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Thesis Abstract: 

The main objectives of the optimization of electric energy systems are to meet load 

demands with adequacy and reliability and to keep it at the same time economical, 

meaning to keep the prices as low as possible. Electric energy demand has been 

shown to be an exponential function doubling its rate over every decade. This ever-

increasing load has led to larger and more complex systems. Interconnections 

throughout the whole country is growing and expanding. The main advantages of 

such interconnections are continuity of service and economy of power production. 

Power interchanges between interconnected systems are scheduled to take 

advantage of hour apart peak demand periods or available lower cost capacity. 

During emergencies, spinning reserve capacity is shared, contributing to the 

continuity of service. This extensive interconnection of large scale power systems 

has resulted in the formulation of many new concepts in power system planning 

and operation. The gradient and Newton methods of solving an OPF suffer from 

the difficulty in handling inequality constraints. Linear programming, however, is 

very adept at handling inequality constraints, as long as the problem to be solved is 

such that it can be linearized without loss of accuracy. We will include 

transmission losses in our OPF analysis and also implement it in MATLAB. 
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Chapter 1 

Introduction  

 

1.1History of evolution: 

 

The optimal power flow or OPF has had a long history in its development. It was 

first discussed by Carpentier in 1962 and took a long time to become a successful 

algorithm that could be applied in everyday use. Current interest in the OPF 

centers around its ability to solve for the optimal solution that takes account of the 

security of the system. In the economic dispatch we have a single constraint which 

will hold the total generation equal to the total load plus losses. Thus, the statement 

of the economic dispatch problem results in a Lagrangian with just one constraint: 

 

𝐿 =  𝐹 𝑃𝑖 +  (𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠 −   𝑃𝑖) 

 

If we think about the single “generation equals load plus losses” constraint: 

𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠 −   𝑃𝑖 = 0 

We realize that what it is actually saying is that the generation must obey the same 

conditions as expressed in a power flow-with the condition that the entire power 

flow is reduced to one simple equality constraint [1]. There is good reason, as we 

shall see shortly, to state the economic dispatch calculation in terms of the 

generation costs, and the entire set of equations needed for the power flow itself as 

constraints [1]. This formulation is called an optimal power flow. We can solve the 

OPF for the minimum generation cost and require that the optimization calculation 

also balance the entire power flow-at the same time. Note also that the objective 

function can take different forms other than minimizing the generation cost. It is 

common to express the OPF as a minimization of the electrical losses in the 

transmission system, or to express it as the minimum shift of generation and other 

controls from an optimum operating point. We could even allow the adjustment of 

loads in order to determine the minimum load shedding schedule under emergency 
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conditions. Regardless of the objective function, however, an OPF must solve so 

that the entire set of power constraints is present and satisfied at the solution. 
  

 

1.2Why Linear programming: 

 

Now, as we all know the optimal power flow is a very large and very difficult 

mathematical programming problem. Almost every mathematical programming 

approach that can be applied to this problem has been attempted and it has taken 

developers many decades to develop computer codes that will solve the OPF 

problem reliably. The attributes of these methods are summarized next: 

  

Lambda iteration method:  Losses may be represented by a [B] matrix, or the 

penalty factors may be calculated outside by a power flow. This forms the basis of 

many standard on-line economic dispatch programs. 

 

 Gradient methods: Gradient methods are slow in convergence and are difficult to 

solve in the presence of inequality constraints. 

 

 Newton’s method: Very fast convergence, but may give problems with inequality 

constraints. 

 

  Linear programming method (LPOPF): One of the fully developed methods 

now in common use. Easily handles inequality constraints. Nonlinear objective 

functions and constraints handled by linearization. 

 

 So we can see from the above mentioned points that all the other methods for the 

calculation of OPF has some drawbacks except the Linear Programming method 

because it is the only process where we can take various linear inequalities relating 

to some situation, and finding the “best” value obtainable under those condition. 
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Chapter 2  

LINEAR OPTIMAL LOAD FLOW  

 

2.1 Introduction 

The term Optimal Load Flow refers to an operating state or load flow solution where 

some power system quantity is optimized subject to constraints on the problem variables 

and on some functions of these variables. The constraints are usually classified under two 

categories: 
1) load constraints and  

2) operating constraints. 

The load constraints require that the load demands be met by the system and can be 

expressed in the form of the familiar load flow equations. The operating constraints impose 

minimum or maximum operating limits on system variables and are associated with both 

steady-state land transient stability limitations. These restrictions are imposed on various 

power system quantities such as equipment loadings (mainly for_ transmission lines and 

transformers), bus voltages, phase angle differences, real and reactive injected powers, 

etc. In this chapter, an optimal linear load flow is one in which the objective function to 

be optimized and the constraints are linear „functions of the system variables. These 

linear programs usually have several drawbacks and yield only approximate results to the 

exact solution. Also, many operating constraints cannot be handled by these programs and in 

most cases a general nonlinear formulation is needed to represent the model adequately. 

Several methods have been devised to solve nonlinear programs but none exhibit the 

efficiency and reliability of the Simplex method.  

