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ABSTRACT 

 

QWFETs with non-planar, multigate structures are known to provide higher electrostatistics 

than their conventional planar counterparts. Due to this desirable feature of the non-planar, 

multigate architecture, the electronics community is leaning towards transistors having gates 

wrapped around the channel for higher scalability and performance.  

In this work, 2-D Schrodinger-Poisson coupled simulations of non-planar, multigate InGaAs 

QWFETs were carried out using an in-house simulator to study the performance of the devices 

based on the C-V characteristics. The simulator was carefully benchmarked to evaluate its 

accuracy before carrying out the simulations. Two InGaAs QWFETs with InAlAs spacer layers 

were simulated. The first device had a plain InAlAs spacer layer and the second device 

contained a Si δ-doped layer between InAlAs spacer layer. The simulation results showed that 

the device with the plain InAlAs spacer layer had a threshold voltage of 0.3V and C-V 

characteristics similar to that of a device with an InP spacer layer which was used for 

benchmarking.  The second device which contained a thin Si δ-doped layer within the InAlAs 

spacer layer was simulated next. From the simulation results, it was seen that the device had a 

threshold voltage of 0.2V and an effective improvement in C-V characteristics was also 

observed compared to the device with plain InAlAs layer. 
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1. INTRODUCTION 

1.1 The evolution of FET 

The field effect transistor, more commonly known as FET is a semiconductor device with the 

basic principle of controlling the conductivity of the device, hence the flow of charge or current 

in the channel by changing the voltage applied. The concept of the field effect transistor (FET) 

has been around since as early as the 1920s, earlier than that of the BJT (bipolar junction 

transistor) however the first FETs were produced much later than the BJTs only after the 

emergence of suitable semiconductor materials and technology. A FET has three terminals 

namely the gate, source and drain. As stated earlier, the functioning of the FET involves 

regulating the flow of charge from the source to drain by regulating the voltage applied to the 

gate. Over the years, FETs have undergone numerous evolutions, each change leading to a 

shrink in the transistor size and increase in the number of transistors in an integrated circuit, 

staying true to Moore’s law. The first FET produced was the JFET (Junction field effect 

transistor) in the 1950s, initiating a saga of semiconductor devices, with the basic concept of 

controlling the channel conductance by changing the gate voltage. The JFET was replaced by 

the metal oxide semiconductor field effect transistor (MOSFET), which is the most well-known 

FET to date and is responsible for revolutionizing the world of electronics. The CMOS 

technology which employs an NMOS and a PMOS has been the heart of all logic applications 

till date. With the progress of technology, the channel length of MOSFETs was reduced to 

improve performance, leading to an overall scale down of the devices which also resulted in 

the increase in doping of the channel. However a major shortcoming of the MOSFET is the 

adverse effect of heavy doping in the channel namely the reduction in carrier mobility [1]. To 

overcome this adversity, transistors with undoped channels were designed. The HEMT or high 

electron mobility transistor is one such transistor that has been developed to avoid the problem 

of heavy doping in the channel by employing a quantum well in an undoped channel for charge 

accumulation [12]. As the development continues, the boundaries of the FETs with planar 

architecture especially in terms of scalability have been pushed to the limit.  Now the 

electronics world, has turned its attention to non-planar FETs to provide higher scalability, 

lower power consumption and faster operations, with the FINFET technology being the most 

exciting prospect. 
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1.2 Junction Field Effect Transistor 

The JFET is the earliest field effect transistor to be produced. There are two categories of JFET, 

the pn junction field effect transistor (pn JFET) and the metal semiconductor field effect 

transistor or MESFET [12]. The difference between the two is that in a pn JFET, as the name 

suggests a pn junction is employed and in a MESFET a Schottky barrier rectifying junction is 

used. JFETs are usually turned off by applying the correct voltage, hence they are depletion 

mode devices.    

 pn-JFET 

 Like all FETs, the pn-JFET has three terminals, the gate, source and drain. A differential 

voltage is applied to the source and drain such that current flows from the drain to the source. 

The region between the source and drain is called the channel. The channel can be n-type or p-

type.  There are two gate terminals joined to the channel via regions having opposite doping to 

the channel, such that pn junctions are formed between the channel and the gates. Considering 

an n-channel pn-JFET, with p-doped gate terminals as shown in Fig.1.1, depletion layers will 

form in the gate-channel junctions. When a negative voltage is applied to the gate terminals the 

depletion layers will widen and decrease electron flow in the channel. As voltage becomes 

more negative the depletion layers will become wider and channel conductivity will decrease 

(Fig.1.2). This is the principle of controlling the channel conductivity.  

 

 

 

 

 

 

 

 

 

 

 Fig.1.1: A pn-JFET at zero gate voltage. 
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 MESFET 

 A MESFET has a gate terminal with a Schottky contact above the channel on top of a substrate. 

