

A New Approach to Solve Travelling Salesman

Problem

A Thesis submitted to the

Dept. of Computer Science and Engineering, BRAC University in partial fulfilment of

the requirements for the Bachelor of Science degree in Computer Engineering

By

Sanjana Sarker 10201013

Supervised by

Ms. Farzana Rashid

Co-supervised by

Ms. Dilruba Showkat

December 28th

BRAC University, Dhaka

ACKNOWLEDGEMENT

I have incurred many debts of gratitude over the last few days while preparing for this report.

First and foremost, I would like to pay my gratitude to the Almighty Allah for giving me the

ability to work hard. This is my humble attempt to present gratitude in writing this report.

Secondly, I would like to express my gratitude to my Supervisor Ms.Farzana Rashid and my

co-supervisor Ms.Dilruba Showkat for their valuable guidance and support. I really appreciate

what they have taught me for this thesis; I express my heart-felt gratefulness for that.

Hence, I have taken help from different sources for preparing the report. Without the help,

completing the report perfectly would not have been possible. Now here is a petite effort to

show my deep gratitude to those helpful persons who have put it up on the texts and websites.

Last but not the least, I would like to thank my fellow friends and others whose names are

not mentioned here, but directly or indirectly offered suggestions and guidelines to the

completion of my work. I warmly thank them for their kind contribution.

 DECLARATION

Statement

I hereby proclaim that this thesis is based on the results I found by my hard

work. Contents of the work found by other researcher(s) are motioned by

references. This thesis has never been previously submitted for any degree

neither in whole nor in part.

Signature of Acting Chairperson And Associate Professor:

Dr. Md. Khalilur Rhaman

Signature of Supervisor:

Ms. Farzana Rashid

Signature of Co-supervisor :

Ms. Dilruba Showkat

Signature of Author:

Sanjana Sarker

[Student ID : 10201013]

Abstract

The travelling Salesman Problem is one of the most NP-hard problems.

Our research provides a yieldable method for solving the problem using

genetic algorithm. To solve TSP we use genetic algorithm, a search

algorithm which generates random tours and using crossover technique

it gives almost optimized solution for for these kinds of problems. We are

introducing a map reduction technique with Genetic Algorithm to create

a new approach to solve TSP.

Table of Content

Content Page No.

1. Introduction 1

 1.1Objective
1

2. Theory 2

- 2.1 Travelling Salesman Problem 2

- 2.2 Objective and Field of Application 2

- 2.3 Complexity and Methods of solving TSP 4

- 2.4 Genetic Algorithm 5

 - 2.4.1 Definition 5

 - 2.4.2 Overview of GA 6

- 2.5 Map Reduction 12

3. Solving TSP with GA and Map Reduce: 13

- 3.1 Previous work 13

- 3.2 Our Approach 15

4. New Crossover 17

- 4.1 Theory of Crossover 17

- 4.2 JAVA code for New Crossover 18

5. Methodology 24

- 5.1 Selecting real world problem 25

- 5.1.a Converting Geological Coordinates 26

- 5.2 Selecting Dividing axes from Map Reduction 27

- 5.3 Applying Genetic Algorithm to Each Coordinate 29

- 5.4 Combining the routes from four coordinate 29

6. Findings 55

- 6.1 Result using Crossover 55

- 6.2 Results using Map Reduce, GA and Permutation 57

7. Conclusion and Continuation 59

- 7.1 Future Works 59

- 7.2 Conclusion 59

8. References 60

Table of Figures

Figure Number Page No.

Figure 1: Population & result of crossover in GA 8

Figure 2: Selection from population 9

Figure 3: Crossover in Genetic Algorithm 10

Figure 4: Mutation in Genetic Algorithm 11

Figure 5: Map reduction 12

Figure 6: Approach of TSP by Map Reduce 14

Figure 7: Map reduce approach 15

Figure 8: New crossover 18

Figure 9: Methodology Flow Chart 24

Figure 10: Map reduction axes of Burma14 26

Figure 11: Screenshot of Solution using new crossover 55

Figure 12: Graph of Solution using new crossover 56

Figure 13Graph of optimal solution 57

Figure 14: Screenshot of solution using Map Reduce,

GA, Combination

58

Figure 15: Graph of solution using Map Reduce, GA

& combination

58

List of Tables

Table Number Page No.

Table 1: Table 1: Geological co-coordinate of

Burma14

25

1 | P a g e

1. Introduction

1.1 Objective

Day by day, our life Is getting complex. And to make our life easier we lean on to various

electronic devices. But to make them work as we want, we need to address many mathematical

problems. Travelling salesman problem is a very old mathematical problem. It is models a

scenario where a salesman has many cities to visit in shortest possible time. Given the distance

among the cities, he must calculate the shortest route.

Researchers have been working with Travelling Salesman problem for over centuries. Many

models have been introduced to solve this legendary mathematical problem. In this paper I

tried to introduce a new approach to solve the Travelling Salesman Problem.

I combined Genetic Algorithm Along with Map Reduction technique to get a new tactic and

experimented to see whether the result is optimized.

2 | P a g e

2. Theory

2.1 Travelling Salesman Problem:

The problem is very simple. Provided a list of cities and distance between them, it asks to

find the shortest possible path so that, starting from any city, one can visit all the cities once

and return to the starting city.

