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Abstract
The control of pest populations by using bacteria as insect pathogens has been an attractive

alternative to the application of chemical pesticides. As chemicals cause damage to the

environment, biological control is preferable and Bacillus thuringiensis (Bt) which produces

insecticidal δ-endotoxin (crystal protein) have been most widely used as biopesticide in

agriculture. But to date no broad based target oriented work on Bt mass production has been

initiated in Bangladesh. The present study was aimed at enhancing the δ-endotoxin synthesis in a

suitable medium by Bacillus thuringiensis subsp. kurstaki (Btk) HD-73 harboring potential cry

genes active against lepidoptera insects by regulating some key components of medium such as

carbon and nitrogen sources, amino acid (cystine) and basal salts affecting fermentation. In this

regard, the growth, sporulation and δ-endotoxin synthesis by Btk HD-73 were examined in the

culture of different media at 30ºC in shake and bioreactor culture conditions. The experiment

was carried out under both monophasic submerged fermentation (SmF) and then biphasic solid

state fermentation (SSF) so as to which facilitates sporulation under its stressed conditions. In

SmF condition, the conventional Luria-Bertani (LB) medium which was enriched with nitrogen

source (10% defatted soybean meal) supported 28.57% sporulation and 125% endotoxin increase

over LB (alone). In biphasic SSF condition although the sporulation increased but the endotoxin

yield was decreased when compared with monophasic SmF condition. The effect of cystine on

sporulation and endotoxin synthesis was highly pronounced in LB-soybean medium (LBS) with

a range of 19.54% and 131.35% higher endotoxin yield respectively in SmF condition. The basal

salts-soybean-cystine (SMc) medium resulted in 7.65% decrease in endotoxin production than in

LB-soybean-cystine (LBSc) medium, but it is comparable. Addition of molasses balanced the

C:N ratio in the SMc medium thus helping 84.85% higher endotoxin synthesis after 24 hours

fermentation. Substitution of basal salts with cost effective sea water yielded about 21% less

endotoxin. For large scale production, use of soybean extract than that of soybean mass in the

culture medium supported better performance. The optimum medium thus obtained consisting of

soybean extract-molasses-cystine with sea water was used in 3L bioreactor cultivation for

endotoxin synthesis by Btk HD-73 under 30% saturation of dO2 through cascade of agitation and

aeration. The production rate obtained was 1.67 fold higher in bioreactor than in shake culture.

The present results may successfully be used for large scale production of biopesticide in

Bangladesh.
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Introduction 1

The competition for crops between human and insects is as old as agriculture. Use of chemical

substances to control pests was started in the mid-1800s. Early insecticides consisted of some

inorganic chemicals and organic arsenic compounds. Organochloride compounds,

organophosphates, carbamatespyrethroids and formamides followed these compounds. Many of

these chemicals are also being used today. Certain properties made these chemicals useful, such

as long residual action and toxicity to a wide spectrum of organisms. However, chemical

pesticide applications have caused many environmental problems including insect resistance,

toxicity to humans and to beneficial insects (Glazer and Nikaido, 1995).

One of the practical means of increasing crop production is to minimize the pest associated crop

losses. Insect pest control by toxic chemicals has brought about considerable protection to crop

yields over decades. Unfortunately, extensive and indiscriminate uses of these conventional

insecticides have resulted in environmental pollution, risks to human and animal health, adverse

effect on the non-target beneficial insects, resistance to chemicals and resurgence of minor pests

(Rao et al., 1999).

Bangladesh is an agricultural country facing many problems of noxious insects that cause

significant reduction of major agricultural products. Chemical control is the main solution for

insect pest problem in Bangladesh as well as in many countries in the world. The extensive and

indiscriminate uses of chemical pesticides have created many problems. Chemical insecticides

affect both beneficial insects and pest species. Consequently, biological agents can be used as

alternative strategies for insect control.

Biological pesticides are becoming an important component in crop and forest protection and in

insect vector control. These pesticides are natural, disease causing microorganisms that infect or

intoxicate specific pest groups (Carlton, 1988; Spear, 1987). Like all organisms, insects are

susceptible to infection by pathogenic microorganisms.

1.1 Introduction
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Many of these infectious agents have a narrow host range and, therefore, do not cause

uncontrolled destruction of beneficial insects and are not toxic to vertebrates. The greatest

successes in microbial pesticides have come from the uses of Bacillus thuringiensis (Bt). Bacillus

thuringiensis is a major microorganism, which shows entomopathogenic activity (Glazer and

Nikaido, 1995; Schnepf et al., 1998). The organism is a ubiquitous, gram-positive and spore-

forming bacterium that forms parasporal crystals during the stationary phase of its growth cycle.

Commercial preparations of Bt have been shown to be the most successful biological control

products worldwide (Carlton, 1988). At present, Bacillus thuringiensis is the only "microbial

insecticide" in widespread use.

Bt is a naturally occurring bacterium common in soils throughout the world. Several strains can

infect and kill insects. Because of this property, Bt has been developed for insect control. In

recent years, there has been tremendous renewed interest in Bt. several new products have been

developed, largely because of the safety associated with Bt based insecticides. Its insecticidal

activity depends on parasporal crystals encoded by cry genes and this insecticidal activity varies

according to insect type. Natural isolates of B. thuringiensis have been used as a biological

pesticide since the 1950s for the control of certain insect species among the orders Lepidoptera,

Coleoptera and Diptera. The genes of B. thuringiensis coding parasporal crystals are also a key

source for transgenic expression which provides pest resistance in plants (Schnepf et al., 1998).

This feature makes B. thuringiensis the most important biopesticide on the world market

(Bernhard et al., 1997). In 1995, worldwide sales of B. thuringiensis based insecticides were

estimated at $90 million representing about 2% of the total global insecticide market (Lambert

and Peferoen, 1992; Schnepf et al., 1998).

Because of the economic importance of Bt as powerful biological control agents against harmful

insect pests, special attention was paid to elucidate and optimize growth conditions of Bt that

leading to the highest yields of their toxins. Salama et al., (1983) and Sachdeva et al., (1999)

were reported that the commercial application of the organism depends on the cost of raw

materials, strain efficiency, fermentation cycle, maintenance of process parameters,

bioprocessing of fermentation fluid, and formulation of the final product.
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The cost of raw materials is one of the principal factors influencing the overall Bt production. In

the conventional Bt production process, the cost of raw materials varied between 30% and 40%

of the total cost depending on the plant production capacity (Ejiofor 1991; Lisansky et al., 1993).

Therefore, local production of this insecticide in countries like Bangladesh should focus on the

use of media containing cheap, locally available sources including agro-industrial by products.

In the current study, attempts were made to use defatted soybean meal, one of the most common

and cheap by products of edible oil industry in Bangladesh, as a raw material for production of

Bt toxin by the reference strain Bacillus thuringiensis subsp. kurstaki HD-73. An attempt was

made to determine the effect of various factors such as different carbon and nitrogen sources,

amino acid such as cystine and basal salts on sporulation and δ-endotoxin synthesis by Bacillus

thuringiensis subsp. kurstaki HD-73. Moreover, sea water was used in place of basal salts for

development of cost effective medium for large scale production of Bt biopesticide. The pattern

of sporulation and toxin production of Bacillus thuringiensis subsp. kurstaki HD-73 in media

formulated with defatted soybean meal and various factors were investigated.
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1.2.1 Bacillus thuringiensis

Bacillus thuringiensis (Bt) is a gram-positive, spore-forming bacterium that is well known for the

production of proteinaceous parasporal crystalline inclusion during sporulation which is toxic to

insect upon ingestion. This inclusion is commonly called crystal, parasporal body, delta

endotoxin or insecticidal crystal protein (ICP) (Hannay, 1953; Heimpel, 1967; Hickel and Fitch,

1990). Cry proteins constitute a family of related proteins that can kill insects of agricultural and

health importance belonging to the Lepidoptera, Coleoptera, Diptera, Hymenoptera, Homoptera,

and Mallophaga orders as well as some invertebrates.

B. thuringiensis is a member of the genus Bacillus and like the other members of the taxon has

the ability to form endospores that are resistant to inactivation by heat, desiccation and organic

solvents. The most distinguishing feature of Bacillus thuringiensis from closely related Bacillus

species (e.g. B. cereus , B. anthracis ) is the presence of a parasporal crystal body that is near to

spore, outside the exosporangium during the endospore formation, which is shown in Figure 1.1

(Andrews et al., 1985).

Figure 1.1: Formation of the toxic parasporal crystal in B. thuringiensis (Madigan et al., 2000;

Brock Biology of Microorganisms, Chapter 12, pp 509)

1.2 Literature Review
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The spore formation of the organism varies from terminal to sub terminal in sporangia that are

not swollen, therefore, B. thuringiensis resembles other Bacillus species in morphology and

shape (Stahly et al., 1991). This bacterium has filamentous appendages (or pili) on the spores

(Des Rosier and Lara, 1981; Smirnova et al., 1991; Zelansky et al., 1994). Colonies have a dull

appearance and often an undulate margin from which extensive outgrowths do not develop

(Sneath, 1986). Bt has been used as a successful biological control agent for more than 40 years.

Bt biopesticide have inherent advantages in certain pest control applications. They are used as a

resistance management tools in insect control. Due to their distinct mode of action they are

alternated or combined with chemical pesticides.

1.2.2 History of Bacillus thuringiensis

In 1901 a spore forming bacterium was isolated in Japan by Ishiwata from diseased larvae of the

silkworm, Bombyx mori. Ishiwata described this bacterium as sotto disease Bacillus. The

Japanese word “sotto” means limp, the typical condition of insect with this disease (Dulmage

and Aizawa, 1982). In 1911, without the knowledge of the work done by Ishiwata, Berliner

isolated this bacterium from disease larvae of Mediterranean flour moth, Anagasta kuhniella and

rediscovered Bt. He named it Bacillus thuringiensis, after the German town Thuringia where the

moth was found. In 1915, Berliner reported the existence of a crystal within Bt, but the activity

of this crystal was not discovered until much later (De Barjac and Bennefoi, 1968).

Farmers started to use Bt as a pesticide in 1920. The first commercial product of the bacterium,

called ‘Sporeine’, was available in France in 1930s (Jacobs, 1951). Sporeine, at that time was

used primarily to kill flour moths. However, it was not commercially available until the 1950s.

Subsequent isolation of an efficient variant strain (B. thuringiensis kurstaki strain HD1) by

Dulmage (1970) made it the most widely employed biological pest control agent. Development

of B. thuringiensis as a microbial insecticide followed from better strains, increased efficiency in

production and quality control leading to the development of formulations with high activity and

improved spray characteristics (Van Frankenhuyzen, 1993).
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However, some constraints limited their penetration into major crop markets (Gelernter and

Evans, 1999), viz., their specificity, narrow host range, low persistence on the plant, high cost of

production, etc. In spite of these drawbacks, B. thuringiensis formulations are some of the most

eco-friendly insecticides ever used.

1.2.3 Ecology and prevalence of B. thuringiensis

Martin and Travers (1989) isolated B. thuringiensis from soil samples in five continents (Africa,

Asia, Europe, North and South America) and their associated islands. They found that the

frequency of this bacterium is higher in East Asia than in other areas of the world. Their findings

suggested that soil is the primary habitat of B. thuringiensis in nature. B. thuringiensis is

indigenous to many environments including soil (Martin and Travers, 1989; Bernard et al.,

1997), insect cadavers (Corazzi et al., 1991; Kaelin et al.,1994; Itaqou-Apoyolo et al., 1995;

Lopez-Meza and Ibarra, 1996; Cadavos et al., 2001), stored product dust (Chambers et al., 1991;

Meadows et al., 1992; Hongyu et al., 2000), leaves of plants (Smith and Couche, 1991; Bel et

al., 1997; Mizuki et al., 1999), and aquatic environments (Iriarte et al., 2000; Ichimatsu et al.,

2000). Moreover, B. thuringiensis has recently been isolated from marine sediments (Maeda et

al., 2000), and also from the soils of Antarctica (Forsty and Logan, 2000). B. thuringiensis

strains show genetic diversity with different toxic potential mostly due to plasmid exchange

between strains (Thomas et al., 2001).

Arrieta et al., 2004 isolated a total of 202 B. thuringiensis isolates from Costa Rican coffee

plantations infested with Hypothenemus hampei. These were analyzed through morphology of

the crystal inclusions and SDS-PAGE profile of delta endotoxins. Evaluation of 105 isolates

showed diverse crystal morphologies and presence of many cry genes per strain.

There is a long history of recording of B. thuringiensis in soil (Addison, 1993). There are many

methods to isolate this bacterium from different habitats, which include shaken flask technique,

leaf lift technique and leaf scrub technique coupled with sodium acetate selection (Smith and

Couch, 1991, Travers et al., 1987) or penicillin cycling (Johnson and Bishop, 1996).
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Different methods are used for the characterization of B. thuringiensis isolates such as

observation of crystal morphology, biochemical testing, crystal protein (parasporin) protein and

rapid technique for screening of a large number of isolates (Juarez-Perez et al. 1997; Porcar &

Juarez-Perez 2002).

1.2.4 Genetic Diversity of B. thuringiensis

1.2.4.1 B. thuringiensis Genome

B. thuringiensis strains have a genome size of 2.4 to 5.7 million base pairs (Carlson et al.,1994).

Most B. thuringiensis strains contain several circular and linearextrachromosomal elements

(plasmid DNA) ranging from 2 kb to greater than 200 kb (Carlton and Gonzalez, 1985). They

make up to 20% of the total DNA (Aronson, 2002). The genes (cry genes) encoding crystal

proteins are mostly carried on large plasmids (Li et al.,1991). Sequence hybridization studies

have shown that these genes are also found in the B. thuringiensis chromosome (Carlson et

al.,1994).

B. thuringiensis and its subspecies also contain a large variety of transposable elements

including  insertion  sequences  and  transposons  (Mahillon et al.,1994). Insertion sequences (IS)

are especially found in large plasmids and many of these sequences carry protoxin genes.

Plasmids that do not include protoxin genes also play a role in the regulation of protoxin

synthesis. Plasmids also enhance and provide supplementary growth factors when nutrients are

limited. If protoxin gene is found on a transposable element, it can move into and out of the

chromosome. Because of this movement, protoxin sequences may sometimes be present in the

chromosome of some subspecies (Aronson et al., 1986). It is postulated that they are involved  in

the amplification of the cry genes in the cell. A second possibility for their role is mediating the

transfer of plasmid between self-conjugative plasmids and chromosomal DNA or non-

conjugative plasmids (Schnepf et al., 1998).



