

IMPLEMENTATION OF AN OPTICAL CHARACTER RECOGNIZER (OCR)

FOR BENGALI LANGUAGE

THESIS REPORT

SUPERVISOR: DR. MD. KHALILUR RHAMAN

CONDUCTED BY:

MUHAMMED TAWFIQ CHOWDHURY (ID-11101009)

MD.SAIFUL ISLAM (ID-11101061)

BAIJED HOSSAIN BIPUL (ID-11101047)

SCHOOL OF ENGINEERING AND COMPUTER SCIENCE
Department of Computer Science and Engineering

BRAC UNIVERSITY

Submitted on: 24.08.2015

Page 1 of 51

DECLARATION

This is to certify that this thesis report is submitted by Muhammed Tawfiq Chowdhury (ID-
11101009), Md. Saiful Islam (ID-11101061), and Baijed Hossain Bipul (ID-11101047) for the
degree of Bachelor of Science in Computer Science and Engineering to the Department of
Computer Science and Engineering, School of Engineering and Computer Science, BRAC
University. The contents of this thesis have not been submitted elsewhere for the award of any
degree or diploma. We hereby declare that this thesis is based on the results found by
ourselves and the materials of work found by other researchers are mentioned by reference.
We carried out our work by the supervision of Dr. Md. Khalilur Rhaman.

 Signature of Supervisor Signatures of Authors

--------------------------------- --

 Dr. Md.Khalilur Rhaman Muhammed Tawfiq Chowdhury

 --

 Md. Saiful Islam

 --

 Baijed Hossain Bipul

Page 2 of 51

ACKNOWLEDGEMENT

We would like to express the deepest appreciation to our thesis supervisor Dr. Md. Khalilur
Rhaman for his guidance, understanding and most importantly his cordial behavior. He
continuously guided us instead of his busy schedule. It is an honor for us to say thanks to him,
in the light of the fact that we are equipped for building up our understanding in regards to the
proposal subject and complete our work which wasn't possible without the assistance of his
direction, consolation and consistent backing.

We would also like to thank Muhammad Abdur Rahman Adnan, lecturer BRAC University to
help us to solve the GUI related problems.

We additionally need to express gratitude toward S. Mahbub Uz-zaman Ananda, alumni of
BRAC University who manages his valuable time his time to answer our issue related email with
his recommendation.

We would also like to thank Dr. Mizanur Rahman who demonstrated his own work to us which
is related to our thesis and helped us to get an idea.

We would like to thank our team members also to keep a very healthy working environment
which actually needed to complete our task. This becomes possible only because of their
positive mind and hard work.

We like to thank our parents, for their faith in us and allowing us to be as ambitious as we
wanted. It was under their watchful eye that we gained so much drive and an ability to tackle
challenges head on.

Last but not the least, in particular we are truly all that much thankful to the Almighty Allah
who helps us in every progressions of our proposition work.

Page 3 of 51

ABSTRACT

Optical Character Recognition (OCR) is the process of extracting text from an image. The main
purpose of an OCR is to make editable documents from existing paper documents or image
files. A number of algorithms are required to develop an OCR. Noise removal, skew
identification and correction, segmentation, etc are the different steps of developing an OCR.
OCR primarily works in two phases; they are character and word detection. In case of more
sophisticated approach, an OCR also works on sentence detection to preserve documents’
structures. In this paper, we would discuss the process of developing an OCR for Bengali
language. Lots of efforts have been put on developing an OCR for Bengali. Though some OCRs
have been developed, none of them is completely error free. For our thesis, we trained
Tesseract OCR Engine to develop an OCR for Bengali language. Tesseract is currently the most
accurate OCR engine. This engine was developed at HP labs and currently owned by Google. We
used a number of software to prepare our training files. Our OCR’s library contains 18110
characters and 2617 words. We used ‘Solaimanlipi’ font in our project. We used 200 input files
to test the accuracy of our OCR. We are using the latest 3.03 version of Tesseract for Windows
Operating System. For clean image files, the accuracy of our software was as high as 97.56%. It
is important to mention that we measured accuracy as the percentage of correct characters
and words.

Key Words:
Optical Character Recognition (OCR), Bengali Language, Tesseract, JTessboxEditor, Netbeans IDE

Page 4 of 51

TABLE OF CONTENTS

DECLARATION: ---1

ACKNOWLEDGEMENT: ---2

ABSTRACT: --3
TABLE OF CONTENTS: ---4-5
LIST OF FIGURES: ---6-7

CHAPTER 1 INTRODUCTION: ---8-9
1.1 About OCR: --- 8
1.2 Motivation: --8
1.3 OCR for Bengali: ---8-9
1.4 Thesis Outline: --9

CHAPTER 2 LITERATURE REVIEW: ---10-11

CHAPTER 3 IMPORTANT ATTRIBUTES OF BENGALI LANGUAGE: ----12-13
3.1 Characteristics of Bengali Script: ---12
3.2 Properties of Digital Bengali Font: ---13

CHAPTER 4 IMPORTANT IMAGE PROPERTIES FOR OCR: ---------------14-16

4.1 Noise of Image: ---14-15
4.2 Skewness of Image: ---15-16
4.3 Formats of Image: ---16

CHAPTER 5 BACKGROUND OF OCR DEVELOPING COMPONENTS: --17-18
5.1 Tesseract OCR Engine: --17
5.2 JTessBoxEditor: ---17-18
5.3 NetBeans IDE: ---18

CHAPTER 6 SYSTEM OVERVIEW: ---19-22

Page 5 of 51

6.1 Distinctive Features of Our System: --19
6.2 Overview of Developing Procedure: ---19-22

CHAPTER 7 SYSTEM DEVELOPMENT DESCRIPTION: -----------------------23-34
7.1 Installing the OCR Engine: --23
7.2 Preparing text Files: ---23-24
7.3 Making Image Files with Noise Margin: --24-25
7.4 Editing Box Files: ---25-28
7.5 Running Tesseract for Training: ---28
7.6 Generating the Unicharset File: ---29
7.7 Setting Font Properties: ---29
7.8 Clustering: ---30-31
7.9 Making Optional Dictionary Data: ---31-32
7.10 Generating Traineddata: ---32-33
7.11 Developing Graphical User Interface: --33
7.12 Managing Versions: --34
7.13 Packaging: --34