 

 

 

2.2 System Description 

 

In this section some of the notations and terminology that will be used throughout this 

paper are presented below. The mathematical description of a power system is given by 

linear circuit theory and the complex power relations for the loads and the generating 

plants.  
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N = number of busses in the system excluding the voltage the voltage reference node  

 

|Vi| = voltage magnitude of bus i 

 

𝛿I = voltage angle of bus i 

 

Vi : complex voltage of bus I given by |Vi| 𝑒𝑗𝛿𝑖  

 

Pi : net real power injected into bus i 

 

Qi : net reactive power imjected into bus i 

 
Pij : real power flow from bus I to bus j at bus j 
 

Qjj : reactive power flow from bus I to bus j at bus j 

 

θi,θj= the phase angles at buses I and k, respectively; 

 

|Ei|,|Ek| = the bus voltage magnitudes, respectively 

 

Gik + jBik, =Yik is the ik term in the Y matrix of the power system. 

 

 

 

 

 

We shall use the LPOPF reduced model method to solve an OPF problem. An LP 

and an AC power flow will be used to solve a series of dispatch problems. The 

transmission system will be the six bus system showed in figure 2.1, the MW 

limits on the transmission lines will be those given in figure 2.2 and figure2.3. The 

generator cost functions are those found in section 2.3 and linearized as shown 

below. 
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FIG. 2.1 Six-bus network base case AC power flow. 

                         

Line MW Limit 

1-2 30 
1-4 50 
1-5 40 
2-3 20 
2-4 40 

Bus 3 

Bus 6 

Bus 1 

241.5kV-3.7
o 

Bus 5 

Bus 4 

227.6kV-4.2
o 

 

226.7kV-5.3
o 

 

where MW 

MVAR 

Generator 

Load 

70    70 

70  70 
42.5 

19.9 

4.1 

4.9 
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2-5 20 
2-6 30 
3-5 20 
3-6 60 
4-5 20 
5-6 20 

FIG.2.2 MW Limits for Six-bus network 
                                        
                              

 

Line  Limit MW Flow 

1-2 30 28.69 
1-4 50 43.58 
1-5 40 35.60 
2-3 20 2.93 
2-4 40 33.09 
2-5 20 15.51 
2-6 30 26.25 
3-5 20 19.12 
3-6 60 43.77 
4-5 20 4.08 
5-6 20 1.61 

 
FIG.2.3 Line Flows: Power Flow 0 

 

  

 

2.3 Methodology 

Figure 2.4 shows the type of strategy used to create an OPF using linear 

programming. The power flow equations could be for the DC representation, the 

decoupled set of AC equations, or the full AC power flow equations. The choice 

will affect the difficulty of obtaining the linearized sensitivity coefficients and the 

convergence test used. In the formulation below, we show how the OPF can be 

structured as an LP. First, we tackle the problem of expressing the nonlinear input-

output or cost functions as a set of linear functions.    

Let the cost function be Fi(pi) as shown in Figure 2.5. We can approximate this 

nonlinear function as a series of straight-line 

segments as shown in Figure 2.6. The three segments shown will be represented 

as Pi1, Pi2,Pi3 , and each segment will have a slope designated: 

                                                           Si1, Sl2, Si3 

then the cost function itself is 

Fi(Pi) = Fi(Pi
min

) + Si1Pi1+ Si2Pi2+Si3Pi3 

0≤ Pik ≤Pik
+   

For k=1, 2, 3 

 And finally 

                                          Pi =  Pi
min

  +  Pi2+ Pi3   



12 
 

Initial power flow condition 
 

                                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

                                          FIG.2.4 Strategy for solution of the LPOPF 
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 Fi 

 

 

 

 

 

 

 

 Pi 

               
FIG. 2.5 A nonlinear cost function characteristic 

                                   
                                              

 Fi 

 

 

 

 

 Pi3  

 Pi1 Pi2  

  

  Pi 

        
FIG. 2.6 A linearized cost function 

 

The cost function is now made up of a linear expression in the Pik values. In the 

formulation of the OPF using linear programming, we only have the control 

variables in the problem. We do not attempt to place the state variables into the LP, 
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nor all the power flow equations [1]. Rather, constraints are set up in the LP that 

reflect the influence of changes in the control variables only. In the examples we 

present here, the control variables will be limited to generator real power, 

generator voltage magnitude, and transformer taps. The control variables will be 

designated as the u variables [1]. The next constraint to consider in an LPOPF are 

the constraints that represent the power balance between real and reactive power 

generated, and that consumed in the loads and losses.  

 

The real power balance equation is: 

                                            

Pgen – Pload – Ploss = 0 

 

The loss term here represents the I
2
R losses in the transmission lines and 

transformers. We can take derivatives with respect to the control variables, u, and 

this result in: 

 

  
𝜕𝑃𝑔𝑒𝑛

𝜕𝑢
 ∆𝑢 −𝑢   

𝜕𝑃𝑙𝑜𝑎𝑑

𝜕𝑢
 ∆𝑢 −𝑢   

𝜕𝑃𝑙𝑜𝑠𝑠

𝜕𝑢
 ∆𝑢 = 0𝑢   

 

                               

If we make the following substitution: 

                                                   
∆𝑢 = 𝑢 − 𝑢0 

 

then, the power balance equation becomes 

 

                                
𝜕𝑃𝑔𝑒𝑛

𝜕𝑢
 𝑢 −𝑢   

𝜕𝑃𝑙𝑜𝑎𝑑

𝜕𝑢
 𝑢 −𝑢   

𝜕𝑃𝑙𝑜𝑠𝑠

𝜕𝑢
 𝑢 = 𝐾𝑝𝑢       

 

