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Abstract 

The present world has been reached to a stage where most of the sophisticated and sensitive tasks 

are mostly done by artificial hands. Drones, robots have been replaced the place of human with 

their uncompromised accuracy and efficiencies. Regards this phenomenon the importance of 

study about robots or unmanned vehicles to perform sensitive works under human supervision is 

a high demand of time. We are concentrating on the aerial vehicles; want to integrate our ideas 

and works to develop a new type of flight system to improve the control and maneuvering 

abilities of flying UAVs or drones. Our experiments can open a port for next generation flight 

development for drone applications. Our logic is nothing can fly efficient as the birds do. So 

copying from the flying behavior of it is possible to gain all the abilities like the bird. We 

developed a model which flaps its wings in fixed amplitude with variable frequencies. To do this 

we introduced a crank shaft mechanism to drive the wings. The model is powered by a 100watt 

dc motor with necessary gearbox assemblies. Making it light weight was always a big challenge 

from the beginning. With this race we avoided unnecessary decorations in this primary level. The 

controlling and maneuvering has been done by a radio communication and bird like tail 

consequently. 3channel radio communication is needed to control the flapping frequency and tail 

combinations. Flying upward, downward, left, right and 360 degree rolling is possible with this 

tail combination. We used micro servo motors for tail mechanism. The detailed way the model 

has been built and the design limitation is illustrated in this thesis.   
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CHAPTER 1- Introduction 

 

1.1 Introduction 

Inspired with the present development in flapping UAV(Unmanned aerial vehicle) research, we 

wanted to join the theories on how a biomimetic vehicle can be constructed that can perform a 

sustained flight and have the controllability in parallel. These types of vehicles are mostly known 

as ornithopters. Ornithopter came from the Greek word ―ornithos‖ means ―bird" 

and ―pteron‖ means "wing‖. It is an aircraft that flies by flapping its wings.  The first ornithopter 

was constructed in France by Jobert in 1871 and was rubber band powered [1].Though in case of 

efficiency, modern aircraft design is the best for steady flight but it sacrifices maneuverability on 

the hidden part. Biomimetic flapping vehicle’s flight is mostly unsteady but comes up with a 

higher resolution of maneuverability, what we can see in birds or insects. Within a few area it 

can fly upward and downward, can perform vertical flight and can soar. At present we have fixed 

wing and rotor wing vehicles those are not capable with all these capabilities all along. For cruise 

flight airplane is best. For vertical take-off we built choppers. But birds fly in combination with a 

motion of vertical flap, a horizontal motion and a torsion motion [2]. Although the exact 

modeling of flapping flight couldn’t be developed for its complexity but researchers were 

partially able to find the codes on how bird manage its horizontal and vertical required forces to 

fly in steady state. We are saying it partially able because biologists stand against mathematical 

modeling of birds [3]. It was observed that in low Reynold’s number it is efficient to build a 

vehicle like an insect shaped with their characteristic flight [4]. But there are many difficulties in 

building an efficient flapping mechanism and fabrication of biomimetic wings due to the 

limitations and materials. We have chosen our vehicle in middle of the large bird and the insect 

to better study and avoid the complexity to building procedure as much as possible. Our study 

mostly covers the flight characteristics of flapping birds. All theories and design ideas are found 

from online journals, research papers and hobbyists’ sharing. Though the theories could not give 

the real calculations in most of the cases as we read from the resources, we roughly followed the 

formulas and design techniques to get closer in our work. We first considered building the model 

from our earned ideas and then analyzed the test results with the theory. We want to use our 

model to build future smart ornithopters with cameras and GPS technologies those will be used 

http://en.wikipedia.org/wiki/Greek_language
http://en.wikipedia.org/wiki/Aircraft
http://en.wikipedia.org/wiki/Flight
http://en.wikipedia.org/wiki/Wing
http://en.wikipedia.org/wiki/Rubber_band


Page | 11 

 

for military applications such as aerial reconnaissance without alerting the enemies that they are 

under surveillance. We hope further improvements with AI capabilities will give the ornithopter 

a higher level of respect. 

1.2 Unmanned Ornithopters: 

The first unmanned ornithopter was powered by rubber band. Jobert was the first to create one of 

these types in 1871. It was powered by a stretched rubber band turning a crank. In the following 

year, Jobert built a biplane (four-winged) ornithopter with the twisted rubber band motor more 

common today. The use of four wings was a clever innovation that reduced the amount of torque 

needed to flap the wings[5]. After that many people actually implemented the rubber band 

technique with different crank mechanism. There are many links from where the information can 

be found about those works. But most of them were not well recorded and it is hard to find those 

studies and specifications. Nathan Chronister writes in his ornithopter zone [6] about those 

records. He was spending decades to discover about the history of ornithopters and tried to verify 

all of those records personally by contacting with people. So to search for the historical 

background of ornithopters we go through his ornithopter zone and collected most information 

from there. Rest of the works was found from numerous video uploads and online research 

papers and books. To describe about all models is out of our scope in this paper. Three types of 

models were found as far about ornithopers. They are internal combustion powered, rubber band 

powered and electric powered. The crank mechanism can also play role to separate models from 

each other. The hobbyists today’s use rubber band and electric dc motors to build their designs. 

As with the technological improvement there is wide variety of dc motors and other accessories. 

In case of MAV research we found some examples of flapping wing vehicles. There is some 

other hobbyist’s model which earned a lot of public interest and had a wise engineering. We will 

present here some models from these areas to keep our paper simple and more concentrated to 

our work. 