Chapter 8 ALGORITHM OF TESSERACT: --35

CHAPTER 9 RESULT ANALYSIS: ---36-42

CHAPTER 10 CONCLUSION: ---43

REFERENCES: --44

APPENDIX: --45-51

Page 6 of 51

LIST OF FIGURES:

Figure1: Block diagram of system

Figure 2: Sample text file for training

Figure 3: Box file with coordinates
Figure 4: Training files and the traineddata

Figure5: User Interface

Figure6 (a): Sample Input1

Figure6 (b): Output of sample Input1

Figure6(c): Sample Input2

Figure6 (d): Output of sample Input2

Figure6 (e): Sample Input3

Figure6 (f): Output of sample Input3

Figure7 (a): Accuracy of converted images based on character

Figure7 (b): Accuracy of scanned images based on character

Figure8: Conversion of text to image

Figure9: Merging steps of box file

Figure10: Box file with coordinates

Figure11: Sample text file with characters for training

Figure12: The unicharset file

Figure14: shapetable, inttemp, pffmtable and normproto file

Figure15: dawg files

Figure16: The traineddata

Figure17: User Interface

Figure18: System package

Figure19: Block diagram of Tesseract’s algorithm

Figure20 (a): Sample Input1

Figure20 (b): Output of sample Input1

Figure20 (c): Sample Input2

Figure20 (d): Output of sample Input2

Figure20 (e): Sample Input3

Figure20 (f): Output of sample Input3

Page 7 of 51

Figure21 (a): Accuracy of converted images based on character

Figure21 (b): Accuracy of scanned images based on character

Figure21(c): Accuracy of converted images based on word

Figure21 (d): Accuracy of scanned images based on word

Page 8 of 51

CHAPTER 1
INTRODUCTION

1.1 About OCR
In our day to day life, we often need to reprint text with modification. However, in many cases,
the printable document of the text does not remain available for editing. For example, if a
newspaper article was published 10 years ago, it is quite possible that the text is not available in
an editable document such as a word or text file. So, the only choice remains is to type the
entire text which is a very exhaustive process if the text is large. The solution of this problem is
optical character recognition. It is a process which takes images as inputs and generates the
texts contained in the input. So, a user can take an image of the text that he or she wants to
print, feed the image into OCR and then the OCR will generate an editable text file for the user
which is amendable. This file can be used to print or publish the required text. The software
that performs the process is called Optical Character Reader or OCR.

1.2 Motivation
Bengali is one of the most spoken languages of the world. With about 250 million native and
about 300 million total speakers worldwide, it is the seventh most spoken language in the
world by total number of native speakers and the eleventh most spoken language by total
number of speakers. The importance of this language to the countries of South Asia can be
noted by the fact that the National Anthem of Bangladesh, National Anthem of India, National
Anthem of Sri Lanka and the national song of India were all first composed in the Bengali
language. Bengali is written in Sanskrit script. It is very resourceful. However, there have not
been so many works on language processing for Bengali as have been for some other languages
such as English and Spanish. There are many noteworthy writings that were accomplished in
Bengali in the last century. As technology back then was not advanced, these writings were not
saved in a digital form. So, it is not possible for a publisher to print them again without typing
the entire writings. In this case, an OCR can be a great help for the publishers. An OCR for
Bengali would also enable users to make editable files from images that have been generated
for distinct purposes. So, we wanted to research on implementation of an OCR for Bengali.

1.3 OCR for Bengali
For Bengali language, there has not been so much work done although in recent time, some
projects have been implemented. However, none of them are fully accurate. There have been
detached works with no integration. It is also not easy to find much information about
developing an OCR for Bengali. Different projects have been done in different methods. Some
developers used their own algorithms to develop OCR while some others used existing OCR
engines to make OCR. It is not quite easy to develop an OCR for Indic languages like Bengali
because of complexity. Bengali, for example, has diverse types of characters and they total to a
very huge number. The inter resemblance among the characters makes it even tougher to
maintain the accuracy as the OCR may misjudge one character for another. The total number of

Page 9 of 51

characters also makes the execution time longer as the scanning process of OCR goes through a
very large data set. We preferred to work on an OCR engine for our thesis project. This engine
called ‘Tesseract’ is well tested and it is the most accurate open-sourced OCR engine available.
Though there are some limitations, we trained the engine for Bengali for a very intricate and
large character set and the performance of the trained OCR is satisfactory.

1.4 Thesis Outline
Chapter 2
In this chapter, we discussed about the previous works that have been done on OCR for Bengali
language.
Chapter 3
This chapter contains discussion on different characteristics of Bengali script and important
features of digital Bengali fonts that are used in computer.
Chapter 4
This chapter has discussion on different image properties that one must know while developing
an OCR.
Chapter 5
We discussed in this chapter about different software that we used in our project.
Chapter 6
In this chapter, we gave an overview of our system and explained why this is different from
other projects on Bengali OCR.
Chapter 7
We discussed in detail about the steps of developing the OCR in this chapter.
Chapter 9
How Tesseract works has been explained in this chapter.
Chapter 10
In this chapter, we wrote about our future plan on this OCR and concluded the paper.
Chapter 11
This chapter contains the references.
Chapter 12
This chapter contains the codes that we used to connect Tesseract with the user interface.
REFERENCES
This portion lists the references.
APPENDIX
Appendix contains the codes that we used to connect Tesseract with the user interface.

Page 10 of 51

CHAPTER 2
LITERATURE REVIEW

For Bengali, there are very few OCR solutions as of now. But our government and private
organizations have huge quantities of Bengali paper documents that are so important that
those should be stored for a long period of time. To do so, making electronic copies of those
documents are important and it can be done by using a high-quality Bengali OCR system. But to
implement an OCR, the foremost step in the recognition process is the script segmentation of
the document image. Since the written form of Bengali documents is more complex than that
of many other languages, Bengali script segmentation is of great importance for creating a
Bengali OCR system. Though Bengali OCR is not a recent work, but there are very few

mentionable works in this field. ‟BOCRA and Apona-Pathak” are two works which were made
public in 2006. BOCRA is a recursive acronym that expands to Bocra Optical Character
Recognition Application. The final A is sort of forced, mainly to make the name pronounceable,
but also as an inside joke. The initial B could also stand for Bengali since that's the primary
target language that motivated the authors, but in principle it could be used for other
languages as well. In practice, the approach [to be] implemented has no special benefit for
languages whose characters/glyphs are separated (i.e. not connected) when printed. But they
are not open-sourced. The Center for Research on Bengali Language Processing (CRBLP)
released BengaliOCR– the first open source OCR software for Bengali – in 2007. BengaliOCR is a
complete OCR framework, and has a recognition rate of up to 98% but it also has many
limitations in its domain.

