Independent Security System
With
Remote Access
Thesis Report

Supervisor: Zahidur Rahman (PHD)
Conducted by:
A.T.M Atef Tasnimul Haque 12101145

Syeda Prima Tasnim 10301014

BRAC

UNIVERSITY

XA

School of Engineering and Computer Science BRAC University

Submitted on 28" December, 2014

Declaration

We, hereby declare that this thesis is based on the results found by ourselves. Materials of work
found by other researcher are mentioned by reference. This Thesis, neither in whole or in part,

has been previously submitted for any degree.

Signature of Supervisor Signature of Author

Prof. Zahidur Rahman PHD A.T.M Atef Tasnimul Haque

Signature of Author

Syeda Prima Tasnim

Acknowledgement

This is the work of Syeda Prima Tasnim and A.T.M. Atef Tasnimul Haque, students of the SECS
department of BRAC University, studying CSE and CS respectively starting from the year 2010.
The document has been prepared as an effort to compile the knowledge obtained by us during
these four years of education and produce a final thesis which innovatively addresses one of the
issues of the current practical world. Although there may be more serious and urgent issues that
need resolution (hunger, poverty, healthcare, etc.), we felt the need to provide a more intelligent
and ‘human like’ system to existing mobile and web platforms. We intended to develop a
system, much like Apple’s ‘Siri’ program, which could behave more like a human in its
interactions with its users. However, through seemingly complicated and incomprehensible
theories of our own, it became clear that we would fail this major task. Running out of time and
patience, we decided to focus our efforts elsewhere. It was then that a professor from BRAC
University had mentioned a problem that set us off into developing the system we now call
RASS. The problem was to simply monitor the access granted to students to a certain room and
log them for security reasons. Initially this seemed like something achievable and indeed it was.
As we began developing the system, our supervisor started adding to it more and more features
and functionalities to such a point that the system is capable now to provide an enterprise
solution to corporations. Even so, this system has been piloted by one of the larger corporations
in Bangladesh and is soon to be released after completing the beta testing. We had plenty of help
from Mr. Moin Mustakim, SECS Dept., BRAC University, with the paperwork. The generation

of this report would not be possible without his help.

Table of Contents

Declaration
Acknowledgement
Abstract
Chapter 1
1.1 Introduction
1.2 Motivation
1.3 Thesis Outline
Chapter 2
2.1 Problem Description
2.2 Previous Works
2.3 Proposed Solution
Chapter 3
3.1 Microcontroller Unit
3.2 The Web Application
3.3 The Mobile Application
Chapter 4
4.1 System Design
4.2 Microcontroller Unit
4.2.1 Arduino Uno
4.2.2 Arduino Mega
4.2.3 LCD
4.2.4 GSM Shield
4.2.5 Bluetooth Shield
4.2.6 Micro SD Card Shield
4.2.7 Wiegand RFID Reader
4.2.8 Electromagnetic Lock

4.2.9 Software Serial Communication

O O e N W N

14
14
15
17
20
20
21
21
23
23
24
24
25
25
25
26
26
26
27
27

4.2.10 Serial 12C Communication
4.3 Web Application
4.3.1 Database Design

4.3.2 Model View Controller Design Pattern

4.3.3 Server Side Programming
4.3.3.1 Laravel Framework
4.3.3.2 Object Relational Model
4.3.3.3 Restful API

4.3.4 Client Side Programming

4.4 Mobile Application
4.4.1 Android Native Application
4.4.2 Asynchronous Javascript API Calls
Chapter 5
5.1 Cloud Deployment
5.2 System Interfaces
5.2.1 Web Application Functionalities
5.2.2 Mobile Application Functionalities
Chapter 6
6.1 Basic Analysis
6.1.1 GPS Modem Analytics
6.1.2 RFID Access Analytics
6.2 System Redundancy
6.2.1 RFID Unit
6.2.2 Micro SD Unit
Chapter 7
7.1 System Vulnerabilities
7.1.1 DDOS Attacks
7.1.2 Power Drainage

7.2 System Improvements

28
28
29
29
30
30
31
32
32
33
33
35
36
38
38
38
41
44
44
44
45
45
45
46
47
47
47
48
48

7.2.1 RPC Communication
Chapter 8
8.1 Deployment
8.2 Limitations
8.3 Risks
Git Repository Links

References

List of figures
Figure 4.3.1.1 Database Model

Figure 4.4.1.1 WireFrame of the RASS application
Figure 5.1 Schematic Diagram

Figure 5.2.1.1 Login Panel

Figure 5.2.1.2 Switch Panel

Figure 5.2.1.3 Access Rights

Figure 5.2.1.4 Reports Panel

Figure 5.2.2.1 Login Activity

Figure 5.2.2.2 Home Activity

Figure 5.2.2.3 Site List Activity

Figure 5.2.2.4 Control Switches Activity

48
50
50
51
51
51
51

29
34
37
39
39
40
40
42
42
43
43

Abstract

Independent Security System with Remote Access

This thesis essentially consists of three primary parts and has been described throughout
according to their functionalities. At the core of the system lies the web server which is central to
everything. Then there is the microcontroller unit itself which carries out actions in the physical
world through electronic relays. The final component is an android and a web application that
provides users with the interface to access the functionalities and features of the actual hardware.
In a gist, a user can manipulate electronic switches located at any remote site, equipped with the

microcontroller unit, through either the web or mobile application..

The hardware consists of a microcontroller unit, a Bluetooth shield, a GSM shield and six
electronic relays. It uses polling to learn about commands given by users through the web or
android application, from the central server. The system has an average poll time of fifteen

seconds and an average fail rate of forty percent.

The central server runs on a RHEL 6 server hosted on the cloud and will need load balancing
once the number of concurrent connections (Sites) exceeds one thousand. It uses a PgSql

Database server with a minimum storage of ten GigaBytes.

The user interface consists of two parts, an android application and a web application. The
android application provides a user with simpler options to work with while the web application
provides complicated functionalities and features. The android application uses the API provided
by the web application to fetch and push data to the central server. The web application is built
on the Laravel framework for php (Version 4.2) and uses most of its features like its Templating

Engine “Blade” and its Object Relational Model “Eloquent”.

Overall, the system is one of its kind as it is the only open source product available with its
distributed set of features and functionalities throughout multiple platforms. However, there is

still much room for further developments as the project is only in its childhood.

Chapter 1

With the goal of building a new generation of security system which can be controlled virtually,

we’ve come up with our project called, RASS (Remote Access Security System).

1.1 Introduction

This is an embedded system that will integrate easily with any existing system. In other words, it
is a module that can accept connections from more than ten peripherals in order to switch them
(Hot or Cold). So one could hook up an electronic lock, TV, AC, generator or any other

electronic device of choice to the module and control when they switch (on or off).

It generates and stores logs at the remote site; notifies the central server in case of unauthorized
access. This whole system can be placed either in an intranet or the internet, depending on its
application. The system provides a web based GUI to control and operate itself. We started the
thesis by the end of 2013 and have completed it by 2014. Our main focus was to provide a
solution that would be efficient and be very user friendly. Hence the choice of platform was the
web, as it provides great tools to develop an interactive GUI that can help users navigate and

operate the system.