In 1970 USA CIA used a tiny 1g weight dragonfly looking ornithopter that was able to fly for 

60seconds using gas producing chemicals. It had a 9cm wingspan and was controlled with some 

kind of laser guidance system which was not that much effective. A laser beam steered the 

dragonfly and a watchmaker on the project crafted a miniature oscillating engine so the wings 

beat, and the fuel bladder carried liquid propellant. SF writer Raymond Z. Gallun thought about 

http://en.wikipedia.org/wiki/Aerial_reconnaissance
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this sort of device as a kind of insectile spy about 75 years ago. In his 1936 story The Scarab, he 

wrote at length about a robotic beetle that could be used as a surveillance device.The Project 

team lost control over the dragonfly in even a gentle wind [7]. The so-called ―Insectothopter‖ 

never got the chance to fly under the radar after test missions showed that it was easily 

compromised by gusts of wind and just plain difficult to control [8]. 

 

FIGURE 1.1 Insectothopter robotic CIA dragonfly 

 

In 1997, Nathan Chronister built a four-winged ornithopter that could hover and perform 

aerobatic maneuvers using a vertical wing stroke. This is similar to dragonflies. In 2007 he built 

another model. Though it was developed for recreational use but achieved a MAV benchmark as 

it had the similar size and weight of a hummingbird. It had a 3.3g weight and 15cm wingspan 

[5]. 

 

FIGURE 1.2: Nathan Chronister’s hovering ornithopter.The right one is 2007 version 
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In 2000, The MicroBat was developed by Aerovironment and Caltech. It was the first micro-

sized ornithopter resulting from MAV funding. It had three-channel radio control and used one 

of the lithium-polymer batteries which had just become available [2]. 

 

FIGURE 1.3: The Microbat 

Delfly was developed at the Technical University of Delft and Wageningen University, is able to 

transition between hovering and forward flight. These ornithopters also carry a small video 

camera as payload. The live images are analyzed by a computer on the ground, giving Delfly the 

capacity for autonomous navigation. (The newest version as of 2013 has an onboard visual 

navigation system). The year was 2006 [2]. 

 

FIGURE 1.4: Delfly 

 

The world's smallest radio-controlled ornithopter is PetterMuren’s and has a wingspan of 10 cm 

and weighs only 1 gram.It was built in the year 2007. 
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FIGURE 1.5: Peter Muren’s micro ornithopter 

 

Aerovironment'sNano Hummingbird, while not especially small, was a huge breakthrough in 

MAV ornithopter research because of its gyroscopically stabilized flight without any tail 

surfaces. The Hummingbird is equipped with a small video camera for surveillance and 

reconnaissance purposes and, for now, operates in the air for up to 11 minutes. It can fly 

outdoors, or enter a doorway to investigate indoor environments. It was announced to the public 

on 17 February 2011. DARPA contributed $4 million to Aero Vironment since 2006to create a 

prototype "hummingbird-like" aircraft for the Nano Air Vehicle (NAV) program. The result was 

called the Nano Hummingbird which can fly at 11 miles per hour (18 km/h) and move 

in threeaxes of motion. The aircraft can climb and descend vertically; fly sideways left and right; 

forward and backward; rotate clockwise and counter-clockwise; and hover in mid-air. The 

artificial hummingbird maneuver using its flapping wings for propulsion and attitude control. It 

has a body shaped like a real hummingbird, a wingspan of 6.3 inches (160 mm), and a total 

flying weight of 0.67 ounces (19 g)—less than an AA battery. This includes the systems required 

for flight: batteries, motors, and communications systems; as well as the video camera payload.  

[6] 

http://en.wikipedia.org/wiki/Aircraft_principal_axes
http://en.wikipedia.org/wiki/Flight_dynamics_(aircraft)
http://en.wikipedia.org/wiki/AA_battery
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FIG 1.6: Aerovironment'sNano Hummingbird 

 

Sean Kinkade'sSkybird (1998), based somewhat on the Spencer Seagulls and using a 0.15 

methanol-fueled engine, was an attempt at small-scale commercial production of an RC 

ornithopter. Smaller, electric versions were later offered [2]. 

 

FIGURE 1.7: Sean Kinkade’sSkybird 
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Robert Musters began a series of RC ornithopters in 2007 with foam, actively twisted wings. The 

appearance of these ornithopters is close to that of a real bird and they are being offered for use 

in bird control at airports. 

 

 

FIGURE 1.8: Robert Muster’s RC ornithopter used to bird control in airports 

 

A flying machine built by Mr. Nanda Kumar won him limca world record and lot of credits. This 

is a metal bird that can fly by flapping its wings. It is heights of accuracy. It is remote controlled 

to fly up/down and right/left. He currently holds his record for India’s First Ornithopter.[7] 

 

 

FIGURE 1.9: Nanda Kumar’s Ornithopter 
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In 2005,Yusuke Takahashi converted the Luna to remote control, and discovered that with the 

addition of an elevator control function, the already slow-flying design could be made to hover. 

The Luna ornithopter model kit introduced a simple scissor-wing design, which simplified 

construction and led to a proliferation of four-winged ornithopters. Takahashi has built many 

other micro-sized RC ornithopters with very creative designs. [2] 

 

FIGURE 1.10: Yusuke Takahashi’s ornithopter 

 

Smart Bird is an ultralight but powerful flight model with excellent aerodynamic qualities and 

extreme agility. With SmartBird, Festo has succeeded in deciphering the flight of birds – one of 

the oldest dreams of humankind. Smartbird is constructed of polyurethane foam and carbon 

fiber and is powered by a 135 brushless motor running at 23 watts. [8] 

 

FIGURE 1.11: Festo Smart Bird 
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1.3 Literature Review 

