DERIVATIONS OF GENERALIZED INVERSE USING CONTOUR INTEGRATION AND INTERPOLATION POLYNOMIAL

Mohammad Maruf Ahmed
Department of Mathematics and Natural Science
BRAC University, 66 Mohakhali C/A
Dhaka-1212, Bangladesh
Email: maruf_1978@yahoo.com

Abstract

This paper deals with a representation of Generalized inverse (g -inverse) by the contour integral formula that supports the four major properties of g-inverse. Here we have used Cauchy's integral formula. These are verified numerically. This paper also includes the derivation of g -inverse by using minimal polynomial. Here we express A^{+}as a Lagrange-Sylvester interpolation polynomial in powers of A, A^{*}. Mathematica codes are used in these examples.

Key words: contour integral, minimal polynomial, inconsistent system, eigenvalue.

1. INTRODUCTION

The inverse of a nonsingular square matrix and its various properties are available in textbooks. It is stated that if a matrix A has an inverse, the matrix must be square and its determinant must be nonzero. Let us consider a system of linear equations $A x=b$.

If A is an $n \times n$ non-singular matrix, the solution to the system in the equation $A x=b$ exists and is unique and is given by $x=A^{-1} b$

However, there are cases where A is not a square matrix (i.e. rectangular matrix) and also the cases where A is $n \times n$ singular matrix; i.e when the linear equations are inconsistent. In these cases there may still be solution to the system and a unified theory to treat all cases may be desirable. One such theory involves the use of generalized inverse of matrices. The generalized inverse is also referred to as Pseudo-inverse, Moore-Penrose inverses or simply g-inverse with possible subscripting of the letter g.

Moore [3] first published the work on generalized inverses. Penrose [4] defined uniquely determined generalized inverse matrix and investigated some of its properties.

2. DEFINITION

Generalized inverse (g-inverse)

Let A be $m \times n$ matrix of $\operatorname{rank} \mathrm{R}(A)=r \leq \min (m, n)$. Then a generalized inverse (g-inverse) of A is an $n \times m$ matrix denoted by A^{-}such that $x=A^{-} b$ is a solution of both the consistent and inconsistent set of linear equations $A x=b$.
A matrix A^{-}satisfying $A A^{-} A=A$ obviously coincides with A^{-1} when A^{-1} exists.

3. DIFFERENT CLASSES OF G- INVERSES

Let A be an $m \times n$ matrix over the complex field \boldsymbol{C}. Clearly, analogous results are obtainable when the matrices are defined over a real field.

Consider the following matrix equations:

$$
\begin{array}{ll}
\text { (i) } & A X A=A, \\
\text { (ii) } & X A X=X, \\
\text { (iii) } & (X A)^{*}=X A, \\
\text { (iv) } & (A X)^{*}=A X, \tag{1.4}
\end{array}
$$

where ${ }^{*}$ `denotes the conjugate transpose.
X is a g-inverse if equation (1.1) is satisfied and we denote $X=A^{-}$.
(a) If (1.1) and (1.2) are satisfied then X is a reflexive g-inverse and we denote $X=A^{r}$.
(b) If (1.1), (1.2) \& (1.3) are satisfied then X is a left weak g-inverse and we denote $X=A^{w}$.
(c) If (1.1), (1.2) \& (1.4) are satisfied then X is right weak g-inverse and we denote $X=A^{n}$.
(d) If (1.1), (1.2), (1.3) \& (1.4) are all satisfied then we call X is Pseudo -inverse or (Moore \& Penrose generalized inverse) and we denote $X=A^{+}$. It is also known as M-P ginverse.

4. SPECIAL REPRESENTATION OF GENERALIZED INVERSE BY CONTOUR INTEGRATION

Here we will discuss two theorems that represent the generalized inverse using contour integral formula. Numerical examples will support our proof.

