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ABSTRACT 

Various kinds of deterministic models for the spread of infectious disease in populations have been ana-
lyzed mathematically and applied to specific diseases. In this paper a deterministic model for the dynamics 
of an infectious disease in the presence of a preventive vaccine is formulated. The model is a special case of 
a more general model, which is also applicable to other models of infectious diseases. The three-
dimensional model which assumes a non-linear incidence rate is analyzed qualitatively to determine the 
stability of its equilibria. This model is used to investigate the potential impact of the optimal vaccine cov-
erage threshold needed for disease control and eradication.  
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I. INTRODUCTION 

The epidemiology of infectious diseases has moved be-
yond identifying agents and risk factors to a more de-
tailed understanding of the mechanisms controlling the 
distribution of infections and disease in populations. The 
basic types of deterministic models for infectious dis-
eases which are spread by direct person to person con-
tract in a population with various parameters have been 
widely studied [1]. One of the most important concerns 
about any infectious disease is its ability to invade a 
population.  Many epidemiological models have a dis-
ease free equilibrium (DFE) at which the population re-
mains in the absence of disease [2]. The classical SIR 
models are very important as conceptual models (similar 
to predator-prey and competing species models in ecol-
ogy). The SIR epidemic modeling yields the useful con-
cept of the threshold quantity which determines when an 
epidemic occurs, and formulas for the peak infective 
fraction and the final susceptible fraction [3]. The con-
ventional SIR model for disease transmission has been 
broadly studied (see the reference, [4-6]). The majority  

of these discussions assume the rate of a bilinear mass 
action. In this paper, we try to present a model for the 
transmission dynamics of an infectious disease that in-
corporates a non-linear incidence rate, a preventive vac-
cine that is given to susceptible individuals. In order to 
control or eradicate the communicable disease, it is es-
sential to have a preventive vaccine that provides lasting 
protection. According to reference [4], effective vaccines 
have been used successfully to control smallpox, polio 
and measles. Once such a potent vaccine (with high 
enough efficacy) has been developed, important epide-
miological questions, such as what proportion of the sus-
ceptible population must be immunized in order to eradi-
cate the disease, must be addressed. The model we pro-
pose will be analyzed qualitatively to determine the op-
timal vaccine coverage level needed to effectively con-
trol or eradicate the disease. The model we propose will 
be analyzed qualitatively in Section 3 and Section 4 to 
determine the stability of its associated equilibria and the 
optimal vaccine coverage level needed to effectively 
control or eradicate the disease. 
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II. MODEL FORMULATION 
 
In our model, we have divided the population into three  
classes: Susceptible individuals, vaccinated individuals 
and infected individuals. We denote the population of 
those who are susceptible as X , who are vaccinated as 
Y  and those who subsequently infected as Z  respec-
tively. Populations enter the susceptible class at constant 
rate δ . The transmission probabilities of susceptible and 
vaccinated individuals are 1λ  and 2λ  respectively, here 
the average number of contact rate is γ . It is realistically 

assumed that 12 λλ ≤ , because of reducing or eliminat-
ing the incidence of infection due to vaccination. Natural 
death rate are assumed to be η  and the vaccination cov-
erage of susceptible represented by the parameterσ . The 
structure of the model is summarized in Figure 1. (See 
Appendix)  
The differential equations of the model are given by:                                                          
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III. STABILITY ANALYSIS OF DFE 

 
3.1. Disease-free equilibrium 
 

We investigate the local stability of the steady state by 
finding the eigenvalues of the associated Jacobian matri-
ces. The model has a disease-free equilibrium (DFE), 
obtained by setting the right hand sides of (1) to zero, 
given by 
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giving the disease-free equilibrium: 
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where 0 indicates that there is no infected people ( i.e. no 
disease ) in the population. 
 

3.2. Jacobian matrix at DFE and local stability: 
 

The Jacobian of the linearized model (1) at 0ε is 
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with eigenvalues ( ) ηση −=+−= ml ,  and 
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= 21n . Since all the model pa-

rameters are positive, it follows that  0, <ml . Thus, 

the equilibrium 0ε  is locally asymptotically stable pro-

vided 0<n .  
 