From the analysis of early works up to these writing shows up MAV requires micro sized 

vehicles whether we want our model to be much bigger than that. We are focusing on UAV 

development before we modify our model for MAV. A bigger model is easier to handle and also 

finds out problems on miniaturization of a given model. We observed some models of 

ornithopters that were build mainly by hobbyists where the main goal was to prepare their bird 

for a sustained flight and efficient controlling. Copying from bird’s flight theories is not that 

much easier what was done by the peoples from aeronautics and hobbyists. They use a very 

limited knowledge on their attempt. Birds use dynamic flying techniques but all possible models 

till now has some major limitations like fixed amplitude flapping with variable frequency, no 

wing twisting mechanism, absence of upstroke negative lift elimination technique, unable of 

versatile maneuvering, dependency on take-off and successful landing. However, we gathered 

some studies on mechanical birds and autonomous control techniques for them which were valid 

for their cruise flight or hovering flight. A work on smaller ornithopter was published by 

JoonHyuk Park, Kwang-Joon Yoon from the Department of Aerospace Information System and 

Artificial Muscle Research Center in Konkuk University, Korea. Their demonstration was on 

scratch building of small sized ornithopter. The way to build and flapping mechanism was 

described there. [4] Among all the bigger models, the ornithopter from Sean Kinkade named 

Park Hawk has an efficient control including gliding capabilities and higher altitude flying. But 

Kinkade’s model holds a patent on the design and he turned his work into his business. Kinkade 

is the designer of much wide range of radio-controlled ornithopters both smaller and larger. After 

his death in February 2013 all his plans went with him. Park Hawk is no longer available now. A 

research on making a Park Hawk autonomous was done by Zachary John Jackowski. From his 

paper some important informations were found from Kinkades works and choices on following a 

bird’s flight. [13] There are also other famous designers like Kazuhiko Kakuta, Nathan 

Chronister. Other plans were exceedingly hard to obtain. Very little works has published still 

now. Ornithopters design in similar form factor that focus on additional degrees of freedom to 

the wings have been published [14] in addition to a variable amplitude wing design produced by 

robot locomotion group previously. An extensive analysis of the wing design has been performed 

with a motion capture system by Robyn Harmon of the Morpheus Lab at the University of 

Maryland which explains many of the aerodynamic properties of this type of ornithopter. [15] 
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James Delaurier’s work forms much of what has been accomplished in larger scale ornithopter 

design and analysis. [16] 

1.4 Thesis Objective 

Our objective is to bring the visual appearance and characteristic flying of a bird into a radio 

controlled flying vehicle. We want to develop an UAV of this type as because it will be harder to 

detect rather than normal fixed wing or rotor winged UAVs from the ground and can be used as 

surveillance monitoring. It can be designed to achieve a good level maneuverability than any 

other flying UAVs of same size. This is good to work with a larger model before we start 

developing it for MAV applications. We have chosen a larger model and tried for a simplified 

flying mechanism at first. Bird’s flying is very complex and driving the wings like a bird is still 

in under experimental level. That’s why the efficiency of this type might not be that much. Wing 

designing and changing the mechanism of flapping or controlling can greatly improve it. Our 

purpose is, knowing the techniques of real bird’s flying and taking from that as much as possible. 

Making it flying is not the only goal but flying like the bird is the major goal of this thesis. After 

the successful implementation of all the logics of natural flight we want our model will be turned 

into a special purpose UAV with many facilities. In future it will help to miniature the model for 

MAV development. 
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CHAPTER2-Model Description 

 

2.1 Forces 

A flapping UAV is a flight vehicle which generates aerodynamic forces and moments to fly. The 

flexibility of wings contributes to gaining sufficient lift and thrust. Even for the design of small 

flapping UAV, there are too many design parameters including wing geometry, wing kinematics, 

and wing structural dynamics. It is not yet clear of each parameter’s effects in the total 

aerodynamics of a model. Commercially available toy flappers can barely fly, and it is difficult 

for them to carry additional payloads, such as cameras and chemical sensors. Giving them a 

payload instantly changes their behavior. From a research paper [17], we found that when it was 

installed additional mass (5% of the entire system mass) onto a toy flapper at the center of 

gravity so that the flapper’s longitudinal dynamics were changed as little as possible. Then, with 

the wing area was gradually increased until the modified flappers could fly.  

However, those modified flappers proved ineffective; if the wing area was enlarged, much higher 

torque and power were required. Moreover, the wing is not rigid, so structural properties such as 

mode shapes and natural frequencies should be tuned for an enlarged wing. This made them 

replacing motor, transmissions, and the discharge rate of the battery to match the flapping 

frequency, which increased the system weight. So we went through the general bird flight 

physics to build the base of our model. We began with the main fundamental forces those are 

need to be balanced must for the flight. Four force acts directly on a flying model. These are lift 

force, drag force, thrust force and weight of the bird. Thrust and drag cancels each other and 

same thing goes for lift and weight when the model is in cruising flight. 
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FIGURE 2.1: Four main forces acting on a bird 

Lift is the function of the air density, the square of the velocity, the air's viscosity and 

compressibility, the surface area over which the air flows, the body shape, and the wing angle to 

the flow. Importantly the lift must be equal of more than the total weight of the bird. Efficient lift 

generation mostly depends on the wing design. Wing is responsible for the maneuverability of 

the system. It’s aspect ratio, angle of attack, wing loading all these terms are related to gain the 

efficiency in flight. The cross section of a bird’s wing is known as ―airfoil shaped‖ and the airfoil 

shape mainly describes how lift force is generated. From bird’s wing we found that the wings are 

shaped in such a way that the distance from the front to back over the top of the wing is greater 

than the distance measured under the wing. That means the wing is curved in width at an angle 

inside of it. But through the length, it is straight when the wing is stretched in the air. This 

curvature is the main formula of the lift generation, which was found from ―Bernoulli’s 

theorem‖. In order for the same amount of air to pass over the longer distance on top,the air 

flows much faster over the top and slower over the bottom as the distance is lower there. To 

avoid the mathematical complexity of the velocity distribution and pressure distributions on the 

airfoil surface because of the airflow, we are simply saying that the airfoil gains a large lift force 

for an inclination angle below the critical angle of attack. 
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FIGURE 2.2: Lift generation technique of a typical airfoil 