Literature review 8

1.2.4.2 The cry Genes

The genes coding for the insecticidal crystal proteins are normally associated with plasmid of

large molecular mass (Gonzales and Carlton, 1980). Many Cry protein genes have been cloned,

sequenced, and named cry and cyt genes. To date, over 100 cry gene sequences have been

organized into 32 groups and different subgroups on the basis of their nucleotide similarities and

range of specificity (Crickmore et al., 1998; Bravo et al., 1998). For example, the proteins toxic

for lepidopteran insects belong to the Cry 1, Cry 9, and Cry 2 groups. The toxins against

coleopteran insects are the Cry 3, Cry 7, and Cry 8 proteins and Cry1Ia1, which is a subgroup of

Cry 1 proteins. The Cry 5, Cry12, Cry 13 and Cry 14 proteins are nematocidal, and the Cry

2Aa1, which is a subgroup of Cry 2 proteins, Cry 4, Cry 10, Cry 11, Cry 16, Cry 17, Cry 19, and

Cyt proteins are toxic to dipteran insects (Zeigler, 1999). Each of the B. thuringiensis strains can

carry one or more crystal toxin genes, and therefore, strains of the organism may synthesize one

or more crystal protein. Transfer of plasmids among B. thuringiensis strains is the main

mechanism for generating diversity in toxin genes (Thomas et al., 2001).

According to Rowe and Margaritis et al., (1987) and WHO (1999), there have been nine

different toxins described in Bt strains. These toxins are α-exotoxin (phospholipase C), β-

exotoxin (thermostable exotoxin), γ-exotoxin (toxic to sawflies), δ-endotoxin (protein parasporal

crystal), louse factor exotoxin (active only against lice), mouse factor exotoxin (toxic to mice and

Lepidoptera), water-soluble toxin, Vip3A (Bt vegetative insecticidal protein) and enterotoxin

(produced by vegetative cells). Out of these several toxins produced by Bt strains, δ-endotoxin

received much attention and have been exploited commercially for production of bioinsecticides.

Bt crystals have various forms (bipyramidal, cuboidal, flat rhomboid, or a composite with two or

more crystal types). The crystal toxins (δ-endotoxin) are belonging to two structurally different

groups:

1. Cry family, with specific cytolytic activity as Cry1Aa1, Cry1Ba1, Cry2Aa1, etc.

2. Cyt family, which is a nonspecific cytolytic and hemolytic as Cyt1Aa1, Cyt2Aa1, etc. (WHO

1999 and Delecluse et al., 2000).
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1.2.4.3 Cry Protein Structure

Several terminologies are used for the crystalline inclusion bodies, for example, insecticidal

crystal proteins (ICP), cry toxins or δ-endotoxin. These parasporal crystals consists of proteins,

which exhibit highly toxic insecticidal activity. On the otherhand actively growing cells are not

toxic because they lack the crystalline inclusions. The primary structure of Bt δ-endotoxins

varies with the gene that encodes the protein. Numerous Bt toxin genes have now been identified

and are classified according to a designation proposed by Hofte and Whitely (1989). Briefly, the

toxins identified to date mostly exist in three size designations, namely 125-128, 65-75, and 25-

28 kilodaltons (kd).

The three dimensional structures of the four δ-endotoxins (Cry 1, Cry 2, Cry 3 and Cyt 2A) have

been resolved by X-ray crystallography (Grachulski et al., 1995; Li et al., 1991; Liu et al., 1996).

The Cry 1, Cry 2, and Cry 3 are remarkably similar, each of them consisting of three domains,

which is shown in Figure 1.2. The N-terminal Domain I consists of seven α-helices. These are

six amphipathic helices which around a central core helix. Domain II consists of three -sheets

with three-fold symmetry. This conformation is called ‘Greek Key’. The C-terminal, domain III,

consists of two antiparallel of -sheets in a ‘jelly-roll’ formation. Each domain has a role in the

mode of action of the toxin. Domain I is involved in membrane insertion and pore formation.

Domains II and III are both involved in receptor reorganization and binding. Additionally, a role

for domain III in pore function has been found (De Maagd et al., 1996, 2001).

The activated cry toxins have two functions: receptor binding and ion channel activity. The

activated toxin binds to the specific receptors on the mid-gut epithelia of susceptible insect

(Hofman et al., 1988). Binding is a two stage process involving reversible and irreversible

binding (Van-Rie et al., 1989). These steps may include toxin binding to the receptor, insertion

of the toxin into apical membrane or both. On the other hand, the Cyt toxins have no specific

receptor recognition, although, they cause pore formation. Many, if not most, inclusions contain

more than one protein; for example, the inclusion body of B. thuringiensis subsp. kurstaki (Btk)

HD-3 comprises five different polypeptides, three Cry1 and two Cry2 protoxins (Hofte and

Whiteley, 1989).
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Figure 1.2: The structure of Cry 3A (http://www.bioc.cam.ac.uk/UTOs/Ellar.html)

However, Cyt 2A structure is radically different from the other three structures (Crickmore et al.,

1998). It consists of a single domain, which is shown in Figure 1.4.The structure of the domain is

composed of alpha helix outer layers wrapped around a mixed beta-sheet (Schnepf et al., 1998).

Figure 1.3: The structure of Cyt 2A (http://www.bioc.cam.ac.uk/UTOs/Ellar.html)



Literature review 11

1.2.5 Mechanism of action of Bt formulations

Crystal proteins of a given strain of B. thuringiensis are highly specific to certain groups of

insects. When a susceptible insect ingests these crystalline proteins, known as delta endotoxins

(130 kDa), they are solubilized and proteolytically digested to yield the active polypeptide (60–

70 kDa), which specifically binds to protein receptors in the epithelial cells of the insect midgut

(Hofte and Whitely, 1989; Luthy and Wolfersberger, 2000) and produce pores, leading to the

loss of normal membrane function. As a result epithelial cells lyse, larvae stop feeding, get

paralyzed and die of starvation, septicemia or a combination of both (Schwart and Laprade,

2000). The process of solubilization, proteolysis and receptor binding of Domain II and III

followed by insertion and pore formation by arrangement of Domain I of the toxic protein (De

Maagd et al., 2001).

The mode of action of B. thuringiensis has been reviewed by Schnepf et al., (1998) and can be

summarized in the following stages: 1) ingestion of sporulated B. thuringiensis and insecticidal

crystal protein (ICP) by an insect larva; 2) solubilization of the crystalline ICP in the midgut; 3)

activation of the ICP by proteases; 4) binding of the activated ICP to specific receptors in the

midgut cell membrane; 5) insertion of the toxin in the cell membrane and formation of pores and

channels in the gut cell membrane, followed by destruction of the epithelial cells (Cooksey,

1971; Fast, 1981; Huber et al., 1981) and 6) subsequent B. thuringiensis spore germination in the

hemocoel and septicemia may enhance mortality (Figure.1.4).

The intact toxin crystal proteins must undergo solubilization and proteolysis to remove the N-

and C-terminal amino acids before they become active in the gut of a target insect. However, in

case of transgenic plants, cry gene coding for a truncated form of the toxin is employed with

most part of the C-terminal end removed, thus requiring only minimal proteolytic processing for

activation. Elucidation and visualization of three dimensional structures has helped

understanding its processing and conformation to initiate binding to the receptors at the midgut

cell membrane (Hodgman and Ellar, 1990).
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Figure 1.4: Mechanism of toxicity of Bacillus thuringiensis δ-endotoxin toward insect.

(http://web.utk.edu/jurat/Btresearchtable.html)

1.2.6 Other Pathogenic Factors of Bacillus thuringiensis

During the active growth cycle, certain strains of B. thuringiensis produce extracellular

compounds, which might contribute to virulence. These extracellular compounds include

phospholipases, β-exotoxins, proteases, chitinases and vegetative insecticidal proteins (VIPs)

(Zhang et al., 1993; Estruch, 1996; Schnepf et al., 1998). B. thuringiensis also produces

antibiotic compounds having antifungal activity (Stabb et al., 1994). However, the cry toxins are

more effective than these extracellular compounds and allow the development of the bacteria in

dead or weakened insect larvae.

Some strains of B. thuringiensis produce a low molecular weight, heat stable toxin called β-

exotoxin, which has a nucleotide-like structure. Because of its nucleotide like structure it inhibits

the activity of DNA-dependent RNA polymerase of both bacterial and mammalian cells (Glazer

and Nikaido, 1995). B. thuringiensis strains also produce a protease, which is called inhibitor A.
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This protein attacks and selectively destroys cecropins and attacins which are antibacterial

proteins in insect. As a result, the defense response of the insects collapses. The protease activity

is specific because it attacks an open hydrophobic region near the C-terminus of the cecropin and

it does not attack the globular proteins (Dalhambar and Steiner, 1984).

Other important insecticidal proteins, unrelated to Cry proteins, are vegetative insecticidal

proteins (VIPs). These proteins are produced by some strains of B. thuringiensis during

vegetative growth. These VIPs do not form parasporal crystals and are secreted from the cell. For

this reason, they are not included in the Cry protein nomenclature. For example, the VIP 1A gene

encodes a 100 kD, a protein which is processed from its N-terminus. This processing produces

an 80 kDa product, which has been shown to be toxic to western corn root warp larvae (Schnepf,

1998).

1.2.7 Pesticides

A pesticide is a substance or mixture of substances used to kill a pest. FAO has defined the term

of pesticide as: “Any substance or mixture of substances intended for preventing, destroying or

controlling any pest, including vectors of human or animal disease, unwanted species of plants or

animals causing harm during or otherwise interfering with the production, processing, storage,

transport or marketing of food, agricultural commodities, wood and wood products or animal

feedstuffs, or substances which may be administered to animals for the control of insects,

arachnids or other pests in or on their bodies.”

The term pesticide also includes substances intended for use as a plant growth regulator,

defoliant, desiccant or agent for thinning fruit or preventing the premature fall of fruit, and

substances applied to crops either before or after harvest to protect the commodity from

deterioration during storage and transport.

1.2.7.1 Classification of pesticide

According to the nature of the pesticides they are grouped into four classes:

a) Plant derivatives e.g. Pyrethrin, Rotenone.

b) Pure chemicals e.g. Paris green.
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c) Synthetic chemicals:

 Chlorinated hydrocarbon compounds e.g. DDT, Dieldrin, and HCH.

 Organophosphate compounds e.g.  Diazinon, Malathion, Fenitrothin.

 Carbamates e.g.  Propoxur, Bendiocarb.

 Synthetic Pyrinoids e.g. Detamethrin, Permethrin.

d) Biopesticides.

1.2.7.2 Bacillus thuringiensis: As a biopesticide

1.2.7.2.1 Advantages of Bt

The specific activity of Bt generally is considered highly beneficial. Unlike most insecticides, Bt

insecticides do not have a broad spectrum of activity, so they do not kill beneficial insects. This

includes the natural enemies of insects (predators and parasites), as well as beneficial pollinators,

such as honeybees. Therefore, Bt integrates well with other natural controls. For example, in

Colorado, Bt to control corn borers in field corn has been stimulated by its ability to often avoid

later spider mite problems. Mite outbreaks commonly result following destruction of their

natural enemies by less selective treatments (Bernard R. Glick and Jack J. Pasternak, 2010).

They also reported that, perhaps the major advantage is that Bt is essentially nontoxic to people,

pets and wildlife. This high margin of safety recommends its use on food crops or in other

sensitive sites where pesticide use can cause adverse effects.

1.2.7.2.2 Disadvantages of Bt

Bt is susceptible to degradation by sunlight. Most formulations persist on foliage less than a

week following application. Some of the newer strains developed for leaf beetle control become

ineffective in about 24 hours (Andrews et al., 1987).

The highly specific activity of Bt insecticides might limit their use on crops where problems with

several pests occur, including no susceptible insects (aphids, grasshoppers, etc.). As strictly a

stomach poison insecticide, Bt must be eaten to be effective, and application coverage must be

thorough. This further limits its usefulness against pests that are susceptible to Bt but rarely have

an opportunity to eat it in field use, such as codling moth or corn earworm that tunnel into plants
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(Cannon R.J.C., 1993). Additives (sticking or wetting agents) often are useful in a Bt application

to improve performance, allowing it to cover and resist washing.

Since Bt does not kill rapidly, users may incorrectly assume that it is ineffective a day or two

after treatment. This, however, is merely a perceptual problem, because Bt-affected insects eat

little or nothing before they die.

Bt based products tend to have a shorter shelf life than other insecticides. Manufacturers

generally indicate reduced effectiveness after two to three years of storage. Liquid formulations

are more perishable than dry formulations. Shelf life is greatest when storage conditions are cool,

dry and out of direct sunlight.

1.2.8 Insects controlled by Bt

Kurstaki strain (Biobit, Dipel, MVP, Steward, Thuricide, etc.):

 Vegetable insects

 Cabbage worm (cabbage looper, imported cabbageworm, diamondback moth, etc.).

 Tomato and tobacco hornworm.

 Field and forage crop insects

 European corn borer (granular formulations have given good control of first generation

corn borers).

 Alfalfa caterpillar, alfalfa webworm.

 Fruit crop insects

 Leaf roller.

 Achemon sphinx.

 Tree and shrub insects

 Tent caterpillar.

 Fall webworm.

 Leaf roller

 Red-humped caterpillar.

 Spiny elm caterpillar.
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 Western spruce budworm.

 Pine budworm.

 Pine butterfly.

Israelensis strains (Vectobac, Mosquito Dunks, Gnatrol, Bactimos, etc.)

 Mosquito.

 Black fly.

 Fungus gnat.

San diego/tenebrionis strains (Trident, M-One, M-Trak, Foil, Novodor, etc.)

 Colorado potato beetle.

 Elm leaf beetle.

 Cottonwood leaf beetle.

1.2.9 Applications of Bt

The greatest use of Bt involves the kurstaki strain used as a spray to control caterpillars on

vegetable crops.

In addition, Bt is used in agriculture as a liquid applied through overhead irrigation systems or in

a granular form for control of European corn borer. The treatments funnel down the corn whorl

to where the feeding larvae occur.

Figure 1.5: Alfalfa webworms killed by Bacillus thuringiensis.