A team consists of Arif Billah, Al-Mahmud Abdullah and their supervisor Dr. Mumit Khan
worked on a survey on Script Segmentation for Bengali OCR. All of them were from BRAC
University. According to their work, the primary alphabet of Bengali script is quite large
compared to the alphabet sets of English and other western languages. It comprises of 11
vowels, 39 consonants and 10 numerals. The total number of symbols is approximately 300.
Besides this huge quantity of symbols, there are various types writing style of those. All these
aspects have thrown a great challenge to the researchers in developing a comprehensive OCR
for Bengali handwritten scripts.

For both on-line and off-line OCR, recognizing the diversified Bengali handwritten scripts is
really tough. Though, some sophisticated research and development has been done on
recognition of handwritten Bengali numerals, but very few research works have been found on
overall handwritten Bengali OCR .Unlike simple juxtaposition in Roman scripts, each word in
Bengali scripts is composed of several characters joined by a horizontal line (called ‘Maatra’or
head-line) at the top. Of-ten there may be different composite characters and vowel and
consonant signs (‘Kaar’ and ‘Falaa’ symbols).This makes the development of an OCR for Bengali
printed scripts a highly challenging task. There are some basic features or properties of any
Bengali printed script.

Page 11 of 51

Another work on Bengali OCR was done by S. Mahbub-Uz-Zaman and Tanzina Islam. Former
Dean of BRAC University Dr. Mumit khan was their supervisor. They implemented Augmented
Reality based text detection and translation application on Android-platform (2.2). This
application recognizes the text captured by a mobile phone camera and translates the text and
finally displays back the recognized text along with the translation onto the screen. This current
version of their application can only translate from Bengali to English. At their first prototype
the accuracy rate for Training-set 1 is 68.62 percentages while on the other hand the accuracy
rate for the larger training set, Training-set 2 is 84.3 percentages. But the main limitation of
them is that there was no detection of spaces and the testing images contained only a few
words.

Another team of Md. Abul Hasnat, S.M. Murtoza Habib, and Dr. Mumit Khan worked on this
field. They are also from BRAC University .They presented the training and recognition. Their
central idea is to separate HMM model for each segmented character or word. They basically
emphasized on word level segmentation and like to consider the single character as a word
when the character appears alone after segmentation process is done. The system uses HTK
toolkit for data preparation, model training from multiple samples and recognition. Features of
each trained character are calculated by applying Discrete Cosine Transform (DCT) to each pixel
value of the character image where the image is divided into several frames according to its
size. The extracted features of each frame are used as discrete probability distributions that will
be given as input parameter to each HMM model. In case of recognition a model for each
separated character or word is build up using the same approach. This model is given to the
HTK toolkit to perform the recognition using Viterbi Decoding. The experimental result shows
significant performance.

One professional OCR for Bengali has been developed by a company named ‘Team Engine’. This
project was financed by the government of Bangladesh. They demonstrated their OCR on web
for a few months. However, currently the demonstration is not available. Its accuracy is said to
be around 90%.

Page 12 of 51

CHAPTER 3
IMPORTANT ATTRIBUTES OF BENGALI LANGUAGE

3.1 Characteristics of Bengali Script
Bengali has a very complex script pattern. Not only it has vowels and consonants but also it has
combined characters which are composed of several other characters and unclassified
characters. Each word in Bengali scripts is formed of a number of characters connected by a
horizontal line called ‘Maatra’ or head-line at the top of the characters but some characters are
exception to this. Bengali has a few basic script features. These have been shown below.
a) Style of Bengali writing is from left to right.
b) Bengali does not have the variation of upper and lower case.

c) There are short forms of vowels of Bengali named ‘kar’ such as া , িা, া and consonants

named ‘Fola’ such as ম্ল, ন্য.
d) In a single syllable of a word, several consonant characters may combine to form a
compound character that partly retains the shape of the constituent characters (e.g. Na +Da, Ka
+ Ta, Va + Ra-falaa, Na + Daa +Rafalaa
e) Except very few characters and symbols (e.g. Ae, Oy, O, Ow, Kha, Ga, Ungo, Nioetc),almost all
Bengali alphabets and symbols have a horizontal line at the upper part called ‘maatra’. Some
are shown in Figure.1a.
f) In a word, the characters with ‘maatra’ remain connected together through their ‘maatra’
and other characters and symbols (e.g. Khondota, Bishorgo, Ungo, Ae, Oyetc) remain isolated in
the word. They did character, word and line segmentation but didn’t confirm the accuracy level
of their work.

Table1 shows samples of each type of Bengali characters.

Table1: Samples of characters

Vowel অ আ ই ঈ উ ঊ

Consonant ক খ গ ঘ ঙ চ ছ জ ঝ ঞ ট ঠ ড

Combined Character শ্ব শ্বশ্ব শ্ম শ্মা স্ত্র স্বে স্থা সু্ফ স্ম স্তী ষ্কা

Special Character র্ষা র্ী র্াাঁ কযা স্বকয স্বকযা স্বঝযা

Page 13 of 51

3.2 Properties of Digital Bengali Font

It is extremely important to understand how computerized digital Bengali font works while

developing an OCR. In Bengali ম is a character that is a combination of ম and the short form

of vowel আ. This short form is represented by the short form itself with a circle concatenated

with it. Here are few examples of them.

া ো া া িা

These circles cause difficulty to make the character set of an OCR. It is therefore important for

the developers to cover each and every pattern of a character that exists in Bengali language. A

certain character ম can have various forms. These are shown below.

ম ম ম িম ময েমৌ মূ িম ম

Not only the character can have such forms but also they may be combined to special

characters which alone do not have any meaning. One of such special character is

‘chandrabindu’. It remains on top of some characters such as ‘ব াঁ ‘to give them special

pronunciation. Because of these very complex characteristics of digital Bengali fonts which is

actually far different than real life handwritten font, it is very important to cope up with the

differences of real life perception about fonts and the digital Bengali fonts that have their

completely different way of working.