The origin of Travelling Salesman Problem (TSP) dates back to 1759 when the first instance

of the travelling salesman problem was from Euler whose problem was to move a knight to

every position on a chess board exactly

once.[1] Then in 1832 mathematician W.R Hamilton and Thomas Kirkman formulated it. The

travelling salesman first gained fame in a book written by German salesman

BF Voigt in 1832 on how to be a successful travelling salesman.[1] Though he did not

mention TSP by name but suggested that to cover as many locations as possible not visiting

any location twice is the key factor of scheduling of a tour. The standard or symmetric

travelling salesman problem can be stated mathematically as follows:

Given a weighted graph G = (V, E); where the weight cij on the edge between nodes i and j is

a non-negative value, find the tour of all nodes that has the minimum total cost.

2.2Objective and Field of Application

The TSP has numerous applications, such as scheduling or planning, logistics, and the

manufacture of microchips. A touch adjusted, it appears as a sub-problem in many fields,

3 | P a g e

such as DNA sequencing. In these applications, the concept of city represents, for instance,

customers, soldering points, or DNA fragments, and the concept distance represents

travelling times or cost, or a similarity measure between DNA fragments. In many

applications, additional constraints such as limited resources or time windows may be

imposed.

The vehicle routing problem can be demonstrated as a traveling salesman problem. Here

the problem is to find which customers should be attended by which vehicles and the

minimum number of vehicles needed to serve each customer. There are different variations

of this problem including finding the minimum time to serve all customers. We can address

some of

these problems as the TSP.

An application found by Plate, Lowe and Chandrasekaran is overhauling gas turbine engines

in aircraft. Nozzle-guide fin assemblies, consisting of nozzle guide fins fixed to the

circumference, are located at each turbine stage to ensure uniform gas flow. The placement

of the fins in order to minimize fuel consumption can be modeled as a symmetric TSP.[2]

The scheduling of jobs on a single machine given the time it takes for each job and the time

it takes to prepare the machine for each job is also TSP. We try to minimize the total time to

process each job.

4 | P a g e

2.3 Complexity and Methods of solving TSP:

At present the only known method guaranteed to optimally solve the Travelling Salesman

Problem of any size, is by computing each possible tour and searching for the tour with least

cost. Each possible tour is a combination of 123 . . . n, where n is the number of cities, so

therefore the number of tours is n! . When n gets large, it becomes impossible to find the

cost of every tour in polynomial time.

Obviously we need to find an algorithm that will give us a solution in a shorter amount of

time. The travelling salesman problem is NP-hard so there is no known algorithm that will

solve it in polynomial time. We will probably have to sacrifice optimality in order to get a

good answer in a shorter time.

Many different methods of optimization have been used to try to solve the TSP. Among

them

Greedy algorithm, Nearest neighbour algorithm, minimum spanning tree is mentionable.

The Genetic Algorithm (GA) however is preferable to many researchers for its reputation to

solve these kinds of problem close to optimally.

5 | P a g e

2.4 Genetic Algorithm:

2.4.1Definition :

Genetic Algorithms were invented to imitate some of the courses observed in natural

evolution. Many people, biologists included, are astonished that life at the level of

complexity that we observe could have evolved in the relatively short time suggested by the

fossil record. The idea with GA is to use this power of evolution to solve optimization

problems. The father of the original Genetic Algorithm was John Holland who invented it in

the early 1970's.[3]

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary

ideas of natural selection and genetics. As such they represent an intelligent exploitation of

a random search used to solve optimization problems. Although randomized, GAs are by no

means random, instead they exploit historical information to direct the search into the

region of better performance within the search space. The basic techniques of the GAs are

designed to simulate processes in natural systems necessary for evolution, specially those

follow the principles first laid down by Charles Darwin of "survival of the fittest.". Since in

nature, competition among individuals for scanty resources results in the fittest individuals

dominating over the weaker ones.[4]

2.4.2Overview of GA:

GA simulates the survival of the fittest among individuals over consecutive generation for

solving a problem. Each generation consists of a population of character strings that are

6 | P a g e

analogous to the chromosome that we see in our DNA. Each individual represents a point in

a search space and a possible solution. The individuals in the population are then made to

go through a process of evolution. GAs are based on an analogy with the genetic structure

and behaviour of chromosomes within a population of individuals using the following

foundations:

i. Individuals in a population compete for resources and mates.

ii. Those individuals most successful in each 'competition' will produce more offspring

than those individuals that perform poorly.

iii. Genes from `good' individuals propagate throughout the population so that two

good parents will sometimes produce offspring that are better than either parent.

iv. Thus each successive generation will become more suited to their environment.

There are three 5 main aspects of GA. They are namely

i. Population

ii. Fitness calculation

iii. Selection

iv. Crossover

v. Mutation

7 | P a g e

i.Population:

A population of individuals is maintained within search space for a GA, each representing a

possible solution to a given problem. Each individual is coded as a finite length vector of

components, or variables, in terms of some alphabet, usually the binary alphabet {0,1}. To

continue the genetic analogy these individuals are likened to chromosomes and the variables

are analogous to genes. Thus a chromosome (solution) is composed of several genes

(variables). A fitness score is assigned to each solution representing the abilities of an individual

to `compete'. The individual with the optimal (or generally near optimal) fitness score is sought.

The GA aims to use selective `breeding' of the solutions to produce `offspring' better than the

parents by combining information from the chromosomes. In the figure below the parent1 and

parent 2 are the population.