1.2 Motivation

We found a gap between existing security systems of our households and that of corporate
offices and apartments abroad. We noticed that almost all of the buildings in Dhaka, and most
other cities in the developing countries do not have any control mechanism that grants access to
users through any mobile or web platforms. After some intense research and study we were

confident enough to resolve this issue in an efficient and feasible manner. Hence we started work

10

on this next generation security system that spans across both the mobile and web platforms. At

that very beginning we started researching about micro controllers.

We started with the Arduino Uno and moved on to the Arduino Mega. We thought of developing
a system which would allow an user to control and monitor a remote location. With the help of
our supervisor we started our project research. At that moment, there arose a need to control
access of students into BRAC University’s Robotics Lab. It became a security issue as parts and
tools were constantly missing. To protect the equipment of the laboratory the BRAC University
faculties encouraged us to provide a solution to this problem. Hence, we decided to start work on
our thesis and had in aim specifically the logging facility that we so very much needed. Finally,
with the eight months of hard work and research we ended up developing our thesis project. This

is the complete system; it is called RASS in short and is responsible for maintaining remote sites.

1.3 Thesis Outline

The thesis consists of nine chapters in all and are outlined below. Each chapter consists of at
least one or more sections that describe a specific part of that individual chapter. A detailed

description of each of these sections are also outline below.

Chapter One details the purpose, aim and motivation for the development of this thesis. It has
three sections - introduction, motivation and thesis outline.

The Introduction section describes the purpose and aim for the development are mentioned.

The Motivation section describes the motivation behind the whole development.

The Thesis Outline section is self explanatory.

Chapter Two describes the problem that this thesis targets to eliminate, the current solutions
that exist in the market and the solution that this thesis proposes. It has three sections -

background study, problem description and proposed solution.

11

The Problem Description section describes the problem that this thesis is attempting to solve in
detail.

The Previous Works section lists the most recent and promising work done by others to provide a
similar solution.

The Proposed Solution section describes in detail the solution that this thesis provides in order to

eliminate the problem described.

Chapter Three describes the entire system design and the main components. It has three
sections - microcontroller unit, mobile application and web application.

The Microcontroller Unit section details the design and overview of the microcontroller unit that
makes up the independent security system module.

The Mobile Application section details the android classes, layouts and the manifest file. This
also outlines the communication between the microcontroller unit and the central web servers.
The Web Application section details the entire application structure and the database design

along with the restful api routing.

Chapter Four describes the entire system architecture which details all the separate individual
components making up each major unit and the purpose for their requirement. It has four
sections - system design, microcontroller unit, mobile application and web application.

The System Design section describes the complete architecture of all the three major
components. This includes the schematics for the microcontroller unit design, the database
design for the web application and the restful api for the hosting server.

The Microcontroller Unit section contains ten sections, each for one of the components used
inside the main controller unit itself. The ten sub sections are arduino uno, arduino mega, LCD,
GSM shield, bluetooth shield, micro SD shield, wiegand RFID reader, electromagnetic lock,
software serial communication and 12C serial communication. These sub sections describe the
utility each of these modules provide to the entire functionality of the microcontroller unit.

The Web Application section contains four sections detailing the developments of all the server

side and client side programming, including the usage of various web development frameworks.

12

This section has four sub sections - database design, model view controller design pattern,
server side programming and client side programming. These sub sections describe in detail the
implementation of all of the mentioned modules.

The Mobile Application section contains two sections detailing the development of the android
application needed to interact with the independent controller unit and the AJAX calls made to
the server. This section contains two sub sections - native android application and asynchronous

Jjavascript calls.

Chapter Five describes the integration of the primary components into the whole system. It
details the combination of the microcontroller unit, the web application and the mobile
application to provide the service referred throughout as ‘remote access security system’. This
chapter has two sections - cloud deployment and system interfaces. Each of these sections
describes the whole development process needed to provide the RASS service.

The Cloud Deployment section details the implementation of the restful api needed to provide an
interface to both the microcontroller unit and the mobile application.

The System Interfaces section lists and details all of the interfaces that the system specifically
provides to the user for access control. This section has two sub sections - web application

functionalities and the mobile application functionalities that the user can take advantage of.

Chapter Six describes the entire system’s performance and reflex time for all the different
actions. This chapter has three sections - basic analysis and system redundancy.

The Basic Analysis section details three different analytics that are relevant to the system and has
two sub sections which are GPS analytics and RFID analytics.

The System Redundancy section provides a detailed evaluation of the failsafe mechanism
included in the system and it’s advantages. This section has two sub sections - RFID unit and

micro SD card unit.

Chapter Seven describes the drawbacks that the system has incorporated within and has two

sections - system vulnerabilities and system improvements.

13

The System Vulnerabilities section consists of two sub sections - DDOS attacks and Power
Drainage. These sub sections describe in detail the security issues associated with the system.

The System Improvements section consists of one sub sections - RPC communication. This sub
sections describes in detail the advantages that the system will provide with the implementation

of each of the specified improvements.

Chapter Eight describes the concluding notes of the authors for this thesis and contains three
sections - deployment, limitations and risks.

The Deployment section describes in detail the entire procedure needed to deploy the system at a
remote location and also set up the central server.

The Limitation section describes in detail all the limitations of the system from a user’s point of
view.

The Risks section describes in detail all the relevant risks of using this system.

14

Chapter 2

Although a lot of research has already been done in this field and many techniques, far advanced
than that used in this thesis, have been implemented by others, no other solution like this exists
to provide the service that this thesis has derived to provide to an end user. To understand what
we have accomplished in this thesis and how it can revolutionize the future of security systems,
we must look at the problem that we have attempted to solve. After a clear understanding of the
problem and its solutions, we can easily compare how the previous works by others were not
service oriented and hence have failed to solve the problem, where we have succeeded. Lastly

the solution proposed by this thesis will be explained in great detail.

2.1 Problem Description

After some intense brainstorming we have found that there is no current system that allows a
user to virtually access and control multiple electronic devices at one or more remote locations.
Moreover, no current system exists which allows a company or a large corporation with multiple
remote sites, located both locally and internationally, to both grant access control and organize

those remote locations into zones.

As an example, the telecom service providers in Bangladesh has more than five thousand BTS
centers where they store very expensive equipments provided by their vendors. Currently, they
do not have any automated centralized system that would allow them to provide access control to
the various electronic components located at these sites. These companies have employees
spanning from hundreds to thousands who might need access at any of the remote sites. The
current system requires them to fill out paperwork to acquire a master key that grants them entry
into a remote site. This system is very inefficient and slow and can be very difficult to maintain.

Keeping this problem in mind we developed our solution which solves all of the major problems

15

that these companies are facing. Our solution allows any user to obtain access to any given
remote site through an RFID card which has to be granted access via the web application
interface. A user thus has to notify the central authority to be granted access to the desired
remote site and once the access has been granted the user can easily use his RFID card to grant
entry into the site. Besides access control, any activity at these sites can also be monitored from

the central monitor station via the web application interface.