Where                                

𝐾𝑝=   
𝜕𝑃𝑔𝑒𝑛

𝜕𝑢
 𝑢0 −𝑢   

𝜕𝑃𝑙𝑜𝑎𝑑

𝜕𝑢
 𝑢0 −𝑢   

𝜕𝑃𝑙𝑜𝑠𝑠

𝜕𝑢
 𝑢0𝑢              

 

 

A similar equation can be written for the reactive power balance: 

  
𝜕𝑄𝑔𝑒𝑛

𝜕𝑢
 ∆𝑢 −𝑢   

𝜕𝑄𝑙𝑜𝑎𝑑

𝜕𝑢
 ∆𝑢 −𝑢   

𝜕𝑄𝑙𝑜𝑠𝑠

𝜕𝑢
 ∆𝑢𝑢   

                                   
 

 

where the loss term is understood to include I
2
X as well as the charging from line 

capacitors and shunt reactors. A substitution using Δu = u – u
o
, as above, can also 
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be done here. The LP formulation, so far, would need to restrict control variables 

to move only within their respective limits, but it does not yet constrain the OPF to 

optimize cost within the limits of transmission flows and load bus voltages. To add 

the latter type constraints, we must add a new constraint to the LP [1].  

 

For example, say we wish to constrain the MVA flow on line nm to fall within an 

upper limit: 

                                                   
                                                  

𝑀𝑉𝐴 𝑓𝑙𝑜𝑤𝑛𝑚  ≤ 𝑀𝑉𝐴 𝑓𝑙𝑜𝑤𝑛𝑚
𝑚𝑎𝑥  

 

We model this constraint by forming a Taylor’s series expansion of this flow and 

only retaining the linear terms: 

 
                                                                                               

𝑀𝑉𝐴 𝑓𝑙𝑜𝑤𝑛𝑚 = 𝑀𝑉𝐴 𝑓𝑙𝑜𝑤𝑛𝑚
0 +    

𝜕

𝜕𝑢
 𝑀𝑉𝐴 𝑓𝑙𝑜𝑤𝑛𝑚  ∆𝑢 ≤ 𝑀𝑉𝐴 𝑓𝑙𝑜𝑤𝑛𝑚

𝑚𝑎𝑥

𝑢

 

 

Again, we can substitute Δu = u – u
o  

so we get 

 
                                

    
𝜕

𝜕𝑢
 𝑀𝑉𝐴 𝑓𝑙𝑜𝑤𝑛𝑚  𝑢 ≤ 𝑀𝑉𝐴 𝑓𝑙𝑜𝑤𝑛𝑚

𝑚𝑎𝑥

𝑢

− 𝐾𝑓 

Where 

 
                              

𝐾𝑓 = 𝑀𝑉𝐴 𝑓𝑙𝑜𝑤𝑛𝑚
0 +     

𝜕

𝜕𝑢
 𝑀𝑉𝐴 𝑓𝑙𝑜𝑤𝑛𝑚  

𝑢

 𝑢0 

Other constraints such as voltage magnitude limits, branch MW limits, etc., can be 

added in a similar manner. We add as many constraints as necessary to constrain 

the power system to remain within its prescribed limits. Note, of course, that the 

derivatives of Ploss, and MVA flownm are obtained from the linear sensitivity 

coefficient calculations presented in the next section. 
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2.4 Linear Programming Method with Only Real Power Variables 

 

As an introduction to the LPOPF, we will set up and solve a power system 

example which only has generator real powers as control variables. Further, the 

model for the power system power balance constraint will assume that load is 

constant and that the losses are constant. Finally, since the entire model used in the 

LP is based on a MW-only formulation, we shall use the “a” factor derived in 

Chapter 3 to model the effect of changes in controls on the constraints. As 

indicated in Figure 2.4, we shall solve the LP and then make the adjustments to the 

control variables and solve a power flow in each main iteration. This guarantees 

that the total generation equals load plus losses, and that the MW flows are updated 

properly. The cost functions can be treated as before using multiple segmented 

“piecewise linear” approximations. 

The “power balance” equation for this case is as follows: 

                                 P1 + P2 +………..+ Pref = Pload + Plosses = Constant 
 

To constrain the power system, we need the expansion of the constraints, such as 

MW flows, bus voltages, etc., as linear functions of the control variables. In this 

case, the linear control variables will be represented as a vector u: 

 
                                                  

𝑢 =   

𝑃1

⋮
𝑃𝑟𝑒𝑓

  

This is done with the linear sensitivity approach, as derived in the previous section. 

The result is a set of constraints: 

 

                                                       h(u ) = h
+ 

Which is written as  

               

𝑕 𝑢 = 𝑕  𝑢0 +  
𝜕𝑕

𝜕𝑢
  𝑢 − 𝑢0 ≤  𝑕+ 

However, we shall observe that the derivatives δh/δu can be replaced with the “a” 

sensitivity coefficients which will be developed n the next section. 