Theorem 1 If A is any $m \times n$ matrix such that $\left(A A^{*}\right)^{-1}$ exists, then

$$
A^{+}=\frac{1}{2 \pi i} \int_{C} A^{*}\left(A A^{*}-I z\right)^{-1} \frac{1}{z} d z
$$

where C is a closed contour containing non-zero eigenvalues of $A A^{*}$ but not containing the zero eigenvalue of $A A^{*}$ in or on C.
Proof Let $X=\frac{1}{2 \pi i} \int_{C} A^{*}\left(A A^{*}-I z\right)^{-1} \frac{1}{z} d z$
Then we have to show that X satisfies the following four conditions:

1) $A X A=A$
2) $X A X=X$
3) $(A X)^{*}=A X$
4) $(X A)^{*}=X A$

$$
\begin{align*}
& A X A=\frac{1}{2 \pi i} \int_{C} A A^{*}\left(A A^{*}-I z\right)^{-1} A \frac{1}{z} d z \tag{1}\\
& =\frac{1}{2 \pi i} \int_{C}\left\{\left(A A^{*}\right)^{-1}\right\}^{-1}\left(A A^{*}-I z\right)^{-1} A \frac{1}{z} d z \\
& =\frac{1}{2 \lambda i} \int^{\int}\left\{\left(A A^{*}-I z\right)\left(A A^{*}\right)^{-1}\right\}^{-1} A \frac{1}{z} d z
\end{align*}
$$

$$
\begin{aligned}
& =\frac{1}{2 \pi i} \int_{C}\left\{I-z\left(A A^{*}\right)^{-1}\right\}^{-1} A \frac{1}{z} d z \\
& =\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)} d z \text { (say) where } z_{0}=0 \\
& \text { and } f(z)=\left\{I-z\left(A A^{*}\right)^{-1}\right\}^{-1} A \\
& \quad=f\left(z_{0}\right) \\
& \quad=f(0) \\
& \quad=(I-0)^{-1} A \\
& \quad=A
\end{aligned}
$$

$$
\therefore A X A=A
$$

(2)

$$
\begin{aligned}
& X A X=\frac{1}{2 \pi i} \int_{C} A^{*}\left(A A^{*}-I z\right)^{-1} \frac{1}{z} d z A_{2 \pi i}^{\frac{1}{C}} A^{*}\left(A A^{*}-I z\right)^{-1} \frac{1}{z} d z \\
& =\frac{1}{2 \pi i} \int_{C} A^{*}\left(A A^{*}-I z\right)^{-1} \frac{1}{z} d z I \\
& =X I \\
& =X \\
& \therefore X A X=X
\end{aligned}
$$

$$
\text { (3) } A X=A \frac{1}{2 \pi i} \int_{C} A^{*}\left(A A^{*}-I z\right)^{-1} \frac{1}{z} d z=I
$$

$$
\therefore(A X)^{*}=I^{*}=I=A X
$$

(4) $X A=\frac{1}{2 \pi i} \int_{C} A^{*}\left(A A^{*}-I z\right)^{-1} \frac{1}{z} A d z$
$=\frac{1}{2 \pi i} \int \frac{f(z) d z}{\left(z-z_{0}\right)}$ where $z_{0}=0$
and $f(z)=A^{*}\left(A A^{*}-I z\right)^{-1} A$
$=f\left(z_{0}\right)$ (using Cauchy's integral formula) ${ }^{1}$
$=A^{*}\left(A A^{*}\right)^{-1} A$ which is hermitian.
$\therefore(X A)^{*}=X A$.

[^0]where the contour integral is to be taken counter-clockwise

Thus X satisfies the four conditions of M-P ginverse. Hence $X=A^{+}$
So, we have $A^{+}=\frac{1}{2 \pi i} \int_{C} A^{*}\left(A A^{*}-I z\right)^{-1} \frac{1}{z} d z$
Example Consider a complex matrix $A=\left(\begin{array}{ll}0 & -i \\ 1 & -2\end{array}\right)$

Then $A^{*}=\left(\begin{array}{cc}0 & 1 \\ i & -2\end{array}\right)$ and

$$
A A^{*}=\left(\begin{array}{cc}
1 & 2 i \\
-2 i & 5
\end{array}\right)
$$

Now $\operatorname{det}\left[A A^{*}\right]=1 \neq 0$. So $\left(A A^{*}\right)^{-1}$ exists and

$$
\begin{aligned}
& \left(A A^{*}\right)^{-1}=\left(\begin{array}{cc}
5 & -2 i \\
2 i & 1
\end{array}\right) \\
& A^{+}=\frac{1}{2 \pi i} \int_{C} A^{*}\left(A A^{*}-I z\right)^{-1} \frac{1}{z} d z \\
& =\frac{1}{2 \pi i} \int_{C} \frac{A^{*}\left(A A^{*}-I z\right)^{-1}}{z} d z \\
& =\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}} \text { (say) where } z_{0}=0
\end{aligned}
$$