 

Not only airfoil is important to generate sufficient lift force to fly a bird but also there are some 

variables that are responsible. These are wing size, airspeed, air density, or angle of attack of the 

airfoil. To get the general equation of the light, we need to take care about some basic 

relationship. The relation between wing size (we call it wing surfaces) and lift L is 

Lift ∝  Wing surface area  

The relationship between lift and airspeed is less straight forward. We need to find first the 

amount of airflow around the wing first. The mass flow of air around the wing first. The mass 

flow of air around a wing is proportional to the airspeed V times the air density d. Now using 

Newton’s 2
nd

 law of motion, we can find the force caused by airflow and that is V.d.V or dV
2
. 

Since bird’s wings has to support its weight against the gravitational force lift must be equal the 

weight W. So the final relationship becomes, 

W = 0.3dV2S 

Here 0.3 is the constant related to the angle of attack for cruise flight. Its average value is 6
o
. If 

we modify the equation like below, 

W S = 0.3dV2  

We find the wing loading. Here W/S is the wing loading from which we can understand that 

higher the wing loading, faster the bird must fly to overcome its weight force (gravity). That is 
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why, a Boeing 747 flying with a higher wing loading and take-off speed is much higher in order 

to generate take-off lift force. 

When a wing moves through still air, the air exerts a force to the wing. If the wing is parallel 

with the air threads then the force is entirely a drag force. But if an inclination angle is kept 

(above 0
o
 to 15

o
), we can get a lift force from the wing. This phenomenon can be described wing 

the following diagram. 

 

 

FIGURE 2.3: Wing’s angle of attack contributes in lift generation 

 

For an angle of attack that is greater than 0
o
 and less than 15

o
, we get a lift force component FL at 

the night angle of the air a lift force component FL at the night angle of the air flow lines. For 

efficient wing design, the angle is not exactly the right angle, but it is inclined forwards with 

respect to the wing chord. At higher angles of attack, air flow over the top of the wing detaches 

and the wing stalls. The forward component of lift is important to produce a thrust component 

for the bird. At a given angle there will be so much lift and so much drag. By dividing the lift by 

the drag, the lift to drag ratio is obtained. As lift and drag change with angle, the lift to 

drag ratio will also change. There will be an angle at which the lift to drag ratio is largest, where 

we will get the greatest lift, for the least amount of drag. It is essential to make the wing operate 

at this angle throughout most of the stroke. By doing it we can guarantee that for the amount of 

drag being counteracted, we are getting the greatest lift possible. 
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J. Oliver Linton used the formula of lift force FL in his paper is 

FL =
1

2
CL . S. ρ. V2 

Where, 

 S=Area of the wing 

 ρ=Density of air 

 V=velocity of wing 

 CL=Lift co-efficient and critically varies with angle of attack 

 

And 

CL ≈ kLα 

KL is approximately equal to 5 and α measured in radians. 

Finally, the mean lift force from his became, 

Mean Lift=
1

4
kLβSρV2 

As J Oliver described that bird wings don’t contribute neither on lift nor thrust during the 

upstroke. 

Note: β represents angle of attack, S is the wing area, ρ is density of air and V is the wing speed 

through the air. The standard value of air density was taken 1.3kg/m
3
. The equation of β in term 

of bird’s mass is 

β =
4Mg

kLSρV2
 

Here M is the bird’s mass; g stands for gravitational acceleration and Rgis the glide ratio. 
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The formula of thrust generation is, 

Mean thrust=
1

6
kLSρσ2V2 

Here, σ = Strouhal Number. For cruising flight value is 0.2. 

The power equation is simply (thrust*speed). Therefore, 

Power=
1

6
kLSρσ2V3 

Note: A0 = wing flapping amplitude, f= wing flapping frequency; Rest of the variables hold their 

previous meanings. 

However, it's our best interest to achieve as much static thrust as possible. For the ornithoper to 

fly vertically indefinitely, we need to produce more thrust than it weights. The thrust must 

counteract the weight of the ornithopter and whatever thrust is left counteracts the drag while it's 

moving vertically. To achieve this we need to make the wings move as quickly as possible with 

the least resistance possible. The more resistance there is, the more the motor slows down in our 

model and the less lift the wings produce. This is done by making the angle the wing sweeps 

across as large as can be. This increases the speed of the wing while minimizing its acceleration. 

The force required to accelerate a wing to an oscillation increases with the square of the 

frequency and it changes linearly with amplitude. Lift on the other hand increases with the 

square of the speed, and the speed increases linearly with both frequency and amplitude. This 

means that by doubling the frequency, the lift quadruples, yet the force required to accelerate it 

also quadruples. If we double the amplitude, the velocity will double, and as such the lift will 

quadruple, yet the force required accelerating only doubles. This means that we can achieve the 

same lift for half the resistance by increasing amplitude instead of frequency. 

2.2 Wing Geometry and Construction 

Wings are the most important parts of our model which can determine the flight characteristics 

of the ornithopter.  Aspect ratio and wing loading should come here under careful considerations. 

Wing aspect ratio can tell the maneuverability of any bird. It is simply wing length over wing 

width (chord). We will consider here the average wing chord value as the wing shape is irregular. 