Thus, for a MW flow constraint on line rs we have:      

𝑀𝑊𝑟𝑠 =  𝑀𝑊𝑟𝑠
0  +   𝑎𝑟𝑠−𝑢

𝑢

 𝑢 − 𝑢0 ≤ 𝑀𝑉𝐴𝑟𝑠
𝑚𝑎𝑥  

𝑀𝑊𝑟𝑠 =   𝑎𝑟𝑠−𝑢  ≤  𝑀𝑊𝑟𝑠
𝑚𝑎𝑥 −  𝑀𝑊𝑟𝑠

0 −  𝑎𝑟𝑠−𝑢𝑢
0

𝑢

 

𝑢
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Line  Limit MW Flow 

1-2 30 28.69 
1-4 50 43.58 
1-5 40 35.60 
2-3 20 2.93 
2-4 40 33.09 
2-5 20 15.51 
2-6 30 26.25 
3-5 20 19.12 
3-6 60 43.77 
4-5 20 4.08 
5-6 20 1.61 

     
                                    FIG. 2.7 Line Flows : Power flow Zero  
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Chapter 3 

LPOPF Formulation 

 
 3.1 Step 0: 

 

First we have to run a base AC power flow (this will be the AC power flow shown 

in Figure 2.1 and it will be designated as POWER Flow 0 in numbering the various 

power flow calculations in this example)[3]. Looking at Figure 2.1 and the limit set 

we are using from Figure 2.2 , shown above, we note that there are no overloads. 

The generation values for this power flow are: 

 

            P1 = 107.87 MW, P2 = 50 MW, and P3 = 69 MW powerflow 0: result 

 

The total cost for this initial dispatch is 3189.4 $/h. 

 

3.2 Step 1 
 

We now set up the LP to solve for the optimum cost with only the power balance 

equation in the LP constraint set. By the nature of the cost curve 

 

           
Unit Break Point 1 

(Unit min) 
Break Point 2 Break Point 3 Break Point 4 

(Unit max) 

1 50 100 160 200 
2 37.5 70 130 150 
3 45 90 140 180 

 
                                  FIG. 3.1 Generator Unit Break Point MWs 

 

 

 

 

                          

Generator Si 1 Si 2 Si 3 

1 12.4685 13.0548 13.5875 
2 11.2887 12.1110 12.8222 
3 11.8333 12.5373 13.2042 

 

FIG. 3.2 Generator Cost Curve Segment Slope 
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Segments, we also incorporate the limits on the generators. The generator cost 

functions are as follows:                  
 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑜𝑛 𝑏𝑢𝑠 1: 𝐹1  𝑃1 =  213.1 + 11.669𝑃 1 +  0.00533𝑃1
2    𝑅/𝑕  

                                               𝑤𝑖𝑡𝑕 𝑙𝑖𝑚𝑖𝑡𝑠 𝑜𝑓: 50.0𝑀𝑊 ≤  𝑃1  ≤ 200.0 𝑀𝑊 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑜𝑛 𝑏𝑢𝑠 2: 𝐹2  𝑃2 = 200.0 + 10.333𝑃 2 +  0.00889𝑃2
2    𝑅/𝑕 

𝑤𝑖𝑡𝑕 𝑙𝑖𝑚𝑖𝑡𝑠 𝑜𝑓: 37.5 𝑀𝑊 ≤  𝑃2  ≤ 150.0 𝑀𝑊 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑜𝑛 𝑏𝑢𝑠 3: 𝐹3  𝑃3 =  240.0 + 10.833𝑃 3 +  0.00741𝑃3
2    𝑅/𝑕 

𝑤𝑖𝑡𝑕 𝑙𝑖𝑚𝑖𝑡𝑠 𝑜𝑓: 45.0𝑀𝑊 ≤  𝑃3  ≤ 180.0 𝑀𝑊 

 

The LP will be run with the unit cost functions broken into three straight-line 

segments such that the break points are located as shown in Figure 3.1. The 

generator cost function segment slopes are computed as follows: 

 
                                           

𝑆𝑖𝑗  =  
𝐹𝑖(𝑃𝑖𝑗

+) − 𝐹𝑖(𝑃𝑖𝑗
−)

𝑃𝑖𝑗
+ − 𝑃𝑖𝑗

−  

 

where Pij
+
 and Pij

-
 are the values of Pi at the end of the j

ih
 cost curve segment. The 

values are shown in Figure 3.2. The segment limits are shown in Table 3.3. The LP 

cost function is: 
                    
 𝐹1 𝑃1

𝑚𝑖𝑛   +   12.4685𝑃11 +  13.0548 𝑃12  +  13.5878 𝑃13 +  𝐹2 (𝑃 ) + 2 
𝑚𝑖𝑛 11.2887𝑃21 +

 12.111𝑃22 +  13.5878𝑃23 +  𝐹3  𝑃3
𝑚𝑖𝑛  + 11.8333𝑃31 +  12.5373𝑃32 +  13.2042𝑃33          

 

                          
Segment Min MW Max MW 

P11 0 50 
P12 0 60 
P13 0 40 
P21 0 32.5 
P22 0 60 
P23 0 20 
P31 0 45 
P32 0 50 
P33 0 40 

Fig 3.3 Segment limits 
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Since the Fi(Pi
min

) terms are constant, we can drop them in the LP. Then, the cost 

function becomes: 

  
                             

 12.4685𝑃11 +  13.0548 𝑃12  +  13.5878 𝑃13 +  11.2887𝑃21 +  12.111𝑃22 +  12.8222𝑃23 
+  11.8333𝑃31 +  12.5373𝑃32 +  13.2042𝑃33  

 

The generation, load, and losses equality constraint is: 

   

                                                  P1 + P2 + P3 = Pload + Plosses 

 

The load is 210 MW and the losses from the initial power flow are 7.87 MW. 