$$
\text { and } f(z)=A^{*}\left(A A^{*}-I z\right)^{-1}
$$

$$
=f(0)
$$

$$
=A^{*}\left(A A^{*}\right)^{-1}
$$

$$
\&\left(A A^{*}\right)^{-1}=\left(\begin{array}{cc}
5 & -2 i \\
2 i & 1
\end{array}\right)
$$

$$
A^{*}=A^{*}\left(A A^{*}\right)^{-1}
$$

$$
=\left(\begin{array}{cc}
0 & 1 \\
i & -2
\end{array}\right)\left(\begin{array}{cc}
5 & -2 i \\
2 i & 1
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
2 i & 1 \\
i & 0
\end{array}\right)
$$

Now we will verify the four conditions
(1) $A A^{+} A=A$
(2) $A^{+} A A^{+}=A^{+}$
(3) $\left(A A^{+}\right)^{*}=A A^{+}$
(4) $\left(A^{+} A\right)^{*}=A^{+} A$

$$
\begin{aligned}
& \text { (1) } A A^{+} A=\left(\begin{array}{ll}
0 & -i \\
1 & -2
\end{array}\right)\left(\begin{array}{cc}
2 i & 1 \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
1 & -2
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & -i \\
1 & -2
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & -i \\
1 & -2
\end{array}\right) \\
& =A \\
& \text { (2) } A^{+} A A^{+}=\left(\begin{array}{cc}
2 i & 1 \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
1 & -2
\end{array}\right)\left(\begin{array}{cc}
2 i & 1 \\
i & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
2 i & 1 \\
i & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 i & 1 \\
i & 0
\end{array}\right) \\
& =A \\
& \text { (3) } A A^{+}=\left(\begin{array}{ll}
0 & -i \\
1 & -2
\end{array}\right)\left(\begin{array}{cc}
2 i & 1 \\
i & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \therefore\left(A A^{+}\right)^{*}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=A A^{+} \\
& \text {(4) } A^{+} A=\left(\begin{array}{cc}
2 i & 1 \\
i & 0
\end{array}\right)\left(\begin{array}{ll}
0 & -i \\
1 & -2
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \therefore\left(A^{+} A\right)^{*}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=A^{+} A
\end{aligned}
$$

Hence all the four conditions are satisfied.
Theorem 2 The M-P g-inverse of a $m \times n$ matrix A of complex numbers is given by the formula

$$
A^{+}=\int_{0}^{\infty} e^{-A^{*} A t} A^{*} d t
$$

Proof Let $X=\int_{0}^{\infty} e^{-A^{*} A t} A^{*} d t$,then we have to show that X satisfies the four condition of M-P ginverse.

$$
\text { (2) } X A X=\int_{0}^{\infty} e^{-A^{*} A t} A^{*} d t A \int_{0}^{\infty} e^{-A^{*} A t} A^{*} d t
$$

$$
=-\left[e^{-\infty}-e^{0}\right] \int_{0}^{\infty} e^{-A^{*} A t} A^{*} d t
$$

$$
=\int_{0}^{\infty} e^{-A^{*} A t} A^{*} d t
$$

$$
=X
$$

$$
\therefore X A X=X
$$

(3) $A X=A \int_{0}^{\infty} e^{-A^{*} A t} A^{*} d t$

$$
=-\left[e^{-\infty}-e^{0}\right]
$$

$$
=I
$$

$$
\therefore(A X)^{*}=A X
$$

$$
\text { (4) } X A=\int_{0}^{\infty} e^{-A^{*} A t} A^{*} d t
$$

$$
=-\left[e^{-\infty}-e^{0}\right]
$$

$$
=I
$$

$$
\therefore(X A)^{*}=X A
$$

Hence X satisfies the four conditions of M-P $\mathrm{g}-$ inverse
So, $A^{+}=\int_{0}^{\infty} e^{-A^{*} A t} A^{*} d t$

$$
\begin{aligned}
& \text { (1) } A X A=A \int_{0}^{\infty} e^{-A^{*} A t} A^{*} A d t \\
& =-A\left[e^{-\infty}-e^{0}\right] \\
& =-A\left[\frac{1}{e^{\infty}}-I\right] \\
& =A \\
& \therefore A X A=A
\end{aligned}
$$

5. AN INTERPOLATION POLYNOMIAL FOR THE M-P INVERSE

Here we express A^{+}as a Lagrange-Sylvester interpolation polynomial in powers of A, A^{*}. For any complex square matrix A let $\sigma(A)$ denote the spectrum of A and $\psi(A)$ its minimal polynomial written as $\quad \psi(\lambda)=\prod_{\mu \in \sigma(A)}(\lambda-\mu)^{\nu(\mu)}$, where the root $\mu \in \sigma(A)$ is simple if $v(\mu)=1$ and multiple otherwise.

