlinear buckling problem governed by Eqs. (8) 
would convert it to a set of nonlinear algebraic 
equations, which are always solved by iteration as 
a sequence of solutions of a system of linear 
algebraic equations derived as approximations to 
the original equations, thus has often met the 
problem of non-convergence. Solutions via the 
shooting method with direct integration are 
conveniently employed in linear or non-linear 
problems when only one parameter is required for 
interpolation but they become rather complex if 
two conditions are sought in non-linear systems. 
Therefore, the multisegment integration method is 
employed to find numerical solutions to the 
problem. The idea behind the multisegment 
integration method is to replace the two point 
boundary value problem by a sequence of initial 
value problems. Thus, unknown values of the 
unknown functions at the initial point and unknown 
parameters are initially estimated to start the 
computing procedure (Kalnins and Lestingi, [16]) 
and these estimates are modified until specified 
boundary conditions at the terminal point are 
satisfied. The Runge-Kutta method is used to 
integrate the initial problem. Thus, the solution of 
the boundary value problem is obtained. 
 

V. MULTISEGMENT INTEGRATION 
METHOD OF SOLUTION 

 
The fundamental set of non-linear equations (8) 
together with the boundary conditions (9) has to be 
integrated over a finite range of the independent 
variable S. But the numerical integration of these 
equations is not possible beyond a very limited 
range of S due to the loss of accuracy in solving for 
the unknown initial values, as pointed out by 

Sepetoski et al. [18]. Thus the multisegment 
method of integration developed by Kalnins and 
Lestingi [16] has been used in this analysis. 
 
If the fundamental variables X, Y, θ, K and H of 
Eqs. (8) are represented in matrix notation by [w] 
in a standard form as follows, 

( ), ;dw f S w P
dS

=  (12) 

 
in which, 

[ ]
1 2 3 4 5

T

T

w w w w w w

X Y K Hθ

= ⎡ ⎤⎣ ⎦

=

 

and  
 

1 3

2 3

3 4

4 3 5 3

5

cos cos
sin sin

sin cos sin cos
0 0

f w
f w

f f K w
f P H P w w w
f

θ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥θ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− θ − θ − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
The boundary conditions Eqs. (9) can be 
rearranged in the following form as follows: 

( ) ( )0 1Aw Bw C+ =   (13) 
 
where 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 1 0

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0
0
0
0
0

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Let us consider the initial value problem 
corresponding to boundary value problem, 

( )dW F S w W P
dS

= , , ;
  

(14) 

 
with 

( )0W I=
  

(15) 
 
where, 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

W W W W W
W W W W W

W W W W W W
W W W W W
W W W W W

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1 1

51 2 3 4

2 21 2 2 2

51 2 3 4

3 3 3 3 3

51 2 3 4

4 4 4 4 4

51 2 3 4

5 5 5 5 5

51 2 3 4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢=
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣ ⎦

df df df df df
dw dw dw dw dw

df df df df df
dw dw dw dw dw

df df df df df
F

dw dw dw dw dw

df df df df df
dw dw dw dw dw

df df df df df
dw dw dw dw dw

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

In which, 

1 3 3

2 3 3

3 4

4 3 3 5 3 3 5 3

5 1 2 5

sin
cos

cos cos sin
0

j j

j j

j j

j j j j

j j

F W w
F W w
F W
F PW w W w W w w
F

=

⎡ ⎤ −⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥

− − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ , ,..,

 

For a pinned-fixed rod, P is specified. Then K(0) 
and H(0) are varied until Eqs. (9d and 9e) are 
satisfied. The Runge-Kutta method is used to 
integrate Eqs. (12). In numerical computations, the 
relative error is 10-5 in the successive correction 
and numerical integration. 
 
In short, the multisegment method of solving the 
boundary-value problem of Eq. (12) contains the 
following steps: 

(1) Divisions of the given interval of S into R 
sufficiently small segments so that the length 
of each segment is less than the critical 

meridional length as defined by Sepetoski et 
al. [18]. 