3.3. The basic reproduction number 
 

The basic reproduction number bℜ , is “the expected 
number of secondary cases produced, in a completely 
susceptible population, by a typical infective individual” 
[8]. Here, we have found the basic reproduction number 
using the reference [4], as 
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Lemma 1: 
 

The DFE 0ε  is locally asymptotically stable if 1<ℜb  

and unstable if 1>ℜb  . 

By considering bℜ  as a function of σ  

( )( )σbbei ℜ=ℜ..  , it follows that 
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Since 12 λλ ≤  it is clear that  ( ) 0≤ℜ′ σb  for 

10 ≤≤ σ . Thus bℜ  is a decreasing function. This 
indicates the impact of vaccination in reducing the basic 
reproduction number bℜ .  

Furthermore, there is unique cσ  such that ( ) 1=ℜ cb σ  
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where,   2
1

1 η
δγλ
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Notice that at 0=σ , bℜ  reduces to 1bℜ . Since 

21 bb ℜ≥ℜ  (because 21 λλ ≥ ), we consider the case  

12 1 bb ℜ<<ℜ . In this range, cσ  is positive, here also 

note that 0<σ  is biologically unrealistic. 
 

Lemma 2: 
 

The DFE 0ε  is locally asymptotically stable if cσσ >  

and unstable if cσσ ≤ . 
This lemma clearly implies that if the vaccine coverage 
level exceeds the threshold ( )cσ , then the DFE is the 
only equilibrium and it is locally asymptotically stable 
and consequently, the disease can be eradicated. 
 

IV. EXISTANCE AND STABILITY OF 
ENDEMIC EQUILIBRIUM 

 
4.1. Condition for existence of endemic equilibrium 
 
Although the endemic equilibria (EE) are difficult (or 
impossible) to express in closed form, we offer a tech-
nique for determining the conditions for disease preva-
lence ( )0≠Z  based on a “vaccination function” as 
follows. Equation (4) can be rewritten as: 
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also from (2) and  (3) can respectively be expressed as,  
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Substituting (8) and (9) into (7) leads to the “vaccination 
function” [ ]( )∞,0on  
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Since ,12 <ℜb  then 

    ( )[ ] 0122 <++− ZZ ηγληδγλ for   0≥Z                             

Thus the sign of ( )Zσ  depends on the sign of the func-
tion, where 
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Therefore, ( ) 0≤Zg  for cZZ ≤≤0  and ( ) 0>Zg  

for cZZ > . Thus 
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                  ( ) 0=cZσ  
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It is easy to verify that the function ( )Zσ ′  has at most 

two roots for ,0≥Z  and the equation ( ) cZ σσ =  has 

at most one root for .0>Z  It is significant, therefore to 

study the qualitative behavior of ( )Zσ  based on the 

sign of ( )0σ ′  as follows: 
 

Case 1:  ( ) 00 >′σ  
 

In this case, there exists 0~>Z  such that  ( )Zσ  is in-

creasing for ( )ZZ ~,0∈  and decreasing for 

.~ZZ > Thus, there is a unique 0Z  with  cZZZ << 0
~

 
such that 
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    ( ) ( ) ( ) ( )10 0 =ℜ== bcZiii σσσ    (See Fig. 2) 
 
 
Case 2:   ( ) 00 <′σ  
 

Here, ( )Zσ  is a decreasing function and ( ) cZ σσ <  

for  0>Z   (see Fig. 3) 
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Fig. 2 Graph of the function ( )Zσ  vs ( )0≥Z , when 

( ) .00 >′σ  
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Fig. 3 Graph of the function  ( )Zσ  vs ( )0≥Z  when 

( ) .00 <′σ  
 

It should be noted that in both cases 1 and 2 endemic 
equilibria, cZ  exists in the absence of vaccina-

tion ( )0=σ . When  σ  is increasing in the interval 

]( cσσ ,0∈ , the infected state remains stable. In fact 
expectedly higher values of σ  lead to corresponding 
decrease in the steady–state values of the number of in-
fected individuals. The uninfected state is stable for 

]( 1,cσσ∈  (in this case, 1<ℜb ). Furthermore, the 

model undergoes a backward bifurcation at 0Z  from a 

prevalence state to the disease free state 0ε  (where, 

( ) ;0 cZ σσ = see Fig. 2). If ( )Zσ  is decreasing from 

values ( ) cZ σσ >  to values below ( ) ;00( <′σσ c  
see Fig. 3), the model undergoes a forward bifurcation at 