Substituting the equivalent expression for each generator’s output in terms of its 

three linear segments, we obtain: 

                        
  𝑃1

𝑚𝑖𝑛   +  𝑃11 +  𝑃12  +  𝑃13 +  (𝑃 ) + 2 
𝑚𝑖𝑛 𝑃21 +  𝑃22 + 𝑃23 +   𝑃3

𝑚𝑖𝑛  + 𝑃31 + 𝑃32 + 𝑃33 

=  𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠𝑒𝑠  
 

This results in the following after the Pi
min

 , Pload and Ploss values are substituted: 

 
  𝑃11 +  𝑃12  +  𝑃13 +  (𝑃21 +  𝑃22 + 𝑃23 +  𝑃31 + 𝑃32 + 𝑃33 =   210 + 7.87 − 50 − 37.5 − 45

= 85.37 
                              

We now solve the LP with the cost function and equality constraint given above, 

and with the six variables representing the generator outputs. The solution to this 

LP is shown in Figure 3.4. 

 

                               
Segment Min MW Solution Max MW 

P11 0 0 50 
P12 0 0 60 
P13 0 0 40 
P21 0 32.5 32.5 
P22 0 7.87 60 
P23 0 0 20 
P31 0 45 45 
P32 0 0 50 
P33 0 0 40 

 

                                                Figure 3.4: First LP solution  

 

The total generation on each generator is : 
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                                               Pi = Pi
min

 + Pi1 + Pi2 + Pi3  

 

Note that this solution of necessity will have only one of the variables not at a 

break point while the others will be at a break point. Note also that the output on 

bus 1 is at its low limit. When we substitute these values for the generation at buses 

1, 2, and 3, and run the power flow, we get the following: 

 

                P1 = 50 MW, P2 = 77.87 MW, and P3 = 90 MW powerflow 1: result 
 

This solution was done manually to verify the result of our program. The manual 

calculations are given below: 

 
Combination Load(85.37) MW  Cost Comment 

P11, P12 50+35.37 1085.2  

P11,P21,P22 50+32.5+2.87 1025.1  

P11,P31 50+35.37 1042  

P31,P32 45+40.37 1038.6  

P21,P31,P22 32.5+45+7.87 994.69 Lowest cost 

P11,P21,P31 50+32.5+2.87 1024.3  

P21,P31,P32 32.5+45+7.87 998.05  

 

The total cost for this dispatch is 3129.1 $/h. This illustrates the fact that the LP 

uses a linear model of the power system and when we put its results into a 

nonlinear model, such as the power flow, there are bound to be differences. Since 

the losses have changed (to 6.70 MW), the power output of the reference bus must 

decrease to balance the power flow. However, the solution to the optimal LPOPF 

has the reference-bus power output below its minimum of 50 MW. To correct this 

condition we set up another LP solution with the same cost function but with a 

slightly different equality constraint that reflects the new value of losses. The result 

of this LP is:  

 

                    P1 = 50 MW, P2 = 76.7 MW, and P3 = 90 MW LP 1.1: result 
 

Once again, we enter these results into the power flow and obtain: 
 

                  

               P1 = 49.99 MW, P2 = 76.7 MW and P3 = 90 MW powerflow 1.1 result 
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Line  Limit MW Flow 

1-2 30 4.28 
1-4 50 25.60 
1-5 40 20.11 
2-3 20 -6.42 
2-4 40 48.75a 

2-5 20 17.75 
2-6 30 20.88 
3-5 20 28.91a 

3-6 60 54.63 
4-5 20 1.84 
5-6 20 3.87 

 
a
Overloaded line 

Fig 3.5: Line Flows: Power flow 1.1 

 

The total cost for this dispatch is 3129.6 $/h and the losses are 6.7 MW. 

This represents the least cost dispatch that we shall obtain in this example. As 

constraints are added later to meet the flow limits, the cost will increase. Note also 

that we have two overloads on the optimum cost dispatch as shown in Figure 3.5. 

 

 

 

3.3 Step 2 
 

The LP and power flow executions in step 1 resulted in a less-costly dispatch than 

the original power flow, but in doing so we have overloaded two transmission 

lines. We shall refer to these overloads as (n – 0) overloads. This notation means 

that there are n lines minus zero outages in the network at the time of the overload.  

 

We must redispatch the power system at this point to remove the (n – 0) overloads. 

To do this, we add two constraints to the LP, one for each overloaded line. The 

power flow constraint on line 2-4 is modeled as: 

 

𝑓2−4 = 𝑓2−4
0 + 𝑎2−4,1 𝑃1 − 𝑃1

0 + 𝑎2−4,2 𝑃2 − 𝑃2
0 + 𝑎2−4,3(𝑃3 − 𝑃3

9) ≤ 40 

 

                  

 

Before gong any further with our calculation we shall talk about the term Called 

SENSITIVITY COEFFICIENT” a” introduced in the above equation. 
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3.4 Linear sensitivity analysis: 

 
Before continuing with the discussion of the linear programming and interior OPF 

methods, we shall develop the concept of linear sensitivity analysis. Linear 

sensitivity coefficients give an indication of the change in one system quantity 

(e.g., MW flow, MVA flow, bus voltage, etc.) as another quantity is varied (e.g., 

generator MW output, transformer tap position, etc.) These linear relationships are 

essential for the application of linear programming. Note that as the adjustable 

variable is changed, we assume that the power system reacts so as to keep all of the 

power flow equations solved. As such, linear sensitivity coefficients can be 

expressed as partial derivatives for example: 

 
δMVAflowij

 δMWgenk
 

                                                    

 
shows the sensitivity of the flow (MVA) on line (I to j) with respect to the power 

generated at bus k. Some sensitivity coefficients may change rapidly as the 

adjustment is made and the power flow conditions are updated. This is because 

some system quantities vary in a nonlinear relationship with the adjustment and 

resolution of the power flow equations. This is especially true for quantities that 

have to do with voltage and MVAR flows. Sensitivities such as the variation of 

MW flow with respect to a change in generator MW output are rather linear across 

a wide range of adjustments and lead to the usefulness of the DC power flow 

equations and the “a” factor. For this reason, the value represented by a 

23ensitivity coefficient is only good for small adjustments and the sensitivities 

must be recalculated often. 