Generally, high aspect ratio wings give slightly more lift and enable sustained, endurance flight, 
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while low aspect ratio wings are best for swift maneuverability. It is wise to go for a high aspect 

ratio wing for the ornithopter as it will deliver a better gliding performance. High aspect ratio 

wings need to be fed with strong wing hinges and therefore other arrangements should be 

sufficiently stronger to support the wing movement. It also demands more power from the power 

system and the wing design should be intelligent enough to reduce its weight and area that best 

suits the whole system. High aspect ratio wings have some following characteristics. 

Stability: Long narrow wings give more stability. The trade-off is that this type of ornithopter 

won’t be very maneuverable. 

Less induced drag: Long, narrow wings also have less induced dragthan shorter wider wings. 

Induced drag is created at the tips of the wings where the high pressure air from beneath the wing 

comes up over the wing tips into the low pressure zone. This meeting place of different air 

pressures becomes a turbulent area creating induced drag. Long narrow wings have less end 

edges (tips) and more stable wing area than shorter wider wings so they have less drag. 

Less fuel consumption: Having less induced drag means there is less fuel consumption for planes 

and birds (fat consumption) so they can keep their speed for a longer time than short wide-

winged fliers. 

Other vital consideration about wing construction is wing loading. Wing load factor is the ratio 

of the total load supported by the wing to the total weight of the system. In still air flight, the 

load on the wing equals the lift it generates. The load factor is expressed in G units. In an 

unaccelerated level flight the load on the wings is equal to lift and to the weight. Consequently, 

the load factor equals 1G. If Lift = Weight then Lift / Weight = 1G.The load factor may 

be positive or negative. During normal flight, the load factor is 1 G or greater than 1 G. 

whenever the load factor is one or greater the load factor is defined as positive. Under certain 

conditions, an abrupt deviation from the system's equilibrium can cause an inertial acceleration 

that in turn will cause the weight to become greater than the lift. For example, during a stall, the 

load factor may be reduced towards zero. A sudden and forceful elevator control movement 

forward can cause the load factor to move into a negative region. Both excessive deviations from 

positive and negative load factor limits must be avoided because of the possibility of exceeding 

the structural load limits of the ornithopter. Keeping all these in mind we have chosen a wing 

http://www.sciencelearn.org.nz/About-this-site/Glossary/induced-drag
http://www.sciencelearn.org.nz/About-this-site/Glossary/drag
http://www.sciencelearn.org.nz/About-this-site/Glossary/pressure
http://www.sciencelearn.org.nz/About-this-site/Glossary/low-pressure
http://www.sciencelearn.org.nz/About-this-site/Glossary/fuel


Page | 27 

 

span of 90cm for our model and tried to keep the area sufficiently bigger as because we are not 

getting the information whether the flight speed of our model will be enough to generate 

minimum lift force to overcome the weight without experimental results. Lift increases with 

wing area and speed. So if we were sure about much thrust generation with our wing then, we 

could compensate our wing area to reduce power consumption and wing momentum. Shape of 

the wing is elliptical and the wing has an area of 1263cm2 . Average chord length is 11.92cm2. 

Wing aspect ratio and wing loading was 6.7 and 0.38 g/cm2 consecutively. 

We found the birds which have a matching weight with our design flap their wings three to six 

times per second. A paper from Pennychuick recorded all these data from field experiments in 

various conditions of bird flight [18]. There are two spars, one at the leading edge and another 

placed diagonally from the leading edge to the rear of the fuselage. This spar arrangement creates 

two regions in the wing, the triangular ―luff‖ region, which is a loose membrane, and the ―flap‖ 

region which is kept taught by a series of fingers that run from the diagonal spar to the trailing 

edge. The flexible skeleton-membrane structure allows for highly dynamic passive shape change 

as the wing moves through the air. The large degree of bending in the wing is a result of the 

membrane adjusting its camber and pitch to maintain tension equilibrium throughout its surface. 

At the beginning of down-stroke and upstroke the inertial acceleration of the wing causes the 

leading edge spar to bend significantly. This results in a variation of the local stroke angle along 

the span and therefore a phase-lag between the wing root and wing tip during the stroke period. 

Additionally, since the flap region is essentially hinged about the diagonal spar, it experiences a 

large deflection. A consequence of the flap deflection is that the flap’s force loading exerts a 

moment on the wing that increases the pitch into the flapping motion, so if the wing is in down-

stroke, it will have downward or negative pitch. This pitch adjustment is important to maintain a 

relative angle of attack with minimal stall, whereas an untwisted rigid wing would experience 

accelerated flow separation due to the large inflow angles. The wings have a triangular support 

structure. A main spar runs along the leading edge of the wing and a strut connects from the rear 

of the ornithopter's body to a point near the tip of the main spar. From this strut there are several 

smaller carbon rods that project to the edge of the wing which are somewhat free to move. This 

result in a fanning motion from the trailing edge of the wing that produces a component of thrust 

while the leading edge is flapping up and down which directly contributes to a part of the lift in 

addition to the conventional lift coming from airflow over the wing. Flexible diagonal bracing 
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was introduced by Percival Spencer. The torsion flexing of the wing can be controlled by adding 

a diagonal brace. However, the brace must be flexible enough to conform to the conic shape that 

the wing should have under load. If the bracing rods are too stiff, they will cause a discontinuity 

in the cambered cross-section of the wing, making the airfoil less efficient. Sometimes a more 

rigid brace is used, but it should be confined to a small portion of the wing. To give our system a 

better stability and because of other structural limitations we have limited our upstroke and down 

stroke angle in such way that it has an average dihedral angle of 5°. We kept upstroke angle 35° 

that bigger than the down stroke angle of 25°. So the total flapping amplitude becomes 60° and 5 