With the application of a reverse biased gate-to-source voltage, a depletion layer is created in 

the channel under the gate and as the voltage is increased it will eventually reach the substrate 

and cease further flow of current. An n-channel MESFET is shown in Fig.1.3, as the reverse-

bias voltage is increased, the depletion region will widen and cover the width of the channel 

(Fig.1.4). 

 

 

 

 

 

 

Fig.1.2: A pn-JFET at negative gate voltage showing  

depletion regions. 

Source Drain
Gate

Substrate

n+n+ n-channel

Metal

Fig. 1.3: An n-channel MESFET.  
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1.3 Metal Oxide Semiconductor Field Effect Transistor 

The MOSFET is almost similar to a MESFET except the fact that it has an insulator between 

the metal and semiconductor, hence the name metal oxide semiconductor (MOS) FET. In a 

MOSFET, the substrate either n-type or p-type, is connected to the gate via the oxide usually 

through the center of the device. The source and drain terminals are connected to regions 

oppositely doped to the substrate, at either end of the device. When a voltage is applied to the 

gate, depending on the doping of the substrate, charge accumulation or the creation of a 

depletion layer will occur in the substrate below the oxide. Considering a p-type MOSFET 

(substrate is p-doped) depicted in Fig.1.5, applying a positive voltage at the gate will lead to a 

build-up of positive charge on the gate surface. This will induce an electric field inside the 

substrate such that the holes near the oxide-semiconductor interface will be repelled and create 

a depletion region. Since the substrate is p-type, the depletion layer will have negatively 

charged acceptor ions. As the voltage is increased, the electric field gets stronger and a larger 

depletion layer forms. As the gate voltage exceeds the threshold voltage, the minority carrier 

electrons in the p-type are attracted towards the interface creating an inversion layer of 

electrons which connect the n-type source and drain (Fig.1.6) 

 

 

Fig. 1.4: An n-channel MESFET at negative gate voltage.  
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Source Drain

Gate

p

n+n+

Metal
Oxide

Fig. 1.5: A p-type MOSFET.  

Fig. 1.6: A p-type MOSFET with gate voltage exceeding the 
threshold voltage and leading to channel formation. 
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NMOS & PMOS 

An n-channel MOSFET is commonly called NMOS, whereas PMOS is a MOSFET with a p-

channel. Fig.1.7 shows the symbol of the NMOS and PMOS. Simulation and studies have been 

done using SilvacoTM to find the effect of oxide thickness on the C-V characteristics of NMOS 

devices [17]. 

 

 

 

 

 

 

 

 

CMOS 

Circuits that use the CMOS or Complementary Metal Oxide Semiconductor technology utilizes 

both the NMOS and PMOS transistors. The biggest advantage of the CMOS technology is its 

low power consumption. Moreover, it is relatively inexpensive (since fewer transistors are 

used). 

Drain

Gate

Source

Source

Gate

Drain

NMOS PMOS

Fig. 1.7: NMOS and PMOS symbols. 

Fig. 1.8: A CMOS inverter. 
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1.4 High Electron Mobility Transistor 

The HEMT employs a quantum well for the purpose of charge accumulation; such a well is 

formed in the junction of two semiconductor materials with different band gaps or a 

heterojunction as illustrated below in Fig.1.9 [7][10]. The idea is to avoid doping inside the 

channel to enhance carrier mobility by reducing scattering. In a GaAs HEMT (Fig.1.10), a 

heavily doped (n+) AlGaAs layer is joined to the intrinsic GaAs channel. Due to band gap 

difference between the two materials, a well is formed in the GaAs channel. Electrons from the 

heavily doped AlGaAs layer will cross the junction and accumulate in the well in the GaAs 

channel. The gate voltage controls the electron concentration inside the well, as the gate voltage 

is increased the electron concentration will increase. Thus, electrons can travel from the source 

to the drain via the channel with greater mobility as scattering is reduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.9: A heterojunction showing the formation of a quantum 
well. 
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Fig. 1.10: A GaAs HEMT. 
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1.5 Quantum Well Field Effect Transistor 

HEMTs that have the undoped channel positioned between two high band gap materials 

essentially contain two heterojunctions leading to the formation of quantum wells at the edges 

of the channel [7][9][10]. This is also known as a double heterostructure. The idea behind 

having the channel between two high band gap materials is to use high band gap materials as 

potential barriers and at the same time increase electron concentration in the channel. As 

electrons will move from the doped regions into the channel from both ends via the quantum 

wells, the channel will have higher charge accumulation. Moreover, with the addition of 

another potential barrier, the electrons are essentially trapped in the channel region. In Fig.1.11 

a GaAs QWFET with n+ AlGaAs top and bottom barriers are shown. 