8 | P a g e

Fig 1 : Population & result of crossover in GA

ii. Fitness Calculation

Fitness calculation is a way to determine which candidates of the population serves the purpose

best. For instance. Incase of TSP, the way to calculate fitness is to determine which route in the

population cost least. For different problems fitness calculation method changes accordingly.

iii.Selection:

There can be more the two individuals in population. Then certain number of candidate must

be chosen for the crossover. This is called the selection. The selection process is based on the

fitness calculation. It gives preference to better individuals, allowing them to pass on their

genes to the next generation. The goodness of each individual depends on its fitness.

9 | P a g e

Fitness may be determined by an objective function or by a subjective judgment.

Fig 2 : Selection from population

10 | P a g e

iv. Crossover:

Crossover refers to merging of two or more parent individuals to make new offspring. In

crossover a portion of uniform size is selected from both the parents. Then the portion from

first parent is added to the portion of second, thus a offspring is born. Similarly second child is

produced. Prime distinguished factor of GA from other optimization techniques. Two

individuals are chosen from the population using the selection operator.A crossover site along

the bit strings is randomly chosen. The values of the two strings are exchanged up to this point

If S1=000000 and s2=111111 and the crossover point is 2 then S1'=110000 and s2'=001111

the two new offspring created from this mating are put into the next generation of the

population. By recombining portions of good individuals, this process is likely to create even

better individuals

Fig3 : Crossover in Genetic Algorithm

11 | P a g e

v . Mutation:

After Crossover has run several times and yet expected result is not found, then mutation

comes into action. Mutation refers to changing each candidate parent at certain point or

points.With some low probability, a portion of the new individuals will have some of their bits

flipped. Its purpose is to maintain diversity within the population and inhibit premature

convergence. Mutation alone induces a random walk through the search space

Mutation and selection (without crossover) create a parallel, noise-tolerant, hill-climbing

algorithms .

Fig 4 : Mutation in Genetic Algorithm

12 | P a g e

2.5Map Reduction:

Map Reduce is programming model which has proven to be very effective to run a query on big data.

Generally speaking, it works like this:

 The data is partitioned across multiple computer nodes.

 A map function runs on every partition and returns a result.

 A reduce function reduces 2 results into one result. Its continuously run until only a single

result remains.
[5]

The figure bellow shows map reduction on TSP. Given the cities, we can scenario into four possible

co-ordinates and solve them separately.

Fig 5: Map reduction

13 | P a g e

3. Solving TSP with GA and Map Reduce:

3.1 Previous work:

Travelling Salesman problem being a complex and famous one, researchers have tried to

achieve optimality using numerous methods and algorithms. We have come across many works

that has solved TSP with GA. Also new crossover technique has been introduced over time to

make result optimal and efficient .

As, TSP is a NP- hard problem, researchers often tried to reduce in complexity by dividing it into

pieces of several problems, however, optimality was beyond reach. It is established that Map

Reduce cannot solve any planning problem optimally.

Previously researchers at Optaplanner organization have showed that Map Reduce can not be a

reasonable approach to TSP. What their approach was-

 Divide the Map of cities into four co-ordinates

 Solve each co-ordinate separately to get the shortest path at each

 Merge the shortest path

14 | P a g e

Fig 6: Approach of TSP by Map Reduce

However, the result showed even if the shortest path was obtained at each co-ordinate, and

they were merged optimally, the solution was not optimal.

Hence, I came forward to examine if the result shifts to optimality if we combine Genetic

Algorithm, Map-Reduce and Combination.

15 | P a g e

3.2 Our Approach:

I noticed, choosing the shortest path in each co-ordinate does not help obtaining optimal total

path when using map reduce technique. The reason can be elaborated with an example.

if there were 2 shortest path of 24 and 17 and the cost to merge them is 12, the total cost is

24+17+12 = 53. Fig 7 left

However, there might be two not- optimal path of cost 27 and 20 and their merging cost 5 so in

totals cost stands 27+20+5=52 fig 7 right

Fig 7: Map reduce approach

First of all, I designed a new crossover technique to increase the efficiency of crossover

operator of GA for TSP. Then I divided the map of given city into four equal co-ordinates such

that no city rest on the axes. Then GA was run for each four co-ordinates and not only the best

16 | P a g e

path, but also second or third best paths were recorded. Then we used simple combination to

determine the 4 paths of four co-ordinates and merging in between them.

17 | P a g e

4.New Crossover:

In Travelling Salesman Problem we need To visit each city only once. In general crossover there

are chances of repetition of cities in a tour. So I modifies the Crossover and introduced a new

type of crossover for travelling salesman problem.

4.1 Theory of Crossover:

In this Crossover I calculated the average cost of the each parent tour and selected the

minimum between them. I did this because the parent tour in which the average distance cost

is less, probability is more that, the distance between the cities in that tour is going to be less.

Then, I compared the distance between two cities and if that is less than the average cost, then

I considered them for child tour.

If distance between two cities is greater then the average cost, then they were not selected for

the tour.

Then we moved through the second parent and checked which city does not exist in the child

tour, if fount any, they were added to the child tour.

