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ABSTRACT 
 
This paper deals with a representation of Generalized inverse (g-inverse) by the contour integral 
formula that supports the four major properties of g-inverse. Here we have used Cauchy’s integral 
formula. These are verified numerically. This paper also includes the derivation of g-inverse by 
using minimal polynomial. Here we express A + as a Lagrange-Sylvester interpolation polynomial 

in powers of ∗AA, . Mathematica codes are used in these examples.  
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1. INTRODUCTION 

 
The inverse of a nonsingular square matrix and its 
various properties are available in textbooks. It is 
stated that if a matrix A has an inverse, the matrix 
must be square and its determinant must be non-
zero. Let us consider a system of linear equations  
Ax=b. 
 
If A is an n×n non-singular matrix, the solution to 
the system in the equation Ax=b exists and is 
unique and is given by 
 x = A−1b      
 
However, there are cases where A is not a square 
matrix (i.e. rectangular matrix) and also the cases 
where A is n×n singular matrix; i.e when the linear 
equations are inconsistent. In these cases there may 
still be solution to the system and a unified theory 
to treat all cases may be desirable. One such theory 
involves the use of generalized inverse of 
matrices. The generalized inverse is also referred 
to as Pseudo-inverse, Moore-Penrose inverses or 
simply g-inverse with possible subscripting of the 
letter g.  
 
Moore [3] first published the work on generalized 
inverses. Penrose [4] defined uniquely determined 
generalized inverse matrix and investigated some 
of its properties. 

2. DEFINITION 
 
Generalized inverse (g- inverse) 
 
Let A be m×n matrix of rank R(A) = r ≤min(m ,n) 
. Then a generalized inverse (g-inverse) of A is an 
n×m matrix denoted by A− such that x =A−b is a 
solution of both the consistent and inconsistent set 
of linear equations Ax=b. 
 
A matrix A− satisfying AA−A = A obviously 
coincides with A−1 when A−1 exists. 
 
3. DIFFERENT CLASSES OF G- INVERSES 
 
Let A be an m×n matrix over the complex field C. 
Clearly, analogous results are obtainable when the 
matrices are defined over a real field. 
 
Consider the following matrix equations: 

(i) AAXA = , (1.1)  

(ii) XXAX = , (1.2) 

(iii) XAXA =∗)( , (1.3) 

(iv)  AXAX =∗)( ,  (1.4) 
where` * `denotes the conjugate transpose. 
 
X is a g-inverse if equation (1.1) is satisfied and we 
denote X = A−. 
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(a) If (1.1) and (1.2) are satisfied then X is a 
reflexive g-inverse and we denote X=Ar. 

(b) If (1.1), (1.2) & (1.3) are satisfied then X is a 
left weak g-inverse and we denote X = Aw. 

(c) If (1.1), (1.2) & (1.4) are satisfied then X is 
right weak g-inverse and we denote X = An. 

(d) If (1.1), (1.2), (1.3) & (1.4) are all satisfied 
then we call X is Pseudo -inverse or (Moore 
& Penrose generalized inverse) and we 
denote X = A+. It is also known as M-P g-
inverse. 

 
4. SPECIAL REPRESENTATION OF 

GENERALIZED INVERSE BY CONTOUR 
INTEGRATION 

 
Here we will discuss two theorems that represent 
the generalized inverse using contour integral 
formula. Numerical examples will support our 
proof. 
 
Theorem 1 If A  is any nm×  matrix such that 

1* )( −AA exists, then 

 ∫ −+ −=
C

dz
z

IzAAA
i

A 1)(
2
1 1**

π
 

where C  is a closed contour containing non-zero 
eigenvalues of *AA  but not containing the zero 
eigenvalue of *AA in or on C . 

Proof Let X =. ∫ −−
C

dz
z

IzAAA
i

1)(
2
1 1**

π
 

 
Then we have to show that X satisfies the following 
four conditions: 

1) AAXA =  
2) XXAX =  
3) AXAX =*)(  

4) XAXA =*)(  

(1) =AXA ∫ −−
C

dz
z

AIzAAAA
i

1)(
2
1 1**

π
 

∫ −−− −=
C

dz
z

AIzAAAA
i

1)(}){(
2
1 1*11*

π
  

 = ∫ −−− dz
z

AAAIzAA
i

1}))({(
2
1 11**

λ
  

= ∫ −−−
C

dz
z

AAAzI
i

1})({
2
1 11*

π
 

= dz
zz
zf

i C
∫ − )(

)(
2
1

0π
 (say) where 00 =z   

and AAAzIzf 11* })({)( −−−=  

 

A
AI

f
zf

=
−=

=
=

−1

0

)0(
)0(
)(

 