To control mosquito larvae, formulations containing the Bt israelensis strain are placed into the

standing water of mosquito breeding sites.
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For these applications, Bt usually is formulated as granules or solid, slow-release rings or

briquettes to increase persistence. Rates of use are determined by the size of the water body.

Make applications shortly after insect eggs are expected to hatch, such as after flooding due to

rain or irrigation. Bt persistence in water is longer than on sun-exposed leaf surfaces, but reapply

if favorable mosquito breeding conditions last for several weeks. Although the israelensis strain

is quite specific in its activity, some types of nonbiting midges, which serve as food for fish and

wildlife, also are susceptible and may be affected.

Use of Bt (israelensis) for control of fungus gnat larvae involves drenching the soil. Bt applied

for control of elm leaf beetle or Colorado potato beetle (san diego/tenebrionis strain) is sprayed

onto leaves in a manner similar to the formulations used for caterpillars. Bt does not control

shore flies, another common fly found in greenhouses (Edwards D.L. et al.,1988).

1.2.10 Factors affecting growth, sporulation and toxin production by Bacillus

thuringiensis

The nutritional aspects of Bacillus thuringiensis have been studied extensively by a number of

workers (Nickerson & Bulla 1975; Rogoff & Yousten 1969; Singer et al., 1966). It is well

established that various strains of B. thuringiensis would not grow in so-called mineral salt

medium unless certain growth factors such as glutamic acid and either aspartate or citrate are

added to the medium. Further, the addition of a known mixture of amino acids or casein

hydrolysate allowed rapid growth of B. thuringiensis but sporulation was poor unless glucose

was added (Singer et al,. 1966). Cysteine or cystine, when added to a mineral salt medium,

promoted vegetative growth of B. thuringiensis (Nickerson & Bulla, 1975). They also reported

the role of various amino acids on lipid metabolism (Rajalakshmi & Shethna, 1977). Gangurde

and Shethna (1995) have demonstrated the effect of defatted mustard meal on B. thuringiensis

subsp. Israelensis and B. sphaericus.
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1.2.10.1 Effects of different substrate (Carbon and Nitrogen nutrient source)

The media used for industrial production of B. thuringiensis are composed of complex nitrogen

and carbon sources. Production of B. thuringiensis has been found to vary drastically in media

derived from various nutrient sources. Prabakaran et al., (2008) used locally available raw

materials such as soybean flour, ground nut cake powder and wheat bran extract to improve the

yield of cell mass and sporulation of B. thuringiensis israelensis. Whey and molasses, which can

be used as low-cost and available substrates tan industrial scale, were potential carbon substrates

for delta-endotoxin production (Icgen et al., 2002).

Bt uses sugars, usually glucose, fructose, maltose, ribose, molasses, starch, dextrin, wheat flour

and insulin, producing acid during the fermentation (Nickerson and Bulla, 1974; Saalma et al.

1983; Arcas et al., 1984; Zamola et al., 1981; Foda et al., 1985; El-Bendary, 1994; Sadek, 2000;

Icgen et al., 2002 and Ozkan, Dilek et al., 2003). Ozkan et al., (2003) studied various nutritional

and cultural parameters influencing dipteral- specific δ-endotoxin synthesis by Bacillus

thuringiensis israelensis (Bti) HD500. They reported that insulin, dextrin, maltose, lactose,

sucrose, whey and glycerol were stimulatory, while glucose, starch, and molasses were

suppressive.

With respect to the nitrogen source suitable for Bt production, the overwhelming majority of

literatures revealed the inability of most of the Bt varieties to utilize inorganic nitrogen source as

a sole nitrogen source in the growth medium. Instead, at least one amino acid particularly

glutamate, aspartate, valine, leucine, serine or threonine has to be added in order to allow growth

of the organism in a minimal medium (Nickerson and Bulla, 1974; Normansell et al., 1980; El-

Bendary, 1994; Avignone-Rossa and Mignone, 1995 and Sadek, 2000). However, cysteine and

cystine amino acids showed clear inhibitory effect on growth, sporulation and toxin formation by

Bt (Rajalakshmi and Shethna, 1980; El-Bendary, 1994 and Sadek, 2000). Icgen et al. (2002a)

found that pentone was the best organic nitrogen source supporting sporulation and toxin

production by Bt.
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B. thuringiensis grows in culture media containing sources of nitrogen, carbon and mineral salts.

Various agricultural and industrial by-products, such as maize glucose, soybean flour, peanuts,

cane molasses and liquid swine manure, are carbon and nitrogen rich and may be used as raw

materials in biopesticide production. Tirado-Montiel et al. (2001) first tested the use of

wastewater sludge for biopesticide production, although the entomotoxicity level reported was

low.

Various researchers have explored alternatives to the preparation of several less expensive

culture media for Bti biopesticide production. Often, locally available, cost-effective substrates

have been used and have been shown to achieve comparable or better results than those obtained

using conventional medium. Prabakaran and Balaraman (2006) attempted to develop a medium

based on raw materials including soybean flour (Glycine max), groundnut cake powder (Arachis

hypogea), and wheat bran extract (Triticum aestivum) in a 100-L fermentor. Prabakaran et al.,

(2008) made a cost-effective medium with coconut water, which is a raw material that is

abundantly available as a waste product from the coconut oil industry. Yezza et al. (2006)

conducted the bioconversion of industrial wastewater and wastewater sludge into abiopesticide

in a pilot fermentor.

Poopathi and Kumar (2003) used potato, common sugar, and Bengal gram substrates. Poopathi

and Abidha (2007, 2008) made feather extract and feather powder, and explored the possibility

of degrading chicken feathers discarded from the poultry processing industry. Obeta and Okafor

(1984) assessed the production of insecticidal properties using shake flasks, making five

variations of the basal medium by adding different types of legume seeds, including groundnut

cake (Arachis hypogea), cow pea (Vigna unguiculata, white variety), cow pea (Vigna

unguiculata, black variety), soya beans (Glycine soja), and bambara beans (Voandzeia

subterranean). Ghribi et al., (2007) applied a new medium composed of only starch, soya bean

and diluted sea water. Ozkan et al., (2003) studied various nutritional and cultural parameters

influencing delta-endotoxin synthesis and found that, among carbon sources, insulin, dextrin,

maltose, lactose, sucrose, whey and glycerol were all stimulatory, while glucose, starch and some

molasses were suppressive.
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1.2.10.2 Effects of cysteine

Since sporulation and germination in bacilli are dependent on the nutritional status of the

organism (Hardwick and Foster, 1952), a study of the nutritional requirement of Bacillus

thuringiensis is important for delineating the control mechanisms which regulate spore and

parasporal crystal formation. Certain amino acids support growth, sporulation and crystal

formation of B. thuringiensis, while others inhibit the growth (Singer et al., 1966; Singer and

Rogoff, 1968; Bulla et al., 1975; Nickerson and Bulla, 1975; Rajalakshmi and Shethna, 1977). A

lower concentration of cystine (Nickerson and Bulla, 1975) or cysteine (Rajalakshmi and

Shethna, 1977) promotes growth; sporulation and crystal formation in Β. thuringiensis, while at a

higher concentration of cys/cysSH, only the vegetative growth was observed (Rajalakshmi and

Shethna, 1977).

Dipok Vora and Y. I. Shethna (1999) reported the effect of cysteine on the growth, sporulation

and toxin production by B. thuringiensis subsp kurstaki. A mineral salts medium supplemented

with peptone and 40mg% cystine supported enhanced sporulation (1011 spores/ml) and high

yields of insecticidal crystal protein (17.2 mg/ml) in Bacillus thuringiensis subsp. kurstaki (3a3b)

in 2.0L baffled aerated cylinders. They showed that these high yields could also be achieved with

defatted soybean and ground nut seed meal extracts when supplemented with cystine. A lower

concentration of cystine (Nickerson and Bulla, 1975) or cysteine (Rajalakshmi and Shethna,

1977) promotes growth, sporulation and crystal formation in Β. thuringiensis, while at a higher

concentration of cys/cysSH, only the vegetative growth was observed, (Rajalakshmi and

Shethna, 1977).

1.2.10.2.1 Spore and crystal formation in relation to cys/cysSH concentration

The efficiency of spore and crystal formation was studied in relation to cys/cysSH concentration.

It was noticed that in the control, as well as in the presence of cys/cysSH (0.05%), the efficiency

of spore and crystal formation was 100 percent. At a concentration of 0.1% of cys/cysSH, the

efficiency was drastically reduced. At 0.15 and 0.2% of cys/cysSH, only heat-labile spores were

formed with complete inhibition of crystal formation.
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At 0.25% cys/cysSH, there was complete inhibition of spore and crystal formation in B.

thuringiensis var. thuringiensis (Rajalakshmi and Shethna, 1980).

1.2.10.2.2 Effect of addition of cys/cysSH at the stationary phase

It was noticed that when 0.05% of cys/cysSH was added at 0 h of the stationary phase, heat-

stable spores and toxic cystals were formed. At0.1 and 0.15%, only heat-labile spores were

produced with no crystal formation. Whereas, when 0.2% of cys/cysSH was added, spore and

crystals was not formed microscopically, and the bioassay also showed no toxicity (Rajalakshmi

and Shethna, 1980).

1.2.10.2.3 Effect of addition of cys/cysSH after the stationary phase

Sporulation and parasporal crystal formation were found to be inhibited even at the concentration

of 0.15% of cys/cysSH when the addition was made 1 h after the onset of the stationary phase.

The efficiency of sporulation decreased as the time of addition of excess cys/cysSH was

increased (Rajalakshmi and Shethna, 1980).

1.2.10.2.4 Microscopic observation

The cells grown on cys/cysSH medium were thinner and longer than the control cells.

Photomicrography revealed that the control cells grown with 0.05% cys/cysSH produced spores

and crystals (figure 3). At moderate concentration of cys/cysSH (0.15%) only heat-labile spores

were formed (figure 4). At high concentration (0.25%), both spore and crystal formation were

found to be completely inhibited; besides, there was a change in the morphology of the

experimental cells, about 15 to 29 min before lysis (Rajalakshmi and Shethna, 1980).

1.2.10.3 Effects of molasses

Improvement of bioinsecticides production could be achieved by application of an adequate

fermentation technology, essentially with the use of appropriate media, by overcoming metabolic

(Zouari, N., S. Ben and S. Jaoua, 2002) limitations, and by the improvement of B. thuringiensis

strains through mutagenesis. At present the cost of B. thuringiensis production through existing
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fermentations technology is high because of the high cost of the production medium (Ghribi, D.,

N. Zouari and S. Jaoua, 2004). A less expensive medium for culturing of B. thuringiensis will

facilitate the production of biopesticides in a cost-effective manner. B. thuringiensis was

produced in different media using the seeds of legumes, dried cow blood, fishmeal and corn

steep liquor, powders of edible leguminous seeds and cane sugar molasses,corn extract and corn

steep liquor , or potato starch (Kumar et al.,2000; Dregval O.A. et al.,2002).

Molasses consists of water, sucrose, proteins, vitamins, amino acids, organic acids and heavy

metals such as iron, zinc, copper, manganese, magnesium, calcium, etc. Heavy metals, when

contained in high concentrations in the medium, cause critical problems during the fermentation.

They inhibit the microbial growth; influence the pH of the substrate, beside to be involved in the

inactivation of the enzymes associated with biosynthesis of the product (Roukas, 1998).

1.2.10.4 Effects of metal ions

Metal ions such as Ca2+, Mg2+, Mn2 +, Zn 2+, Cu2+ and Fe2+ are essential for the production of the

highest sporulation and δ-endotoxin formation by Bt (Faloci et al., 1986; Sadek, 2000 and Icgen

et al., 2002b). Ozkan et al. (2003) stated that Mn2+ was the most critical element for the

biosysthesis of Cry4Ba and Cry11Aa by Bti HD500 at 10-6 M concentration. However Mg2+ and

Ca2+ favored toxin production when provided at 8×10-3 M concentrations, respectively, while

Fe2+, Zn2+, and Cu2+ negatively influenced toxin biosynthesis.

In contrast, Sikdar et al. (1991) have recommended the addition of Fe2+ and Cu2+ for stimulation

of Cry toxin production by the same subspecies (Bti HD500). Arcas et al., (1984) have proposed

a medium (hereafter designated as Arcas’ medium) for the cultivations of Bt. This medium

produces more spores and insecticidal protoxins than any other published medium and contains

(in g/l) glucose(10), yeast extract (4), (NH4)2SO4(1), KH2PO4 (3), K2HPO4 (3), MgSO4.7H2O

(4), CaCl2.2H2O (0.041), MnSO4.H2O (0.03) in their study, they showed that mineral salts in this

medium have important role for the growth, sporulation and toxin production by Bt. In 1995,

Wei-Ming Liu and Rakesh K. Bajpai reported a modified version of this medium; the modified

media were shown superior in terms of productions of cells mass and protoxins, and potency of

the protoxins.
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The high cost of B. thuringiensis products is due to production being located in the developed

countries where production costs are higher, and also due to expenses paid in transportation to

the operational sites. Thus, local production should significantly reduce costs of pest control and

could help the development of local fermentation industries and their improvement, besides the

utilization of agro-industrial byproducts (Ghribi D. et al., 2007). In order to reduce the

production costs, cheap byproducts were used. Recently, more attention has been given to the

improvement of bioinsecticide production by application of an adequate fermentation technology

(Zouari N. et al., 2002).

1.2.10.5 Effects of pH

The growth of Bt occurs in the pH range of 5.5–8.5 (Rowe and Margaritis 1987, Icgen et al.,

2002b and Ozkan et al., 2003). The usual initial pH is 6.8–7.2; decreasing to5.8 as acetate is

released, then rising to 7.5–8 as it is consumed.

1.2.10.6 Effects of temperature

The normal temperature for growth and toxin production of Bt is 30 °C. Ozkan et al., (2003)

found that Cry4Ba synthesis by Bti HD500 was the best when the organism was grown at 25 °C,

whereas Cry11Aa synthesis was optimal at 30 °C.