 

 

 

 

Fig. 1.11: A double heterostructure showing the formation of quantum wells at the edges. 
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1.6 Non-planar multigate structure and FINFET 

There are two broad classifications in device architecture namely planar and non-planar. In 

planar architecture, the device is fabricated such that the semiconductor materials are stacked 

on top of each other or placed in layers. The non-planar architecture is different than the planar 

in the sense that not all materials are placed above one another, some are wrapped around 

others. The FINFET has a distinct ‘fin’ shaped channel on top of the substrate which is wrapped 

by the gate (Fig.1.12). As the gate is placed around the channel in more than one side, the term 

multigate is used [11]. Such a non-planar multigate architecture allows better gate control and 

hence, higher electrostatistics as opposed to planar architectures with the gate only on top. 

FINFETs have the potential to take CMOS scaling below the 22nm mark [14]. Moreover 

according to International Technology Roadmap for Semiconductors [13], [17] FINFETs are 

tipped to replace conventional MOSFETs in a bid to take scaling to a 10nm size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substrate

 Bottom barrier

Oxide

Gate

Channel

Etch layer

Fin

Fig. 1.12: A non-planar device with the gate wrapped around the ‘fin’ shaped 
channel. 
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1.7 Motivation of QWFETs 

The usage of quantum wells in FETs have led to drastic improvement in terms of performance 

and service over the years. Moreover, non-planar structures have a lot to offer in terms of 

scalability and gate control. The possibility of high speed, low power applications using non-

planar QWFETs make it more in demand. Modifications regarding the type of materials used, 

the thickness of the oxide and the amount of doping are still being carried out and they hold 

very interesting prospects for the future. The scope of improving the QWFETs to suit the needs 

of the electronics community is a vast and a worthy challenge. Most of the studied or modified 

QWFETs have shown better electrostatics and better performance in various aspects and this 

paper proves how small changes in the layers and materials can lead to a better performing 

device. 

In the past, simulation based study of semiconductor devices using 1-D Schrodinger-Poisson 

coupled simulations have been conducted. However, 2-D Schrodinger-Poisson coupled 

simulations have not been done extensively .This paper is based on two QWFET structures and 

highlights the differences between them. The first was an InGaAs QWFET with InAlAs spacer 

layer. The second device was an InGaAs QWFET with a Si- doping layer inside the InAlAs 

spacer layer. Compared to the QWFET with only the InAlAs spacer layer, the one with 

doping layer inside the InAlAs spacer layer showed improved electrostatics and performance 

which will be further explained in the coming chapters. 
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2. SOLUTION OF SCHRÖDINGER EQUATION 

 

2.1 Schrödinger equation 
 

Schrödinger equation is a partial differential equation that can be solved to find the electron 

wave function of a material. The Schrödinger’s equation has two forms namely the time 

independent and the time dependent. Since the system under consideration is an equilibrium 

system, the time independent form of the Schrödinger equation has been used. 

 
2.2 Time independent Schrödinger equation 

 

General form, 

ˆE H   

Where, 

Ĥ = Hamiltonian operator 

 =Electron wave function 

E =Total energy of the system 

For a single non-relativistic particle the Schrödinger equation has the form, 

2
*

( ) [ ( )] ( )
2

E r V r r
m

    
  

Where, 

*m = Effective mass of an electron of the system 

2 =Laplacian operator 

( )V r =Potential profile 
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2.3 Solving Schrödinger equation using the Finite difference method 

 Schrödinger equation can be solved numerically using the finite difference method. According 

to the finite difference method, differential equations can be approximated by difference 

equations. 

 

XXi-1 Xi+1

ΔX

 

 

For a finite ∆ݔ, the following approximations of first order derivatives are: 

Forward difference approximation:  

( ) ( )
( )

f x x f x
f x

x

   


 

Backward difference approximation:  

( ) ( )
( )

f x f x x
f x

x

   


 

Central difference approximation: 

1 1( ) ( )
( )

2
i if x f x

f x
x

  


 

 

As the central difference approximation yields the most accurate result, the central difference 

approximation has been used. 
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2.4 Schrödinger equation for a 1-D lattice 

The second order derivative using the central difference approximation can be represented as, 

 

1 1
2

( ) 2 ( ) ( )
( )

( )
i if x f x f x

f x
x

   


 

Using the central difference approximation the Hamiltonian operator can be converted into 

a matrix form. 