Page 14 of 51

Chapter 4

IMPORTANT IMAGE PROPERTIES FOR OCR

An image is a picture, photograph or any other form of 2D representation of any scene. Since

OCR works on images to generate text, development of an OCR is very closely related to

different properties that image files have. Some properties are discussed below.

4.1 Noise of Image

Image noise is random (not present in the object imaged) variation of brightness or color

information in images, and is usually an aspect of electronic noise. It can be produced by the

sensor and circuitry of a scanner or digital camera. Image noise can also originate in film grain

and in the unavoidable shot noise of an ideal photon detector. Image noise is an undesirable

by-product of image capture that adds spurious and extraneous information. The magnitude of

image noise can range from almost imperceptible specks on a digital photograph taken in good

light, to optical and radio astronomical images that are almost entirely noise, from which a

small amount of information can be derived by sophisticated processing (a noise level that

would be totally unacceptable in a photograph since it would be impossible to determine even

what the subject was).

High levels of noise are almost always undesirable, but there are cases when a certain amount

of noise is useful, for example to prevent discretization artifacts (color banding). Some noise

also increases acutance (apparent sharpness). Noise purposely added for such purposes is

called dither; it improves the image perceptually, though it degrades the signal-to-noise ratio.

It is very important while developing an OCR to handle the noise of image. In this thesis, we

handled this by adding noise to our training images as described later. Figure1 shows an image

with noise in the next page.

Page 15 of 51

Figure1: Image with noise

4.2 Skewness of Image

Skewness is asymmetry in a statistical distribution, in which the curve appears distorted or

skewed either to the left or to the right. Skewness can be quantified to define the extent to

which a distribution differs from a normal distribution.

In a normal distribution, the graph appears as a classical, symmetrical "bell-shaped curve." The

mean, or average, and the mode, or maximum point on the curve, are equal.

 In a perfect normal distribution, the tails on either side of the curve are exact mirror

images of each other.

 When a distribution is skewed to the left, the tail on the curve's left-hand side is longer

than the tail on the right-hand side, and the mean is less than the mode. This situation is

also called negative skewness.

 When a distribution is skewed to the right the tail on the curve's right-hand side is

longer than the tail on the left-hand side, and the mean is greater than the mode. This

situation is also called positive skewness.

Page 16 of 51

Figure2 shows an example of skewness curve.

Figure2: Skewness graph

So, an image can be either positively skewed or negatively skewed. In this research, we did not

add any special measure for handling skewness. Tesseract can handle limited 2D skewness

without any particular training form with the help of its own algorithm. Figure1 is also an

example of skewness.

4.3 Formats of Image

Image file formats are standardized means of organizing and storing digital images. Image files

are composed of digital data in one of these formats that can be rasterized for use on a

computer display or printer. An image file format may store data in uncompressed,

compressed, or vector formats. Once rasterized, an image becomes a grid of pixels, each of

which has a number of bits to designate its color equal to the color depth of the device

displaying it.

Including proprietary types, there are hundreds of image file types. The PNG, JPEG, and GIF

formats are most often used to display images on the Internet. However, to train Tesseract, one

must use TIF or Tagged Image File Format. It is an image format that normally saves eight bits

or sixteen bits per color (red, green, blue) for 24-bit and 48-bit totals, respectively, usually using

either the TIFF or TIF filename extension. The reason why Tesseract needs this format is that

Optical Character Recognition software packages commonly generate some form of TIFF image

(often monochromatic) for scanned text pages. However, it can take TIF and PNG formatted

images as input while PNG is the preferred format.

Page 17 of 51

Chapter 5

BACKGROUND OF OCR DEVELOPING COMPONENTS

5.1 Tesseract OCR Engine

Tesseract is an optical character recognition engine for various operating systems. It is free

software, released under the Apache License, Version 2.0, and development has been

sponsored by Google since 2006.

The Tesseract engine was originally developed as proprietary software at Hewlett Packard labs

in Bristol, England and Greeley, Colorado between 1985 and 1994, with some more changes

made in 1996 to port to Windows, and some migration from C to C++ in 1998. A lot of the code

was written in C and then some more was written in C++. Since then all the code has been

converted to at least compile with a C++ compiler.] It was then released as open source in 2005

by Hewlett Packard and the University of Nevada, Las Vegas (UNLV).

Tesseract is available for Linux, Windows and Mac OS X, however, due to limited resources only
Windows and Ubuntu are rigorously tested by developers.

Tesseract up to and including version 2 could only accept TIFF images of simple one column text
as inputs. These early versions did not include layout analysis and so inputting multi-columned
text, images, or equations produced a garbled output. Since version 3.00 Tesseract has
supported output text formatting, hOCR positional information and page layout analysis.
Support for a number of new image formats was added using the Leptonica library. Tesseract is
suitable for use as a backend. Tesseract does not come with a GUI and is instead run from the
command-line interface.

5.2 JTessBoxEditor

JTessBoxEditor is a box editor and trainer for Tesseract OCR, providing editing of box data of

both Tesseract 2.0x and 3.0x formats. It can read common image formats, including multi-page

TIFF. The program requires Java Runtime Environment 7 or later. JTessBoxEditor is released

and distributed under the Apache License, v2.0. Figure3 shows the JTessboxEditor in the next

page.

https://en.wikipedia.org/wiki/Tesseract_%28software%29#cite_note-Google30Aug06-3

Page 18 of 51

Figure3: JTessBoxEditor

5.3 NetBeans IDE

NetBeans is a software development platform written in Java. The NetBeans Platform allows
applications to be developed from a set of modular software components. Applications based
on the NetBeans Platform, including the NetBeans integrated development environment (IDE),
can be extended by third party developers. NetBeans is cross-platform and runs on Microsoft
Windows, Mac OS X, Linux, Solaris and other platforms supporting a compatible JVM.

NetBeans began in 1996 as Xelfi, a Java IDE student project under the guidance of the Faculty of

Mathematics and Physics at Charles University in Prague. Net beans has been bought by Sun

Microsystems in 1999. Sun open-sourced the NetBeans IDE in June of the following year. Since

then, the NetBeans community has continued to grow. In 2010, Sun (and thus NetBeans) was

acquired by Oracle.