1.2.10.7 Effects of aeration

Aeration is very important for Bt fermentation. Foda et al. (1985) noted the failure of the

organism to survive or sporulate under low aeration levels. Most submerged fermentation of Bt is

done using aeration rates approximately one air volume/volume of medium/minute. Recent

studies on metabolism of Bt during growth and sporulation have employed higher aeration level

e.g. 1.4 air volume/volume of medium/minute (Rowe, 1990).
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1.2.11 Mass production of Bt

Due to the economic importance of Bt as powerful biological controls agents against harmful

insect pests, special attention was paid to elucidate and optimize growth conditions of Bt that

leading to the highest yields of their toxins. Saalma et al., (1983) and Sachdeva et al., (1999)

reported that the commercial application of the organism depends on the cost of raw materials,

strain efficiency, fermentation cycle, maintenance of process parameters, bioprocessing of

fermentation fluid, and formulation of the final product. The cost of raw materials is one of the

principal costs involved in overall Bt production. In the conventional Bt production process, the

cost of raw materials varied between 30 and 40% of the total cost depending on the plant

production capacity (Ejiofor, 1991 and Lisansky et al., 1993). Therefore, local production of this

insecticide in developing countries should depend on the use of production media made of cheap,

locally available source including agro-industrial by-products (Ampofo, 1995).

For large scale production of Bt, different approaches were investigated to contrast media that

could support good production of spores and toxins at reasonable costs. Various agricultural and

industrial by-products used as raw material in Bt production were citrus peels, wheat bran, corn

meal, seeds of dates, beef blood, silkworm pupil skin, ground nut cake, cane molasses, fish meal,

cotton seed meal, soybean meal ,residues from chicken slaughter house, fodder yeast, cheese

whey and corn steep liquor (Saalma et al., 1983; Obeta and Okafor, 1983; Mummigatti and

Raghunathan, 1990; Abdel-Hameed et al.,, 1990; Lee and Seleena, 1991; El-Bendary, 1994;

Sachdeva et al., 1999; Foda et al., 2002 and 2003).Recently other wastes such as sludge and

broiler poultry litter were utilized for biopesticide (Adams et al., 2002 and Vidyarthi et al.,

2002).

In general, two methods of fermentation are used for production of microbial products,

submerged fermentation and solid state fermentation.
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1.2.11.1 Submerged Fermentation (SmF)/ Liquid Fermentation (LF)

SmF utilizes free flowing liquid substrates, such as molasses and broths. The bioactive

compounds are secreted into the fermentation broth. The substrates are utilized quite rapidly;

hence need to be constantly replaced/supplemented with nutrients. This fermentation technique is

best suited for microorganisms such as bacteria that require high moisture content. An additional

advantage of this technique is that purification of products is easier. SmF is primarily used in the

extraction of secondary metabolites that need to be used in liquid form (Subramaniyam, R. and

Vimala, R., 2012)

The search for suitable media for industrial production of Bt has been the objective of several

studies reported in the literatures. An early submerged fermentation medium for Bt production

was reported by Megna (1963). He used seed medium contained beet molasses (1%), corn steep

solids (0.85%) and calcium carbonate (0.1%). While the production medium contained molasses

(1.86%), corn steep solids (1.7%), cotton seed flour (1.4%) and calcium carbonate (0.1%). The

yield was 2.5×109 colony forming units (CFU)/ml.

Dulmage (1970) devised a fermentation medium based on defatted cotton seed flour, which

supported the production of large yield of δ- endotoxin by the tested Bt strains. The same author

(Dulmage 1971) constructed three fermentation media including a novel medium with defatted

soybean meal flour as the major component for the production of Bt serotype 3. In later study,

Dulmage and De Barjac (1973) reported fermentation media for Bt δ-endotoxin based upon

cotton seed flour and corn steep liquor.

Saalma et al., (1983) investigated several agro-industrial by-products for Bt δ-endotoxin

production. They found the fodder yeast, beef blood and chicken slaughter residues were among

the byproducts the produced high sporulation and potent δ-endotoxin preparations.

Widjaya et al., (1992) reported a defined medium containing 1.5% yeast extract for growing Bti.

A final Bti spore yield in this medium was 2.9×109 CFU/ml. Replacement of yeast extract with

fish meal extended growth phase with similar final values for cell and spore counts. Kang et al.,
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(1992) carried out fed-batch culture to increase cell mass followed by batch culture for spore

production of Bt in GYS medium, which contains glucose, yeast extract and some mineral salts.

They found that high cell mass obtained by increasing the feeding of glucose in constant fed-

batch culture did not proceed to spore formation. However, intermittent fed-batch culture did not

proceed to spore formation.

However, intermittent fed-batch culture supported fast cell growth and resulted in good

sporulation during subsequent batch culture (1.258×1010 CFU/ml). Liu and Tzeng (1998)

reported that the optimum medium composition for production of high level of spores by Bti

(8.658×108 CFU/ml) was 5.01% tapioca; 5.46%fish meal and 0.06% (NH4)2SO4.

Montiel et al., (2001) used sludge as a raw material for the production of Bt based bioinsecticides

using Bt kurstaki. The sludge samples were used under three different preparations: without pre

treatment (hydrolyzed sludge) and the supernatant obtained after centrifugation of the

hydrolyzed sludge. The highest viable cell, spore counts and δ-endotoxin production were when

the organism was grown in hydrolyzed sludge, while the liquid phase (supernatant) showed the

lowest sporulation and toxicity.

Vidyarthi et al., (2002) compared the growth and δ–endotoxin production by Bt kurstaki in

tryptic soy yeast extract (TSY) medium; soybean based commercial medium and wastewater

sludge medium. They found that the highest toxicity was obtained in a sludge medium and was

comparable to that of the concentrated commercial Bt formulation available in the market

(FORAY 48B). They also found that the optimum value of C: N ratio in combined sludge for Bt

production was 7.9-9.9.

Zouari et al., (2002) investigated the production of several Bt strains active against Lepidoptera

and Diptera in gruel (a cheap and abundant byproduct of semolina factories) and fish meal

media.

They observed that Diptera-specific strains produced less δ-endotocin (1246-1998 mg/l) than

Lepidoptera-specific ones (3060-3301 mg/l). However, addition of 10g/l sodium acetate
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increased 38-79% δ-endotoxin production by Diptera-specific strains in shake flask cultures.

Similar δ-endotoxin production was obtained with or without 10g/l sodium acetate with an

excess of aeration in a 2 L fermenter.

1.2.11.2 Solid State fermentation (SSF)

SSF utilizes solid substrates, like bran, bagasse, and paper pulp. The main advantage of using

these substrates is that nutrient-rich waste materials can be easily recycled as substrates. In this

fermentation technique, the substrates are utilized very slowly and steadily, so the same substrate

can be used for long fermentation periods. Hence, this technique supports controlled release of

nutrients. SSF is best suited for fermentation techniques involving fungi and microorganisms that

require less moisture content. However, it cannot be used in fermentation processes involving

organisms that require high aw (water activity), such as bacteria (Babu and Satyanarayana,

1996).

Under the circumstances of the developing countries, the use of submerged fermentation for Bt

production may not be economically feasible due to the high cost of submerged fermentation

equipments such as the cost of the well-equipped deep-tank fermenter, high-speed cooling

centrifuge as well as drying facilities e.g. spray dryer.

Accordingly, the SSF methodology offers an alternative approach. Advantages of solid state

fermentations are: 1. Low cost methodology, 2 low wastewater output, 3.low capital investments,

4. some spore-forming microorganisms only sporulate when grown on a solid substrate (Mudgett

1984, Walter and Oaau 1992 and Capalbo 1995).

Although the extensive application of SSF technology in production of different microbial

products, little information have so far been published on the possible use of SSF methodology

in the production of Bt and other microbial control agents. The earliest report on possible

application on SSF in production of Bt appeared in a form of US patent by Mechalas (1963)

followed by reports by Dulmage and Rhodes (1971) and Sitting (1977). In Chaina, Wang (1988)

reported that stable high quality Bt products were easily obtained through certain simple and

economic SSF process. The medium used was wheat bran, husk of rice and lime powder.
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He claimed that this process proved to be power saving with low cost and popular in provinces in

China.

Capalbo and Moraes (1988) carried out a study on the production of Bt by SSF methodology.

They used a group of available agro-industrial by-products as growth media including wastes

from pulp and paper industry, residual fermented malt from beer industry, meal from residual

cookies and biscuits from bakery industry as well as meal from chicken slaughter house residues.

They reported that the successful production of Bt formulations with high sporulation titers

occurred by using paper pulp and fermented malt. However, no detailed information on the

experimental design and fermentation conditions used were given.

Yang et al., (1994) optimized a method advocated for the production of Bt by SSF process. They

praised the advantages of low cost, high insecticidal activity and convenience of storage of the

products. In this method, several agricultural wastes were used as solid culture media for

production of δ-endotoxin by Bt. They investigated the effects of several culture conditions e.g.

inoculum size, pH, seed age, initial moisture content, amount of plant ash used, and fermentation

temperature. Bioassays against fourth instars larvae of Seaiothisaci nereasra and Pieris rapes

proved the high potency of the product. Capalbo et al., (1994) devised two column bioreactors

namely an aerated fixed bed and a fluidized bed fermenters for SSF of Bt.

They claimed that these two column bioreactors could be used to solve the questions addressed

and encountered in SSF methodology including heat and mass transfer, aeration extent, sterility

level as well as productivity of this approach.

Capalbo (1995) reviewed the aspects of the fermentation process and risk assessment of Bt

production in developing countries. She concluded that the local production of bioinsecticides is

highly appropriate for pest control in developing countries. She also reported that Bt could be

cheaply produced on a wide variety of low cost organic substrates under SSF conditions.
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More recently, Foda et al., (2002) produced Bt through SSF technology using ground soybean

seeds as a substrate in the presence of talcum powder and wheat bran as carrier materials. The

highest growth and sporulation were obtained at 10% (w/w) of ground soybean.

Adams et al., (2002) used several varieties of heat-sterilized broiler litter as substrates in solid

state fermentations to produce biocontrol agents. They studied litter produced by one flock of

broilers from medicated and non medicated controlled rations and litters produced by two flocks

and four flocks on a single application of bedding material from medicated commercial sources

for production of Bt japonensis, a pathogen of Japanese beetle larvae. Bt japonensis could not

grow in unextracted 1-flock litter nor in water extracted litter, but grew in methanol extracted

litter to 5×1010 CFU/g litter and a spore count of 1×1010 CFU/glitter.

It also grew in unprocessed 2-flock and 4-flock litters, achieving cell counts of 3×109and 1×109

CFU/g litter, respectively and spore counts of 1×109 CFU/g litter. Bioassays of soil containing

over 0.5% (db) litter fermented with Bt resulted in over 90% mortality in 21 days for first instars

of Japanese beetle. They concluded that the Bt produced via solid state fermentation using broiler

poultry litter have potential in biocontrol applications in soil environment.
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The present study is a part of the core research program on the biotechnological production of

Bacillus thuringiensis (Bt) biopesticide for control of major vegetable pests in Bangladesh. In

this connection, the program includes a nationwide screening program for suitable Bt strains

effective against the pests prevailing in vegetables and other crops in our country. Culture

collection of about 300 Bt strains which have been isolated from different eco-regions of

Bangladesh has already been made. These Bt isolates were characterized also with respect to

their Cry protein and cry gene profile, revealing its abundance and diversity in Bangladesh

(Asaduzzaman et al., 2014). Suitable strains have been selected based on larvicidal action

through bioassay and application in vegetable field. Finally with a view to developing bioprocess

for the large scale production of Bt biopesticide, factors affecting cultivation conditions for

maximum sporulation and protein synthesis needs to be studied.

It is well established that various strains of Bacillus thuringiensis require certain growth factors

such as protein rich medium for growth. Moreover, carbon and nitrogen ratio balance itself is

directly important for the crystal protein production. So, proper optimization of nutrients and

other factors will enable to produce a Bt formulation with high spore count and high toxin titer.

A study was performed in the working laboratory previously where concentration was given only

on the nitrogen source. Mustard seed meal based medium was used for biopesticide production

whereas the optimization of other critical factors enhancing sporulation and endotoxin formation

by Bt strains in particular is essential.

The use of Bt based biopesticides is limited because of the high production costs. However it

may become feasible and cheap, if affordable ways for mass production of the entomopathogen

was developed. As large amount of soybean and molasses are produced annually in our country,

these can be used for a cost effective medium formulation for the suitable production of

biopesticide in our country.

1.3 Aims and Objectives
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Moreover, the study aimed at determination of other factors such as cystine, mineral salts

affecting sporulation and δ-endotoxin synthesis by Bacillus thuringiensis and finally to formulate

an optimized medium for biopesticide production with the use of cheap substrates such as

soybean, molasses and sea water as substitutes of basal salts in combination of factors enhancing

δ-endotoxin synthesis by Bt.

The general objective of this study was to evaluate the use of low cost raw materials rich in

carbon and nitrogen as a nutrient source to produce Bt based biopesticides. In present study, an

attempt was made to use inexpensive substrate such as molasses and soybean as carbon and

nitrogen sources for biopesticide production instead of relatively expensive glucose and peptone

known to be used for Bt biopesticide production (Dipak Vora and Shethna, 1999).

Development of efficient Bt biopesticide with enhanced δ-endotoxin production in a cost

effective manner is the main target of this work and to that end the specific objectives of the

study were as follows: -

 To observe the efficiency of locally available and cheap raw substrate i.e. defatted

soybean meal as nitrogen source for δ-endotoxin production.

 Production of δ-endotoxin (Cry protein) in shake flask by monophasic/ submerged and

biphasic solid state fermentation on formulated media.

 To investigate the effect of cystine as growth and sporulation factors on the above

production medium.

 To compare the suitability of molasses as carbon source in basal medium containing

various trace elements by Btk HD-73 on growth, sporulation and δ-endotoxin synthesis.

 Use of sea water in place of basal salts in the culture medium.

 Use of soybean extract as nitrogen source as replacement of soybean mass to optimize the

culture conditions that supported endotoxin production.

 To examine the production of Bt biopesticide (cells and endotoxin) in lab scale bioreactor

cultivation using the optimized media formulation and environmental factors in the shake

culture.
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The present study was carried out in the Enzyme and Fermentation Biotechnology Laboratory,

Department of Microbiology, University of Dhaka. The materials and procedures employed in

the present study are described below.

2.1 Handling of laboratory apparatus and glassware

All glassware were washed with mild detergents, rinsed 4-5 times in tap water and finally rinsed

twice in distilled water before use and dried in oven. When needed, glassware like Petri plates

were heat sterilized at 180°C for 1h in hot air oven (Binder ED23, Germany) before use.

Micropipette tips, glass pipette, falcon tubes and microfuge tubes were sterilized by autoclaving

at 121°C for 15 min at 15 psi (Hirayama, Model HA-300M, Japan).