18 | P a g e

Fig 8: New crossover

4.2 JAVA code for New Crossover:

private static City[] crossover(City[] p1, City[] p2) {

 List<City> child = new ArrayList<City>();

 double totalCost = 0;

19 | P a g e

 for(int i=0; i<p1.length; i++) {

 City u = p1[i];//getCity(p1[i]);

 City v;

 if(i+1 < p1.length) {

 v = p1[i+1]; //getCity(p1[i+1]);

 } else {

 v = p1[0]; //

 }

 totalCost += u.distanceTo(v);

 }

 double avgCost = totalCost / p1.length;

 totalCost = 0;

20 | P a g e

 for(int i=0; i<p2.length; i++) {

 City u = p2[i]; //getCity(p2[i]);

 City v;

 if(i+1 < p2.length) {

 v = p2[i+1];//getCity(p2[i+1]);

 } else {

 v = p2[0]; // getCity(p2[0]);

 }

 totalCost += u.distanceTo(v);

 }

avgCost = Math.min(totalCost/p2.length, avgCost);

List<City> maxLengthSubString = new ArrayList<City>();

21 | P a g e

 List<City> tmpSubString = new ArrayList<City>();

for(int i=1; i<p1.length; i++) {

 City u = p1[i-1]; //getCity(p1[i-1]);

 City v = p1[i]; //getCity(p1[i]);

double cost = u.distanceTo(v);

if(cost < avgCost) {

 if(tmpSubString.size() == 0)

 tmpSubString.add(p1[i-1]);

 tmpSubString.add(p1[i]);

 } else {

// child.addAll(tmpSubString);

 if(maxLengthSubString.size() < tmpSubString.size()) {

22 | P a g e

 maxLengthSubString = tmpSubString;

 tmpSubString = new ArrayList<City>();

 }

 tmpSubString.clear();

 }

 }

child.addAll(maxLengthSubString);

for(int i=0; i<p2.length; i++) {

 if(!child.contains(p2[i])) {

 child.add(p2[i]);

 }

 }

23 | P a g e

 City[] childArray = new City[child.size()];

 for(int i=0; i<child.size(); i++)

 childArray[i] = child.get(i);

 return childArray;

 }

24 | P a g e

5.Methodology

This paper is divided into two parts. First I developed a new crossover technique. And in second

part I used this crossover, map reduce and combination to address TSP.

Our methodology of Map Reduce comprises of –

 Selecting real world data

 Selecting Dividing axes for map reduce

 Applying genetic Algorithm to each divided co-ordinates

 Storing best 3 paths in each coordinates

 Using combination to get the least cost route

Fig 9 : Methodology Flow Chart

25 | P a g e

5.1 Selecting real world problems:

For my paper, we chose real world data for cities. I used Data called Burma14 Which consists of

geological co-ordinates of 14 cities of current Myanmar. Co-ordinates are provided Below, to

make identification easy we denoted the city by Alphabets as the original names were

unavailable.

City Latitude Longitude

A 16.47 96.10

B 16.47 94.44

C 20.09 92.54

D 22.39 93.37

E 25.23 97.24

F 22.00 96.05

G 17.20 96.29

H 16.30 97.38

I 14.05 98.12

J 16.53 97.38

K 21.52 95.59

L 19.41 97.13

M 20.09 94.55

N

Table 1: Geological co-coordinate of Burma14

26 | P a g e

5.1.a Converting Geological Coordinates:

Geological coordinates represents a places position based on earths equator and meridian.

The parameters are as follows-

iLatitude:

Latitude (shown as a horizontal line) is the angular distance, in degrees, minutes, and

seconds of a point north or south of the Equator. Lines of latitude are often referred to as

parallels.

ii Longitude:

Latitude (shown as a vertical line) is the angular distance, in degrees, minutes, and seconds,

of a point east or west of the Prime (Greenwich) Meridian. Lines of longitude are often

referred to as meridians.

iii Minutes and Seconds :

For precision purposes, degrees of longitude and latitude have been divided into minutes (')

and seconds ("). There are 60 minutes in each degree. Each minute is divided into 60

seconds. Seconds can be further divided into tenths, hundredths, or even thousandths.

iv Haversine equation :

27 | P a g e

Obtaining Distance between to real world Co-ordinate is different from getting distance

between to 2-dimensional coordinate. I used Haversine formual to calculate Distance

between to cities. The pseudo code is given below.

a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)

c = 2 ⋅ atan2(√a, √(1−a))

d = R ⋅ c

where

φ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371km);

note that angles need to be in radians to pass to trig functions!

distance_lontitude = longtittude2 - longtitude1

distance_lattitude = lattitude2 - lattitude1

a = (sin(distance_lattitude /2))^2 + cos(lattitude1) * cos(lattitude2) * (sin(distance_lontitude /2))^2

c = 2 * atan2(sqrt(a), sqrt(1-a))

d = R * c (where R is the radius of the Earth)

5.2 Selecting dividing axes for map reduce:

To Decide Where to Place the axes to divide the city map into four coordinate we plotted

the cities of Burma14 on graph and selected the exes carefully so that no cities rest on any

28 | P a g e

of the axes. The new horizontal axis intersects Y axis at 95.25 and new vertical axis

intersects X axis at 19.00.

Fig 10 : Map reduction axes of Burma14

I Applied Genetic Algorithm To each Coordinate and saved best three paths instead of one. For

the crossover I used a new crossover that I am going to introduce later in this paper.

In total I got 12 routes for four coordinates.

29 | P a g e

5.3Applying Genetic Algorithm to Each Coordinate:

I Applied Genetic Algorithm To each Coordinate and saved best three paths instead of one. For

the crossover I used a new crossover that I am going to introduce later in this paper.

In total I got 12 routes for four coordinates.

5.4combining the routes from four coordinate:

- Using rules of mathematical combination I combined the 4 routes, one from each

coordinate and four merging distance. So from 12 possible routes from each coordinate

and 36 merging distances we had to chose four routes and four merging distances. That

makes 495 combinations of cities and 58905 merging distance.