Another example would emphasize on an average family living in either the suburbs or the urban
regions of a country. Considering Dhaka city itself, there are serious security issues with certain
developing areas of the city. In such areas, users with access to smart phones can easily gain
access to their desired electronic devices with their smart phones, including an electromagnetic

lock, which would prevent any unauthorized access.

In most cities in and around the country, there is no control mechanism which grants the user to
access to a system via mobile or website with all the features mentioned above. Secondly, there
is no such mechanism which provides a detailed login summary about any authorized or
unauthorized entries. Furthermore, the RASS system provides the central monitoring station to

generate and analyze various graphs and reports generated via the web application interface.

2.2 Previous Works

According to the studies, there are various remote procedure call protocols have been developed.
Sun Microsystems is the inventor of the RPC paradigm, which is now known as the Open

Network Computing Remote Procedure Call.

http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Open_Network_Computing_Remote_Procedure_Call
http://en.wikipedia.org/wiki/Open_Network_Computing_Remote_Procedure_Call

16

Among all the RPC analogues and implementations found elsewhere, we found D-Bus, CORBA,
JSON-RPC and Java Remote Method Invocation (Java RMI) helpful for our thesis. The

functionalities of these protocols are different but all of them uses RPC.

D-Bus, is an open source inter-process communication (IPC) program, the functionalities are
similar to CORBA. It is a system which communicates concurrently-running computer
programs (processes) with each other.

D-Bus provides two types of functionality: First, communication between desktop applications
in the same desktop session; to allow integration of the desktop session as a whole, and address
issues of the process lifecycle. Second, communication between the desktop session and the
operating system, where the operating system would typically include the kernel and any

Processes.

CORBA, Common Object Request Broker Architecture provides remote procedure
invocation via an intermediate layer, which is called the object request broker. It uses an
object-oriented model although the systems that utilize CORBA do not have to be
object-oriented. CORBA enables three types of collaboration, they are; collaboration between
systems on different operating systems, programming languages, and computing hardware.It is

an example of the distributed object paradigm.

Java's Java Remote Method Invocation (Java RMI) is a Java API that performs the
object-oriented equivalent of remote procedure calls (RPC). The original implementation
depends on Java Virtual Machine (JVM) class representation mechanisms and it thus only
supports making calls from one JVM to another. The protocol is known as Java Remote Method
Protocol (JRMP).

A CORBA version was later developed in order to support code running in a non-JVM context,

http://en.wikipedia.org/wiki/DBus
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/CORBA
http://en.wikipedia.org/wiki/Computer_programs
http://en.wikipedia.org/wiki/Computer_programs
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Desktop_environment
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Kernel_%28computer_science%29
http://en.wikipedia.org/wiki/Process_%28computing%29#Computing
http://en.wikipedia.org/wiki/Process_%28computing%29#Computing
http://en.wikipedia.org/wiki/CORBA
http://en.wikipedia.org/wiki/Distributed_object
http://en.wikipedia.org/wiki/Process_%28computing%29#Computing
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Java_Remote_Method_Invocation
http://en.wikipedia.org/wiki/Java_Remote_Method_Invocation
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Java_Remote_Method_Protocol
http://en.wikipedia.org/wiki/Java_Remote_Method_Protocol
http://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture

17

JSON-RPC is an RPC protocol that uses JSON-encoded messages. It is a very simple remote
procedure call protocol which is encoded in JSON, defining only a handful of data types and
commands. JSON-RPC allows for notifications, where it sends data to the server which does not
require a response and for multiple calls to be sent to the server which may be answered out of

order.

2.3 Proposed Solution

After much needed researching and understanding of the problem itself, we have proposed a
feasible solution that addresses all aspects of the problem and solves them quite efficiently.
During the design phase of the system our efforts revolved around the core of the problem itself,
ie: providing access control to users dynamically based on their access, granted from the central

monitoring station.

Due to the unavailability of ethernet or other fast internet connectivity like wireless internet or
3G internet in remote areas, we found it feasible to implement GPS based internet using a sim as
the primary source of connectivity. This also sets up the foundation for RPC based
communication implementation as during the GPS connectivity initiation phase, an unique real
IP is allocated to the modem. This IP can be used to activate full-duplex protocols of

communication like TCP IP.

The primary security if provided by an electromagnetic lock connected with an RFID reader to
grant or deny access to the site based on the access privilege allocated to an RFID card. This
locking mechanism has been implemented in such a manner so as to provide access both via the
web application interface and the mobile application interface, based on the mode of
communication being used by the user. All access privilege data has been stored in a micro SD

card to maintain redundancy in case of any issue with either modes of communication.

http://en.wikipedia.org/wiki/JSON-RPC
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Protocol_%28computing%29
http://en.wikipedia.org/wiki/JSON

18

Therefore, in case of any internet failure or bluetooth failure, a user can use an RFID card to gain

access to the system independently. This is the fundamental fail safe for the system.

In addition to five existing ports available for connecting any electronic device of choice, an
additional five ports remain for configuring and adding further devices if desired. Each of these
ports are digital pins on the microcontroller and can be provided with digital outputs, thus
allowing for more than zero or one outputs if required. The ports, once activated or deactivated
trigger internal relays which in turn switch (on or off) external electronic devices that have been

connected to the respective ports.

The method used for synchronization with the central web server is known as polling and is
guaranteed to succeed. Polling in this context refers to the process of continuous packet
transmission from the microcontroller unit to the central web server to keep itself updated as to
the status of each port (on or off). The microcontroller unit polls four times a minute to acquire
the current state of the system and once a successful poll happens, the state is updated instantly
and maintained in that state until the next successful poll occurs. In case of prolonged
consecutive unsuccessful polls the systems reboots the GSM modem and initiates the

synchronization process all over again, still maintaining the current state of the system.

The synchronization process is quite simple in itself as every poll is nothing but a HTTP GET
request which is made to the central web server. The response made by the server is also a HTTP
frame and the response data contains the state that the system should resolve to. Every successful
poll is logged at the central server which is used to provide an approximate estimation as to the
downtime or uptime of any remote site. If the server doesn’t log a successful poll for a prolonged
period of time, it warns the central monitoring station via the web application interface.
Furthermore, if during synchronization any unauthorized access is found in a poll, the web server

alerts the central monitoring station via the web application interface.

The electronic devices connected to the ports can also be controlled via the mobile application

interface. The bluetooth communication mode of the system allows for any changes to system’s

19

state via the mobile application interface. Once the system’s state has been altered, the system
automatically retains the latest change while the mobile application notifies the central server of
the changes made. Hence, changing the system’s state from either interface is instantly notified

to the central web server which always stores the current state of the system.