Page 19 of 51

CHAPTER 6
SYSTEM OVERVIEW

6.1 Distinctive Features of Our System

This project is an example of training a software engine for language processing.

1. This project has been implemented in a comprehensive manner, thus, it covers a lot

of aspects of Bengali language.

2. Testing files used in this project are real life standard.

3. This project is very user friendly to use.

4. Developing the system in Windows Operating System makes it more accessible to

the users.

5. Its maximum accuracy is better compared to previous projects accomplished.

6. It is very light software although its function is very intricate.

7. It is portable, so no installation is required.

6.2 Overview of Developing Procedure

The system is based on Tesseract OCR Engine with the user interface developed in Java
Graphical User Interface platform. The OCR Engine needs a library file to work on called
‘traineddata’. This file is composed of several other files. It is a concatenation of those files.
When the library file is put into a specific location, Tesseract can access it for its scanning and
text generating purpose. Tesseract has a level of accuracy in its engine which is standard. This
engine can work to its full potential provided the library file is accurate and rich. In our system,
we have implemented the library file or Traineddata in a very detailed manner. We have
covered all sorts of Bengali letters for the ‘Solaimanlipi’ font. Bengali, as a language is quite
complicated and it has got various types of letters including vowel, consonants, combined
characters and other anonymous types. We developed a huge character set of all types after a
long research. It is important to mention that we needed to uniquely identify each and every
character in our system so that if the input file contains the character, the OCR recognizes it.

We needed to make all letters that are covered in the newspapers, books, journals, etc. We
prepared ‘tif’ formatted image files of them. Then we used those images to make the training
files of our traineddata. Because of the complexity of the character set, the OCR may not always
detect a character correctly even if the character is included in training files. Tesseract can be
manipulated in both Windows and Linux. As Windows is relatively popular operating system,
we preferred to work on it. We installed the executable file of Tesseract in windows. In the
command line of windows, we executed several commands to prepare our training files from
the images. Then we concatenated those files using commands to make the traineddata.

Page 20 of 51

We used Netbeans IDE to make the user interface. We developed the interface in JAVA. The
entire system is formed as a zip package. The zip contains the interface, OCR engine and the
traineddata. The input can be selected using the interface. Output will be saved in the project’s
folder. Then the user can use the OCR through the interface. We show the sequence of system
development in Figure4 in the next page.

Page 21 of 51

 Figure4: Block Diagram of System Development

Page 22 of 51

Figure5 shows the step of use.

Figure5: Steps of use

The accuracy of the output will vary according to the quality of input images. If the input file is a
photo taken by a camera, it is important to notice if there is any shadow. If there is shadow, it
will cause trouble for the OCR to differentiate between the shadow and the text. If the input file
is obtained by scanning a document, it is likely to produce better quality outputs. The resolution
of the scanned file should not be less than 400 pixels.

Page 23 of 51

CHAPTER 7
SYSTEM DEVELOPMENT DESCRIPTION

7.1 Installing the OCR Engine

 We installed Tesseract in Windows Operating System. Google provides an installer of Tesseract
with built-in English traindata. We installed the installer. A folder named ‘Tesseract-OCR’ was
created in the ‘Program Files’ folder. There is no user interface for Tesseract. So, we needed to
use the command line to run it. We used the following commands:

cd C:\

cd Program Files

cd Tesseract-OCR

After the following commands, we could access the Tesseract-OCR and its different
components. Figure6 shows a view of the Tesseract-OCR folder.

Figure6: Tesseract Installation folder

7.2 Preparing text Files

Tesseract takes tiff formatted images files as inputs to make the traindata. The images files can
be a scanned image of a printed paper, an electronically converted image from a text file or an
image taken by a camera. The usual practice is to convert text files to prepare images. We
prepared eleven text files. It is important to note that the encoding of the text files needs to be
UTF-8 otherwise the converter will not be able to read the Bengali text. The first six text files
contain the Bengali vowels, consonants, combined characters and unclassified characters. The

Page 24 of 51

last five text files contain paragraphs. In the first six files, each character is separated by a
space. Figure7 (a) shows a text file with characters and Figure7 (b) shows a text file with
paragraph.

Figure7 (a): Sample text file with characters for training

Figure7 (b): Sample text file with paragraph for training

7.3 Making Image Files with Noise Margin

We converted text files to images through a converter. There is a software named ‘Jtessbox
Editor’ for Tesseract. This software is based on java and it requires the java runtime
environment (JRE).

Page 25 of 51

We converted the text files to tiff images using the Editor. Past research suggests that it is good
to add some artificial noise to the training images which helps the OCR to work better on
scanned image files. We set the noise margin’s value as 5 in Jtessbox Editor. The Editor
generated a text file called box file for each tiff image. Box file is a UTF-8 encoded text file that
has the coordinates of all the characters in the training images along with the characters. Each
character has a certain abstract edge and the edge is called a box. Each box has top, bottom,
left, right coordinate value. For instance a particular box will have coordinates like the following
example

ক 100 200 350 400

Figure8 shows an example of text to image conversion with the noise margin highlighted by a
red circle.

Figure8: Conversion of text to image

7.4 Editing Box Files

In Bengali fonts, short forms of vowels such as া া িা া are treated as separate characters.

So, JtessboxEditor which has Tesseract’s training engine inside it split the short form of the

vowels. So, we needed to merge them to make characters like ম (ম+া) হ (হ+আ) স

Page 26 of 51

(স+া), িি (ি+িা).The editor has the options. We used them to get the requisite formatted

characters such as ম , ব ব , চ চ . However, for special characters like া and া , merging the

box files needed special measures. We needed to manually edit the images with photo editor
and then generate box files and edit them.

Figure9 shows the state of box before and after merging in the next page.

Page 27 of 51

Figure9: Merging steps of box file

Page 28 of 51

Figure10 shows one such box file in the editor with coordinates.

Figure10: Box file with coordinates

7.5 Running Tesseract for Training

For each pair of tiff image and box file, we ran Tesseract for training. It generated a file with
extension ‘tr’ for each pair of tiff image and box file. These files contain the training
information. Tesseract scans a character from the input, tries to match it with a shape available
in the tiff image which is in the traindata and write the matching character from the box file in
the output. So, we needed to cover all sorts of available shapes in the training images. We used
the following command for creating each tr file.

tesseract ben.solaimanlipi.exp0.tif ben.solaimanlpi.exp0.box.train

Here, ben is the International Organization for Standardization’s (ISO) selected prefix for
Bengali that we needed to use. Figure11 gives a view of generated training files.