(2) Arrange the boundary conditions in the form 
of Eq. (13). 

(3) Deduce the governing ordinary differential 
equation for Wij(S). This is done by 
differentiating Eq. (12) partially with respect 
to w(0). 

(4) An initial value integration of Eqs. (14) with 
the initial values of Eq. (15) is performed from 
0 to 1 in every segment and only the elements 
of W(1) are stored. 

(5) Solution of a system of R matrix equation for 
w(0), which ensures continuity of the variables 
at the points of the segments. 

 
Eq. (12) are integrated from 0 to 1 in every 
segment with the initial values w(0) and the 
integration results at 1 are compared with w(1) as 
obtained from Eqs.(9d-9e). If the corresponding 
variables at the ends of consecutive segments 
match up to a desired number of significant figures, 
w(0) is accepted as the desired solution. If not, 
w(0) is taken as the next trial solution wt(0) and the 
process is repeated by returning to step (1). 
 

VI. RESULTS AND DISCUSSIONS 
 

The most important result is the force-displacement 
curve. Figure 2 shows our numerical result of 
downward  force  P  ve rsus  the  downward 
displacement δ of the pinned end. Our numerical  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The force P-displacement δ curve. 
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solutions, in their respective regions of validity, 
compare quite well with the published results of 
Wang [2]. Notice the bifurcation curve is not 
monotonic. δ increases with P for the segments 
ABC and EFGH, but decreases with P for the 
segment CDE. Since the area under the P-δ curve 
represents the work done on the elastic, a negative 
slope signifies negative work for a positive 
displacement increment. Thus the equilibrium 
states on the segment CDE are statically unstable 
for a given constant load. For P < -15.74 (large 
upward force) the only solution is the stable 

(trivial) straight rod; for -15.74 < P < 20.191 there 
are three solutions, two stable (one trivial) and one 
unstable; for 20.191 < P < 22.87, there are four 
solutions, two unstable (one trivial) and two stable; 
for P > 22.87 there are two solutions, one stable 
and one unstable trivial solution. The deformed 
shapes of the corresponding states in Fig. 2 are 
depicted in Fig. 3. For given end displacement δ 
the solution is unique. For given load P, the 
configuration may jump between stable solutions, 
given a suitable disturbance. 

 
 A 
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(a)           (b) 
 
Figure 3. Rod configurations. States correspond to those indicated in Fig. 2. (a) A: δ = 0, P ≤ 20.191; B: δ = 
0.158, P = 21.41; C: δ = 0.386, P = 22.87; D: δ = 0.812, P = 0; E: δ = 0.924, P = -15.74, (b) F: δ = 1.096, P 
= -10.87; G: δ = 1.357, P = 0; H: δ = 1.621, P = 22.87 
 
Consider the straight rod with a gradual increase of 
P from zero. The rod remains straight until the 

buckling load is reached, then it deforms through 
the States A, B, C. A further increase in P results in 
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a violent jump from State C to State H, and then 
follows the new branch forwarded from H. The 
unloading path is different. Gradual decrease of P 
causes the rod to go through the States H, G, F, E. 
Now the force is large and negative. Any further 
decrease in P causes the rod to snap back to State J 
which is the straight rod. A hysteresis loop thus 
exists. Notice the trivial state and States D, G all 
have zero P, i.e. the horizontal force H alone is 
sufficient to maintain the shapes. 
 

VII. CONCLUSION 
 

The numerical technique presented in this paper 
has been successfully employed in a two-point 
boundary value problem governed by a set of five 
first-order non-linear ordinary differential 
equations. The post-buckling configuration of 
slender elastic rods subjected to axial force is 
highly dependent on the prescribed boundary 
conditions. Analysis is carried out for pinned-fixed 
end condition by controlling the end axial force at 
the pinned end. Results, presented in non-
dimensional format, reveal several interesting 
features such as limit load, jump, hysteresis, 
bifurcation and non-uniqueness. 
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