20

Chapter 3

The RASS system as described above consists of three core parts - the microcontroller unit, the
web application and the mobile application. The microcontroller unit is standalone and needs to
be installed at a remote location which is to be monitored from the central monitoring station.
The microcontroller unit itself consists of two separate units - the master and slave units. The
Web Application provides an administrator with a graphical user interface (GUI) to monitor,
control and grant access privilege to any number of users. The interface provided to the
administrator is an intermediary to the web servers as each action performed on the web
application itself is passed on to the web server in turn. The Mobile Application provides users
with privileged access rights, an interface to control and update the state of the system, ie: switch
on an electronic appliance, via a smartphone. All of these functionalities and features are

described in brief below.

3.1 Microcontroller Unit

The sole purpose of the microcontroller unit is to remember the current state of the system, ie:
the current switching condition of the appliances, and synchronize this state with the central
server. The master and slave units have been separated out so that in case of any communication
error, like the absence of internet or bluetooth, the system does not become a black box. Thus we
have guaranteed a failsafe even in the worst of cases. This is achieved by the Singleton Design
Pattern implementation in the programming of the units. The master unit is only responsible for
synchronization of the system with the central web server. The slave unit is responsible for any

changes to the system’s state itself, ie: switching of the relays.

21

3.2 The Web Application

The web application is the primary interface that an administrator must use to operate the entire
RASS system. Administrators are authenticated by a username and password before allowing
them access to the central monitoring station. After logging in, the administrator can perform

one of seven core functionalities:

The admin can trigger any switch at any remote site or zone from the sites or zones panel.

The admin can grant or deny access privilege to multiple users for multiple sites or zones at the
access rights panel.

The admin can monitor /ogs generated at all sites and zones at the logs panel.

The admin can view reports generated by analyzing the logs for remote sites at the reports panel.
The admin can create, read, update and delete users, sites and zones on their respective panels.
The admin can view notifications from individual sites and zones at the notifications panel.

The admin can deactivate the microcontroller unit at any site or zone from the activity panel.

These seven panels provide the administrator with all the core functionalities of the system and
can be easily navigated to from the top navigation bar. Aside from the administrator, general
users can also log in to the web application using their username and RFID card number as
password through the login interface. Once logged in, the user can view and update the current
status of any or all of the sites that he has been granted access to. The user may also update his

personal information and RFID card number.

3.3 The Mobile Application

The mobile application is another side of our security system to control the system virtually. First

of all, the user will login using the username and password/RFID to get started. Once logged in,

22

the user can manage all the connected appliances through the mobile application interface. In
case of any unauthorized access attempts, the remote server will be alerted.

Four options are available after logging in; Sites, Log, Zones and Map.

The Sites option displays a list of sites that the user has been granted access to. After selecting a
site from the list, a user can control the switches.

The Log option displays a list of sites that the user has access to. Upon clicking on a site, all the
logs generated by that site is listed for the user to view.

The Zones option displays a list of zones that the user has been granted access to. After selecting
a zone from the list, a user can control the switches.

The Map option shows the geo- location of the sites that the user has been granted access to.

A user can log out anytime by simply pressing the logout option which takes the user back to the

login page.

23

Chapter 4

Before beginning the design phase of the product, we collected numerous backlogs that helped
describe the product in great detail. We followed standard software development techniques such
as writing use cases and user stories. This helped us further clarify misconceptions and

confusions regarding the design of the RASS system.

4.1 System Design

Gathering from the backlogs, use cases and user stories, we swiftly designed the first logical
prototype of the system. The main components of the system are the microcontroller unit, the

central servers and the mobile and web applications.

The microcontroller unit is the physical component that must be present at the remote site and
has to be installed manually. Manual installation will involve connecting all the electronic
appliances that are desired to be controlled remotely. Once installation is complete, it should be

ready to process commands send to it via the web servers.

The web and database servers are located on the cloud and provide the gateway for sending
commands to the microcontroller unit located at the remote site. The web server is maintained by

the web application which is hosted on the server itself.

The web application is built on a php framework and it serves requests made by the
microcontroller unit at any remote site. While the service is made, the application updates the
state of the system based on any changes made by a user. After a request has been served and the
microcontroller unit at the remote site has received the transmission, it resolves its state to match

that mentioned by the web server. Thus the whole synchronization process is resolved.

24

4.2 Microcontroller Unit

The master unit has four main components that are crucial to its functioning. It is connected to a
GPS modem, which provides internet connectivity for synchronization. It is also connected to a
bluetooth adapter, which provides bluetooth connectivity with nearby devices. An LCD is
connected to this unit as well in order to print various runtime messages. The most important
component is the software serial interfacing with the slave unit. This interface allows the master

unit to send commands to the slave unit.

The slave unit also has four core components connected to it, one of which is responsible for the
actual triggering of connected electronic appliances. Six relays make up the relay component of
the slave unit and are responsible for triggering switches. A micro SD card has been interfaced
with the slave unit in order to store local logs of access and also the list of privileged users who
have access. Whenever a synchronization is successful the user access list stored in the SD card
is also updated accordingly. The failsafe of the system is assured by the RFID reader which is
also interfaced with the slave unit. The slave unit will grant any user with a privileged RFID card
access (by unlocking the electromagnetic lock). However, the most important component of the
slave unit is the software serial interfacing with the master unit. This interface allows the slave
unit to receive commands transmitted by the master unit and execute them accordingly, thus

keeping the state synchronized with the central web server.

4.2.1 Arduino Uno

The Arduino Uno is a microcontroller board based on the ATmega328 and it has 14 digital
input/output pins and 6 analog inputs. This microcontroller is the brain of the slave unit of the
entire microcontroller unit and is interfaced with the components mentioned above. It receives all

control commands from the master unit via software serial communication.

25

4.2.2 Arduino Mega

The Arduino Mega is a microcontroller board based on the ATmegal280 and it has 54 digital
input/output pins and 16 analog inputs. This microcontroller is the brain of the master unit and is
interfaced with all the components mentioned above. It sends all control commands to the

Arduino Uno of the slave unit via software serial communication.

4.2.3 LCD

This is a basic display which uses a library named LCD library for arduino. This library allows
an Arduino board to control Liquid Crystal Displays (LCDs) based on the Hitachi HD44780 (or
a compatible) chipset, which is found on most text-based LCDs. The LCD is used to display
certain outputs when a successful poll occurs and also for prolonged unsuccessful polls. It also

shows the status of the system which is either online or offline.

4.2.4 GSM Shield

This module uses the Serial ports 50 and 51 for Serial Communication between the SIM900
GSM shield and the Arduino Mega. Simple “AT” Commands have been used to initiate and
perform HTTP requests like GET and POST. A detailed list of these commands can be obtained
online from the SIM900 documentation. Simple AT commands have been used by the system to

make HTTP GET requests to the central web server.

26

4.2.5 Bluetooth Shield

This module uses the Serial ports 18 and 19 for Serial Communication between the Bluetooth
Shield and the Arduino Mega. The shield is almost plug and play and no configuration is
required to establish communication. The Seriall ports of the Arduino Mega have been used for

serial communication between the bluetooth shield and the microcontroller.