 

3.5 Sensitivity Coefficients of an AC Network Model: 

 
The following procedure is used to linearize the AC transmission system model for 

a power system. To start, we shall define two general equations giving the power 

injection at a bus. That is, the net power flowing into a transmission system from 

the bus. This function represents the power flowing into transmission lines and 

shunts at the bus: 

𝑃𝑖  𝐸 , 𝜃 =  𝑅𝑒    𝐸𝑖  (𝐸𝑖 − 𝑡𝑖𝑗  𝐸𝑗  )𝑦𝑖𝑗   

𝑓

 +  𝐸𝑖  𝐸𝑖  𝑦𝑠𝑕𝑢𝑛𝑡

𝑙

 ∗  
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𝑄𝑖  𝐸 , 𝜃 =  𝐼𝑚    𝐸𝑖  (𝐸𝑖 − 𝑡𝑖𝑗  𝐸𝑗  )𝑦𝑖𝑗   

𝑓

 + 𝐸𝑖  𝐸𝑖  𝑦𝑠𝑕𝑢𝑛𝑡

𝑙

 ∗  

                 

Where 

 

               Ei = |Ei|∠𝜃𝑖 
               Ti = the transformer tap in branch ij  

               yij = the branch admittance  

               y =  the sum of the branch and bus shunt admittance at bus i 

 

Then at each bus: 

 
                                                 

𝑃𝑖  𝐸 , 𝜃 =   𝑃𝑔𝑒𝑛 − 𝑃𝑙𝑜𝑎𝑑  

 

The set of equations that represents the first-order approximation of the AC 

network around the initial point is the same as generally used in the Newton power 

flow algorithm. That is: 

 

                

 
𝜕𝑃𝑖

𝜕|𝐸𝑗 |
 ∆ 𝐸𝑗  +  

𝜕𝑃𝑖

𝜕𝜃𝑗
 ∆ 𝜃𝑗  = ∆𝑃𝑔𝑒𝑛  𝑖 

 

This can be placed in matrix form for easier manipulation: 

 

                          
𝛿𝑃1/𝛿𝐸1 𝛿𝑃1/𝛿𝜃1

⋮ ⋮
     

𝛥|𝐸1|
𝛥𝜃1
⋮
⋮

     =   
 1 0
0 1

    
𝛥𝑃𝑔𝑒𝑛𝑖

⋮
   

 

This equation will be placed into a more compact format that uses the vectors x 

and u, where x is the state vector of voltages and phase angles, and u is the vector 

of control variables. The control variables are the generator MW, transformer taps, 

and generator voltage magnitudes (or generator MVAR). Note that at any given 

generator bus we can control a voltage magnitude only within the limits of the unit 

VAR capacity. Therefore, there are times when the role of the state and control are 

reversed. Note that other controls can easily be added to this formulation. The 

compact form of this equation then is written: 

 

                                                          𝐽𝑝𝑥  𝛥𝑋 =   𝐽𝑝𝑢  𝛥𝑢 
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Now, we will assume that there are several transmission system dependent 

variables, h, that represent, for example, MVA flows, load bus voltages, line 

amperes, etc., and we wish to find their sensitivity with respect to changes in the 

control variables. Each of these quantities can be expressed as a function of the 

state and control variables; that is, for example: 

 

                                   

                                           h =  
𝑀𝑉𝐴𝑓𝑙𝑜𝑤𝑛𝑚( 𝐸 , 𝜃)

𝐸𝑘
  

 
 

                                                                   

Where I E |  represents only load bus voltage magnitude. 

As before, we can write a linear version of these variables around the 

Operating point 

 

 

 

                                  Δh     = 

 
 
 
 
 

δh1
δ|E1|

δh1
δθ1

⋯

δh2
δ|E1|

δh2
δθ1

⋯

⋮ ⋮  
 
 
 
 

    
|𝛥𝐸1|

𝛥𝜃1
   

 

 

h1 = line nm flow 

h2= bus k voltage magnitude  

 

 

This last equation gives the linear sensitivity coefficients between the transmission 

System quantities, h, and the control variables, u. 
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3.6 Step 2(cont..) 
 

Substituting 48.75 for f
0

2-4, 76.7 for P
0

2 and 90 for P
0

3we get the following for 

 

the constraint for line 2-4 (note that a2 – 4  = 0) and, finally, we expand P2 and 

P3 in terms of the segments: 

 

 

                 48.75 + 0.31(37.5 + P21 + P22 + P23 – 76.7) 

                              + 0.22(45 + P31 + P32 + P33 – 90) ≤ 40   

Or 

 
               O.31P2 + 0.31P22 + o.31P23 + 0.22P31 + 0.22P32+ O.22P33 ≤13.302 

 

The constraint for line 3-5 is built similarly and results in: 

 

                         

 

                         0.06P21 + 0.06P22+ 0.06P23+ o.29P31 + O.29P32+ 0.29P33 ≤ 6.492 

 

The solution to the LP gives: 

 

                 P1 = 87.02 MW, P2 = 70.0 MW and P3 = 59.66 MW   LP 2: result 

 

Also note that only the first transmission line constraint is binding in the LP, the 

remaining constraint is “slack,” that is, it is not being forced up against its limit. 