degree stroke angle difference gives 5 degree average dihedral angle. In the context of aircraft 

flight, the dihedral effect is the phenomenon of roll moment created from sideslip. The dihedral 

effect of an aircraft is largely affected by its dihedral angle, which is the angle of deflection of 

the wings from level in the roll plane. Positive values indicate the wing tips are above the wing 

roots (the wings go up as they get farther from the plane), while negative values indicate the tips 

are below the roots (the wings go down as they get farther from the plane). When the aircraft 

rolls, this effect will tend to either create a restoring moment or a deviating moment, 

respectively. In other words, a positive dihedral angle tends to increase stability, while a negative 

dihedral angle tends to increase maneuverability. These both have their applications, as stability 

is desirable for passenger and cargo planes and the like, while maneuverability is preferable for 

fighter aircraft. As for flapping flight no fixed dihedral angle of wing can be obtained as it varies 

with time. So our goal was to go for an average and positive dihedral effect. 

We have used polyethylene plastic film to build our wing. For the wing stiffeners 3mm Carbon 

fiber rods had to be used but we could manage 3mm glass fiber rods. Glass fiber rods cannot be a 

proper alternative of CF rods. CF rod is lighter and stiffer than fiberglass.  The nature of a carbon 

fiber is very light, rigid, and strong.  This is why most weight-critical performance products are 

being manufactured with carbon fiber. Carbon fiber is very strong and very rigid, while 

fiberglass is also very strong but it is not as rigid.  In applications where a small amount of 

flexibility is desired, carbon fiber is the material of choice.  In applications where a large amount 

of flexibility is desired, fiberglass is probably better suited.  Fiberglass is better suited to extreme 

flex patterns, while carbon fiber has a relatively small flex window. We want have our wing 

bending behavior that follows the stiffness and flexible behavior of Carbon fiber rods. 
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FIGURE 2.4: Wing shapes template for cutting the polyethylene films in shape, shaped 

wing films, 3mm fiberglass rods, thin bamboo slices and area calculation technique are 

used in the wing construction 
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FIGURE 2.5: A semi span image of wings 

 

2.3 Gearbox 

The gearbox design has a great importance in the long run. Before start building of it we need the 

wing specifications, weight information to choose our required flapping frequency that will be 

provided by the dc motor. But as motor rpm is relatively very high and torque creation is also 

important with it so we must gear down our motor before we plan to attach it with the wings. 

Otherwise it can break the wing joints or can damage the frame badly. Another problem may 

arise that, if the wings become too heavy for the motor it can force to stall the motor and burn it 

with blue flames. That is obviously not expected. We need a perfect gearbox to avoid these types 

of problems. Gears with perfect match with our design are like dreams. But we could reach near 

of it. The problem is the availability of the perfect gears in market. We had a very narrow range 
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of options to choice. It was seen that while we could manage the specific teeth numbers, then we 

faced problems with gear’s pitch. It was impossible to mesh those teeth with each other. Finally 

we could build one that can gear down a 1350rpm/V dc motor with a 13.34:1 gear ratio. We 

could add more gears but this has a greater disadvantage. It will make the gearbox heavier and 

more tough and complex to build. Human hands are not perfect for these types of building. 

Making drills in perfect distance to hold the gear, x & y axis alignment, meshing the gears these 

are works that should be done by a computerized cutting machine. But we tried our best to make 

it possible with our hand works with careful geometric operations. The motor pinion has 17 

teeth. 2 spur gears were used. One has 48 teeth and another has 52 teeth. A parallel 11 teeth gear 

was used with the 48 teeth gear to transfer the energy to the final gear. 

 

FIGURE 2.6: A hand drawing of the gearbox plan (2D view) 

 

Our wing’s desired flapping frequency is 6hz at full stick throttle. But this gives almost 18 rpm 

theoretically at the final drive. However from the guidance of ornithopter building forum this 

specification was warmly taken. The reason they described about it was in most cases there are 

many types of loses like frictional loss or practical rpm variations in loaded or no load situations. 

The final rpm is for full stick operation and we can tell this that we not going to operate the 

ornithopter at full stick. As we can vary the motor rpm with time we can easily limit the lift 

generation in a motor efficient way. This will remove extra loads from the motor. The gearbox 

assembling part was the most complicated side of the total building process. The spur gears have 

7mm hole diameter. Our choice was to use pinion wire that will go through it. We could not 
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manage pinion wires so we used to fill the gap with a piece of pencil after replacing its lead with 

a 3mm aluminum rod. 3mm ball bearing was use on the both sides of the axel to hold the gear 

and give it a frictionless environment. Plywood frame was used to hold all the things with the 

fuselage. The motor was placed in exact position with the gearbox and we don’t agree to separate 

the motor from the gearbox family; though we discussed about the motor in section 4.4 in details. 

We used strong adhesive named ―Fevicol super glue‖ to stick the ball bearings with the plywood 

frame and also to join the related parts with the main frame. To help survive the gearbox in 

heavy jerk sufficient attention was taken to design the gearbox frame also. 

 

 

FIGURE 2.7: Micro ball bearings and 3mm steel rods are used in gearbox construction 
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FIGURE 2.8: Crank-Shaft mechanism 

 

 

FIGURE 2.9: 52 teeth final drive gear and 11 teeth parallel gear with 48 teeth spur gear 
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FIGURE 2.10: Upside down view of the gearbox 

 

 

2.4 Power Source 

2.4.1 Motor 

The model is powered by a Turnigy L2205 brushless DC motor. Brushless motors are typically 

85-90% efficient whereas brushed DC motors are around 75-80% efficient. This difference in 

efficiency means that more of the total power used by the motor is being turned into rotational 

force and less is being lost as heat. This motor has a 1350KV(rpm/v) rpm rating and can pull 

max of 13.5A current at 11.1V. So it is capable to deliver 149.85W maximum power output 

under loaded condition and turns at a rate of 14,985rpm at no load at 100% throttle. 

http://en.wikipedia.org/wiki/DC_motor
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FIGURE 2.11: A Turnigy L2205 1350KV (rpm/v) Brushless Outrunner DC motor. The 

outer magnet can rotate and the coil remains stationary 

 

This motor’s speed is controlled by a HK SS Series brushless 18-20A electronic speed controller. 