Assuming a discrete 1-D lattice having six points, 

 

ΔX

1 32 4 65

 

The Schrodinger equation for the above case can be represented as, 

1 1

2 2

3 3

4 4

5 5

6 6

ˆE H

    
       
              
    
   
       

 

Assuming, 

22m x
t 


  

Where, 

 x=lattice parameter 

 

For the discrete 1D lattice having six points the Hamiltonian matrix can be written as, 



16 
 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

2 1 0 0 0 0 0 0 0 0 0

1 2 1 0 0 0 0 0 0 0 0

0 1 2 1 0 0 0 0 0 0 0

0 0 1 2 1 0 0 0 0 0 0

0 0 0 1 2 1 0 0 0 0 0

0 0 0 0 1 2 0 0 0 0 0

ˆ

U

U

U
H t

U

U

U

           
                  
          

                 
         
      
          




 
 


 
 
 
 

 

Or, 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6

2t t 0 0 0 0 U 0 0 0 0 0

t 2t t 0 0 0 0 U 0 0 0 0

0 t 2t t 0 0 0 0 U 0 0 0

0 0 t 2t t 0 0 0 0 U 0 0

0 0 0 t 2t t 0 0 0 0 U 0

0 0 0 0 t 2t 0 0 0 0 0 U

Ĥ

          
                 
          

                
         
      
          6

 
 
 
 
 
 
 
 
 

 

Therefore, 

1

2

3

4

5

6

2 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0

ˆ

t t U

t t t U

t t t U
H

t t t U

t t t U

t t U

   
      
   

       
   
   

   

 

Overall equation, 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6

2 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0

0 0 0 0 2 0 0

ˆ

0 0 0

t t U

t t t U

t t t U
H

t t t U

t t t U

t t U

          
                 
          

                
         
      
          6

 
 
 
 
 
 
 
 
 

 

 

This form of the Schrodinger equation can be treated as an Eigen value problem and can be 

solved for the Eigen vectors and the Eigen values. 
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2.5 Schrödinger equation for a 2-D lattice 

General time-independent 2-D Schrodinger equation has the form, 

 

2

2
, ( , )] ,

m
x y U x y x y      



 

 

The equation above can be solved numerically using the finite difference method considering 

the central difference approximation. The second order derivative for 2-D can be represented 

as, 

2

(i, j 1) (i 1, j) 4 (i, j) (i 1, j) (i, j 1)
( , )x y

x

             
  

Using the equation above, the Hamiltonian operator can be converted to matrix form. 

Assuming the 2-D lattice given below, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΔX

1

3

2

4

6

5

7

9

8

ΔY
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Considering Δx=Δy as the lattice parameter, the Schrodinger equation for the above case can 

be represented as, 

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

ĤE

    
       
    
               
       
    
       
       

 

 As considered previously
22m x

t 

 , the Hamiltonian matrix then becomes, 

1

2

3

4

5

6

7

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0ˆ
0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1

U

U

U

U

t U

U
H

U

 
  
 
 

 
 
 

 
 
 

 
  

 

8

9

0

0 0 0 0 0 0 0 0

U

U

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 


 
 
 
 



 
 

 




Where the potential profile, 

1

2

3

4

5

6

7

8

9

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

( , ) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

U

U

U

U

U x y U

U

U

U

U

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Using the aforementioned matrices, the Schrodinger equation can be solved to give a series of 

Eigen values and Eigen vectors for 2-D lattice of same material and lattice constant
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2.6 Schrodinger equation for 1-D lattice with different materials 

 

Assuming a 1-D discrete lattice of two different materials with seven points as shown below, 

with the lattice parameterx . 

41 3 5 62 7

m1 m2

junction

 

 

The Schrodinger equation for the above case can be represented as, 

1 1

2 2

3 3

4 4

5 5

6 6

7 7

ˆE H

    
     
   
       

       
    
      

 

Assuming, 

1

1

2

22 




m x
t  

2

2

2

22m
t

y





 

Where x and y are the lattice constants for m1 and m2, 

And 1 2

2


j

t t
t  
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For the discrete 1-D lattice having seven points the equation can be written as, 

1 1 11 1

1 1 1 22 2

1 1 1 33 3

1 24 4

2 2 25 5

2 2 26 6

2 27 7

2 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

0 0 0 0 0 2

ˆ j

t t U

t t t U

t t t U

H t t t

t t t

t t t

t t

     
       
    
          

         
     
        

1

2

3

4 4

5 5

6 6

7 7

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

U

U

U

U

  
    
  
    

     
  
      

 

Where the Hamiltonian matrix is, 

1 1 1

1 1 1 2

1 1 1 3

1 2 4

2 2 2 5

2 2 2 6

2 2 7

2 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0

ˆ

0 0 0

   
      
   
       
   
   

   
      

j

t t U

t t t U

t t t U

H t t t U

t t t U

t t t U

t t U

 

And the potential profile, 

1

2

3

4

5

6

7

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

( ) 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 
 
 
 
   
 
 
 
  

U

U

U

U x U

U

U

U

 

 

The above equations can be solved as done previously, to obtain a set of Eigen values and 

Eigen vectors. 

 

 

 

 



21 
 

Fig.2.2: An electron wavefunction inside a 2-D potential well. 