We intend to construct A^{+}as the matric function $f(A)$ corresponding to the scalar function $f(\lambda)=\lambda^{+}$and consider only the case where $\lambda=0 \in \sigma(A)$ as otherwise A is nonsingular.

Corollary If $\lambda=0$ is a simple root, this effort to construct A^{+}this way lead only to the satisfaction of (1.1) and (1.2).

We use therefore $A^{+}=\left(A^{*} A\right)^{+} A^{*}$ to construct A^{+}by using the Lagrange-Sylvester interpolation polynomial to give explicit expressions associated with $\left(A^{*} A\right)$, as all the roots in $\sigma\left(A^{*} A\right)$ are simple.

$$
A^{*} A=\sum_{\lambda \in \sigma\left(A^{*} A\right)} \lambda \frac{\prod_{\lambda \neq \mu \in \sigma\left(A^{*} A\right)}\left(A^{*} A-\mu I\right)}{\prod_{\lambda \neq \mu \in \sigma\left(A^{*} A\right)}(\lambda-\mu)}
$$

so that $A^{+}=\sum_{\lambda \in \sigma\left(A^{*} A\right)} \lambda^{+}\left(\frac{\prod_{\lambda \neq \mu \in \sigma\left(A^{*} A\right)}\left(A^{*} A-\mu I\right)}{\prod_{\lambda \neq \mu \in \sigma\left(A^{*} A\right)}(\lambda-\mu)}\right) A^{*}$
We call (1.5) the Lagrange-Sylvester interpolation polynomial for A^{+}.

Example Let $A=\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$
Then $A^{*} A=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$

And $\psi\left(A^{*} A\right)=\left(A^{*} A\right)^{2}-2\left(A^{*} A\right)$ is the minimal polynomial.

Writing $\psi(\lambda)=\lambda(\lambda-2)$
we have $\left(A^{*} A\right)^{+}=\frac{1}{2} \frac{\left(A^{*} A\right)}{2}=\left(\begin{array}{cc}1 / 4 & -1 / 4 \\ -1 / 4 & 1 / 4\end{array}\right)$
and

$$
\begin{aligned}
A^{+}=\left(A^{*} A\right)^{+} A^{*} & =\left(\begin{array}{cc}
1 / 4 & -1 / 4 \\
-1 / 4 & 1 / 4
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 / 2 & 0 \\
-1 / 2 & 0
\end{array}\right) .
\end{aligned}
$$

Example Let $A=\left(\begin{array}{cccc}1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1\end{array}\right)$

$$
A^{*} A=\left(\begin{array}{cccc}
2 & -1 & 0 & -1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right)
$$

The minimal polynomial of $\left(A^{*} A\right)$ is $\psi(\lambda)=\lambda(\lambda-2)(\lambda-4)$

Therefore,

$$
\begin{aligned}
\left(A^{*} A\right)^{+}= & \frac{1}{2}\left(\frac{A^{*} A\left(A^{*} A-4 I\right)}{2(2-4)}\right)+ \\
& \frac{1}{4}\left(\frac{A^{*} A\left(A^{*} A-2 I\right)}{4(4-2)}\right) \\
= & \frac{14}{32}\left(A^{*} A\right)-\frac{3}{32}\left(A^{*} A\right)^{2} \\
= & \frac{1}{16}\left(\begin{array}{cccc}
5 & -1 & -3 & -1 \\
-1 & 5 & -1 & -3 \\
-3 & -1 & 5 & -1 \\
-1 & -3 & -1 & 5
\end{array}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
A^{+} & =\frac{1}{16}\left(\begin{array}{cccc}
5 & -1 & -3 & -1 \\
-1 & 5 & -1 & -3 \\
-3 & -1 & 5 & -1 \\
-1 & -3 & -1 & 5
\end{array}\right)\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
-1 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\frac{3}{8} & \frac{-3}{8} & \frac{-1}{8} & \frac{1}{8} \\
\frac{1}{8} & \frac{3}{8} & \frac{-3}{8} & \frac{-1}{8} \\
\frac{-1}{8} & \frac{1}{8} & \frac{3}{8} & \frac{-3}{8} \\
\frac{-3}{8} & \frac{-1}{8} & \frac{1}{8} & \frac{3}{8}
\end{array}\right) .
\end{aligned}
$$