0=Z  from 0ε  to a prevalence state ( ).0≠Z  We note 
that a typical infective individual will undergo a random 

walk through the infective classes, possibly moving both 
forward and backward several times before being re-
moved from the population [8]. It is mentioning that the 
number of non-trivial equilibria of the model (1) depends 
on the sign of ( ).0σ ′  From cases 1 and 2, it can be seen 
that, in addition to the DFE, there is one ( see Fig. 2 and 
3 when ( ) cZ σσ ≤ ) or even two equilibria (see Fig. 2 

when ( ) cZ σσ > ) of the model (1). 
 

4.2. Local stability analysis 
 

To fully understand the local stability of a endemic equi-
librium of (1), given by ( ),,, **** ZYX=ε  we make 
the following change of coordinates: 
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Let 21 ,ττ  and 3τ  be the eigenvalues of bJ  and 

iiT τ31max ≤≤= . Then, the stability of the non-trivial 

equilibrium *ε will depend on the threshold condition 
T  [7]. 
 
Theorem 1: 
 

The non-trivial equilibrium *ε is locally asymptotically 
stable if 1<T  and unstable if 1≥T . 
 
4.3. Numerical simulation and discussions 
 
In order to illustrate the various theoretical results the 
threshold predicted in theorem, a number of numerical 
experiments (using Mathematica package) were carried 
out to compute the solutions of ( ) ( ) ( ){ }4,3,2  using the 
parameter values. The parameter values are estimated as 
follows: 700=δ , 00001.01 =λ , 

00000003.02 =λ , 05.0=η , 4=γ . With this 
parameter values, the optimal vaccination coverage is 

527732.0=cσ . We considered the cases  cσσ <  

and cσσ > . The results tabulated in Table 1 (see Ap-
pendix) are compared with those obtained theoretically 
from theorem (evaluating the eigenvalues of bJ  at the 

considered parameter values and determining T ).  
In the first set of experiments, where cσσ <= 3.0 , a 

single positive endemic equilibrium exists. Here, 1<T  
and  ( )1,21211,2121*

1 =ε  is locally asymptotically 
stable using theorem 1. The other equilibrium 

( )9.0,21211,721*
2 −−=ε  is unstable because 

1>T  in this case again using theorem. Note that the 
equilibrium *

2ε involves unrealistic negative values. 

In the second set of experiments, where  cσσ >= 6.0 , 
the non-trivial equilibria have negative components and 
are unstable ( 1>T  in both cases). In this case the DFE 
is locally asymptotically stable, so that the disease can be 
eradicated. This is consistent with Lemma 2. Overall; 
these simulation results verified the theoretical predic-
tions in Lemma 2 and  Theorem 1. 
 

VI. CONCLUSION 
 
A new deterministic model, which assumes non-linear 
incidence, is constructed and used to analyze the effect 
of a preventive vaccine on the transmission dynamics of 
an infectious disease. The model is rigorously analyzed 
to investigate the existence and stability of the associated 
equilibria. Numerical simulations were carried out using 
reasonable sets of parameter values to asses the impact of 
various vaccine features and characteristics on disease 
control.  A threshold level of vaccine coverage ( )cσ  
needed for controlling or eradicating the disease has been 
qualitatively determined. Our study show that higher 
values of vaccine coverage ( )σ  that are lower than the 
threshold value significantly reduces the number of in-
fected individuals, but never lead to disease eradication. 
Disease eradication is only feasible if the vaccination 
coverage level exceeds the threshold value when the 
vaccination function is decreasing. These theoretical 
findings have been verified numerically. Overall, this 
study shows that, the impact of vaccination with desir-
able characteristics can significantly help in halting the 
spread of infections diseases and controlling the diseases 
in future. As more prevention interventions become 
available, the tools of mathematical modeling will be-
come increasingly important for helping us to understand 
and maximize the population level impacts these inter-
ventions can have. 
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APPENDIX 

 
 

 
 
 
 

        

Fig 1: Model Structure. 

 

Table 1: Simulation results for endemic equilibria using various values of σ . 
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