2.2 Solutions and reagents

Required solutions and reagents were available in the laboratory and in the media room of the

department and were used without further purification as these were of reagent grade. List of the

chemicals is given in the appendix-III.

2.3 Bacterial strain and culture conditions

Bacillus thuringiensis subsp. kurstaki HD-73 (Btk HD-73), kindly provided from Bt stock

collection of Okayama University, Japan was used as reference strain. Btk HD-73 was sub-

cultured from main stock on LB agar medium and a single colony was picked every time to

avoid further contamination. Culture was maintained in LB agar (per litre: tryptone 10 g, yeast

extract 5 g, NaCl 10 g, agar 15 g) slants and plates as working stock and 15% glycerol stock

(15% glycerol+ 85% fresh culture in LB broth) for long term storage at -80oC freeze. Phase

contrast microscopy was used to observe the δ-endotoxin synthesis during spore formation.

Incubation temperature was maintained at or below 30oC for all types of culture conditions.

2. Materials and Methods
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2.4 Media Preparation

2.4.1. Name and factors

Name of media for trial: 1. Luria Bertani (LB) broth, 2. Defatted soybean meal supplemented

LB (LBS), 3. Cystine supplemented LBS (LBSc), 4. Cystine supplemented soybean-basal salts

(SMc), 5. Molasses supplemented soybean-cystine (SMmc), 6.Sea water in soybean-molasses-

cystine (SSWmc), 7. Sea water in soybean extract-molasses-cystine (SeSWmc)

Factors considered: The combinations of different carbon and nitrogen sources as well as other

nutritional factors were evaluated for developing most efficient medium for biopesticide

production. Defatted soybean meal (Source: local market of Savar) was used as carbon and

nitrogen sources. Cystine (Sigma, USA) was used to enhance the sporulation. Molasses (Source:

local market of Savar) was used to increase the growth rate. Basal salts were used to replace the

ingredients of LB medium. Sea water was used as the cost effective source of trace elements

other than the reagent grade costly basal salts.

Fermentation type: Two types of fermentation method were applied for cultivation of the Btk

HD-73 in the formulated media. These are: submerged fermentation and biphasic solid state

fermentation.

2.4.2 Media preparation for submerged fermentation

2.4.2.1 Luria-Bertani broth (Commercial media)

The composition of Luria-Bertani broth were tryptone 10(g/L), yeast extract 5(g/L) and NaCl 10

(g/L) (Sambrook and Russell, 2001; Gerhardt et al., 1994). The components were dissolved in 1

liter of distilled or deionized water. After preparation, media was distributed to 500 ml

Erlenmeyer flasks and autoclaved at 121ºC for 20 min.

2.4.2.2 Defatted soybean meal supplemented LB (LBS)

The LB broth was prepared as described in section 2.4.2.1. The broth was then supplemented

with 10 g of defatted soybean meal. Defatted soybean meal used throughout the study was

obtained from the local market of Savar, Dhaka. The soybean was finely grinded before using.
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10 g defatted soybean meal was added to 90 ml LB broth in a 500 ml conical flask and

autoclaved.

2.4.2.3 Cystine supplemented LBS (LBSc)

The LBS was prepared as described in section 2.4.2.2 and autoclaved. The broth was then

supplemented with 300 μl of cystine. 10% cystine stock was prepared by suspending 6 g cystine

in 60.0 ml of phosphate buffer and autoclaved. This suspension was vortexed and added to the

medium. It was observed that the high δ-endotoxin production was achieved using 300μl cystine

on soybean meal media (Dipak Vora & Y. I. Shethna, 1999).

2.4.2.4 Cystine supplemented soybean-basal salts medium (SMc)

In this experiment LB was replaced with basal salts. 10 g defatted SM was added to 90 ml basal

salt solution in a 500 ml conical flask. The growth medium or the basal salt solution was

prepared by the published method of Gangurde and Shethna, 1995. The composition of the basal

salt solution were MgSO4.7H2O, 0.5(g/L); MnSO4.H2O, 0.1(g/L); FeSO4.7H2O, 0.02(g/L);

ZnSO4.7H2O, 0.02(g/L); CaCl2, 0.01(g/L) & KH2PO4 1.0(g/L) (Gangurde and Shethna 1995).

The pH was adjusted to 7.2 before sterilization at 121ºC for 20 min. Cystine (300 μl) was added

after autoclaving the media. Cystine stock was prepared as the described method on section

2.4.2.3. The flasks were then allowed to cool down to room temperature before inoculation.

2.4.2.5 Molasses supplemented soybean-cystine medium (SMmc)

For SMmc preparation, 10 g defatted SM was added to 90 ml basal salt solution in a 500 ml

conical flask. 0.5 g molasses was added to the 100 ml of prepared media. The pH was adjusted to

7.0 before sterilization at 121ºC for 20 min. Cystine (300 μl) was added after autoclaving the

media. Then the flasks were allowed to cool down to room temperature before inoculation.
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2.4.2.6 Sea water in soybean-molasses-cystine medium (SSWmc)

Brine or sea water was used in SM as a substituent of basal salts. Sea water was collected from

sea coast of Potuakhali. It contains (g/L):  Na+ 12; Cl- 22; K+ 0.4; Ca+ 0.14; HCO3- 0.40; Mg+

1.3; SO4
2- 2.640; Fe2+ (Ghribi N. et al., 2007). 10 g defatted soybean meal was added to 20 ml

sea water (8:2) in a 500 ml Erlenmeyer flask and then made up to 100 ml with distilled water. 0.5

g molasses was added before autoclaving the media. Cystine (300μl) was added after autoclaving

the media.

2.4.2.7 Sea water in soybean extract-molasses-cystine medium (SeSWmc)

100 ml of 10% soybean suspension was boiled for 10 min and the aqueous part was separated

from the solid mass. 0.5 g molasses and 20 ml of seawater were mixed with the prepared

soybean extract and the volume was adjusted to 100 ml in an Erlenmeyer flask by adding

distilled water. 0.3 ml of 10% cystine suspension in phosphate buffer was added into the mixture

to make the final cystine concentration 300 mg/L. It was then autoclaved and ready for

inoculation upon cooling down at room temperature.

2.4.3 Media preparation for biphasic solid state fermentation

10 g finely grinded defatted soybean meal was added with 90 ml of LB (Luria-Bertani) broth.

The pH was adjusted to 7.0 before sterilization at 121ºC for 20 min.  The flasks were allowed to

cool before inoculation. The medium was grown above up to 7-10 hours. It was then centrifuged

aseptically (1000×g for 10min, 4ºC) to separate the liquid and the solid matter. The solid matter

was then incubated up to 72 h (including initial 7-10 h).

2.5 Inoculum preparation

Btk HD-73 was streaked on LB-agar plate from the slant and incubated overnight at 30°C. An

isolated colony was picked from the LB- agar plate aseptically with a loop following overnight

incubation and was inoculated into 50ml of LB broth in a 250 ml Erlenmeyer flask.
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It was then incubated overnight at 30°C in an orbital shaker at 150 rpm. The cell density of the

culture medium was measured following overnight incubation by taking the absorbance at a

wavelength of 600 nm using sterile LB broth as blank. This overnight culture was then used as

inoculum for all media assessment studies and the fermentation was started with an OD600= 0.1

for all if not otherwise stated.

2.6 Fermentation procedure for biopesticide production

2.6.1 Submerged fermentation

Batch type fermentation was carried out for the study. The B. thuringiensis kurstaki HD-73 was

grown in the 500 ml Erlenmeyer flasks containing sterilized medium prepared before. Each flask

containing 100 ml of different media were inoculated with bacterial strain HD-73 grown in the

seed culture. A 5% (v/v) inoculum was used to inoculate 100 ml of sterilized media.

The shaking flasks were incubated at a stirrer speed of 150 rpm for 72 hours at 30°C. Two flasks

were used as duplicate set of study and were examined time to time up to 72 hours. Culture

samples were withdrawn from the flasks at different intervals to determine viable spore (VS) and

δ-endotoxin concentration.

2.6.2 Biphasic Solid state fermentation

To achieve biphasic solid state fermentation, after 7hr fermentation of defatted soybean meal

supplemented LB (LBS) medium at 150 rpm and 30°C, the supernatant in it was completely

removed (1000×g, 10 min) aseptically for harvesting extracellular enzymes as byproduct and the

resultant wet solid mass with embedded Btk was incubated 65 hours more for enhancing δ-

endotoxin production at static conditions (30ºC).

2.7 Sampling

Samples from each culture medium were drawn aseptically in a laminar air flow at every 24 h,

up to 72 h of bacterial growth in a laminar air flow. For various analytical purposes, samples

were collected separately.



Materials and Methods 37

2.8 Analysis of samples

Collected samples were used for the microscopic observation, estimation of spore count and

estimation of crystal protein concentration.

2.8.1 Microscopic studies

Phase contrast microscopy: The presence of spore and crystal protein was observed by phase

contrast microscopy. Bacterial strains were cultured on LB agar medium and incubated at 30ºC

for 3 days. A single colony was then mixed with a drop of distilled water that was placed on a

clean slide and then covered with a cover slip. Excess liquid from edge of the cover slip was

blotted by a tissue paper. Then the slide was placed under a phase contract microscope (Primo

Star, Carl Zeiss, Germany) and the presence of spore and crystal protein was observed.

Photomicrographs of every sample were recorded for analysis.

2.8.2 Estimation of spore count

The progress of bio-pesticide production was monitored by measuring the spore count at 24h

intervals. 1 ml sample was collected in sterile microfuge tube and was heat treated at 80°C for 15

min, serially diluted, then plated on the LB agar plates and incubated at 30°C for 24h to form

developed colonies.

To determine the spore count from solid medium, the culture samples were accurately weighed

(10.00 g in a 250 ml Erlenmeyer flask), dissolved by 90 ml sterile distilled water, and then

agitated in a shaker at 150 rpm for 30 min (Zhang et al., 2013). The prepared samples were heat

treated at 80°C for 15 min, serially diluted, then plated on the Luria-Bertani (LB) agar plates and

incubated at 30°C for 24h to form developed colonies

For all counts, an average of at least three replicate plates was used for each tested dilution. For

enumeration, the colonies counted on the plates were between 30 and 300 CFU (Colony Forming

Units).
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2.8.3 Estimation of crystal protein concentration

The purification of crystal protein was done by the modified method of Fatma Öztürk et al., 2009

& Liu et al., 1994. The total crystal protein was determined by Bradford method (Bradford M.M.

1976).

2.8.3.1 Partial purification of Cry proteins

Preparation of the samples for crystal protein content was carried out by first centrifuging the

samples (1 ml sample, in a 1.5 ml microfuge tube) at 10,000 rpm for 10 min. 1 g sample was

collected from solid state fermented media and was suspended in 10 ml sterile dH2O, stirred well

and centrifuged. For solid state fermented media, the pellet was discarded and the supernatant

again was centrifuged at the same condition. The sedimented pellet containing spore-crystal

complex was washed twice with 1 ml cold sterile distilled water and centrifuged at 10,000 rpm

for 10 min.The supernatant was discarded and the pellet was treated with 250μl 1.0M NaCl and

5mM EDTA and mixed thoroughly by vortexing. Again centrifugation was carried out at 10,000

rpm for 10 min.

Again the supernatant was discarded and pellet was treated with 400μl 5mM EDTA and mixed

thoroughly by vortexing. Then again centrifugation was carried out at 10,000 rpm for 10 min.

The sedimentated pellet was then redispersed in 1ml 0.1N NaOH solution (Wu, Lei et al., 2011).

The last step took advantage of the fact that crystals are soluble in alkaline solution but not in

neutral or acidic ones. The final solution was centrifuges at 10,000 rpm for 10min. the

supernatant containing dissolved crystal protein was used in total protein analysis; dilutions of

the supernatant were made with 0.1N NaOH solution, if necessary (Liu, Bajpai et al., 1994).

2.8.3.2 Preparation of diluted bovine serum albumin (BSA) standard

The protein in the culture supernatant was estimated according to the Bradford method (Bradford

M.M., 1976). For the construction of standard curve 1 gm of Bovine Serum Albumin (BSA) was

taken in 100 ml volumetric flask and the volume was adjusted to 100 ml by distilled water.
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The solution was then diluted to 1.0, 0.8, 0.6, 0.5, 0.4, 0.2 and 0.1 mg/ml concentrations in

different volumetric flask. 5 ml Bradford test solution was taken in 9 test tubes. 0.1 ml standard

solution of different dilutions was added in 7 different tubes and was well mixed. In the control

0.1 ml distilled water was added instead of sample. After 5 minutes the absorbance was taken at

595 nm.

100 µl of culture supernatant was mixed well with 5 ml of Bradford test solution and the

absorbance was taken at 595 nm after 5 minutes. A standard curve of absorbance versus protein

concentration was prepared by using the data of diluted standard protein concentrations and their

corresponding absorbance. The amount of soluble protein was determined from that standard

curve using the following equation and expressed as mg per ml of test sample.

y = mx

Where, y = absorbance at 595 nm

x = protein concentration in mg/ml

m= slope of the standard curve

2.8.3.3 Procedure for determination of δ-endotoxin concentration

For determination of delta endotoxin concentration1ml of Bradford reagent was aliquoted in the

microfuge tube. Then 20μl of distilled water was added in a microfugetube containing 1 ml of

Bradford reagent as control. And then the test samples were added in the microfuge tube. The

tubes were allowed to rest for five minutes in room temperature. Then they were mixed by

turning the microfuge tube up and down for several times. Then the absorbance of the control

was taken. This was made auto zero. Then the protein concentration of the test samples was

measured.

2.9 SDS-PAGE analysis of δ-endotoxin of Bt subsp. kurstaki HD-73

SDS-PAGE analysis was carried out according to the procedure described by Sambrook et al.,

1989.
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2.9.1 Sample preparation

Bt subsp. kurstaki HD-73 was cultured in sea water in soybean extract-molasses-cystine

(SeSWmc) which were prepared according to the procedure described in section 2.4.2.7 and 15

g/L agar (Merck, Germany) was added to give solid texture.