When these values are put into the power flow we obtain: 

 

              Pl = 87.54 MW, P2 = 70.0 MW and P3 = 59.66 MW power flow 2: result 

 

 

The flows on the two constrained lines are: 

 

                                       f2-4 = 39.40 MW,  and f3-5 = 20.36  MW   

 

 

 

The total operating cost has now increased to 3155.0 R/h. 

 



27 
 

We now run another complete LP-power flow iteration to account for changes in 

losses and to bring the constraints closer to their limits. The solution to the second-

iteration LP gives: 

 

 

               Pl = 86.16 MW, P2 = 73.3 MW and P3 = 57.73 MW  LP 2.1: result 

 

Both transmission line constraints are binding in the second LP. When these values 

are put into the power flow we obtain: 

 

 

    Pl = 86.16 MW, P2 = 73.3 MW and P3 = 57.73 MW power flow 2.1: result 

 

The flows on the two constrained lines are: 

 

                                  f2-4 = 39.99MW     and            f3-5= 20.06MW 

 

 

The total operating cost has now decreased slightly to 3153.3 $/h. There are no 

more (n – 0) line overloads. 

 

                              

3.7 Ybus Matrix for the system 

 

 

 
 
 
 
 
 
 
𝐵𝑢𝑠 𝑛𝑜. 1 2 3 4 5 6

1 4.01 + 𝑗11.89 −2 − 𝑗4 0 −1.18 − 𝑗4.71 −0.83 − 𝑗3.11 0
2 −2 − 𝑗4 7.33 + 𝑗19.385 −0.77 − 𝑗3.85 −4 − 𝑗8 −1 − 𝑗3 −1.56 − 𝑗4.45
3 0 −0.77 − 𝑗3.85 4.15 + 𝑗16.705 0 −1.46 − 𝑗3.17 −1.92 − 𝑗9.62
4 −1.18 − 𝑗4.71 −4 − 𝑗8 0 6.18 + 𝑗14.78 −1 − 𝑗2 0
5 −0.83 − 𝑗3.11 −1 − 𝑗3 −1.46 − 𝑗3.17 −1 − 𝑗2 5.29 + 𝑗14.425 −1 − 𝑗3
6 0 −1.56 − 𝑗4.45 −1.92 − 𝑗9.62 0 −1 − 𝑗3 4.48 + 𝑗17.135 
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Chapter 4 

Validation of the result 

 
 The solution of the step 0 and step 1 found by our program exactly matches with the 

answer of the book. However, the value of the sensitivity coefficient does not exactly 

match with the book. The probable reasons for this mismatch may be the exclusion of the 

transformer tap changes from the matrix and also not taking the reactive power in 

account. A comparison between our results and the results of the existing method is given 

below: 

 

 

Step 1 Result of the book Result of our method Deviation(%) 

P1 50 50 0 

P2 77.87 77.87 0 

P3 90 90 0 

Step 2    

a2-4,2 0.31 0.33 6.4 

a2-4,2 0.22 0.235 6.8 

a3-5,2 0.06 0.062 3.3 

a3-5,3 0.29 0.305 5.17 
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Chapter 5 

Conclusion 
 

5.l Conclusion  
 

Maximum interchange Capability and Maximum Supply Capacity were studied in this 

thesis in the context of optimal load flows. It was shown that these problems could be 

formulated as linear programs using incremental network models. The numerous 

advantages of linear programming over other optimization techniques makes it enviable 

for the implementation of many optimization problems that arise in power systems 

operation. The Maximum lnterchange Capability problem was undertaken first. The 

controversial issue raised was the degree of validity of the power transfer capability 

numbers which represented the "possible emergency help" that a system in distress could 

receive from its neighbors. A new approach to give more meaningful numbers was 

considered by solving a related problem, that of Maximum Supply Capacity. An iterative 

solution using linear programming and based on an incremental network model lead to 

the exact optimal solution. The N numerical results indicated that for the sample power 

system used, the linear approximation of LPOF Formulation was accurate enough for 

practical purposes. However the method described in this thesis should be used for 

networks for which that linearization is not valid. 

 

 

5.2 Recommendations for future work 
 

The proposed method can be easily extended to find the Maximum Supply Capacity of a 

lossy network. The method was shown to handle almost any type of operating constraint. 

Additional features are computational reliability, fast speed of calculation, and ability to 

handle large systems. These features and others make linear programming suitable for 

many optimization problems that arise in power systems operation. 
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Appendixes 

 

MATLAB Code Developed for the Proposed Method 
This is our program and result 

function [value, take1] = getOptimumNumber(totalLoad) 
  