30 | P a g e

public class City {

String cityname ="";

double x;

double y;

// Constructs a randomly placed city

/* public City(){

this.x = (Math.random()*200);

this.y = (Math.random()*200);

}*/

// Constructs a city at chosen x, y location

public City(String name, double x, double y){

cityname = name;

this.x = x;

this.y = y;

}

// Gets city's x coordinate

public double getX(){

return this.x;

}

// Gets city's y coordinate

Class City

31 | P a g e

public double getY(){

return this.y;

}

//

public String getcityname(){

return this.cityname;

}

// Gets the distance to given city

public double distanceTo(City city){

double userLat = getX();

double venueLat = city.getX();

double userLng = getY();

double venueLng = city.getY();

//double xDistance = Math.abs(getX() - city.getX());

//double yDistance = Math.abs(getY() - city.getY());

//double distance = Math.sqrt((xDistance*xDistance) + (yDistance*yDistance));

double latDistance = Math.toRadians(userLat - venueLat);

double lngDistance = Math.toRadians(userLng - venueLng);

double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)

+ Math.cos(Math.toRadians(userLat)) * Math.cos(Math.toRadians(venueLat))

32 | P a g e

* Math.sin(lngDistance / 2) * Math.sin(lngDistance / 2);

double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

return (int)(AVERAGE_RADIUS_OF_EARTH * c);

}

public final static double AVERAGE_RADIUS_OF_EARTH = 6371;

/*public int calculateDistance(double userLat, double userLng) {

double venulat =

double latDistance = Math.toRadians(userLat - venueLat);

double lngDistance = Math.toRadians(userLng - venueLng);

double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)

+ Math.cos(Math.toRadians(userLat)) * Math.cos(Math.toRadians(venueLat))

* Math.sin(lngDistance / 2) * Math.sin(lngDistance / 2);

double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

return (int) (Math.round(AVERAGE_RADIUS_OF_EARTH * c));

}*/

@Override

public String toString(){

return getcityname()+", "+getX()+", "+getY();

}

33 | P a g e

}

34 | P a g e

Class GA

public class GA {

 /* GA parameters */

 private static final double mutationRate = 0.015;

 private static final int tournamentSize = 5;

 private static final boolean elitism = true;

 // Evolves a population over one generation

 public static Population evolvePopulation(Population pop) {

 Population newPopulation = new Population(pop.populationSize(), false);

 // Keep our best individual if elitism is enabled

 int elitismOffset = 0;

 if (elitism) {

 Tour [] temp = pop.getFittest();

 newPopulation.saveTour(0, temp[0]);

 elitismOffset = 1;

 }

 // Crossover population

 // Loop over the new population's size and create individuals from

 // Current population

 for (int i = elitismOffset; i < newPopulation.populationSize(); i++) {

35 | P a g e

 // Select parents

 Tour parent1 = tournamentSelection(pop);

 Tour parent2 = tournamentSelection(pop);

 // Crossover parents

 Tour child = crossover(parent1, parent2);

 // Add child to new population

 newPopulation.saveTour(i, child);

 }

 // Mutate the new population a bit to add some new genetic material

 for (int i = elitismOffset; i < newPopulation.populationSize(); i++) {

 mutate(newPopulation.getTour(i));

 }

 return newPopulation;

 }

 // Applies crossover to a set of parents and creates offspring

 public static Tour crossover(Tour parent1, Tour parent2) {

 // Create new child tour

 Tour child = new Tour();

 // Get start and end sub tour positions for parent1's tour

 int startPos = (int) (Math.random() * parent1.tourSize());

36 | P a g e

 int endPos = (int) (Math.random() * parent1.tourSize());

 // Loop and add the sub tour from parent1 to our child

 for (int i = 0; i < child.tourSize(); i++) {

 // If our start position is less than the end position

 if (startPos < endPos && i > startPos && i < endPos) {

 child.setCity(i, parent1.getCity(i));

 } // If our start position is larger

 else if (startPos > endPos) {

 if (!(i < startPos && i > endPos)) {

 child.setCity(i, parent1.getCity(i));

 }

 }

 }

 // Loop through parent2's city tour

 for (int i = 0; i < parent2.tourSize(); i++) {

 // If child doesn't have the city add it

 if (!child.containsCity(parent2.getCity(i))) {

 // Loop to find a spare position in the child's tour

 for (int ii = 0; ii < child.tourSize(); ii++) {

 // Spare position found, add city

 if (child.getCity(ii) == null) {

 child.setCity(ii, parent2.getCity(i));

37 | P a g e

 break;

 }

 }

 }

 }

 return child;

 }

 // Mutate a tour using swap mutation

 private static void mutate(Tour tour) {

 // Loop through tour cities

 for(int tourPos1=0; tourPos1 < tour.tourSize(); tourPos1++){

 // Apply mutation rate

 if(Math.random() < mutationRate){

 // Get a second random position in the tour

 int tourPos2 = (int) (tour.tourSize() * Math.random());

 // Get the cities at target position in tour

 City city1 = tour.getCity(tourPos1);

 City city2 = tour.getCity(tourPos2);

 // Swap them around

 tour.setCity(tourPos2, city1);

 tour.setCity(tourPos1, city2);

38 | P a g e

 }

 }

 }

 // Selects candidate tour for crossover

 private static Tour tournamentSelection(Population pop) {

 // Create a tournament population

 Population tournament = new Population(tournamentSize, false);