4.2.6 Micro SD Card Shield

The SD Card shield uses the Arduino Mega’s MISO and MOSI pins to establish a master slave
communication protocol using the ICSP headers. The Chip Select (CS) pin is used to specify
which pin the Mega uses to read or write data to the SD card. Once the connections are made, the
SD card can be accessed via the Arduino Mega. The SD Card module is needed for the system to
be actively secured in case of any network failure causing a connection sever between itself and
the central servers. In such a case, the RFID numbers of authenticated users will be retained by
the system through the SD Card and access can still be viable. We were unable to encrypt the

data stored in the SD Card and therefore no level of security can be provided.

4.2.7 Wiegand RFID Reader

The Wiegand interface is a de facto standard commonly used to connect a card reader or keypad
to an electronic entry system. Wiegand interface has the ability to transmit signal over long
distance with a simple 3 wires connection. The RFID reader has been used through the open

source Wiegand32 library to establish communication with the Arduino Mega.

27

4.2.8 Electromagnetic Lock

An electromagnetic lock or magnetic lock, is a locking device. Generally it consists of an
electromagnet and an armature plate. These two parts: electro magnet and armature plate make
the electromagnetic lock, where the electromagnet portion of the lock is attached to the door
frame and a mating armature plate is attached to the door. When the door is closed the two
components are in contact. When the electromagnet is energized, a current passing through the
electromagnet creates a magnetic flux that causes the armature plate to attract to the
electromagnet, creating a locking action, therefore the door is locked. Because the mating area
of the electro magnet and armature is relatively large, the force created by the magnetic flux is
strong enough to keep the door locked. Even under any large amount of stress the door remain
locked because of the magnetic force. One of the relays of the slave unit of the microcontroller
unit is connected to an electromagnetic lock. Based on the application logic, triggering the relay

results in opening or closing the lock.

4.2.9 Software Serial Communication

Serial Communication is used for communication between the Arduino board and a computer or
other devices. All Arduino boards have at least one serial port. It communicates on digital pins 0
(RX) and 1 (TX) as well as with the computer via USB. The Arduino Mega has 5 separate
software serial ports. Out of these five, three have been used, by the GSM shield, the bluetooth
shield and the TX RX for usb communication. The arduino uno has only one software serial port

and that has been interfaced with the master unit to receive control commands.

http://en.wikipedia.org/wiki/Lock_%28security_device%29
http://en.wikipedia.org/wiki/Electromagnet
http://en.wikipedia.org/wiki/Electromagnet
http://en.wikipedia.org/wiki/Electric_current

28

4.2.10 Serial I12C Communication

I12C stands for inter-integrated circuit and it is basically a serial computer bus used for
communication between multiple master and slave units that are usually low speed peripherals.
Almost all arduino boards have this bus available to allow for integration with any legacy
systems and is called the ICSP legacy jumper connections. We have used the ICSP jumpers on
both the arduinos on the master and slave units to establish our own /2C bus. After the creation
of the bus itself we have used the [2C communication protocol to programmatically declare the
master and slave units. This setup was initialized using the Wire.h library which implements the
12C protocol for communication. During the setup it was crucial to synchronize the clocks of

both the master and slave units for the communication protocol to be instantiated.

4.3 Web Application

The web application is the core piece of software that the RASS system provides as a service. In
other words, the web application is a SAAS that completes and constructs the whole system
itself. The application provides a GUI to the administrators and users to access, control and
monitor all the remote sites connected to the central web server, from where the web application
is served via the internet. The application is built on a core PHP backend framework (Laravel)
that uses the MVC design pattern. As for the frontend, Angular JS, a javascript framework is
used which also uses the MVC design pattern.

The application is designed using the Laravel framework and there are individual controllers
that serve a view based on the model that needs to be accessed through database queries. All
queries made to the database are made through an object relation mapping called Eloquent.
These views are served using an apache server and are generated using the Blade templating

engine. All of the views are stored on the server and are cached in the server.

4.3.1 Database Design

29

The database used for the web application is a relational database management system and is

called MySql. The tables and their relations are described in the figure below:

_ records ¥
id INT{10)

> site_id INT{11)

»site_name ¥V ARCHAR(255)

> ewitch VARCHAR{255)

> status VARCHAR{255)

#command VARCHAR([255)
user_id VARCHAR{255)

*created_at TIMEST AMP

> updated_at TIMESTAMP

v
| PRIMARY
_ relays v
id INT(10)

#site_id VARCHAR{255)
“relay_id VARCHAR(255)
» status VARCHAR(255)
* created_at TIMEST AMP

»updated_at TIMESTAMP
v

|PF‘.IMARY

__| user_zone b
»user_jd YARCHAR(255)
> zone_id IMNT(11)

_| admins v
id INT{10)

s name VARCHAR(255)

s username VARCHAR(255)

» password V ARCHAR(255)
remember_token YV ARCHAR(100)

* created_at TIMEST AMP

> updated_at TIMESTAMP

| PRIMARY

—| zone_records ¥
id INT {10}

s zone_id IMT(11)

zone_name VARCHAR(255)

» switch VARCHAR{255)

» etatus VARCHAR({255)

#comm and VW ARCHAR(255)

> admin_id INT{11)

> created_at TIMEST AMP

» updated_at TIMESTAMP
L J

|PF‘.IM.\'-\F‘.Y |

—| users b
»f_mam e VARCHAR(255)
#|_name VARCHAR{255)
» phone YARCHAR(255)

address YV ARCHAR{ 255)
srfid VARCHAR(255)

* created_at TIMEST AMP
» updated_at TIMESTAMP

| site_user ¥
user_id VARCHAR(255)
»site_jd INT{11)

—| zone_relays v
id INT{10)

»zone_jd VARCHAR(255)

srelay_id VARCHAR(255)

* status VARCHAR(255)

*rreated_at TIMEST AMP

> updated_at TIMESTAMP
L J

|PRIMAF‘.'1‘

Figure 4.3.1.1 Database Management System

_| sites ¥
id INT{10}

“name VARCHAR(255)
zone_id IMNT {11}

» created_at TIMEST AMP

» updated_at TIMESTAMP

v
| PRIMARY
—| zones ¥
id INT {10}

“name VARCHAR(255)
» created_at TIMEST AMP

> updated_at TIMESTAMP
L J

| PRIMARY

m migrations ¥
*migration VARCHAR(255)
> batch INT{11)

4.3.2 Model View Controller Design Pattern

To maintain and scale the system we have implemented a MVC PHP framework called Laravel.

The model view controller design pattern consists of controllers (logic), views (markup) and

30

models (objects). A controller for a class contains all the application logic regarding any end to
end rendering of web pages relating to that class. It renders any views that are required and

populates the views with data accumulated by querying the model for a specific class.

4.3.3 Server Side Programming

The RASS System has fourteen controllers - BaseController, HomeController, ImageController,
LoginController, RecordController, ReportController, SiteController, SiteUserController,
SiteZoneController, UserController, ZoneController, ZoneSiteController and
ZoneUserController. The BaseController is the parent controller from where all the other

controller inherit housekeeping properties.