2.7 Simulation of potential wells by solving Schrödinger equation 

For a 1-D infinite potential well, the electron wavefunction for different energy levels can be 

calculated by solving the Schrödinger equation. Fig.2.1 below shows a 1-D infinite potential 

well. Solving the Schrödinger equation, the electron wave functions for discrete energy levels 

are found inside the well as shown. Fig.2.2 illustrates the electron wavefunction for a 2-D 

potential well. 
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Fig. 2.1: An infinite potential well with discrete energy levels having different shaped electron 
wave functions. 
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3. SOLUTION OF POISSON’S EQUATION 

3.1 Poisson’s equation 

Poisson’s equation is a partial differential equation. Poisson’s equation can be solved to find 

the electric potential in a material for a particular charge density. 

The general form of the Poisson’s equation can be written as, 

ଶ߮׏ ൌ െ

ߝ

 

Where, 

 ଶ= Laplacian operator׏

߮ = Electric potential 

  = Charge density  

ߝ] ,Absolute permittivity of the material = ߝ ൌ  ௥ሿߝ଴ߝ

Where, ߝ଴ ൌ Vacuum permittivity  

௥ߝ ൌ  Relative permittivity of the material   
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3.2 Solving Poisson’s equation for a 1-D lattice using Finite difference method 

 

Poisson’s equation can be solved numerically using the finite difference method. 

Using the central difference approximation we can write the second order derivative as, 

1 1
2

( ) 2 ( ) ( )
( )

( )
i if x f x f x

f x
x

   
  

 

Considering a 1-D discrete lattice of five points, 

1 2 3 4 5

 

For the above case the Poisson’s equation can be written in the following matrix form, 

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

/2 1 0 0 0

/1 2 1 0 0

/0 1 2 1 0

/0 0 1 2 1

/0 0 0 1 2

V

V

V

V

V

 
 
 
 
 

     
         
      
         
         

 

Where, 1 2 5, ......V V V = electric potential 

Or, 

11 1 1 0

22 2 2 2 0

33 3 3 3 0

44 4 4 4 0

55 5 5 0

2 0 0 0 /

2 0 0 /

0 2 0 /

0 0 2 /

0 0 0 2 /

r r

r r r

r r r

r r r

r r

V

V

V

V

V

   
    

    
    

   

    
        
      
        
         

 

If   

1 1

2 2 2

3 3 3

4 4 4

5 5

2 0 0 0

2 0 0

0 2 0

0 0 2

0 0 0 2

A

 
  

  
  

 

 
  
  
  
  

,   

1

2

3

4

5

V

V

V V

V

V

 
 
 
 
 
 
  

,   

1 0

2 0

3 0

4 0

5 0

/

/

/

/

/

F

 
 
 
 
 

 
 
 
  
 
 
  
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Then, 

     A V F  

Or,      1
V A F


 

Where, 

  1
A


 is the inverse matrix of matrix  A  
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3.3 Solving Poisson’s equation for a 2-D lattice 

Considering a 2-D lattice,  

 

 

 

 

 

 

 

 

The Poisson’s equation for the above can be written in the following matrix form, 

 

1

2

3

4 1 0 1 0 0 0 0 0 0 0 0

1 4 1 0 1 0 0 0 0 0 0 0

0 1 4 0 0 1 0 0 0 0 0 0

1 0 0 4 1 0 1 0 0 0 0 0

0 1 0 1 4 1 0 1 0 0 0 0

0 0 1 0 1 4 0 0 1 0 0 0

0 0 0 1 0 0 4 1 0 1 0 0

0 0 0 0 1 0 1 4 1 0 1 0

0 0 0 0 0 1 0 1 4 0 0 1

0 0 0 0 0 0 1 0 0 4 1 0

0 0 0 0 0 0 0 1 0 1 4 1

0 0 0 0 0 0 0 0 1 0 1 4

V

V

V

 
  
 
  
 
 

 
 
 

 
  
 
  
  

1 1

2 2

3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

10 10 10

11 11 11

12 12 12

/

/

/

/

/

/

/

/

/

/

/

/

V

V

V

V

V

V

V

V

V

 
 
 
 
 
 
 
 
 
 
 
 

   
   
   
   
   
   
   
   
       
   
   
   
   
   
   
   
      

 

 

 

 

 

7

8

10

9

11

126

5

4

3

2

1
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Or, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1 1

2 2 2 2

3 3 3

4 4 4 4

5 5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8 8

9 9 9 9

4 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0

0 0 4 0 0 0 0 0

0 0 0 4 0 0 0 0 0

0 0 0 0 0 4 0 0 0

0 0 0 0 0 4 0 0

0 0 0 0 0 0 4 0 0

0 0

r r r

r r r r

r r r

r r r r

r r r r r

r r r r

r r r r

r r r r r

r r r r

  
   

  
   

    
   

   
    

   















1 01

2 02

3 03

4 04

5 05

6

7

8

9

10 10 10 10

11 11 11 11 11

12 12 12 12

/

/

/

/

/

0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0 0 4

r r r

r r r r

r r r

V

V

V

V

V

V

V

V

V

V

V

V

 
 
 
 
 

  
   

  

   
   
   
   
   
   
   
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3.4 Solving Poisson’s equation for 1-D lattice with different materials 
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Assuming the same 1-D discrete lattice of two different materials with seven points as the 

Schrodinger solution in the previous section. The separation between the points isx . The 

generalized Poisson solution would be, 
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Or,  
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Then again, 
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3.5 Generation of energy band-diagrams by Schrödinger-Poisson coupled simulations 

Energy band diagrams in [6] are produced by Schrodinger-Poisson coupled simulations. 