 // For each place in the tournament get a random candidate tour and

 // add it

 for (int i = 0; i < tournamentSize; i++) {

 int randomId = (int) (Math.random() * pop.populationSize());

 tournament.saveTour(i, pop.getTour(randomId));

 }

 // Get the fittest tour

 Tour [] temp = tournament.getFittest();

 Tour fittest = temp[0];

 return fittest;

 }

}

39 | P a g e

Class Population

public class Population {

 // Holds population of tours

 Tour[] tours;

 // Construct a population

 public Population(int populationSize, boolean initialise) {

 tours = new Tour[populationSize];

 // If we need to initialise a population of tours do so

 if (initialise) {

 // Loop and create individuals

 for (int i = 0; i < populationSize(); i++) {

 Tour newTour = new Tour();

 newTour.generateIndividual();

 saveTour(i, newTour);

 }

 }

 }

 // Saves a tour

 public void saveTour(int index, Tour tour) {

 tours[index] = tour;

40 | P a g e

 }

 // Gets a tour from population

 public Tour getTour(int index) {

 return tours[index];

 }

 // Gets the best tour in the population

 public Tour[] getFittest() {

 Tour [] fittest = new Tour[3];

 fittest[0] = tours[0];

 fittest[1] = tours[0];

 fittest[2] = tours[0];

 // Loop through individuals to find fittest

 for (int i = 1; i < populationSize(); i++) {

 if (fittest[0].getFitness() < getTour(i).getFitness()) {

 fittest[2] = fittest[1];

 fittest[1] = fittest[0];

 fittest[0] = getTour(i);

 System.out.println("1"+fittest[0]);

 System.out.println("2"+fittest[1]);

 System.out.println("3"+fittest[2]);

 System.out.println(" ");

41 | P a g e

 }

 }

 //System.out.println("3"+fittest[0]);

 //System.out.println("4"+fittest[1]);

 return fittest;

 }

 // Gets population size

 public int populationSize() {

 return tours.length;

 }

}

Class Tour

import java.util.ArrayList;

import java.util.Collections;

public class Tour{

 // Holds our tour of cities

 private ArrayList tour = new ArrayList<City>();

42 | P a g e

 // Cache

 private double fitness = 0;

 private int distance = 0;

 // Constructs a blank tour

 public Tour(){

 for (int i = 0; i < TourManager.numberOfCities(); i++) {

 tour.add(null);

 }

 }

 public Tour(ArrayList tour){

 this.tour = tour;

 }

 // Creates a random individual

 public void generateIndividual() {

 // Loop through all our destination cities and add them to our tour

 for (int cityIndex = 0; cityIndex < TourManager.numberOfCities(); cityIndex++) {

 setCity(cityIndex, TourManager.getCity(cityIndex));

 }

 // Randomly reorder the tour

 Collections.shuffle(tour);

 }

43 | P a g e

 // Gets a city from the tour

 public City getCity(int tourPosition) {

 return (City)tour.get(tourPosition);

 }

 // Sets a city in a certain position within a tour

 public void setCity(int tourPosition, City city) {

 tour.set(tourPosition, city);

 // If the tours been altered we need to reset the fitness and distance

 fitness = 0;

 distance = 0;

 }

 // Gets the tours fitness

 public double getFitness() {

 if (fitness == 0) {

 fitness = (double)getDistance();

 }

 return fitness;

 }

 // Gets the total distance of the tour

 public int getDistance(){

44 | P a g e

 if (distance == 0) {

 int tourDistance = 0;

 // Loop through our tour's cities

 for (int cityIndex=0; cityIndex < tourSize(); cityIndex++) {

 // Get city we're travelling from

 City fromCity = getCity(cityIndex);

 // City we're travelling to

 City destinationCity;

 // Check we're not on our tour's last city, if we are set our

 // tour's final destination city to our starting city

 if(cityIndex+1 < tourSize()){

 destinationCity = getCity(cityIndex+1);

 }

 else{

 destinationCity = getCity(0);

 }

 // Get the distance between the two cities

 tourDistance += fromCity.distanceTo(destinationCity);

 }

 distance = tourDistance;

 }

 return distance;

 }

45 | P a g e

// Get number of cities on our tour

 public int tourSize() {

 return tour.size();

 }

 // Check if the tour contains a city

 public boolean containsCity(City city){

 return tour.contains(city);

 }

 @Override

 public String toString() {

 String geneString = "|";

 for (int i = 0; i < tourSize(); i++) {

 geneString += getCity(i)+"|";

 }

 return geneString;

 }

}

Class TourManager

46 | P a g e

import java.util.ArrayList;

public class TourManager {

 // Holds our cities

 public static ArrayList destinationCities = new ArrayList<City>();

 public static ArrayList quarter1 = new ArrayList<City>();

 public static ArrayList quarter2 = new ArrayList<City>();

 public static ArrayList quarter3 = new ArrayList<City>();

 public static ArrayList quarter4 = new ArrayList<City>();

 // Adds a destination city

 public static void addCity(City city) {

 if (city.x >= 19 && city.y <= 95.25) {

 //quarter 3

 quarter3.add(city);

 } else if (city.x < 19 && city.y > 95.25) {

 //quarter 1

 quarter1.add(city);

 } else if (city.x < 19 && city.y < 95.25) {

 //quarter 4

 quarter4.add(city);

47 | P a g e

 } else if (city.x > 19 && city.y > 95.25) {

 //quarter 2

 quarter2.add(city);

 }

 destinationCities.add(city);

 }

 // Get a city

 public static City getCity(int index){

 return (City)destinationCities.get(index);