The RASS System has eight models - Admin, Record, Relay, Site, User, Zone, ZoneRecord and
ZoneRelay. These models provide the interface needed to define the object relational mapping

between the database and the logical models.
The RASS System has eight major view directories - reports, site_user, site_zone, sites, users,

zone_site, zone user, zones and the base views directory. These directories contain all the

individual views that have been included or generated by the controllers.

4.3.3.1 Laravel Framework

The laravel framework is based on the Symfony framework for php and uses the MVC design
pattern to organize code and provide readability and maintainability. It ships with its own ORM
called Eloquent. We have used this framework along with all of its core functionalities (ORM,
Controllers, Migrations and Seeders) to develop our web application. The github repository for

the application lists in great detail all the commits and merges made during its development and

31

can easily be forked to make any upgrades. The application was built using the Laravel 4.2

framework and uses all of it’s dependencies

4.3.3.2 Object Relational Model

In order to integrate databases with their data types and methods, an object-relational model has
to be designed. It is essentially a relational model that allows users to integrate object-oriented
features into it. The benefits that are offered by the Object-Relational Model include:

Extensibility, Complex types, Inheritance.
Extensibility - the users are able to extend the capability of the database server.

Complex types - Complex types offer better flexibility in organizing the data on a structure
made up of columns and tables. It allows users to define new data types that combine one or

more of the currently existing data types.

Inheritance - users are able to define objects and tables that obtain the properties of other
objects, also to able to add new properties that are specific. ORDBMS, The object-relational
database management systems provide an addition of new and extensive object storage
capabilities to the relational models at the center of the more modern information systems of

today.

We have used the Eloquent ORM to define our models and have thus gained access to all of it’s
features helping us develop the web application faster with minimal or almost without having to

make any sql queries directly.

32

4.3.3.3 Restful API

REST is the underlying architectural principle of the web. The clients and servers can interact
without the client knowing anything beforehand about the server and the resources it hosts. In
that case, the key constraint is that the server and client must both agree on the media that is
used, which in the case of the web is HTML.

The API for our web application follows a restful pattern and has made it simpler for us to
integrate the system with its counterparts - the mobile application and the microcontroller unit.
The API for the current release of the version is given below:

sites_url : http://rass-enterprise.herokuapp.com/sites/

zones_url : http://rass-enterprise.herokuapp.com/zones/

update-switch : http://rass-enterprise.herokuapp.com/updateSiteRelay/

relaystatus_url : http://rass-enterprise.herokuapp.com/relays/

4.3.4 Client Side Programming

The frontend of the web application has been designed with the Angular JS MVC framework
created by Google. The app.js file contains the configuration files for the application. The
controllers.js file contains all the controllers that the application contains. There are eight
controllers - SitesCtrl, SwipersCtrl, AdminsCtrl, ZonesCtrl, RelaysCtrl, LogsCtrl, ReportsCtrl
and LoginCtrl. These controllers use the services defined in the services.js file. There are two
services for each resource and they use the restful API mentioned above to fetch and push data

to the server asynchronously.

http://rass-enterprise.herokuapp.com/sites/
http://rass-enterprise.herokuapp.com/zones/
http://rass-enterprise.herokuapp.com/updateSiteRelay/
http://rass-enterprise.herokuapp.com/relays/

33

4.4 Mobile Application

The Mobile Application uses Ajax calls through an API to fetch and push data to the web
application, which in turn forwards the requests and responses to and from the central servers.
The Web Application is very heavy and uses an MVC framework and makes complicated
queries to the database servers through an API. The frontend of the application is built with
Angular JS, and uses numerous dependency injections. It also uses the Promise, Singleton and

Factory Design Patterns.

4.4.1 Android Native Application

RASS, mobile application is an android native application.There are seven Activity classes in
this application. They are: MainActivity.java, Home.java, Sites.java, Zones.java, Map.java,
Log.java and finaly ControlDevice.java. We have implemented BaseAdapter extension in order
to show the list of sites or zones in a ListView. There is a JSON.java and JSONPerser.java class
in order to read the json APIL.

The wireframe (Figure 4.4.1.1) [1] shows the flow of the mobile application. The application
starts from MainActivity.java, where the user sees a login option by username and
password/RFID. There is a “Remember me” option, if the user checks the checkbox the
application saves the username and password so that next time when the application runs it can
restore the saved username and password in order to login. We have implemented
“SharedPreferences” here to save the username and password.

After logging in, a new layout shows up, named Home.java. Home.java contains four buttons:
They are; Sites, Log. Zones and Map. There is another button named “Logout” which simply
logout the user from the application.

When we click the button “Sifes”, it opens Sites.java activity. This activity contains an

AsyncTask class,where the JSON API works. It executes a json call to the server and gets the

34

information from the remote server. There is a ListView which uses BaseAdapter to show the
site names in a list from the remote server. We can click on the item from ListView. When we
click on a name of a site, it opens the ControlDevice.java activity. ControlDevice.java contains
BluetoothAdapter which is necessary to use the bluetooth module. If the bluetooth device of the
mobile is on, then we can use our bluetooth to control the electronic devices, if the bluetooth is
off then we use the internet to control our electronic devices. In the case of “Bluetooth Off”
situation there we have used AJAX calls to the remote server. In the case of “Bluetooth On” we

do not make any AJAX call, we simply connects to the arduino board via bluetooth.

T

Site One

Door EHD
TV (o]
AC @D
Light @D
Fan @0
Alarm E3l0)

A Web Poge
QDX

Site Two
Site Three

eeG et

RFID

0 Remember me

Zones

Zone One
Zone Two
Zone Three

Figure 4.4.1.1 WireFrame of the RASS application

When we click the button “Zones”, it opens Zones.java activity, and just like the Sites.java class,

it also executes a json call to the server and shows the zone lists in a ListView via BaseAdapter.

35

4.4.2 Asynchronous Javascript API Calls

JSON stands for JavaScript Object Notation. It is a simple format through which we can
interchange data that can be easily read by humans and machines. JSON is a text format that is
language independent.

JSON represents data in a text format so that can be easily parsed. It uses two different of
structures: Collection of name/value pair and Array.

So using these two structure we can transfer data between two machines in a simple and efficient
way. The first structure, Collection can be used to model object because an object is a collection
of attributes that hold some values. The second structure, Array can be used to model list, array
of objects and so on.

In our application we have four json url’s. sites_url, zones url, update switch, relaystatus url.
The API’s are mentioned above in section 4.3.3.4 Restful APIL.

In Android, and in general in all environments, there are two type of operation: Convert java
class to JSON data which is Serialization and Parse JSON data and create java classes which is
Deserialization. We have followed deserialization in our application. We parsed the JSON data
and created java class for each JSON url. The first step is instantiate a parser that helps to get the
values inside JSON.

JSONObject jObj = new JSONODbject(data); where data holds the JSON string. Now, if we want
to get any data from the JSON, e.g if we have a JSON which has email address in it and we want
to get that email address then we will put that in a string, like this:

String surname = jObj.getString("email"); here “email” is the data we want to get. Using these

pieces of code we can handle JSON in Android.