It gives a 20A burst for 10 seconds and 18A continuous. ESC (Electronic Speed Control) is a 

device that controls the speed of the motor by turning the motor on and off. To turn on the motor 

the switch is kept closed which allows current to flow to the motor. If switch is open then the 

flow of current is stopped and the motor will slow down and eventually stop turning. 

Proportional throttle control is achieved by varying the amount of time the switch is on relative 

to the amount of time it is off. For example, for 1/2 throttle, the switch is on half the time. 

In order to achieve smooth throttle response, this switching must occur several times per second. 

The motor operates safely with 13.5A so we must limit our maximum current output from the 

ESC to help the motor from burning out under critical load conditions. The ESC itself has battery 

eliminating circuit to power up our receiver module and has a low voltage cut-off for Li-po to 

prevent a permanent damage of the Li-po battery that is used to power up the whole system. 
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FIGURE 2.12: Brushless electronic speed controllers and Li-Po batteries. A 18A Brushless 

ESC and a 3S 1100mAh Li-po have been used as the power source 

 

2.4.2 Battery 

LiPo or Lithium Polymer batteries have a much more even delivery of power during use, giving 

more consistent speed and punch throughout each cycle. They also have little or none of the 

memory effect that NiMH and NiCd battery packs suffer from. In short, LiPo’s provide high 

energy storage to weight ratios in an endless variety of shapes and sizes. For the past few years, 

NiMH stick and saddle packs have dominated the RC world, but now LiPo’s are fast becoming 

the norm for many RC enthusiasts [19]. We are using a 3S-25C 750mAh Lipo battery.  

For max current draw of 18.750A the battery will survive approximately for 2.4 minutes. This is 

calculated by dividing 750mAh by 60 min. Then multiplying the C rating with the result gives 

312.5mA as the maximum discharge in a minute. This C rating of the battery indicates it can 

safely discharge at a rate of 25 times more than the capacity of the pack. 312.5mA/min is the 

maximum discharge rate for the battery. Now dividing 750mAh by 312.5mAh gives the total 

discharge time 2.4minutes. 
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2.5 Tail Design 

To control the movement of our ornithopter and for the vertical and horizontal stability tail is 

needed.  The most efficient tail design is modern airplane like tail. Our ornithopter has a V 

shaped tail that may have similarity with bird’s tail but operates in a different way. The area of 

the tail should be one third of the total wing area. Nathan Chronister’s recommendation is, it 

should be like this and we got this in a conversation with him. The tail is actually a joint figure of 

two main sections. Each of which has two more sections. One is fixed with the fuselage and 

another is attached with the fixed section by nylon hinges. 

 

FIGURE 2.13: Top view of tail (left image) and inside view of tail (right image) 

 

The fixed portion is made from 2mm plywood and the moving section is made of 0.5mm balsa 

wood sheet. Balsa is super light weight and strong enough to be selected for this design 

implementation. Other things used here are 2 units of 4.3g micro servo motors, one pair of 

control horns, push rods. For joining we used super glue. The tail is slightly below of the main 

wing to handle the flow of the air passing through the body. The tail is slightly inclined at an 

angle 20°. Both side tails cancels each other’s effects caused by this inclination. For details we 

are showing the image of it. So when the moving half portion of the total tail rises upwards it 

directs the bird to bank at an angle of 20°. We kept the banking angle relatively low for our first 

model. A higher banking angle reduces a lot of speed and need sufficient thrust force and 

elevator operation to balance its speed. The reverse operation of the both portions gives the 

rolling advantage to the bird. It actually functions like ailerons found in most airplanes. Other 
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combinations works as elevator does. So it has four combinations which functions as ailerons 

and elevators. 

 

 

FIGURE 2.14: Tail combinations 

 

2.6 Communication 

The Turnigy 2.4GHz FHSS 5channel transmitter and receiver control our ornithopter. FHSS 

stands for frequency hopping spread spectrum. The drawback of this frequency selection is it 

becomes absorbed by other surfaces that come between the controller and the receiver as the 

frequency is very high. The main idea behind spread spectrum is to spread the radio transmission 

out over a wider range of the radio spectrum - thus the name SPREAD SPECTRUM. This makes 

a spread spectrum signal much less likely to run into interference or jamming issues that are 

common with all narrow band radio transmissions. But FHSS that have also DSSS technology 
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gives a better operational range that is the limitation for FHSS technology. However FHSS with 

DHSS transmitter and receiver was not our primary choice to test flies our bird.  

 

FIGURE 2.15: Turnigy 2.4GHz Transmitter (left) and receiver (right) 

 

A FHSS is enough to meet that test requirements. It’s standard is far most good from typical 

AM, FM controller that are found in normal cheap remote control toys in market and a bit lags 

from the performance of a FHSS and DSSS controllers. DSSS stands for ―direct sequence spread 

spectrum‖ direct sequence as the name suggests uses random PN code sequences and picks one 

or more pseudo randomly selected frequencies out within the band (such as 2.4 GHz). The idea is 

with several randomly selected frequencies, along with random code sequences, it's very unlikely 

all of them would ever experience interference at the exact same time within the unique code 

sequence. This brings improved radio range to DSSS based controllers.[20] We want our bird to 

control the thrust, fly sideways and upwards. In total 3 channels are needed to control our model 

bird. We simply connected the ESC controller to the thrust channel of the receiver and elevator 

and rudder control was done by putting those channels in elevator and aileron channels  in the 

receiver module.  