Figure11: Train files

Page 29 of 51

7.6 Generating the Unicharset File

Tesseract needs to know the set of possible characters it can generate as output. For this
reason, it needs a file named unicharset. To generate the unicharset data file, we used the
unicharset_extractor program on the box files generated above:

unicharset_extractor ben.solaimanlipi.exp0.box ben.solaimanlipi.exp1.box ..

Figure12 shows the unicharset file.

Figure12: The unicharset file

7.7 Setting Font Properties

The latest version of Tesseract needs us to set the font’s properties for our language. Font
properties indicate to the different properties a particular font can assume. For instance, an
English font can have the properties of bold and italic. However, since Bengali can only be bold,
it has only one property. In Tesseract, it is set by a text file that contains a line for each font.
Since we worked on a single font, our file has only one line. The line is as follows:

solaimanlipi 0 1 0 0 0

This line refers to the following line

<fontname><italic><bold><fixed><serif><fraktur>

We made the position of bold to 1 to make it set while we reset everything else. The font
properties file is a UTF-8 encoded text file.

Page 30 of 51

7.8 Clustering

 When the alphabetical features of all the training images have been extracted, we needed to
cluster them to generate the prototypes. The character shape features can be clustered using
the shapeclustering, mftraining and cntraining programs. We have given below the commands
to run these programs.

shapeclustering -F font_properties.txt -U unicharset ben.solaimanlipi.exp0.tr
ben.solaimanlipi.exp1.tr...

This creates a file named shapetable. Next, we needed to execute another command

mftraining -F font_properties.txt -U unicharset -O ben.unicharsetben.solaimanlipi.exp0.tr
ben.solaimanlipi.exp1.tr..

Figure13 shows the command line execution for shapeclustering in the next page.

Figure13: Command Line Execution

Page 31 of 51

This command created two files named inttemp and pffmtable. The inttemp file contains the
key information of traindata. The last command of clustering is cntraining:

cntraining ben.solaimanlipi.exp0.tr ben.solaimanlipi.exp1.tr…

This produced the normproto data file (The character normalization sensitivity prototypes).

Figure14 shows the inttemp, shapetable, pffmtable and normproto data file.

Figure14: shapetable, inttemp, pffmtable and normproto file

7.9 Making Optional Dictionary Data

Tesseract uses up to eight dictionary files for each language. These are optional and assist
Tesseract to decide the probability of occurrence of different possible character combinations.
We made two dictionary data files. They are wordlist and frequent wordlist. The wordlist file
contains around 2000 general random Bengali words and the frequent wordlist contains around

600 common Bengali words such as ম , ব ব , েেল , আক ি, etc.

We prepared a text file for each type of list in UTF-8 encoded form. In each file, a word is
written in every line. It looks like the following lines:

আক ি

Page 32 of 51

ব ত স

ম টি

Then we ran the following commands.

wordlist2dawg words_list.txt ben.word-dawg ben.unicharset

wordlist2dawg frequent_words_list.txt ben.freq-dawgben.unicharset

They created two dawg(Directed Acyclic Word Graph) files. Figure15 shows the dictionary data
files in the next page.

Figure15: Dawg files

7.10 Generating Traineddata

After all these files have been prepared, we had to rename the shapetable, pffmtable, normproto and

inttemp files according to our language code. For Bengali, we have used language = ‘ben’ as

mentioned before. After renaming, the above four files will be named like the following.

shapetable -> ben. shapetable

pffmtable -> ben.pffmtable

normproto -> ben.normproto

inttemp -> ben.inttemp

Then we ran the following command to concatenate them to generate our traindata.

combine tessdata ben. (Here ‘.’ is essential)

The traineddata is now our library for working with Bengali letters. Tesseract’s OCR engine uses
its algorithm on this traineddata to produce Bengali outputs on inputs. The traineddata
contains 18110 characters and 2617 words. Figure16 shows the concatenated traineddata.

Page 33 of 51

Figure16: The traineddata

7.11 Developing Graphical User Interface

We developed a graphical user interface as there is no user interface in Tesseract. This interface
was implemented in Netbeans IDE using the built-in exec method in java. Figure17 shows the
interface.

Figure17: User Interface

Page 34 of 51

7.12 Managing Versions

Version 3.03 of Tesseract OCR is used for generating outputs from Bengali text files. It is a beta
version so it could not be used for training the OCR engine and we used the version3.02 instead
for making the library or traineddata for the OCR. Version 3.03 has been integrated to the
system and has given better performance than that of Version 3.02. Though the entire training
procedure is based on version 3.02, the integration has been good enough to produce the
desired outputs.

7.13 Packaging

The executable user interface file and the OCR needed to be packaged. For this purpose, we
created a folder and place three files in the folder. These files are the OCR scanner, traineddata
and the user interface’s executable file. After launching the user interface file, one can select
the inputs and the process them via the OCR system. The outputs will be automatically
generated in the package’s folder. The user interface allows the users to name the output files.

Figure18 shows the package of the system.

Figure18: System package

Page 35 of 51

Chapter 8

ALGORITHM OF TESSERACT

Tesseract has a very sophisticated algorithm. It uses search and fetch policy for generating

output. The images that we used for training are encoded into training files with ‘tr’ extension

along with the box files. These tr files form a combined file named inttemp. This inttemp file

along with other files form the concatenated traindata. So, when a character is read from the

input file, Tesseract searches for a matching character in the images that are encoded into the

inttemp file. If it finds a matching character, it gets the coordinates of the character in that

image and uses that coordinates to find the required position in the box file. It fetches the

character from the box file with that particular coordinate and writes it to the output file. If

there is no matching character, it fetches the character that resembles most to the character of

the input file. However, if the character set is too large, it may mismatch a character with

another character and that’s why accuracy of output does not always become full. Figure19

shows the block diagram of Tesseract’s algorithm.