Fig.3.1 shows the energy band diagram generated by a Schrodinger-Poisson simulation, after 

the first iteration. In Fig.3.3 the band diagram is reproduced after coupling. Fig 3.2 and Fig.3.4 

display the charge densities before and after the coupling. 
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Fig. 3.1: The band profile generated after the first iteration. 
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Fig.3.2: The charge density for the band diagram shown in Fig. 3.1. 
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Fig.3.4: The charge density for the band diagram shown in Fig 3.3.  
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4. CAPACITANCE CALCULATION 

 

Capacitance is calculated by the general formula, 

Q
C

V
  

Where, 

 C=capacitance 

Q=charge stored 

V=voltage applied 

From this equation it can be seen that capacitance is the rate of charge stored per unit voltage 

applied or 

Q
C

V





 

Assuming charges Q1, Q2....Q5 for varying gate voltage VG, the first derivative can be expressed 

as a group of matrices using the central difference approximation as follows, 
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Hence the capacitance can be calculated from the above expression and will take the form of 

a column matrix.  
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5. SELF-CONSISTENT SIMULATION APPROACH 

 

5.1 Lattice construction 

First step of the simulation is the construction of a 2-D lattice representing the cross-section of 

the semiconductor device.  

5.2 Hamiltonian generation 

After the lattice construction, a Hamiltonian matrix based on the 2-D lattice is produced. The 

different materials used in the device are accounted for by noting the points they occupy in the 

2-D lattice and then multiplying the corresponding points in the Hamiltonian matrix with the 

relative permittivity of the individual materials. Atomistic discretization was utilized to model 

the devices precisely.  

5.3 Poisson solver 

Once the Hamiltonian matrix has been generated, a column matrix [F] is created having the 

same number of points as the lattice. The different material interfaces in the 2-D lattice are 

traced and the points are noted. The corresponding points of the [F] matrix are multiplied by 

summation of the difference in Fermi-level of the materials and the inverse charge density. 

After this is completed, the potential profile [V] is calculated by multiplying inverse matrix of 

[H] with the [F] matrix, i.e      1
V H F

  

5.4 Band-diagram generation 

The energy band profile of the semiconductor device is generated by adding the electron 

affinity values (χ) of the different materials to the potential profile or [V] matrix.  

5.5 Schrödinger solver 

The energy band profile is used in solving the Schrödinger equation to obtain the charge 

density. The first steps in solving the Schrödinger equation are similar to the Poisson solution, 

a 2-D lattice is created and a corresponding Hamiltonian matrix [H] is formed. The matrix is 

multiplied by a constant 
22m x

t 

  and solved for the Eigen values and Eigenvectors.  

5.6 Charge density 

The Eigen values and Eigen vectors obtained by solving the Schrödinger equation are 

essentially the different energy levels (E) and wave function values (Ψ) of the electrons. These 
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are used in the Fermi-Dirac distribution to calculate the charge density of the semiconductor 

device using the equation in [2].  

 

5.7 Schrödinger-Poisson coupling 

After the Schrodinger equation has been solved for the 2-D lattice, a charge density is obtained 

which is placed in the [F] to reform the matrix and solve the Poisson’s equation again to 

calculate [V]. In short, a loop is created where first a potential profile [V] is generated without 

solving the Schrödinger equation and then χ values are added to it. The matrix formed is then 

used to solve the Schrödinger equation and generate Eigen values and Eigen vectors and 

calculate the charge density. The charge density obtained is then used to recalculate the [V]. 

Similar work involving Schrödinger-Poisson coupling has been done in [16]. 

 

5.8 Variation in gate-voltage  

The Schrödinger-Poisson coupled simulation is repeated for a number of varying gate voltages 

and the resulting charge densities are recorded in a column matrix. 

 

5.9 Capacitance calculation  

The capacitance is calculated using the charge densities for varying gate voltages. A matrix [B] 

is formed which is multiplied to the charge density matrix to calculate the capacitance and then 

plotted against the gate voltage. 
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5.10 Flowchart of simulation 
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6. BENCHMARKING 

Before the semiconductor devices were simulated, the simulator was first thoroughly 

benchmarked to ensure quality simulations. The InGaAs QWFET with an InP spacer layer [3] 

was simulated, and the C-V graph was obtained. The C-V curve of the simulated device bore 

a close match to the original C-V curve. Fig.6.2 illustrates the simulated C-V curve and the 

original C-V curve. The 3-D model of the InGaAs QWFET with InP spacer layer is shown in 

Fig.6.1. 
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Fig. 6.1: A 3-D model of InGaAs QWFET with 
InP spacer layer. 