  MW = [50 60 40 32.5 60 20 45 50 40] 
  take = [1 0 0 1 0 0 1 0 0]; 
  take1 = [0 0 0 0.37 0 0 0.51 0 0]; 
  coeff = [12.4685 13.0548 13.5878 11.6587 12.481 13.1922 12.3433 13.0473 13.7142] 
value = 0; 
  
while(totalLoad>0) 
  
minCoeff = Inf; 
minIndex = 0; 
for(i = 1:length(take)) 
  if(take(i)==1) 
    if(coeff(i)<minCoeff) 
      minCoeff = coeff(i); 
      minIndex = i; 
    end 
  end 
end 
  
minCoeff; 
minIndex 
  
if(minIndex== 0) 
    disp(['Total Load is more than total generation capacity']) 
  return; 
end 
  
if(totalLoad >= MW(minIndex)) 
  value = value + MW(minIndex)*coeff(minIndex); 
  totalLoad = totalLoad - MW(minIndex); 
else 
  value = value + totalLoad*coeff(minIndex); 
  totalLoad = 0; 
end 
  
take(minIndex) = 2; 
if(minIndex<length(take) && take(minIndex + 1) == 0) 
  take(minIndex + 1) = 1; 
end 
take1(minIndex) = 1; 
  
end 
  
end 
>> getOptimumNumber(85.37) 
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minIndex = 

     4 

minIndex = 

     7 

minIndex = 

     5 

ans = 

    1.032483345000000e+003 

Inerpretation of the result: 

  

minIndex Generation 
Unit 

Limit MW 
Min-Max 

Solution Comment 

1 P11 0-50   

2 P12 0-60   

3 P13 0-40   

4 P21 0-32.5 32.5 This is first solution. As the load(85.37MW) is greater 
than the max limit so load remaining after taking max 

limit is:  
85.37-32.5=52.87 

5 P22 0-60 7.87 This is the third solution. As the remaining 
load(7.87MW) is less than max limit only 7.87 is 

taken. 

6 P23 0-20   

7 P31 0-45 45 This is the second solution As the remaining 
load(52.87MW) is greater than the max limit so 

remaining after taking  max limit is:  
52.37-45=7.87 

8 P32 0-50   

9 P33 0-40   
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Load flow Data for the network: 

function mpc = case6ww 
%CASE6WW  Power flow data for 6 bus, 3 gen case from Wood & Wollenberg. 
%   Please see CASEFORMAT for details on the case file format. 
% 
%   This is the 6 bus example from pp. 104, 112, 119, 123-124, 549 of 
%   "Power Generation, Operation, and Control, 2nd Edition", 
%   by Allen. J. Wood and Bruce F. Wollenberg, John Wiley & Sons, NY, Jan 1996. 
  
%   MATPOWER 
%   $Id: case6ww.m,v 1.7 2010/03/10 18:08:15 ray Exp $ 
  
%% MATPOWER Case Format : Version 2 
mpc.version = '2'; 
  
%%-----  Power Flow Data  -----%% 
%% system MVA base 
mpc.baseMVA = 100; 
  
%% bus data 
%   bus_i   type    Pd  Qd  Gs  Bs  area    Vm  Va  baseKV  zone    Vmax    Vmin 
mpc.bus = [ 
    1   3   0   0   0   0   1   1.05    0   230 1   1.05    1.05; 
    2   2   0   0   0   0   1   1.05    0   230 1   1.05    1.05; 
    3   2   0   0   0   0   1   1.07    0   230 1   1.07    1.07; 
    4   1   70  70  0   0   1   1   0   230 1   1.05    0.95; 
    5   1   70  70  0   0   1   1   0   230 1   1.05    0.95; 
    6   1   70  70  0   0   1   1   0   230 1   1.05    0.95; 
]; 
  
%% generator data 
%   bus Pg  Qg  Qmax    Qmin    Vg  mBase   status  Pmax    Pmin    Pc1 Pc2 Qc1min  Qc1max  Qc2min  Qc2max  

ramp_agc    ramp_10 ramp_30 ramp_q  apf 
mpc.gen = [ 
    1   0   0   100 -100    1.05    100 1   200 50  0   0   0   0   0   0   0   0   0   0   0; 
    2   50  0   100 -100    1.05    100 1   150 37.5    0   0   0   0   0   0   0   0   0   0   0; 
    3   60  0   100 -100    1.07    100 1   180 45  0   0   0   0   0   0   0   0   0   0   0; 
]; 
  
%% branch data 
%   fbus    tbus    r   x   b   rateA   rateB   rateC   ratio   angle   status  angmin  angmax 
mpc.branch = [ 
    1   2   0.1 0.2 0.04    40  40  40  0   0   1   -360    360; 
    1   4   0.05    0.2 0.04    60  60  60  0   0   1   -360    360; 
    1   5   0.08    0.3 0.06    40  40  40  0   0   1   -360    360; 
    2   3   0.05    0.25    0.06    40  40  40  0   0   1   -360    360; 
    2   4   0.05    0.1 0.02    60  60  60  0   0   1   -360    360; 
    2   5   0.1 0.3 0.04    30  30  30  0   0   1   -360    360; 
    2   6   0.07    0.2 0.05    90  90  90  0   0   1   -360    360; 
    3   5   0.12    0.26    0.05    70  70  70  0   0   1   -360    360; 
    3   6   0.02    0.1 0.02    80  80  80  0   0   1   -360    360; 
    4   5   0.2 0.4 0.08    20  20  20  0   0   1   -360    360; 
    5   6   0.1 0.3 0.06    40  40  40  0   0   1   -360    360; 
]; 
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%%-----  OPF Data  -----%% 
%% generator cost data 
%   1   startup shutdown    n   x1  y1  ... xn  yn 
%   2   startup shutdown    n   c(n-1)  ... c0 
mpc.gencost = [ 
    2   0   0   3   0.00533 11.669  213.1; 
    2   0   0   3   0.00889 10.333  200; 
    2   0   0   3   0.00741 10.833  240; 
]; 
 
 

 

 

  

 

 

 