Figure19: Block diagram of Tesseract’s algorithm

Page 36 of 51

CHAPTER 9
 RESULT ANALYSIS

We tested the OCR with two different sets of inputs. One set of inputs contains converted
images from text and the other set contains scanned images of printed documents. In each set,
there were 100 inputs and around 25 words and 70 characters in each input. The OCR did not
detect the spaces among words in various cases. We separated them manually to test the
accuracy. We calculated the accuracy of the OCR with the following equations.

Accuracy rate (Character) = (Number of correct characters/Number of total characters) × 100%

Accuracy rate (Word) = (Number of correct Words/Number of total Words) × 100%.

.We calculated accuracy rate based on characters and words separately. For scanned image file,
the highest accuracy based on characters is 87.30% and the highest accuracy based on words is
40%. For image files that have been obtained by converting text files, the highest accuracy
based on characters is 97.56% and the highest accuracy based on words is 90%.

Figure20 (a), Figure20 (b), Figure20(c), Figure20 (d), Figure20 (e), and Figure20 (f) show three
samples of inputs and their respective outputs.

Figure20 (a): Sample Input1

Page 37 of 51

Figure20 (b): Output of sample Input1

Figure20 (c): Sample Input2

Page 38 of 51

Figure20 (d): Output of sample Input2

Figure20 (e): Sample Input3

Page 39 of 51

Figure20 (f): Output of sample Input3

Figure21 (a), Figure21 (b), Figure21 (c) and Figure21 (d) show the accuracies based on
characters and words for converted and scanned images respectively.

 Figure21 (a): Accuracy of converted images based on character

Page 40 of 51

Figure21 (b): Accuracy of scanned images based on character

Page 41 of 51

Figure21(c): Accuracy of converted images based on word

Page 42 of 51

Figure21 (d): Accuracy of scanned images based on word

Page 43 of 51

CHAPTER 10
CONCLUSION

We used ‘Solaimanlipi’ font to develop the character set for the OCR. So, the OCR would work
fine on inputs that contain text in that font. However, if there are texts of other fonts available
in the input, the OCR may mismatch to some extent. Though it is not quite possible to
incorporate all fonts of Bengali language to the OCR due to execution speed limitation, we
would integrate at least five more fonts to our OCR. These five fonts would be selected based
on the diversity they possess so that all sorts of shapes for a particular character are covered by
the OCR. The OCR takes ‘tiff’ and ‘png’ formatted images as inputs. So, if the inputs are not
formatted in those two formats, it is necessary to convert them. The user can do it with third
party software such as Paint. In future, we look forward to integrating a converter with our
OCR. So, the user would be able to simply upload the input file, the OCR will automatically
convert it if it is necessary and generate output. The OCR has been implemented using
electronically converted images. Due to intricacy of the process, we could not use real images
taken by camera or scanner from a printed file. We would use a few real images later to
improve the OCR’s performance. We also plan to incorporate a Bengali to English translator
with the OCR so that non-Bengali speakers can be benefitted. We also have a plan to add a
spell-checker to improve word accuracy.

The OCR is implemented on research purpose. It has got its limits but it is an example of
training an engine with expertise. We went through a lot of trial and error processes to find out
which will be the best method to prepare images files from text and we finally used the
dedicated java editor. Lots of efforts have also been put in modifying the box files. Java GUI is
used for the simplicity of the software. We developed it as a desktop application so that it can
be used offline. This project will be open for general purpose use for common users after
adding further improvements.

Page 44 of 51

REFERENCES

1. Abduallah, ArifBillah Al-Mahmud; Khan, Dr. Mumit Khan: A survey on script
segmentation for Bangla OCR

2. Md. AbulHasnat, S. M. Murtoza, Dr. Mumit Khan: A high performance domain specific
OCR for Bangla script

3. Hasnat, Md. Abul, Chowdhury, Muttakinur Rahman, Dr. Mumit Khan:Integrating Bangla
script recognition support in tesseract OCR

4. S.Mahbub-Uz-Zaman, Tanjina Islam: Application of augmented reality: Mobile camera
based bangla text detection and translation

5. Muttakinur Rahman Chowdhury (Shouro): Integration of Bangla script recognition
support in OCRopus

6. http://en.wikipedia.org/wiki/Optical_character_recognition Last accessed on 15/08/2015
7. https://en.wikipedia.org/wiki/Bengali_language Last accessed on 15/08/2015
8. http://crblp.bracu.ac.bd/ocr.php Last accessed on 15/08/2015
9. https://code.google.com/p/tesseract-ocr/wiki/Training Last accessed on 15/08/2015

10. http://vietocr.sourceforge.net/training.html Last accessed on 17/08/2015
11. https://www.omicronlab.com/bangla-fonts.html Last accessed on 16/08/2015

12. www.sourceforge.net/p/vietocr/discussion/ Last accessed on 14/08/2015
13. http://en.wikipedia.org/wiki/Language_code Last accessed on 14/08/2015
14. http://www.succeed-project.eu/wiki/index.php/Tesseract_3.02 Last accessed on 18/08/2015
15. http://en.wikipedia.org/wiki/ISO_639-3 Last accessed on 10/08/2015
16. https://netbeans.org/kb/docs/java/gui-functionality.html Last accessed on 12/08/2015
17. https://en.wikipedia.org/wiki/Image_file_formats Last accessed on 14/08/2015
18. http://whatis.techtarget.com/definition/skewness Last accessed on 15/08/2015
19. https://en.wikipedia.org/wiki/Image_noise Last accessed on 16/08/2015
20. https://en.wikipedia.org/wiki/Tesseract_%28software%29 Last accessed on 20/08/2015
21. https://en.wikipedia.org/wiki/NetBeans Last accessed on 21/08/2015

Page 45 of 51

APPENDIX

importjava.io.BufferedReader;

importjava.io.File;

importjava.io.IOException;

importjava.io.InputStreamReader;

importjavax.swing.JFileChooser;

public class Tesseract extends javax.swing.JFrame {

 String filename;

 String output;

private Object JTextField_path;

 /**

 * Creates new form Tesseract

 */

publicTesseract() {

initComponents();

 }

@SuppressWarnings("unchecked")

 // <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-
BEGIN:initComponents

private void initComponents() {

 jButton1 = new javax.swing.JButton();

 jButton2 = new javax.swing.JButton();

 jTextField1 = new javax.swing.JTextField();

setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

Page 46 of 51

jButton1.setFont(new java.awt.Font("Calibri", 1, 24)); // NOI18N

jButton1.setText("Input");

jButton1.setBorder(new javax.swing.border.LineBorder(new java.awt.Color(255, 0, 0), 2, true));

jButton1.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEventevt) {

jButton1ActionPerformed(evt);