The culture was incubated at 30ºC for 3 days. Colonies were scrapped off from the solid medium

after 3 days of incubation using sterile loop in laminar flow and suspended in 100 µl sterile

distilled water in microfuge tube. Then δ-endotoxin concentration of each sample was

determined by Bradford method (procedure mentioned in section 2.8.3.3)

2.9.2 Preparation of separating gel

For preparation of separating gel glass plates were cleaned and dried and placed on the gel

casting stands (BIO-RADTM Instruments).Then 10% separating gel was prepared gently by

mixing the distilled water (2.0 ml), lower gel buffer (1.25 ml) and 30% acrylamide-

bisacrylamide (1.70 ml). This step was followed by rapid addition of TEMED (4 µl) and freshly

prepared 10% ammonium sulfate (APS) (20µl).

The freshly mixed solution was poured into glass plate chamber using a 1ml micropipette,

without generating air bubbles. The gel mixture was poured to a level of about 5cm below the

top edge of the glass plates and was then overlaid with distilled water. It was then left for about

45 min for polymerization.

2.9.3 Preparation of stacking gel

For preparation of 5% stacking gel solution, distilled water (1.4 ml), upper gel buffer (600 µl),

and 30% acrylamide-bisacrylamide (400 µl) were mixed first. Before pouring the stacking gel

solution, water layer on top of separating gel was poured off. Then 10% APS (10 µl) and

TEMED (2.5 µl) were added to the beforehand prepared 5% stacking gel solution.

The stacking gel solution was then poured on the top of the separating gel using a 1 ml

micropipette. A 10-well comb was inserted in between the glass plates carefully so that bubble

was not generated. Then the gel was allowed to settle for at least 60 min for polymerization.
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2.9.4 Sample application and gel run

20 µl of previously prepared sample protein was mixed with 100 µl sample loading buffer

(composition mentioned in appendix I) in microfuge tube and was boiled at 100ºC for 15 min.

Then centrifugation was carried out at 10,000 rpm for 10 min 20 µl supernatant. The comb was

removed and the whole apparatus was placed in the gel cassette which was then placed into the

BIO-RADTM Mini-ProteinTM Tetra cell. The cell as well as the gel cassette was filled with

electrophoresis buffer (composition mentioned in appendix I). Using a micropipette, 20 µl of the

previously prepared sample was mixed with 1µl tracking dye (0.1% bromo-phenol blue) and

loaded into the wells. Then the cell was connected to the BIO-RADTM PowerPackTM basic. A

constant voltage of 100 V was adjusted. Finally electrophoresis was carried out until the tracking

dye reached the bottom level of the gel.

2.9.5 Staining and destaining of the gel

The glass plates were immersed in distilled water and by using the plate separator, the gel was

released from the glass plates. Then the gel was placed into staining solution (0.02% Coomassie

Brillant Blue,G-250 in 2% (w/v) phosphoric acid,5% aluminum sulfate and 10% ethanol) for a

period of 2 hours on a rotary shaker. The gel was then transferred to a container containing

distilled water and was rinsed with distilled water repeatedly to visualize the protein bands.

2.10 Biopesticide production in 3L Bioreactor

2.10.1 Inoculum Development

For production of 5% inoculum for fermentation in 2 liter of sea water in soybean extract-

molasses-cystine (SeSWmc), one loop-full of Btk HD-73 was transferred from the stock culture

to 5 ml of Luria-Bertani (LB) broth and was incubated for 12 hours.

This was then added to 75 ml of the above mentioned medium and incubated for 12 hours and

then finally added to the bioreactor containing 1900 ml of the above mentioned medium. The

SeSWmc medium was prepared by the method mentioned in section 2.4.2.7
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2.10.2 Growth conditions in Bioreactor

Sea water in soybean extract-molasses-cystine (SeSWmc) was used for the cultivation of Btk

HD-73under controlled condition of bioreactor. Temperature was controlled at 30˚C and pH was

kept uncontrolled. Aeration and agitation were controlled at cascading mode to maintain the dO2

at 30%. Agitation high was set at 250 rpm while the aeration high was set at 1 SLPM.

2.10.3 Fermentation in Bioreactor

For this experiment bioreactor facilities in the Enzyme and Fermentation Biotechnology

Laboratory at Department of Microbiology in the University of Dhaka were used. The vessel

volume of that stirred tank bioreactor (model: BIO FLO 110 Fermentor / Bioreactor; company:

NEW BRUNSWICK SCIENTIFIC) was 3 liter and the working volume was 2 liter.

The bioreactor was equipped with instrumentation in order to measure and control the agitation,

pH, temperature, foam, dissolve oxygen (dO2) and exit gases. The medium was aerated by a

pump (MTH) through a membrane filter. The agitator was equipped with four bladed impellers.

These impellers homogenized air and the bio-controller displayed the dissolve oxygen

concentration by sensing with an electrode. For temperature control, there was an outer jacket

wrapping the vessel and a chiller was connected to supply cool water through a ring inside the

vessel.

Before autoclaving, the vessel was washed carefully. All the screw-able nuts were fastened

tightly and the vessel was equipped with a pH probe. This probe was calibrated by dipping it in a

pH 7 buffer and this value was set at zero.

The probe was then rinsed with distilled water and dipped again in pH 4 buffer and set span.  All

the connection except air outlet was closed by tying with rubber. In this experiment the pH and

foam were not controlled but dO2 was controlled by cascading mode. However, the soybean oil

added acted as the anti-foam and pH probe detected the pH. The vessel was then filled with

SeSWmc medium, which was prepared by the method mentioned in section 2.4.2.7 and was then

placed in autoclave machine and was sterilized by autoclaving at 121°C for 15 min at 15 psi

(Hirayama, Model HA-300M, Japan).
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Figure 2.1: BIO FLO 110 Fermentor / Bioreactor; company: NEW BRUNSWICK SCIENTIFIC

After autoclaving the vessel was placed near the bio-controller and all the connections such as

pH electrode, dO2 electrode, agitator, chiller inlet and outlet were connected carefully. When the

temperature came down to 30°C, then aeration was continued to saturate the medium with

dissolved oxygen. The dO2 set point and set span were set at 30% and 100% respectively.

Agitation and aeration were controlled at cascading mode to maintain dO2 at 30%. Agitation and

aeration were set at 250 rpm and 1 SLPM respectively. Inoculum was added aseptically.

Fermentation was carried out continuously for 36 hours.

Sampling was done at different time intervals and δ-endotoxin was purified and concentration

was measured by the procedure mentioned in section 2.8.3.1.



CCHHAAPPTTEERR

RReessuullttss

33



Results 44

Bacillus thuringiensis acts as an important biological control agent against various pests. The

nutritional requirements affecting the growth, sporulation and δ-endotoxin synthesis by Bt

deserves critical study, among them carbon and nitrogen sources play a vital role. Moreover

there are amino acids, trace elements that affect their physiology of δ-endotoxin synthesis.

The present study was carried out to determine the sporulation and δ-endotoxin production in

submerged and biphasic solid state fermentation by Bacillus thuringiensis strains. To develop a

cost effective medium for large scale production of biopesticide locally available cheap raw

materials such as defatted soybean meal as nitrogen, and molasses as carbon source were used.

The effects of different carbon and nitrogen sources, amino acid such as cystine, basal salts on

growth, sporulation and δ-endotoxin synthesis by B. thuringiensis kurstaki (Btk) HD-73 was also

considered. Sea water was used as substitute of basal salts to make the production medium more

cost effective. Moreover, biphasic fermentation conditions i.e. growth in liquid culture followed

by transfer of the media into solid culture particularly were conducted to observe the effect of

stress on sporulation enhancement and endotoxin synthesis.

3.1 Phenotypic characterization of bacterial strains

3.1.1 Colony characteristics

Btk HD-73 was inoculated on to LB agar for 24 hours at 30ºC to observe the colony

characteristics. The colonies were white in color, opaque, slightly raised elevation and regularly

outlined.

3. Results
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Figure 3.1: Colony characteristics of Btk HD-73 on LB agar medium.

3.1.2 Crystal protein morphology of Bacillus thuringiensis

The phase contrast microscopy results showed the presence of visible crystal proteins and spore

position. Parasporal inclusions were produced outside of the endospore and were distinctly

separated from it. Crystal structure of Btk HD-73 is shown in Figure 3.2.

Figure 3.2: Crystal protein morphology of Bacillus thuringiensis under phase contract

microscope

Spore Crystal

White, raised, regular colony
of Btk HD-73
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3.2 Construction of standard curve for estimation of protein by Bradford

method

For determination of δ-endotoxin concentration by Bradford method a standard curve with BSA

(Bovine Serum Albumin) was prepared. A range of standard solutions of BSA was prepared

according to the procedure described in section 2.8.3.2.Standard curve for estimation of protein

in unknown samples was constructed and showed in Figure 3.3. The best fit linear equation

intercepting zero is derived. The equation = 0.059 was used for estimation of protein in

unknown sample where ‘ ’ is the absorbance at 595 nm and ‘ ’ is the concentration of protein in

unknown sample in mg/ml.

Figure 3.3: Standard curve for estimation of protein concentration by Bradford method

The strong linear relationship (R2>0.99) between the absorbance of protein and concentration

demonstrates exceptional reliability in estimating protein content of unknown samples.
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3.3 Determination of factors affecting sporulation and δ-endotoxin synthesis

by Bacillus thuringiensis kurstaki HD-73

The factors that affect the sporulation enhancement and δ-endotoxin synthesis by Bacillus

thuringiensis kurstaki HD-73 were determined. The effect of locally available defatted soybean

meal as nitrogen source, molasses as carbon source, and effect of cystine and effect of sea water

as replacement of basal salts was observed.

The spore count and the concentration of δ-endotoxin in the fermentation were determined

according to the described methods (section 2.8.2-2.8.3).Two sets of experiments were

performed and results were recorded. In the following sections, data and their graphical

representations are given.

3.3.1 Effect of defatted soybean meal with LB on sporulation and δ-endotoxin

formation by submerged fermentation

The effect of LB alone and with defatted soybean meal to support sporulation and δ-endotoxin

synthesis by Btk HD-73 was studied. In this regard, 10 g ground defatted soybean meal  was

added to 90 ml of LB. Fermentation was carried out for 72 hours at 30ºC under shake culture.

Maximum sporulation and δ-endotoxin concentration were obtained at 72 hours for LB medium

(control) which were 7.217 log CFU/ml and 0.149 mg/ml respectively. Whereas, maximum

sporulation and δ-endotoxin concentration were 7.447 log CFU/ml and 0.371 mg/ml at 48 hours

in defatted soybean meal with LB (LBS) medium. The effect of defatted soybean meal with LB

medium is shown in Table 3.1. A graphical representation is also given in Figure 3.4 for clear

observation of the results.
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Table 3.1: Evaluation of soybean meal & LB medium on sporulation & endotoxin synthesis by

Btk HD 73 in submerged fermentation

Time (hr)

Media

Spore count (log CFU/ml)
Difference
rate (%)

δ-endotoxin
concentration (mg/ml) Difference

rate (%)

LB LBS LB LBS

24 4.041±0.056 7.371±0.092 58.35 0.047±0.004 0.236±0.060 133.85

48 5.585±0.039 7.447±0.044 28.57 0.085±0.019 0.371±0.028 125.43

72 7.217±0.093 7.273±0.041 0.77 0.149±0.029 0.341±0.013 78.36

Figure 3.4: Evaluation of soybean meal & LB medium on sporulation & endotoxin synthesis by

Btk HD 73 in submerged fermentation
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3.3.2 Evaluation of biphasic fermentation on sporulation and δ-endotoxin

formation

In this experiment, the performance of biphasic fermentation in defatted soybean meal

supplemented with the conventional LB mediumfor enhancing the growth, sporulation and

overproduction of δ-endotoxin by Btk was evaluated. Of different concentrations and

combinations of media tested, 10% (w/v) grinded soybean meal supplemented with LB was

found as the best composition for toxin production. To achieve biphasic solid state fermentation

(SSF), after 7 h submerged fermentation of LBS (150 rpm, 30ºC), the supernatant it was

completely removed (1000×g, 10 min) by centrifugation aseptically and the resultant wet solid

matter with grown Btk cells was incubated 65 h more at static condition (30ºC). In comparison to

submerged fermentation of LBS (monophasic), yield of sporulation and δ-endotoxin production

was 2.72% higher and 93.86% lower respectively in solid state fermentation of LBS (biphasic) at

48 hours fermentation.

Table 3.2: Sporulation and δ-endotoxin synthesisunder submerged and biphasic solid state

fermentation

Time (hr)

Media

Spore count (log CFU/ml) Difference
rate (%)

δ-endotoxin concentration
(mg/ml)

Difference
rate (%)

Submerged
condition

Biphasic
condition

Submerged
condition

Biphasic
condition

24 7.371±0.092 7.414±0.024 0.58 0.236±0.060 0.102±0.004 79.28

48 7.447±0.044 7.653±0 2.72 0.371±0.028 0.134±0.011 93.86

72 7.273±0.041 8.866±0.054 19.74 0.341±0.013 0.151±0.003 84



Results 50

Figure 3.5: Sporulation and δ-endotoxin synthesis under submerged and biphasic solid state

condition

3.3.3 Role of cystine in defatted soybean meal with LB

The effect of cystineon sporulation and δ-endotoxin formation by Btk HD-73 was observed in

LB soybean medium (LBS). This medium contained 10 g soybean along with 90 ml LB media

supplemented with 300 μl cystine (LBSc).

300 mg/L cystine displayed the highest sporulation and toxin concentration as shown in Table

3.3 and Figure 3.6.A lower concentration of cystine promoted growth, sporulation and crystal

formation in Β. thuringiensis (Rajalakshmi and Shethna, 1977). Fermentation was carried out for

72 hours. Maximum sporulation and δ-endotoxin concentration were obtained at 48 hours. The

sporulation and δ-endotoxin increased19.54% and 131.35% respectively in cystine added LBS

medium. A significant change was observed on the δ-endotoxin concentration when cystine was

added.
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Table 3.3: Effect of cystine in defatted soybean meal with LB on sporulation and endotoxin
production

Time (hr)

Media

Spore count (log CFU/ml) Difference
rate (%)

δ-endotoxin
concentration (mg/ml)

Difference
rate (%)

LBS LBSc LBS LBSc

24 7.371±0.092 7.096±0.124 3.80 0.236±0.060 0.726±0.058 101.87

48 7.447±0.044 9.06±0.08 19.54 0.371±0.028 1.791±0.086 131.35

72 7.273±0.041 7.431±0.045 2.15 0.341±0.013 1.433±0.034 123.11

Figure 3.6: Role of cystine in defatted soybean meal with LB
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3.3.4 Replacement of LB with basal salts in soybean-cystine medium

A positive effect was observed on the LBS medium supplemented with cystine in previous

experiment (Figure 3.6). In this experiment, basal salt solution was used instead of LB for its

cost effectiveness. The composition of the basal salt solution were MgSO4.7H2O, 0.5(g/l);

MnSO4.H2O, 0.1(g/l); FeSO4.7H2O, 0.02(g/l); ZnSO4.7H2O, 0.02(g/l); CaCl2, 0.01(g/l) &

KH2PO4 1.0(g/l) (Gangurde and Shethna, 1995). Fermentation was carried out for 72 hours.