 ∴ AAXA =  
 

(2) ∫ ∫ −− −−=
C C

dz
z

IzAAA
i

dzA
z

IzAAA
i

XAX 1)(
2
11)(

2
1 1**1**

ππ
  

X
XI

dzI
z

IzAAA
i C

=
=

−= ∫ − 1)(
2
1 1**

π
 

∴ XXAX =  
 

(3) AX A= ∫ −−
C

dz
z

IzAAA
i

1)(
2
1 1**

π
 I=  

∴ ( AXIIAX === **)  
 

(4) =XA ∫ −−
C

Adz
z

IzAAA
i

1)(
2
1 1**

π
 

∫ −
=

)(
)(

2
1

0zz
dzzf

iπ
 where 00 =z  

and AIzAAAzf 1** )()( −−=  
= zf ( 0) (using Cauchy’s integral formula)1 

= AAAA 1** )( −  which is hermitian. 

∴ ( XAXA =*) . 

                                                            
1 Suppose U is an open subset of the complex plane C, and f : U 
→ C is a holomorphic function, and the disk D = { z : | z − z0| ≤ 
r} is completely contained in U. Let C be the circle forming the 
boundary of D. Then we have for every a in the interior of D: 

dz
az

zf
i

af
C
∫ −

=
)(

2
1)(
π

 

where the contour integral is to be taken counter-clockwise 
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Thus X  satisfies the four conditions of M-P g-
inverse. Hence += AX  

So, we have =+A ∫ −−
C

dz
z

IzAAA
i

1)(
2
1 1**

π
 

Example Consider a complex matrix 

A = 







−
−

21
0 i

 

 Then *A = 







− 2
10

i
 and  

 *AA = 







− 52

21
i

i
 

Now det[ *AA ] =1≠ 0. So ( 1* )−AA exists and  

 ( 1* )−AA = 






 −
12
25

i
i

  

A + = ∫ −−
C

dz
z

IzAAA
i

1)(
2
1 1**

π
 

 = 
iπ2

1
∫

−−

C

dz
z

IzAAA 1** )(
 

 =
iπ2

1
∫
C zz

dzzf

− 0

)(
 (say) where z 0 =0 

 and 1** )()( −−= IzAAAzf  
 = )0(f  

= 1** )( −AAA  
 

& ( 1* )−AA = 






 −
12
25

i
i

 

*A = 1** )( −AAA  

= 







− 2
10

i 






 −
12
25

i
i

 

= 







0
12

i
i

 

Now we will verify the four conditions 
 (1) AAAA =+  

 (2) +++ = AAAA  

(3) ( ++ = AAAA *)  

(4) AAAA ++ =*)(  

(1) AAA+ = 







−
−

21
0 i









0
12

i
i









−
−

21
0 i

 

= 







10
01









−
−

21
0 i

 

= 







−
−

21
0 i

 

= A  
 

(2) ++ AAA = 







0
12

i
i









−
−

21
0 i









0
12

i
i

 

= 







10
01









0
12

i
i

 

= 







0
12

i
i

 

=A 
 

(3) +AA = 







−
−

21
0 i









0
12

i
i

 

 = 







10
01

 

 

∴ ( AA *)+ = 







10
01

= AA + 

 

(4) AA+ = 







0
12

i
i









−
−

21
0 i

 

= 







10
01

 

 

∴ *)( AA+ = 







10
01

= A + A  

 
Hence all the four conditions are satisfied. 

 
Theorem 2 The M-P g-inverse of a nm×  matrix 
A  of complex numbers is given by the formula  

 

 ∫
∞

−+ =
0

**

dtAeA AtA  
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Proof Let ∫
∞

−=
0

**

dtAeX AtA  ,then we have to 

show that X satisfies the four condition of M-P g-
inverse. 

(1) =AXA ∫
∞

−

0

**

AdtAeA AtA  

 = ][ 0eeA −− −∞  

 = ]1[ I
e

A −− ∞  

 = A  
 

AAXA =∴  

 

(2) =XAX AdtAe AtA∫
∞

−

0

**

∫
∞

−

0

**

dtAe AtA  

= ][ 0ee −− −∞ ∫
∞

−

0

**

dtAe AtA  

= ∫
∞

−

0

**

dtAe AtA  

X=   
 XXAX =∴  

 

(3) =AX  A ∫
∞

−

0

**

dtAe AtA  

 = ][ 0ee −− −∞  
 = I 

AXAX =∴ *)(  
 

(4) =XA  ∫
∞

−

0

**

dtAe AtA  

][ 0ee −−= −∞  

=I 

XAXA =∴ *)(  
 
Hence X satisfies the four conditions of M-P g –
inverse 

 So, ∫
∞

−+ =
0

**

dtAeA AtA  

5. AN INTERPOLATION POLYNOMIAL 
FOR THE M-P INVERSE 

 
 Here we express A + as a Lagrange-Sylvester 
interpolation polynomial in powers of ∗AA, . For 
any complex square matrix A  let )(Aσ  denote 
the spectrum of A and )(Aψ its minimal 

polynomial written as  =)(λψ ∏
∈

−
)(

)()(
Aσµ

µνµλ , 

where the root )(Aσµ ∈  is simple if 1)( =µν and 
multiple otherwise. 
 