Mathematica code

$$
\begin{aligned}
\mathbf{a}= & \{\{1,0,0,-1\},\{-1,1,0,0\},\{0,-1,1,0\},\{0,0,-1,1\}\} \\
& \{\{1,0,0,-1\},\{-1,1,0,0\},\{0,-1,1,0\},\{0,0,-1,1\}\} \\
\mathbf{b}= & \text { Transpose[a] } \\
& \{\{1,-1,0,0\},\{0,1,-1,0\},\{0,0,1,-1\},\{-1,0,0,1\}\} \\
\mathbf{c}= & \underset{\sim}{\mathbf{b} . \mathbf{a}} \\
& \{\{2,-1,0,-1\},\{-1,2,-1,0\},\{0,-1,2,-1\},\{-1,0,-1,2\}\}
\end{aligned}
$$

gi $=$ PseudoInverse[c]

$\left\{\left\{\frac{5}{16},-\frac{1}{16},-\frac{3}{16},-\frac{1}{16}\right\},\left\{-\frac{1}{16}, \frac{5}{16},-\frac{1}{16},-\frac{3}{16}\right\}\right.$,

$$
\left.\left\{-\frac{3}{16},-\frac{1}{16}, \frac{5}{16},-\frac{1}{16}\right\},\left\{-\frac{1}{16},-\frac{3}{16},-\frac{1}{16}, \frac{5}{16}\right\}\right\}
$$

ginverse $=$ gi. \mathbf{b}

$$
\begin{aligned}
& \left\{\left\{\frac{3}{8},-\frac{3}{8},-\frac{1}{8}, \frac{1}{8}\right\},\left\{\frac{1}{8}, \frac{3}{8},-\frac{3}{8},-\frac{1}{8}\right\},\left\{-\frac{1}{8}, \frac{1}{8}, \frac{3}{8},-\frac{3}{8}\right\}\right. \\
& \left.\left\{-\frac{3}{8},-\frac{1}{8}, \frac{1}{8}, \frac{3}{8}\right\}\right\}
\end{aligned}
$$

\% / / MatrixForm

$$
\left[\begin{array}{cccc}
\frac{3}{8} & -\frac{3}{8} & -\frac{1}{8} & \frac{1}{8} \\
\frac{1}{8} & \frac{3}{8} & -\frac{3}{8} & -\frac{1}{8} \\
-\frac{1}{8} & \frac{1}{8} & \frac{3}{8} & -\frac{3}{8} \\
-\frac{3}{8} & -\frac{1}{8} & \frac{1}{8} & \frac{3}{8}
\end{array}\right]
$$

6. REFERENCES

[1] C. R. Rao and S. K. Mitra, Generalized inverse of matrices and its applications, Wiley, New York, 1971.
[2] Graybill F. A., Matrices with applications in Statistics. The Wadsworth Statistics/Probability Series, Wadsworth International Group Belmont, California, 1969.
[3] Moore E. H., 1920 on the reciprocal of the general Algebric matrix, Abst. Bull. Amer. Math. Soc. pp.304-305.
[4] Penrose R., 1955 A generalized inverses for matrices, Proc. Camb. Philo. Soc. 51. pp. 406-413.
[5] Rohde C.A., Some results on generalized inverses, SIAM Review vol. 8. No. 2.

[^0]: ${ }^{1}$ Suppose U is an open subset of the complex plane \mathbf{C}, and $f: U$ $\rightarrow \mathbf{C}$ is a holomorphic function, and the disk $D=\left\{z:\left|z-z_{0}\right| \leq\right.$ $r\}$ is completely contained in U. Let C be the circle forming the boundary of D. Then we have for every a in the interior of D :

 $$
 f(a)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-a} d z
 $$