Maximum sporulation and δ-endotoxin concentration were obtained at 48 hours which were

9.352 log CFU/ml and 1.659 mg/ml respectively on defatted soybean meal with cystine (SMc).

Though the endotoxin was 7.65% less than that of LBSc, which is comparable and it is

acceptable because of its cost effectiveness.

Table 3.4: Effect of replacement of LB with basal salts in soybean-cystine medium on

sporulation and endotoxin production.

Time (hr)

Media

Spore count (logCFU/ml) Difference
rate (%)

δ-endotoxin
concentration (mg/ml)

Difference
rate (%)

LBSc SMc LBSc SMc

24 7.096±0.124 7.681±0.025 7.9 0.726±0.058 0.831±0.001 13.5

48 9.06±0.08 9.352±0.017 3.17 1.791±0.086 1.659±0.003 7.65

72 7.431±0.045 8.568±0.026 14.2 1.433±0.034 1.326±0.050 7.75
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Figure 3.7: Replacement of LB with basal salts in soybean-cystine medium

3.3.5 Performance of molasses in soybean-cystine medium

The effect of locally available defatted oil-seed-derived nitrogen source supplemented with

cystine was studied with a view to enhancing the commercial potential of the biopesticide

production by Bt strains. For this purpose a soybean-cystine medium with molasses (SMmc) was

designed for trial. In this medium, soybean and molasses were used as nitrogen and carbon

source. This medium also contained basal salt solutions at a concentration of g/l in distilled

water: MgSO4.7H2O 0.5, MnSO4.7H2O 0.1, FeSO4.7H2O 0.001, CuSO4.5H2O 0.0005,

ZnSO4.7H2O 0.0005, and CaCl2 0.1. 0.5 g molasses was used in 100 ml of the media to check the

substrate efficiency of the media due to molasses. The sporulation and toxin formation was 9.114

log CFU/ml and 2.376 mg/ml after 48hours of fermentation which was higher in the present

medium composition (SMmc) than that in soybean-cystine medium (SMc) after 72 hours.
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Table 3.5: Effect of molasses in soybean-cystine medium on sporulation and endotoxin

production

Time (hr)

Media

Spore count (log CFU/ml) Difference
rate (%)

δ-endotoxin
concentration (mg/ml)

Difference
rate (%)

SMc SMmc SMc SMmc

24 7.681±0.025 7.857±0.017 2.26 0.726±0.058 1.796±0.072 84.85

48 9.352±0.017 9.114±0.144 2.57 1.659±0.003 2.376±0.171 35.53

72 8.568±0.026 6.041±0.055 34.59 1.326±0.050 1.246±0.053 6.22

Figure 3.8: : Effect of molasses in soybean-cystine medium
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3.3.6 Replacement of basal salts with sea water in soybean-molasses-cystine

medium

In order to reduce the cost of bioinsecticide production, sea water was used for possible supply

of the minerals required for δ-endotoxin production in the culture medium by Btk. So, an

experiment was performed to observe the effect of substitution of basal salt solutions

(MgSO4.7H2O, MnSO4.7H2O, FeSO4.7H2O, CuSO4.5H2O, ZnSO4.7H2O, and CaCl2) in soybean

medium with sea water. In this experiment, maximum sporulation and δ-endotoxin were 8.176

log CFU/ml and 1.918 mg/ml at 48 hours as compare to 9.114 log CFU/ml and 2.376 mg/ml  in

the media with basal salts (previous experiment) (Table 3.6). Though the medium containing

basal salt solutions gave higher δ-endotoxin yield in comparison to medium containing sea

water, medium formulated with sea water is more cost effective and suitable for large scale

production of biopesticide.

Table 3.6: Effect of replacement of basal salts with sea water in soybean-molasses-cystine

medium on sporulation and endotoxin production

Time
(hr)

Media

Spore count (log CFU/ml)
Difference
rate (%)

δ-endotoxin
concentration (mg/ml)

Difference
rate (%)

SMmc SSWmc SMmc SSWmc

24 7.857±0.017 7.249±0.008 8.049 1.796±0.072 1.296±0.072 32.34

48 9.114±0.144 8.176±0.212 10.85 2.376±0.171 1.918±0.171 21.33

72 6.041±0.055 8.512±0.047 33.95 1.246±0.053 1.649±0.053 27.84



Results 56

Figure 3.9: Replacement of basal salts with sea water in soybean-molasses-cystine medium

3.3.7 Evaluation of formulated medium (Soybean extract in place of soybean

meal in soybean-molasses-cystinemedium) on sporulation and endotoxin

production.

In the previous experiment, the positive effect of sea water has been showed. For large scale

production there are few drawbacks for the medium with soybean mass. For this purpose a

defatted soybean extract-molasses-cystine medium was designed for trial. The sporulation and δ-

endotoxin concentration was 8.596 log CFU/ml and 1.386 mg/ml at 24 hours. But δ-endotoxin

concentration decreased from 1.359 mg/ml to 0.471 after 72 hours.
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Table 3.7: Effect of soybean extract in place of soybean meal in the soybean-molasses-cystine

medium on sporulation and endotoxin production

Time
(hr)

Media

Spore count (log CFU/ml) Difference
rate (%)

δ-endotoxin concentration
(mg/ml)

Difference
rate (%)

SSWmc SeSWmc SSWmc SeSWmc

24 7.249±0.008 8.596±0.007 16.99 1.296±0.072 1.386±0.072 6.71

48 8.176±0.212 7.512±0.047 8.46 1.918±0.171 1.359±0.212 34.11

72 8.512±0.047 6.352±0.068 29.06 1.649±0.053 0.471±0.108 111.13

Figure3.10: Effect of soybean extract in place of soybean meal in the soybean-molasses-cystine

medium
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3.4 Evaluation of different media on sporulation

Figure 3.11: Evaluation of different media, at a glance, on sporulation

3.5 Evaluation of different media on δ-endotoxin synthesis

Figure 3.12: Evaluation of different media, at a glance, on δ-endotoxin synthesis
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3.6 Scale up of production kinetics of Btk HD-73under controlled condition in

a 3L bioreactor

Defatted soybean extract medium with sea water, cystine, and molasses was used for the

cultivation of Btk HD-73under controlled condition of bioreactor. 5% inoculum of Btk HD-73

was used for fermentation. Temperature was controlled at 30˚C and pH was kept uncontrolled.

Aeration and agitation were controlled at cascading mode to maintain the dO2 at 30%. Agitation

rate was set at 250 rpm while the aeration high rate set at 1 SLPM. Fermentation was carried out

for 36 hours. Microscopic observation was carried at different time intervals and δ-endotoxin

concentration was observed at 12, 16, 20, 24 and 36 hours. All data are summarized in Table 3.8

and a graphical representation is also given in Figure 3.14. Maximum δ-endotoxin yield was 2.3

mg/ml after 24 hours. An increase in 1.67 fold of endotoxin production rate was obtained in

bioreactor than in shake culture.

Table 3.8: Total spore count and δ-endotoxin concentration in 3L bioreactor

Time(hours) Total spore count(log
CFU/ml)

δ-endotoxin
concentration (mg/ml)

0 5.643±0.051 0.009±0.001

12 6.380±0.018 0.610±0.025

16 7.716±0.032 1.3±0.022

20 8.225±0.007 2.1±0.046

24 9.321±0.004 2.317±0.006

36 8.315±0.043 1.816±0.059



Results 60

Figure 3.13: Total spore count and δ-endotoxin concentration in 3L bioreactor
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3.7 SDS-PAGE analysis of crystal protein

The SDS-PAGE analysis of Cry proteins recovered from Btk HD-73 revealed the presence of

Cry1Ac protein (Figure 3.14). The molecular weight was determined by using Alphaview SA

(version 3.4.0.0).  A thicker Cry1Ac protein band (133 kD) from Btk HD-73 for sea water in

soybean extract-molasses-cystine agar media was visible.

Figure 3.14: SDS-PAGE analysis of partially purified Cry protein obtained from the culture

performed in SeSWmc agar. Lane 1: Marker (ColorPlus Prestained protein marker, Broad range,

NEB), Lane 2: Btk HD-73
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Bacillus thuringiensis (Bt) is a gram-positive, spore-forming soil bacterium that produces

insecticidal crystal proteins during sporulation. Bt is the most widely used microbial control

agent all over the world. Biological pesticides based on Bt are becoming increasingly important

in pest management programs. For large scale production of biopesticide from strains of Bt,

different approaches were investigated to design media that could support good production of

spores as well as toxins at reasonable cost. As sporulation and toxin production are a

simultaneous process, it is very important to optimize the factors including nutrients and culture

conditions to attain maximum biomass yield leading to maximum sporulation and high δ-

endotoxin titer.

The nutritional aspects of Bt have also been studied extensively by a number of workers

(Nickerson and Bulla, 1975; Rogoff and Yousten, 1969; Singer et al., 1966). It is well

established that various strains of Bt would not grow in so-called mineral salt medium unless

certain growth factors such as glutamic acid and either aspartate or citrate are added to the

medium and it also requires protein rich medium for growth. Carbon and nitrogen sources and

their critical concentrations also not only affect the growth rate of microbes in general but also

sporulation and rate of production. This aspect is rather more important with Bt as the endotoxin

(cry protein) synthesis is critically related with sporulation rate. So, proper optimization of

nutritional and other factors are essential for large scale production of Bt biopesticide with

selective indigenous Bt strains.

In the present working laboratory at DU, about 300 Bt isolates have been identified and

characterized from different eco-regions of Bangladesh. The abundance and diversity of Bt

strains with their cry genes and cry protein profiles have also been studied (Asaduzzaman et al.,

2014). This study is particularly aimed at screening out potential Bt strain active against different

pests affecting vegetables and crops in order to produce biopesticide in large scale at effective

cost for field application by the farmers of Bangladesh.

4. Discussion
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The present study established the potential of defatted soybean meal to support growth and toxin

production by Bacillus thuringiensis subsp. kurstaki HD-73. The defatted soybean meal has high

protein content (Gangurde & Shethna, 1995) and low cost, is readily available in Bangladesh and

can be handled easily. In addition the effects of various factors such as cystine, molasses, and sea

water on the growth, sporulation and toxin production of Bt was also concerned. The pattern of

growth and toxin production of the HD-73 in the media prepared from defatted soybean meal

was observed.

Particularly, differentiation of the cell into sporulation from vegetative phase has made its

influence complex (Anderson R.K.I., 2003). In present study the effect of different carbon and

nitrogen sources on sporulation and δ-endotoxin synthesis by Btk HD-73 was observed.

Production of biomass as well as its endotoxin level by Btk HD-73 has been found to vary

drastically in media derived from various nutrient sources. Two media were used for this

purpose which was Luria-Bertani (LB) broth and defatted soybean meal in the LB broth. In

defatted soybean meal with LB (LBS) medium the sporulation and δ-endotoxin formation

increased 58.35% and 133.85% respectively after 24 hours as compared to the commercial

medium, LB (Table 3.1). The increase in sporulation and δ-endotoxin yield may be due to

complex nitrogen source. Soybean meal present in the medium contained 91.52% dry matter,

43.30% crude protein (D. A. Jahan, L. Hussain et al., 2013). Other than that the condition of the

medium was submerged fermentation which is favorable for increasing sporulation and δ-

endotoxin yield.

For the next experiment the biphasic solid state fermentation (SSF) was applied with a view to

rapid growth of cells in liquid culture followed by their transfer to solid culture. SSF is best

defined as the cultivation of microorganisms on solid substrates devoid or deficient in free water;

however, the substrate must possess enough moisture to support growth and metabolism of

microorganism (Pandey, 2003). In comparison to submerged fermentation of LBS (monophasic),

yield of sporulation and δ-endotoxin production was 2.72% higher and 93.86% lower

respectively in solid state fermentation of LBS (biphasic) at 48 hours fermentation. This

condition remains same till 72 hours where the sporulation was higher in the solid state

fermented medium than submerged fermented medium but δ-endotoxin yield was lower in the
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biphasic solid state condition. Gangurde and Shethna (1995) showed that toxicity (δ-endotoxin

formation) of Bt is proportional to the degree of sporulation. In this case this theory did not did

not hold good. This may be due to the single step extraction process of the cry protein

purification method followed in the present work. The major factors that affect microbial

synthesis in a biphasic SSF system include: selection of a suitable substrate and microorganism,

substrate pre-treatment, particle size, water activity (aw), size and type of the inoculum,

temperature and fermentation time (Pandey et al., 1999). So, further trials are needed to evaluate

the unexpected behavior of the microorganism in the solid state fermentation.

There are some complexity of SSF scale up, lack of devices to measure relevant operating

variables inside the reactor (i.e. pH, DO, aw, biomass) and difficulty in metabolic heat removal

are factors that impede the technological development of SSF. So for endotoxin production of Bt

submerged fermentation rather than solid state fermentation was applied later on for this study.

Certain amino acids help in growth, sporulation and δ-endotoxin formation. Dipok Vora and Y.

I. Shethna, 1999 reported the effect of cystine on the growth, sporulation and toxin production by

Bt subsp kurstaki. In the present study the effect of 300 mg/L cystine was observed in cystine

supplemented LB-soybean medium (LBSc) for 72 hours. It could be clearly observed from

Figure 3.6 that the presence of cystine in LBS medium enhanced growth, sporulation and δ-

endotoxin synthesis. It was observed from Table 3.3 that maximum sporulation and endotoxin

yield was obtained at 48 hours which was 19.54% and 131.35% higher than the control medium

(LBS with no cystine). This increase may be due to the fact that cystine might have interfered

with some of the macromolecular changes during sporulation and parasporal crystal formation

(Rajalakshmi and Shenthna Y.I., 1980). Lower cystine concentration facilitates sporulation

related specific events such as dipicolinic acid synthesis by Bt whereas higher concentration

inhibits this phenomena. They have showed that maximum sporulation and δ-endotoxin

concentration were obtained at 300 mg/L of cystine on Cystine Basal Media (CBM) and it was

1523 μg/ml.