Fig.6.2: The C-V curves of the simulated device and the original 
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7.  3-D MODEL OF SIMULATED DEVICES 

 

The two devices chosen to be analysed in this paper are of the non-planar type. In the past Si 

MOSFETs and III-V MOSFETs with non-planar, multi-gate architectures were examined for 

enhanced electrostatics [4], [5]. III-V QWFETs with non-planar, multi-gate architectures 

possess better electrostatistics and have higher scalability compared to their planar counterparts 

[3]. Both the InGaAs QWFET with the InAlAs spacer layer and the InGaAs QWFET with the 

Si- doping layer inside the InAlAs spacer layer take the form of typical non-planar structures 

as shown in Fig.7.1 and Fig.7.2. The gate surrounds the device on all the sides except the 

bottom followed by the oxide layer consisting of HfO2. Next comes the InAlAs layer which 

acts as the spacer and then the InGaAs layer which forms the channel. The last two layers are 

comprised of the InAlAs barrier layer and the substrate. The only difference between the two 

devices is the Si- doping layer inside the InAlAs spacer layer present in the second QWFET. 

Each layer in the structure has its specific functions. The oxide layer is used to avoid the 

formation of a Schottky barrier between the metal gate and the semiconductor layer. The 

InAlAs spacer was chosen specifically because its lattice constant matches that of the channel 

material which is shown in Table 1. If the channel was directly placed with the oxide layer 

without the spacer in between there would have been a lattice mismatch which in turn would 

cause the presence of trap charges in the channel. Hence, the spacer is added to the structure to 

prevent trap charges from accumulating in the channel and hampering device performance. The 

Si- doped layer is basically a one atom thick sheet of Si atoms. This layer is situated in the 

InAlAs spacer layer as mentioned above and it aids in greater charge accumulation when the 

device is turned on [18][19]. The lower InAlAs barrier ensures that the charges accumulated 

when the device is on is trapped in the channel only and does not move to other regions [8]. 

 

 

 

 

 InAlAs                                   5.94  

 

 

Material    Lattice parameter (Հሻ 
InGaAs 5.93 
InP 5.87 
HFO2 5.16 
Gold 4.07 

Table 1: Lattice parameters of the 
materials used. 
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Fig.7.1: A 3-D model of InGaAS QWFET with InAlAs 
spacer layer. 
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Fig. 7.2: A 3-D model of InGaAs QWFET with Si-
doping layer inside the InAlAs spacer layer. 



38 
 

8. SIMULATION RESULTS 

8.1 Equilibrium 3-D band-diagram 

The equilibrium 3-D band-diagram of InGaAs QWFET with InAlAs spacer layer is depicted 

in Fig.8.1. Here the channel can be seen surrounded by the oxide layer, which in turn is wrapped 

by the metal gate. The InGaAs channel is below the Fermi-level which indicates the charge 

accumulated in that region. 

 

 

 

 

 

 

 

 

 

 

Fig.8.2 shows the band-diagram of InGaAs QWFET with a doped spacer layer. The Si-

doping layer can be seen as a sharp dent in the conduction band which is a typical feature of 

 doping. The idea behind the InGaAs QWFET with a Si- doping layer is to allow electrons 

in the doping-layer to tunnel into the InGaAs channel from the spacer layer, consequently 

leading to a greater charge accumulation in the channel. 

 

 

 

 

 

 

 

 

 

Fig. 8.1: The 3-D equilibrium band diagram of InGaAs 
QWFET with InAlAs spacer layer. 

Fig. 8.2: The 3-D equilibrium band diagram of InGaAs QWFET 
with InAlAs spacer layer containing a thin Si- doping layer. 
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8.2 Contour plots of band-diagram 

The contour plots give a top view of the devices which aids in identifying the different layers 

precisely. Fig.8.3 is the contour plot of the undoped InGaAs QWFET.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8.4 shows the contour plot of the Si- doped QWFET. From the contour plot, the Si-

doping layer can be seen to be positioned just above the InGaAs channel making it easier for 

the electrons to tunnel through the spacer layer into the channel.  
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 Fig.8.4: Contour plot of QWFET with Si-
doping layer inside InAlAs spacer layer. 
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Fig.8.3: Contour plot of QWFET with plain InAlAs 
spacer layer.  
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8.3 Band profiles for varying gate voltages 

Band-profiles of the semiconductor devices along the x and z planes are obtained for different 

gate voltages. As the gate voltage is increased the band- profile is seen to fall further below the 