 }

 // Get the number of destination cities

 public static int numberOfCities(){

 return destinationCities.size();

 }

}

48 | P a g e

Class TSP_GA

public class TSP_GA {

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 // Create and add our cities

 City city = new City("A",16.47, 96.10);

 TourManager.addCity(city);

 City city2 = new City("B",16.47, 94.44);

 TourManager.addCity(city2);

 City city3 = new City("C",20.09, 92.54);

 TourManager.addCity(city3);

 City city4 = new City("D",22.39, 93.37);

 TourManager.addCity(city4);

 City city5 = new City("E",25.23, 97.24);

 TourManager.addCity(city5);

 City city6 = new City("F",22.00, 96.05);

 TourManager.addCity(city6);

 City city7 = new City("G",20.47, 97.02);

 TourManager.addCity(city7);

 City city8 = new City("H",17.20, 96.29);

 TourManager.addCity(city8);

 City city9 = new City("I",16.30, 97.38);

 TourManager.addCity(city9);

49 | P a g e

 City city10 = new City("J",14.05, 98.12);

 TourManager.addCity(city10);

 City city11 = new City("k",16.53, 97.38);

 TourManager.addCity(city11);

 City city12 = new City("L",21.52, 95.59);

 TourManager.addCity(city12);

 City city13 = new City("M",19.41, 97.13);

 TourManager.addCity(city13);

 City city14 = new City("N",20.09, 94.55);

 TourManager.addCity(city14);

 Tour [] q1,q2,q3,q4;

 TourManager.destinationCities = TourManager.quarter1;

 // Initialize population

 Population pop = new Population(10, true);

 Tour [] temp = pop.getFittest();

 System.out.println("Initial distance: " + temp[0].getDistance());

 // Evolve population for 100 generations

 pop = GA.evolvePopulation(pop);

 for (int i = 0; i < 10; i++) {

 pop = GA.evolvePopulation(pop);

50 | P a g e

 }

 // Print final results

 System.out.println("Finished");

 temp = pop.getFittest();

 q1 = temp;

 System.out.println("Final distance: " + temp[0].getDistance());

 System.out.println("Solution:");

 System.out.println(pop.getFittest());

 TourManager.destinationCities = TourManager.quarter2;

 // Initialize population

 pop = new Population(10, true);

 temp = pop.getFittest();

 System.out.println("Initial distance: " + temp[0].getDistance());

 // Evolve population for 100 generations

 pop = GA.evolvePopulation(pop);

 for (int i = 0; i < 10; i++) {

 pop = GA.evolvePopulation(pop);

 }

51 | P a g e

 // Print final results

 System.out.println("Finished");

 temp = pop.getFittest();

 q2 = temp;

 System.out.println("Final distance: " + temp[0].getDistance());

 System.out.println("Solution:");

 System.out.println(pop.getFittest());

 TourManager.destinationCities = TourManager.quarter3;

 // Initialize population

 pop = new Population(10, true);

 temp = pop.getFittest();

 System.out.println("Initial distance: " + temp[0].getDistance());

 // Evolve population for 100 generations

 pop = GA.evolvePopulation(pop);

 for (int i = 0; i < 10; i++) {

 pop = GA.evolvePopulation(pop);

 }

 // Print final results

 System.out.println("Finished");

 temp = pop.getFittest();

52 | P a g e

 q3 = temp;

 System.out.println("Final distance: " + temp[0].getDistance());

 System.out.println("Solution:");

 System.out.println(pop.getFittest());

 TourManager.destinationCities = TourManager.quarter4;

 // Initialize population

 pop = new Population(10, true);

 temp = pop.getFittest();

 q4 = temp;

 System.out.println("Initial distance: " + temp[0].getDistance());

 // Evolve population for 100 generations

 pop = GA.evolvePopulation(pop);

 for (int i = 0; i < 10; i++) {

 pop = GA.evolvePopulation(pop);

 }

 // Print final results

 System.out.println("Finished");

 temp = pop.getFittest();

 q4 = temp;

 System.out.println("Final distance: " + temp[0].getDistance());

53 | P a g e

 System.out.println("Solution:");

 System.out.println(pop.getFittest());

 //System.out.println(q1[0].getDistance() + q1[0].getCity(0).distanceTo(q2[0].getCity(0)) +

q2[0].getDistance() + q2[0].getCity(0).distanceTo(q3[0].getCity(0)) + q3[0].getDistance() +

q1[0].getCity(0).distanceTo(q2[0].getCity(0)) +);

 double min = Double.MAX_VALUE;

 for (int i=0; i < 3; i++) {

 for (int j=0; j < 3; j++) {

 for (int k=0; k < 3; k++) {

 for (int l=0; l < 3; l++) {

 double d1 = q1[i].getDistance() +

q1[i].getCity(0).distanceTo(q2[j].getCity(0)) + q2[j].getDistance() + q2[j].getCity(q2[j].tourSize()-

1).distanceTo(q3[k].getCity(0)) + q3[k].getDistance() + q3[k].getCity(q3[k].tourSize()-

1).distanceTo(q4[l].getCity(0)) + q4[l].getDistance();

 double d2 = q1[i].getDistance() + q1[i].getCity(q1[i].tourSize()-

1).distanceTo(q2[j].getCity(0)) + q2[j].getDistance() + q2[j].getCity(q2[j].tourSize()-

1).distanceTo(q3[k].getCity(0)) + q3[k].getDistance() + q3[k].getCity(q3[k].tourSize()-