Substitution of LB with basal salts in defatted soybean meal-cystine medium will lower the cost

of the medium. For this purpose the medium was designed accordingly. The medium
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supplemented with defatted soybean meal, cystine and basal salts (SMc) showed 9.352 log

CFU/ml sporulation whereas in LB-soybean-cystine (LBSc) medium it was 9.06 log CFU/ml.

The endotoxin formation was 1.791 mg/ml for LBSc and 1.659 mg/ml for SMc. Though the

endotoxin concentration was 7.65% less than that of LB-soybean-cystine medium (LBSc) but it

was quite comparable. Basal salt media contains all the necessary salts (MgSO4.7H2O,

MnSO4.H2O, FeSO4.7H2O, ZnSO4.7H2O, CaCl2, & KH2PO4) which help to promote the growth

of Bacillus thuringiensis. In the commercial LB media yeast extract is used. Yeast extracts are

rich in nitrogen, vitamins and other growth stimulating compounds and therefore are used as an

ingredient in media for the cultivation of microorganisms. The nitrogen source of yeast extract-

based medium was progressively substituted by soybean meal. With the idea of finding cheap

medium for bioinsecticide production soybean could be used cheaply in fermentation industry

for insects control programs.

Role of molasses on sporulation and δ-endotoxin synthesis by Btk HD-73 was also observed in

defatted soybean meal-cystine (SMc) medium for 72 hours (Table 3.5). It has been seen that after

48 hours the spore count and δ-endotoxin concentration both were increased in medium with

soybean-molasses-cystine when compared with medium with soybean-cystine. The sporulation

and δ-endotoxin formation was 7.857 log CFU/ml and 1.796 mg/ml in soybean-molasses-cystine

medium (SMmc). On the other hand, sporulation and δ-endotoxin formation was 7.681 log

CFU/ml and 0.726 mg/ml in soybean-cystine medium (SMc) after 24 hours of fermentation. The

toxin production was 84.85% higher in SMmc when compared with SMc. This increase in δ-

endotoxin yield may be due to balances of C: N ratio and growth factor present in the molasses.

Molasses aided the earlier growth of the organism. Moreover, the use of molasses in the

production of Bt has many advantages. Molasses contains no protein or dietary fibre but contains

sucrose, glucose, fructose and carbohydrates. It is available throughout the year, permits high

sporulation and biomass production and also it is easy to prepare and to store.

In order to reduce the cost of bioinsecticide production, sea water was used to replace the basal

salts (Table 3.6) required for δ-endotoxin production in the culture medium of Bt. The δ-

endotoxin formation was 2.376 mg/ml and 1.918 mg/ml at 48 hour in the medium with basal

salts (SMmc) and in medium with sea water respectively. Though the medium containing basal
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salt solutions gave 21% higher δ-endotoxin yield in comparison to medium containing sea water,

it is more cost effective and suitable for large scale production of biopesticide. D. Ghribi and N,

Zouari (2007) formulated a medium with 30 g/l starch and 25 g/l soya bean and diluted sea

water. Using four folds diluted sea water; they have found highest (3274 mg/l) δ-endotoxin

concentration. They had performed the experiment with Btk strain BNS3 and they showed 7%

improvement of δ-endotoxin production with sea water. However, in present study 21% decrease

of δ-endotoxin occurred with sea water than that with basal salts. It may be due to the

composition or source of sea water or due to any seasonal variations or unknown regulatory

mechanisms. The δ-endotoxin concentration decreased from 1.918 mg/ml to 1.649 mg/ml and

from 2.376 mg/ml to 1.246 mg/ml in SSWmc and SMmc media respectively after 48 hour. This

may be due to the reason that several proteolytic enzymes were synthesized by Bacillus species

during growth and sporulation as has been reported (Doi 1972). Ennouri et al., 2013 showed that

there is a relationship between δ-endotoxin and proteases. Decreasing proteolytic activities in the

fermentation medium might increase the accumulation of δ-endotoxin in the insecticidal crystal

proteins, which deserves further critical investigation.

For the next experiment, defatted soybean meal extract with sea water, molasses and cystine

(SeSWmc) was formulated due to the fact that in large scale production there are few drawbacks

when soybean mass are used. It produces more foam and thus antifoam is needed to control that.

This increases the production cost. The generation of foam during the course of a bioprocess

remains a major technological challenge. Soybean extract is advantageous as compared to

soybean mass because the latter poses difficulty in mixing and dO2 availability in the bioreactor

cultivation. The SeSWmc medium showed 8.596 log CFU/ml sporulation and 1.386 mg/ml

endotoxin concentration after 24 hours whereas SSWmc showed 7.249 log CFU/ml and 1.296

mg/ml endotoxin concentration after 24 hours. Though this concentration remains quite same

after 48 hours in SeSWmc medium but it increases 34.11% in SSWmc medium. The soybean

extract medium gave highest toxicity within 24 hours of fermentation. Thus it is desirable for

large scale production because of the fact that it will reduce the fermentation time at the same

time reduce the production cost.
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This formulated medium was then used for production of biopesticide by Btk HD-73 in a 3L

fermenter under comparable controlled conditions. Temperature was controlled at 30˚C and pH

was kept uncontrolled. Initially the pH was 6.8 and later it became acidic and after 36 hours the

pH drop to 4.98 (Figure 3.14). This might be due to acid production by carbohydrate

fermentation. For Btk HD-73 δ-endotoxin concentration increased after 16 hours as vegetative

cells entered into sporulation phase and maximum δ-endotoxin yield was 2317 mg/L at 24 hours.

There was a 1.67 fold increase of endotoxin concentration in bioreactor then that of shake flask

fermentation. This characteristic of the bacterium suggests that it can be a potential and efficient

Bt toxin producer and the results of present bioprocess conditions can successfully be applied

with indigenous Bt strains in the working laboratory.

SDS-PAGE analysis of partially purified Cry protein of the reference strain (Btk HD-73) cultured

in sea water in soybean extract-molasses-cystine (SeSWmc) broth showed expected protein band

of 133 KD (Figure 3.14). According to Hofte and Whiteley, 1989 δ-endotoxin of Bt kurstaki HD-

73 Cry1Ac has a molecular weight around 125-138 KD. Thicker protein band of 133 KD was

observed in the formulated medium.
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The production cost of Bt toxin is still a crucial factor in third world countries like Bangladesh.

Normally, the raw Bt toxin mixed with a suitable surfactant is being formulated for application in

to the agricultural field. This would further increase the total cost. The farmers expect the

availability of low cost Bt toxin without compromising its entomotoxicity values. Here comes the

significance of the present findings. The present study was successful to compare the suitability

of soybean extract and molasses as nitrogen and carbon sources respectively and to formulate a

cost effective medium using these locally available cheap raw materials for large scale

production of biopesticide. Sea water that was used as substituent of basal salts was found to

have comparable effect on δ-endotoxin synthesis. Moreover, pronounced enhancement of

sporulation and δ-endotoxin synthesis by Bt strains occurred in presence of cystine in the culture

medium. The δ-endotoxin yield in the medium consisting of soybean extract, molasses, and

cystine with sea water was maximum after 24 hours fermentation in bioreactor condition using

the reference strain (Btk HD-73). So the results obtained from this study are very promising and

will be very useful to develop efficient Bt biopesticides on large scale in Bangladesh. This will

also help to reduce hazards in food chain and thereby enhance the food safety which will

consequently decrease the health risk.

Future studies will focus on optimization of scale up parameters for maximizing production of Bt

biopesticides in a cost effective manner. Every possible substrate, starting from household waste

to agro-industrial byproducts, could be checked for the feasibility of Bt biopesticide production

to make it cost effective. After that, indigenous Bt strains with higher insecticidal activity will be

used for large scale production of crystal protein. Continuous searching for more and more Bt

with diversities keeps utmost importance in resistance management against Bt formulations. So,

screening for potential Bt strains should be an ongoing process. Bioactivity of crystal proteins

purified from the B. thuringiensis isolates will be examined on different insect groups. It is

imperative to gain a complete understanding of toxin mode of action and the role that receptors

play in this mechanism. Because, crystalline genes are mostly carried on the plasmids, plasmid

profiles will also be prepared and the cry genes, they contain, will be cloned.

5. Conclusion and Recommendations
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Appendix-I

Media and Reagents

LB Agar

Ingredients Amount (g/L)
Tryptone 10

NaCl 10
Yeast extract 5

Distilled water 1000 (ml)
pH 7.0

Agar 15

Directions: Ingredients are dissolved in distilled water by stirring with gentle heating.
Medium is sterilized by autoclaving at 121°C for 15 min.

LB Broth

Ingredients Amount (g/L)

Tryptone 10

NaCl 10

Yeast extract 5

Distilled water 1000 (ml)

pH 7.0

Directions: Ingredients are dissolved in distilled water by stirring. Medium is sterilized

by autoclaving at 121°C for 15 min.

Bradford Reagent

A. Stock solution:

300 mg serva blue G (Comassie G-20) was dissolved in 300 ml methanol (BDH,

England). 600.0 ml of 85% phosphoric acid (BDH, England) was then added and

stirred well.

B. Test solution:

50.0 ml solution was dissolved with 850 ml distilled water and stirred well. The

solution was then filtered with whatman filter paper.
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Tris-HCL buffer (0.5 M)

Tris (Hydroxymethyl-aminomethane) was dissolved in distilled water to a 0.5 M solution

and the pH was adjusted to the appropriate value with conc. HCl.

Phsophate buffer

A. 0.5L 0f 1M K2HPO4 at 174.18g/mol=87.09g (solution A)

B. 0.5L 0f 1M KH2PO4 at 136.09g/mol=68.045g (solution B)

Directions: Mixing of appropriate amount of solution A&B for the desired pH value.

30% acrylamide-bisacrylamide solution

Ingredients Amount (g/mL)

Acrylamide 29

Bisacrylamide 1

Distilled water 100 (ml)

10% ammonium persulphate (APS)

Ingredients Amount (g/mL)

APS 1.0 g

Distilled water 10 ml

0.1% BMB (Bromophenol blue solution) or tracking dye

Ingredients Amount (g/mL)

Bromophenol blue 0.1 g

Distilled water 100 ml

Directions: Stored at 4ºC
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Staining solution

Ingredients Amount (g/mL)

Coomassie brilliant blue G-20 0.20 g

10% acetic acid 100 ml

Sample loading buffer

Ingredients Amount (g/mL)
0.5 M tris-Cl (Upper gel

buffer) 10 ml

10% SDS 10 ml

2-mercaptoethanol 1 ml

Glycerol 10 ml

Distilled water 19 ml

Electrophoresis buffer (pH 8.3)

Ingredients Amount (g/mL)

Tris-base 3.0 g

Glycine 14.4 g

10% SDS 10 ml

Distilled water 1000 ml

Upper gel buffer (pH 8.8)

Ingredients Amount (g/mL)

Tris-base 18.17 g

SDS 0.4 g

Distilled water Up to 11 ml

Directions: pH adjusted to 8.8 by adding HCl
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Lower gel buffer (pH 8.8)

Ingredients Amount (g/mL)

Tris-base 18.17 g

SDS 0.4 g

Distilled water Up to 11 ml

Directions: pH adjusted to 8.8 by adding HCl
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Appendix-II

Nutritional value of soybean

Ingredients Composition

Dry Matter 89%

Crude Protein 48%

Crude Fiber 03.0%

Neutral Detergent Fiber 07.1%

Nutritional value of molasses

Molasses contains no protein or dietary fibre and close to no fat. Each tablespoon (20 g)

contains 58 kcal (240 kJ) and other ingredients are:

Ingredients Composition

Sucrose 5.88 g

Glucose 2.38 g

Fructose 2.56 g

Carbohydrates 14.95 g

Seawater composition (by mass)

Element Percent

Oxygen 85.84

Sulfur 0.091

Hydrogen 10.82

Calcium 0.04

Chloride 1.94

Potassium 0.04

Sodium 1.08

Bromine 0.0067

Magnesium 0.1292

Carbon 0.0028
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Total Molar Composition of Seawater (Salinity = 35)

Component Concentration (mol/kg)

H2O 53.6

Cl- 0.546

Na+ 0.469

Mg2+ 0.0528

SO2
-4 0.0282

Ca2+ 0.0103

K+ 0.0102

CT 0.00206

Br- 0.000844

BT 0.000416

Sr2+ 0.000091

F- 0.000068
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Appendix-III

List of Apparatus

Apparatus Model/ Company

Autoclave Hirayama model HL-42, AE, Japan

Autoclave for bioreactor TOUCHCLAVE

Centrifugation

Biofuge Primo (Heraeus) and Hittch-Mikro-Rapid

(Zrntrifugen D-72002, Japan)

Electronic balance DENVER Instrument

Glassware sterilizer Heraeus model 0042, W. Germany

Incubator Heraeus model D-6072, W. Germany

Laminar airflow ESCO vertical Laminar flow cabinet

Magnetic stirrer CIMAREC

Micropipettes Eppendorf research and Nichiryo

Orbital shaker N-BIOTEK incubator

Pumps for aeration MTH PUMPS

pH meter INOLAB WTW series

Refrigerator (4oC) Royal Frestech

Spectrophotometer, DR 4000U HACH, USA.

Thermo stated shaking water

bath N-BIOTEK and MEMMERT

3 liter bioreactor NEW BRUNSWICK SCIENTIFIC
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Appendix-III

List of Chemicals

Name of chemicals Source

Acrylamide Merck, Germany

Agar Merck, Germany

Ammonium sulfate BDH, England

Bis-acrylamide Merck, Germany

BSA Sigma, USA

CaCl2 Merck, Germany

Coomassie blue Merck, Germany

CuSO4 Merck ,Germany

Cystine Sigma, USA

EDTA BDH, England

Ethanol Merck, Germany

FeSO4 Merck ,Germany

HCl Merck, Germany

K2HPO4 Merck, Germany

KH2PO4 Merck, Germany

MnSO4 Merck, Germany

NaCl Merck, Germany

NaOH Merck, Germany

Peptone Oxoid, England

Phosphoric acid Merck, Germany

SDS Wako, Japan

Trizma base Sigma, USA

Tryptone Merck, Germany

Yeast Extract Oxoid, England

ZnSO4 Merck ,Germany
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