Fermi-level in the channel region which is indicative of higher charge accumulation. Fig.8.5 

shows the band-profile of the undoped QWFET along the x-axis and Fig.8.6 represents the 

band profile along the z-axis. 
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Fig.8.5: Band profile of undoped QWFET along x-axis for 
VG= 0V, 0.3V, 0.6 V and 0.9V.  
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Fig.8.6: Band profile of undoped QWFET along z-axis 
for VG = 0V, 0.3V, 0.6 V and 0.9V. 
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In Fig.8.7 and Fig.8.8 the band profiles of doped QWFET along x-plane and z-plane are 

depicted. Compared to the undoped QWFET, the Si- doped QWFET has more band bending 

in the channel region, hence it is capable of greater charge accumulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig.8.8 the Si- doping layer can be seen adjacent to the channel. As the voltage increases, 

the doping layer falls further below the Fermi-level leading to larger electron build up in the 

layer and consequently increasing the probability of more electrons tunnelling into the channel. 
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Fig.8.7: Band profile along x-axis for VG = 0V, 0.3V, 0.6 
V and 0.9V. 
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Fig.8.8: Band profile along z-axis for VG = 0V, 0.3V, 0.6 V 
and 0.9V. 
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8.4 Charge density plot 

The charge density plots in Fig.8.9 and Fig.8.10 (a, b) portray the charge accumulation in the 

InGaAs channels of the semiconductor devices. Fig.8.9 is the charge density plot of the InGaAs 

QWFET with undoped spacer-layer and Fig.8.10(a, b) is the charge density plot of the InGaAs 

QWFET with doped spacer-layer for gate voltage 0.9V and 1.1V. 
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Fig. 8.9: Charge density plot of undoped QWFET. 
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Fig.8.10a: Charge density plot of doped QWFET at VG=0.9V 
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Fig.8.10b: Charge density plot of doped QWFET at VG=1.1V 
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8.5 Charge density vs. gate voltage graph 

Fig.8.11 and Fig.8.12 show the charge density vs. the gate voltage graphs of the two 

semiconductor devices. Fig.8.11 is the charge density vs. gate voltage graph of the undoped 

device and Fig.8.12 represents that of the doped device. By comparing the two graphs, it can 

be seen that for the same gate voltages, the Si-doped QWFET has a much higher charge density 

than that of the undoped QWFET. 
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Fig.8.11: Charge density vs. gate voltage graph of 
undoped QWFET 
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Fig.8.12: Charge density vs. gate voltage graph of 
doped QWFET 
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8.6 Capacitance vs. gate voltage curve 

The capacitance vs. gate voltage graphs of the two QWFETs are shown in Fig.8.13 .The 

capacitance curve of the InGaAs QWFET with InAlAs spacer layer is similar to the original 

QWFET with InP spacer layer [3] as shown in Fig.8.13. The capacitance curve of the InGaAs 

QWFET with Si- doping layer is also shown. From the graph it can be seen that the Si-  

doped QWFET has a lower threshold voltage (0.2V) compared to threshold voltage of undoped 

QWFET which is 0.3V. Moreover, Si- doped QWFET has an improved C-V characteristics 

compared to the undoped QWFET. This means it has better current drive and is faster than the 

undoped QWFET. 
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Fig.8.13: C-V curves of the four different QWFETs. The Si- doped QWFET has the 
greatest capacitance.  
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9. CONCLUSION 

In this paper, a 2-D Schrodinger-Poisson coupled simulator was developed. The simulator was 

benchmarked by simulating an InGaAs QWFET with InP spacer layer and comparing the C-V 

curves. The C-V curve obtained after simulation was almost identical to the original C-V curve 

of the device. Next, two QWFET devices were simulated. The first one was an InGaAs QWFET 

with an InAlAs spacer layer and the second was an InGaAs QWFET with a Si- doping layer 

inside the InAlAs spacer layer. These types of non-planar structures have shown improvements 

in performance, scalability and gate control and hence, have been the topic of various research 

over the past decades.  

From the simulation results it was seen that the QWFET with the Si- doping layer in the 

InAlAs spacer layer has better charge accumulation. Moreover, the QWFET with the Si-

doping layer exhibits a larger capacitance. Both QWFETS, with and without the Si- doping 

layer in the InAlAs spacer layer, has low threshold voltage. The InGaAs QWFET with only 

the InAlAs spacer layer has similar characteristics to the InGaAs QWFET with InP spacer 

layer. 

One negative aspect of the QWFET with Si- doping layer was the fact that there was too 

much power consumption when the device was on. As a result, the device cannot be used for 

low power applications. However on the positive side, the QWFET with Si- doping layer in 

the InAlAs spacer layer showed greater charge density and higher capacitance compared to the 

InGaAs QWFETs with the InP and InAlAs spacer layers making it faster and ideal for lower 

scaled voltage logic applications.  
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