1).distanceTo(q4[l].getCity(0)) + q4[l].getDistance();

 double d3 = q1[i].getDistance() + q1[i].getCity(q1[i].tourSize()-

1).distanceTo(q2[j].getCity(q2[j].tourSize()-1)) + q2[j].getDistance() +

q2[j].getCity(0).distanceTo(q3[k].getCity(0)) + q3[k].getDistance() +

q3[k].getCity(q3[k].tourSize()-1).distanceTo(q4[l].getCity(0)) + q4[l].getDistance();

 double d4 = q1[i].getDistance() + q1[i].getCity(q1[i].tourSize()-

1).distanceTo(q2[j].getCity(q2[j].tourSize()-1)) + q2[j].getDistance() +

q2[j].getCity(0).distanceTo(q3[k].getCity(q3[k].tourSize()-1)) + q3[k].getDistance() +

q3[k].getCity(0).distanceTo(q4[l].getCity(0)) + q4[l].getDistance();

54 | P a g e

 double d5 = q1[i].getDistance() + q1[i].getCity(q1[i].tourSize()-

1).distanceTo(q2[j].getCity(q2[j].tourSize()-1)) + q2[j].getDistance() +

q2[j].getCity(0).distanceTo(q3[k].getCity(q3[k].tourSize()-1)) + q3[k].getDistance() +

q3[k].getCity(0).distanceTo(q4[l].getCity(q4[l].tourSize()-1)) + q4[l].getDistance();

 min = Math.min(min, Math.min(Math.min(Math.min(Math.min(d1,

d2),d3),d4),d5));

 }

 }

 }

 }

 System.out.println(min);

 }

}

55 | P a g e

6.Findings:

6.1 Result using Crossover:

The result we found using the new proposed crossover is optimal. We found the cost to be

3347 km. Which is actually 24 km more than the expected, but is due to conversion that I had

to do to calculate the distance between two geographical coordinates. However, I compared

the graph between the optimal solution of burma14 to the graph of solution I got using the new

crossover, Both the graphs are same.

Fig 11 : Screenshot of Solution using new crossover

56 | P a g e

Fig 12 : Graph of Solution using new crossover

Above, in figure 11, the graph of solution of Burma 14 using new crossover is given and below,

in figure 12, the graph of best known solution of Burma 14 is give. Comparing this two graphs, it

is clear that both the graphs are same, i.e. both the route are same. That concludes the solution

I got is an optimal one.

X

Y

57 | P a g e

Fig 13: Graph of optimal solution

6.2 Results using Map Reduce, GA and Permutation:

Most of the research that used divide and conquer method to solve TSP could not achieve

optimal solution. However, As, this time, not only the optimal solution, but also some other

reasonably low cost path was considered, the yielded result was close to optimal.

Here, the best result we got is 3422 km, And after studying the graph, I found that only routes

between 2 cities we altered from the optimal solution graph.

58 | P a g e

Fig 13: Screenshot of solution using Map Reduce, GA, Combination

Fig 14: Graph of solution using Map Reduce, GA & combination

59 | P a g e

7. Conclusion and Continuation

7.1 Future Works:

 The data I used consists of only 14 cities. So how my new approach will perform

is yet to be studied.

 Due to time constraint, and less complex data of Burma 14, I did not consider

the Merging between the routes of diagonal coordinates. I expect the result to be

better if done so.

7.2 Conclusion:

My objective was to find a new crossover technique for Genetic Algorithm to

solve TSP which I did successfully. My new crossover performed exceptionally

well and yielded optimized solution.

My second objective was to Find a new approach to Solve TSP. I combined Map

Reduce, GA and Combination to create a new approach. The solution we found

was close to optimal. I expect the approach to perform better if improvement is

done.

60 | P a g e

8. REFERENCES

[1] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag, 2nd edition, 1994.

[2] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, 1989.

[3] http://en.wikipedia.org/wiki/Genetic_algorithm

[4] http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1.html

[5] http://amsterdamoptimization.com/pic/tspmip.png

[6] Kylie Brant, Aurther Benjamin. Genetic Algorithm and the Travelling Salesman Problem.

December 2000.

[7] Siamak Sarmady. An Investigation on Genetic Algorithm Parameters. Univiersiti Sains

Malayasia

[8] Kusum Deep, Hadush Mebrahtu. Combined Mutation Operators of Genetic Algorithm for the

Travelling Salesman problem.International Journal of Combinatorial Optimization Problems and

Informatics, Vol. 2, No.3, Sep-Dec

2011, pp. 1-23, ISSN: 2007-1558.

[9] Dr.Sabry M. Abdel-Moetty , Asmaa O. Heakil . Enhanced Traveling Salesman Problem

Solving using Genetic

Algorithm Technique with modified Sequential Constructive Crossover Operator . IJCSNS

International Journal of Computer Science and Network Security, VOL.12 No.6, June 2012

[10] R.SIVARAJ . Solving Travelling Salesman Problem using Clustering Genetic Algorithm .

R.Sivaraj et al. / International Journal on Computer Science and Engineering (IJCSE).

[11] Adewole Philip , Akinwale Adio Taofiki , Otunbanowo Kehinde , A Genetic Algorithm for

Solving Travelling Salesman Problem . (IJACSA) International Journal of Advanced Computer

Science and Applications,

Vol. 2, No.1, January 2011

http://en.wikipedia.org/wiki/Genetic_algorithm
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1.html
http://amsterdamoptimization.com/pic/tspmip.png