 }

 });

jButton2.setFont(new java.awt.Font("Calibri", 1, 24)); // NOI18N

jButton2.setText("Generate");

jButton2.setBorder(new javax.swing.border.LineBorder(new java.awt.Color(204, 0, 0), 4, true));

jButton2.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEventevt) {

jButton2ActionPerformed(evt);

 }

 });

jTextField1.setFont(new java.awt.Font("Calibri", 1, 24)); // NOI18N

jTextField1.setText(" Output");

jTextField1.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEventevt) {

jTextField1ActionPerformed(evt);

 }

 });

Page 47 of 51

javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());

getContentPane().setLayout(layout);

layout.setHorizontalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

 .addGap(39, 39, 39)

 .addComponent(jButton1, javax.swing.GroupLayout.PREFERRED_SIZE, 186,
javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(18, 18, 18)

 .addComponent(jTextField1, javax.swing.GroupLayout.PREFERRED_SIZE, 250,
javax.swing.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED, 19,
Short.MAX_VALUE)

 .addComponent(jButton2, javax.swing.GroupLayout.PREFERRED_SIZE, 186,
javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(77, 77, 77))

);

layout.setVerticalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

 .addGap(102, 102, 102)

 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

 .addComponent(jButton2, javax.swing.GroupLayout.PREFERRED_SIZE, 65,
javax.swing.GroupLayout.PREFERRED_SIZE)

 .addComponent(jButton1, javax.swing.GroupLayout.PREFERRED_SIZE, 65,
javax.swing.GroupLayout.PREFERRED_SIZE)

 .addComponent(jTextField1, javax.swing.GroupLayout.PREFERRED_SIZE, 50,
javax.swing.GroupLayout.PREFERRED_SIZE))

Page 48 of 51

 .addContainerGap(133, Short.MAX_VALUE))

);

pack();

 }// </editor-fold>//GEN-END:initComponents

private void jTextField1ActionPerformed(java.awt.event.ActionEventevt) {//GEN-
FIRST:event_jTextField1ActionPerformed

 // TODO add your handling code here:

 }//GEN-LAST:event_jTextField1ActionPerformed

private void jButton1ActionPerformed(java.awt.event.ActionEventevt) {//GEN-
FIRST:event_jButton1ActionPerformed

JFileChooser chooser=new JFileChooser();

chooser.showOpenDialog(null);

 File f=chooser.getSelectedFile();

filename=f.getAbsolutePath();

 // JTextField_path.setText(filename);// TODO add your handling code here:

 }//GEN-LAST:event_jButton1ActionPerformed

private void jButton2ActionPerformed(java.awt.event.ActionEventevt) {//GEN-
FIRST:event_jButton2ActionPerformed

output =jTextField1.getText();

callExec(filename); // TODO add your handling code here:

 }//GEN-LAST:event_jButton2ActionPerformed

 /**

Page 49 of 51

 * @paramargs the command line arguments

 */

public static void main(String args[]) {

 /* Set the Nimbus look and feel */

 //<editor-fold defaultstate="collapsed" desc=" Look and feel setting code (optional) ">

 /* If Nimbus (introduced in Java SE 6) is not available, stay with the default look and feel.

 * For details see
http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html

 */

try {

for (javax.swing.UIManager.LookAndFeelInfo info :
javax.swing.UIManager.getInstalledLookAndFeels()) {

if ("Nimbus".equals(info.getName())) {

javax.swing.UIManager.setLookAndFeel(info.getClassName());

break;

 }

 }

 } catch (ClassNotFoundException ex) {

java.util.logging.Logger.getLogger(Tesseract.class.getName()).log(java.util.logging.Level.SEVERE,
null, ex);

 } catch (InstantiationException ex) {

java.util.logging.Logger.getLogger(Tesseract.class.getName()).log(java.util.logging.Level.SEVERE,
null, ex);

 } catch (IllegalAccessException ex) {

java.util.logging.Logger.getLogger(Tesseract.class.getName()).log(java.util.logging.Level.SEVERE,
null, ex);

 } catch (javax.swing.UnsupportedLookAndFeelException ex) {

java.util.logging.Logger.getLogger(Tesseract.class.getName()).log(java.util.logging.Level.SEVERE,
null, ex);

Page 50 of 51

 }

 //</editor-fold>

 /* Create and display the form */

java.awt.EventQueue.invokeLater(new Runnable() {

public void run() {

newTesseract().setVisible(true);

 }

 });

 }

voidcallExec(String fileName){

 String s = null;

try {

 // run the Unix "ps -ef" command

 // using the Runtime exec method:

 Process p = Runtime.getRuntime().exec("tesseract "+fileName+" "+output+" -l ben");

BufferedReaderstdInput = new BufferedReader(new

InputStreamReader(p.getInputStream()));

BufferedReaderstdError = new BufferedReader(new

InputStreamReader(p.getErrorStream()));

 // read the output from the command

Page 51 of 51

System.out.println("Here is the standard output of the command:\n");

while ((s = stdInput.readLine()) != null) {

System.out.println(s);

 }

 // read any errors from the attempted command

System.out.println("Here is the standard error of the command (if any):\n");

while ((s = stdError.readLine()) != null) {

System.out.println(s);

 }

System.exit(0);

 }

catch (IOException e) {

System.out.println("exception happened - here's what I know: ");

e.printStackTrace();

System.exit(-1);

 } // TODO code application

 }

 // Variables declaration - do not modify//GEN-BEGIN:variables

privatejavax.swing.JButton jButton1;

privatejavax.swing.JButton jButton2;

privatejavax.swing.JTextField jTextField1;

 // End of variables declaration//GEN-END:variable

	2. Md. AbulHasnat, S. M. Murtoza, Dr. Mumit Khan: A high performance domain specific OCR for Bangla script
	3. Hasnat, Md. Abul, Chowdhury, Muttakinur Rahman, Dr. Mumit Khan:Integrating Bangla script recognition support in tesseract OCR
	4. S.Mahbub-Uz-Zaman, Tanjina Islam: Application of augmented reality: Mobile camera based bangla text detection and translation