36

Chapter 5

To implement the whole system, three major steps need to be completed. Firstly, the
microcontroller unit(s) needs to be installed at the remote site(s) and all required connections set
up. Once this is completed, the web server needs to be online to communicate with the remote
sites. After the web server is online, the mobile application needs to be downloaded into a smart

phone to complete the system.

Setting up the microcontroller is very basic as the schematic described below demonstrates :

37

RAASY1

n

10/11/2014 3:29:47 PM

Sheet:

SO0 L
Ehimas

s

SR

~rﬂ'PW>5\’-m|-- PP

a2

SRRES

182 e

EN s o G

S RGEA

%

(amih

. ARDUINO UNO

Figure 5.1 Schematics Diagram

38

5.1 Cloud Deployment

To deploy the web application to the cloud, we have used the free heroku cloud hosting with the
average initial dyno for load balancing. Reading heroku’s documentation provides application
specific console based deployment commands that have been used to successfully deploy the

application.
Heroku’s deployment tool can be downloaded from their website and must be installed in the

computer from where the deployment is originating. The application is then simply fetched from

its repository in Github and deployed in any one of heroku’s servers online.

5.2 System Interfaces

An interface is a shared boundary by which computer system exchange informations between
software, hardware, peripheral devices, humans and a combination of all. The section System
Interface consists of web application functionalities and mobile application functionalities. The
user interface of the web application is described in the part of web application functionalities
and the user interface of the mobile application is described in the part of mobile application

functionalities.

5.2.1 Web Application Functionalities

The web application provides an administrator an interface to monitor, control and grant user
access rights to multiple users at any remote site or zone. The home page of the web application
is shown on Figure 5.2.1.1, where an administrator must log in first. An administrator can create,

update, read or delete (CRUD) a site, zone and user, after logging in to the system.

39

& Enter your credentials

3 | ot Login b0 access sites

remctely

Figure 5.2.1.1 Login Panel

E
i
&
i
g

VEEEEEELELR
FECLLLLEELE
|IDEEEEE88.

|EEEEEEE8EEA"
FECEEEEEELE

Figure 5.2.1.2 Switch Panel

Once logged in, the administrator can control individual switches via the interface shown on

Figure 5.2.1.2

40

The administrator also has the option to grant or deny access privilege to multiple users for

multiple sites or zones and is shown on Figure 5.2.1.3

ETS_00 Se Access Fights

Usar Aneass Actiess

P T K Deeied G

Ashrafyl st X Desied aan

Foiti Tesier K Deeied Gaand

Ml Mague L Guaed

Al st ¥ Granied [0
Lipuiatr Bhreieges

O PO SRR Syiter

Figure 5.2.1.3 Access Rights

W Swich §
W Swncn
CERTE

& 8 Saffe SyRerd

Figure 5.2.1.4 Reports Panel

41

The administrator also has the option to generate reports based on the individual user access, on
Figure 5.2.1.4

5.2.2 Mobile Application Functionalities

The mobile application is another part of our security system. The user needs to log in to control
the devices. There is a login option but no sign up option in the mobile application because only
the people who are authorized by the web application can log in, otherwise a notification will be

sent to the central server.
The user will login and select the assigned sites from the site option. After selecting a site from
list, a users can control the switches, which is turning it on/off. The Sites option displays a list of

sites that the user has been granted access to.

Zone, displays a list of zones that the user has been granted access to, after selecting a site from

list, a users can control the switches, which is turning it on/off..

Log, displays a list of sites that the user has access to. Upon clicking on a site, all the logs

generated by that site is listed for the user to view.

Map, shows the geo- location of the assigned sites.

The interface of mobile application is shown below (Figure 5.2.2.1). The user needs to log in and

if the id passwords are authorized only then the user can log in and switch the switches.

42

A

Rass Mobile Rass Mobile

Prima

[+ Remember me

Figure 5.2.2.1 Login Activity Figure 5.2.2.2 Home Activity

In the Figure 5.2.2.2, we can find the four options, Sites, Log, Zones and Map. The logout button

will logout the user so that s/he can log in with another username and password.

In the Figure 5.2.2.3, the lists of assigned sites are shown (the list changes dynamically because
assigned sites will change according to the authorization decision and those sites which are

selected by the authorization for this particular user will be shown in this mobile application)

43

Y
3

Rass Mobile Rass Mobile

Sites Door off
BTS_02 TV -

BTS_03
BTS_04 AC OFF

BTS_10
Light OFF
Fan OFF
Alarm OFF

L.ogout
Figure 5.2.2.3 Site List Activity Figure 5.2.2.4 Control Switches Activity

After selecting a site, in this case, i.e BTS 02 the device under this site will be shown(Figure

5.2.2.4). The user can now turn on/off the switches of any devices of this site.

44

Chapter 6

After having completed a successful test run of the system we ran some basic analytics to
benchmark the system. Most of the analysis were based on reflex time so as to measure the
latency of commands being responded with accordingly. Aside from these time related tests we
also ran some electrical power consumption tests. Thermal output was measured and

benchmarked accordingly to get an approximate overview of the system.

6.1 Basic Analysis

After several iterations in the process of testing the system, we have found that it responds to any
command from the web within fifteen seconds at best. However, the worst scenario is somewhat
alarming as it has taken more than one hundred seconds at certain times. Nevertheless, the

average response time for the system is approximated at thirty seconds.

The system responds to any local commands instantly. The RFID card triggers instantaneously

and has a very low probability of malfunctioning.

The power consumption is approximately fifteen watts for the entire system and it still needs

much more in depth testing and analysis.

The thermal output is around three hundred and fifty joules per minute.

6.1.1 GPS Modem Analytics

The GPS Modem is somewhat problematic as it can fault and hang. However, the system can

detect such a fault and reboot the GSM shield altogether in such a case. It is worth mentioning

45

that the probability of this failure is very low but not negligible. This happens in cases when the
GPS service provider itself is busy and can not respond. This is independent of the system and in

no way falls in its domain.

6.1.2 RFID Access Analytics

The RFID reader is very fast and reads a card instantly. However, rarely so, the reader takes a
couple extra seconds to read depending on the status of the master unit. This happens due to a
core part of the architecture of the system itself as the I2C communication protocol between
master and slave units are not fast enough for the Wiegand32 RFID reader. In such a situation
when the master unit is transmitting packets to the slave unit, the RFID reader will have a delay

effect and the card may need to be swiped again for access.

6.2 System Redundancy

The system though providing security might be able to turn into a nuisance if it were to lock and
hang. In such cases only breaking and entering to reset the system would be a viable solution.
However, the system will never be able to fail as it was architected in such a manner so as to

have a failsafe. Described below are the methods that were used to provide this failsafe.

6.2.1 RFID Unit

The RFID reader is connected to the slave unit, which has no chance of hanging as it is not in
any way connected to the GSM shield. Thus, as long as a user with genuine access privilege is
available, the system can be unlocked through the RFID card. This is vital and is the primary

method of guaranteeing the failsafe.