We intend to construct A + as the matric function 

)(Af  corresponding to the scalar function 
f (λ ) =λ + and consider only the case where 

)(0 Aσλ ∈= as otherwise A is nonsingular. 
 
Corollary If 0=λ  is a simple root, this effort to 
construct A+ this way lead only to the satisfaction 
of (1.1) and (1.2). 
 
We use therefore ∗+∗+ = AAAA )( to construct 

+A  by using the Lagrange-Sylvester interpolation 
polynomial to give explicit expressions associated 
with )( AA∗ , as all the roots in )( AA∗σ  are 
simple. 
 

 AA∗ = ∑ ∏
∏

∈
∈≠

∈≠

∗

−

−

)*(
)*(

)*(

)(

)(

AA
AA

AA
IAA

σλ
σµλ

σµλ

µλ

µ
λ  (1.5) 

 

so that A += ∗

∈
∈≠

∈≠

∗

∑ ∏
∏

−

−

∗

+

A
IAA

AA
AA

AA )
)(

)(
(

)*(
)(

)*(

σλ
σµλ

σµλ

µλ

µ
λ  

.  
We call (1.5) the Lagrange-Sylvester interpolation 
polynomial for A+. 
 

Example Let A = 






 −
00
11

 

 Then AA∗ = 







−

−
11
11
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And ψ )( AA∗  = )(2)( 2 AAAA ∗∗ − is the 
minimal polynomial.  
 
Writing 2()( −= λλλψ )  
 

we have +∗ )( AA =
2
1

 
2

)( AA∗
= 








−

−
4/14/1
4/14/1  

and 

 A += ∗+∗ AAA )( = 







−

−
4/14/1
4/14/1









− 01

01  

= 







− 02/1

02/1
. 

 

Example Let A =



















−
−

−
−

1100
0110
0011
1001

 

 

 AA∗ =



















−−
−−

−−
−−

2101
1210

0121
1012

 

 
The minimal polynomial of )( AA∗ is 

=)(λψ )2( −λλ ( )4−λ  
 
Therefore, 
 

+∗ )( AA =








−

−∗∗

)42(2
)4(

2
1 IAAAA +  

 








−

−∗∗

)24(4
)2(

4
1 IAAAA  

= ( )AAAA ∗∗ −
32
3)(

32
14 2  

=



















−−−
−−−
−−−
−−−

5131
1513
3151
1315

16
1

. 

 
 
 

Hence 
 

A+ =



















−−−
−−−
−−−
−−−

5131
1513
3151
1315

16
1



















−
−

−
−

1001
1100

0110
0011

 

  

 =



























−−

−−

−−

−−

8
3

8
1

8
1

8
3

8
3

8
3

8
1

8
1

8
1

8
3

8
3

8
1

8
1

8
1

8
3

8
3

. 

 
Mathematica code 
 
a = { } { } { } { }{ }1,1,0,0,0,1,1,0,0,0,1,1,1,0,0,1 −−−−  

 { } { } { } { }{ }1,1,0,0,0,1,1,0,0,0,1,1,1,0,0,1 −−−−  
 
b = Transpose[a] 
 { } { } { } { }{ }1,0,0,1,1,1,0,0,0,1,1,0,0,0,1,1 −−−−  
 
c = b.a 
 { } { } { } { }{ }2,1,0,1,1,2,1,0,0,1,2,1,1,0,1,2 −−−−−−−−  
 
gi = PseudoInverse[c] 
  

}
16
5,

16
1,

16
3,

16
1,

16
1,

16
5,

16
1,

16
3

,
16
3,

16
1,

16
5,

16
1,

16
1,

16
3,

,16
1,

16
5{







 −−−







 −−−







 −−−









−−−
 

 
ginverse = gi.b 
 

}
8
3,

8
1,

8
1,

8
3

,
8
3,

8
3,

8
1,

8
1,

8
1,

8
3,

8
3,

8
1,

8
1,

8
1,

8
3,

8
3{







 −−







 −−







 −−







 −−

 

 
% / / MatrixForm 

 



























−−

−−

−−

−−

8
3

8
1

8
1

8
3

8
3

8
3

8
1

8
1

8
1

8
3

8
3

8
1

8
1

8
1

8
3

8
3
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