46

6.2.2 Micro SD Unit

The micro SD card shield was used in order to retain user access privileges in case of a system
reboot. Hence, even if no internet connectivity is available after the system automatically
rebooted for any internal issue, the RFID access privileges would also be restored along with the
state of the system. This architecture not only verifies the system’s unconditional change but also

makes sure the primary failsafe is available.

47

Chapter 7

No security system can be claimed to be completely invulnerable to penetration unless it is a

black box itself. Similarly, RASS also has vulnerabilities and are mentioned below.

7.1 System Vulnerabilities

The system primarily has only two prime vulnerabilities and they can both be easily accounted
for. The system can be made offline by spamming its ports using a DDOS attack or by simply

disconnecting the power to the system.

Any DDOS attack can be avoided by encapsulating the whole system into an intranet by using

IPs that are privately owned and have ping disabled.

An auxiliary DC power source can be introduced to the system as a source of backup power in

order to avoid system shutdown due to power severance.

7.1.1 DDOS Attacks

DDOS, A Distributed Denial of Service attack is a cyber attack, it is an attempt to make an
online service unavailable for a period of time by overwhelming it with traffic from multiple
sources. In such cases, the attackers target a large variety of important resources, and throw a
major challenge to make sure that people can publish and access important information, it can be
from banks to news websites etc. Attackers build networks of infected computers, known as

'botnets', they spread malicious software through emails, websites and social media in order to

48

make the web server slow and to some extent to crash the entire database where the important

data is kept of any web service.

7.1.2 Power Drainage

If the system is not powered, all the relays are deactivated resulting in a unlock of the
electromagnetic lock, thus removing any and all measures of security. A current of one ampere is
needed to keep the electromagnetic lock active. If no power is provided to the system, the lock

would thus be inactive.

7.2 System Improvements

Although the system is efficient and powerful as it is designed, there still remains scope for
further developments. The system suffers from major packet loss due to the nature of GPS
communication. Thus it would be a great improvement if the primary mode of communication
were to be changed from GPS to 3G or any other more reliable source. Also the process of
synchronization with the central server is very inefficient as the number of polls affect the
performance of the central server and will certainly downgrade performance if the number of
nodes were to increase. Using RPC based communication would eliminate this inefficiency

completely.

7.2.1 RPC Communication

RPC, Remote procedure call is a protocol which allows to request a service from one program to

another program located in another computer in a network without understanding the internal

49

network details. It is also known as function call or subroutine call. RPC uses client/server
model, where the requesting program is a client and the responding or service providing program
is the server. It is a synchronous operation which blocks the requesting program until the result
of the remote procedure are returned. The lightweight processes or threads that share the same

address space allows multiple RPC calls to be performed concurrently.

50

Chapter 8

This is the complete system, including the device at the remote site and the central server located
at the Head Quarters. This system is called RASS in short and is responsible for maintaining

remote sites.

The system can be costly or cheap based on the scope of the solution. An analysis can be
performed in order to calculate an exact costing. The system described above is in its preliminary
stage. All the tools and data used to train and build the system has been discussed throughout the

whole thesis report.

To make further improvements to the system a detailed understanding of networking protocols

and communication protocols between master and slave using serial buses is required.

8.1 Deployment

As mentioned in the thesis, deploying the setup is made very simple through the segregation of
the system into the three parts. Setting up the hardware is the only gap that needs to be filled by
an electrician with a very basic understanding of electronics. Apart from this any remote unit can
communicate with the central server that is already hosted at heroku for this thesis and is free of
charge. The mobile application can also be found on the Google Play Store, and is also free of

charge. Using the system is almost plug and play.

51

8.2 Limitations

The system can not be used in any location where internet connectivity in unavailable.

It can not be used in an area without electricity.

8.3 Risks

The system is not approved by any international organizations trading in the business of security
according to international standards and is thus not applicable to such standards. It is only in it’s
development phase and much testing is needed to fine tune all the ends. Currently the system can

be used by an enthusiast to test its features only.

Git Repository Links

https://github.com/Prima09/rass_mobile/tree/develop
https://github.com/atefth/rass_enterprise/tree/develop

https://github.com/atefth/rass_prototype/tree/develop

References

Books:
1. Power Programming with RPC By John Bloomer Publisher: O'Reilly Media, Final
Release Date: February 1992 Pages: 522

https://github.com/Prima09/rass_mobile/tree/develop
https://github.com/atefth/rass_enterprise/tree/develop
https://github.com/atefth/rass_prototype/tree/develop

52

2. Programming Web Services with XML-RPC By Simon St. Laurent, Joe Johnston, Edd
Dumbill, Dave Winer,Publisher: O'Reilly Media,Final Release Date: June 2001,Pages:
236

3. Microsoft RPC programming guide (c1995) Author: Shirley, John; Rosenberry,
Ward,Keywords: Electronic data processing -- Distributed processing; Client/server
computing,Publisher: Sebastopol, CA : O'Reilly,Language: English. Book contributor:
O'Reilly & Associates, Inc.,Collection: opensource

4. Microsoft RPC Programming Guide Author(s) John Shirley, Ward, Rosenberry
Publisher: O'Reilly Media; 1st ed edition (March 8, 1995) Hardcover/Paperback: 245
pages eBook: Multiple Formats: PDF, ePub, Mobi, Daisy, DjVu, TXT Language: English
ISBN-10: 1565920708 ISBN-13: 978-1565920705

5. Database System Concepts, Sixth Edition, Avi Silberschatz, Henry F. Korth, S.
Sudarshan

6. FUNDAMENTALS OF Database Systems, SIXTH EDITION Ramez Elmasri,
Department of Computer Science and Engineering,The University of Texas at
Arlington,Shamkant B. Navathe,College of Computing,Georgia Institute of Technology

Internet:

1. http://support.balsamiq.com/customer/portal/articles/1335124

2. http://developer.android.com/index.html

3. http://www.androidhive.info/2012/01/android-json-parsing-tutorial/

4. https://developer.android.com/training/index.html

5. https://developer.android.com/training/building-content-sharing.html

6. http://www.codelearn.org/android-tutorial

7. http://xmlrpc.scripting.com/

http://www.cs.yale.edu/homes/avi
http://www.lehigh.edu/~hfk2/hfk2.html
http://www.cse.iitb.ac.in/~sudarsha
http://www.cse.iitb.ac.in/~sudarsha
http://support.balsamiq.com/customer/portal/articles/1335124
http://developer.android.com/index.html
http://www.androidhive.info/2012/01/android-json-parsing-tutorial/
https://developer.android.com/training/index.html
https://developer.android.com/training/building-content-sharing.html
http://www.codelearn.org/android-tutorial
http://xmlrpc.scripting.com/

8. http://golang.org/pkg/net/rpc/

9. http://arduino.cc/en/Guide/HomePage

10. http://arduino.cc/en/main/software

11. https://learn.sparkfun.com/tutorials? ga=1.48314470.1511772886.1421091613

12. http://www.arduino.cc/

53

http://golang.org/pkg/net/rpc/
http://arduino.cc/en/Guide/HomePage
http://arduino.cc/en/main/software
http://www.arduino.cc/