As the frequency of the transmitter is very high,its antenna is small in contrast with the AM/FM 

transmitter and the antenna has a null region on the area pointed by the antenna tip. So for better 

controlling we need to take care that the antenna tip point is not directed to the model in flight 

time. 

 



Page | 40 

 

2.7 Main Frame 

The main frame holds wings, gear assemblies, electrical system, radio receiver and tail 

components. Glass fiber or carbon fiber plate is perfect for this build. But as these parts are not 

yet available in our country and overseas order take a longer period of time to delivery and not 

cost effective we used balsa wood frame as a replacement of that material. But it has a downside. 

All the gear assemblies need a strong as well as light frame to handle the tremendous vibrations 

of a 100W motor and gear train. Balsa wood is not that type though it is ultra light weight. 

Drilling in balsa is not possible as the wood is not so dense and cutting the wood requires special 

machines. Even hacksaw is not appropriate tool for that job. We have used a 5mm thick balsa 

frame which we cut according to our design purpose with balsa cutter and to hold gear axels and 

bearings a thin layer of tin was glued with adhesive. This thin layer can provide additional 

strength to the frame and improves the tolerance or temper. 

Two small balsa pieces was used to hold the gear axels from the both side of the frame. The 

motor was mounted with frame with screws and the drive pinion was linked with the gear train. 

We used bearings with axels to avoid frictional energy lose and noise reduction. Bearings are 

placed in balsa wood with adhesive in perfect alignment. The wing spars are linked with the 

body with strong hinges to tolerate the strong jerks and wing momentum in full throttle. To 

handle large amount of torque the joints should be also strong. The frame’s one side was cut 

according to the design specific angle of attack. And there are points to stick the wing film with 

the frame. The batten rods have the connectivity with the main frame also. A 3D image of the 

frame can describe the whole story very clearly. To give the UAV a bird looking we cut the 

frame shape similar to the appearance of a bird. We used super glue, metal solution, nuts and 

bolts, tin sheet, balsa cutter, paper cutter to make the frame for the ornithopter. Before we cut the 

frame a paper sketch of the design was attached with the balsa wood sheet to cut the frame 

accurately. 

To prepare the ornithopter for its first flight it is important to find the center of gravity point of 

the body to place the li-po battery and other electrical components to balance the weight. We got 

our CG point at 50% of the root chord from the leading edge of the wing. 
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FIGURE 2.16: The image of the model 
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CHAPTER 3-Conclusion 

 

3.1 An outline of future work 

At present our ornithopter is still in hanger for its preparation for first flight. Still we have 

scarcity of necessary components. Things are so sophisticated and also the weight is important 

and should be taken under intensive care. In future we think we will be able to find the best 

alternative components and design ideas that can dramatically change the complexity of the 

crank shaft mechanisms. Or we can build our required parts by our own with proper tools and 

materials. Instead of balsa wood we are planning to use carbon fiber or fiberglass sheets and for 

cutting we want to use CNC technology for design efficiency and accuracy. Addition with this 

we want to give our bird a gliding or soaring capability. There is a nice device for it named 

GLDAB. It is a programmable gliding device that helps to soar the ornithopter to glide at a fixed 

wing position.It works in conjuction with a mechanical ratchet. The unit should be inserted 

between the RX and the ESC. The magnetic detector connected to the unit is used to detect the 

stop position. The magnet should be fixed onto the main gear of the mechanism. The magnetic 

detector and the magnet should be aligned when the mechanical ratchet is engaged. 

 

 

FIGURE 3.1: GLDAB gliding device and mechanism 
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FIGURE 3.2: Soaring of a bird 

 

This gliding technique by GLDAB has a shortcoming that it fails to detect the magnet position in 

high speed. But it is easier to implement. Better option can be a mechanical glide lock 

mechanism that will lock the wings in gliding position at high speed also. We also have plans to 

use autopilot modes and FPV telemetry and more payload capacity in our bird but before that we 

need to engage ourselves to improves its aerodynamics, weight, more efficient wing designing 

and eliminating power consumption at a good degree. Its top improvement in control techniques 

can give it the eligibility to use it in spying or mapping an area under critical situations and to 

flatter the enemy eyes in battlefield or scaring away runway birds for traffic safety. The big 

model can take the lead to miniaturizing the bird into a small insect that will perform operations 

where visibility of it might create a major problem. 
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3.2 Conclusion  

Building a flying UAV is always a matter of great challenge and interest for us. We are looking 

for more laboratory tools and set-ups for this. Because the measurements of lifts and drag forces, 

observing the aerodynamics of the object can be a matter of great fun but without having perfect 

or standard lab setup for this types of experiments are absolutly funny. Because we can’t see 

what is happing to the air without a wind-tunnel. So we are working to make this for our own. 

We are looking for more efficient computerized cutting and drilling tools. Today’s toy can turn 

the whole world to a next stage in tomorrow. The great example is drone technology as we can 

see at present. Poor countries are lagging day by day from those countries who can afford those 

expensive equipments. This is the time to build ours or to find a counter of those types. 

Ornithopter’s efficiency and use of it is still now in experiment level and living in thoughts of the 

enthusiasts and hobbyists. Articulated flying models are coming out now. We should realize that 

this is just another way of flying. We think one day we will be able to copy the flying of a real 

bird. This world is advanced in flight systems a lot but we must remember that though we are 

superior in building attractive flying models but we are far more behind from copying the flight 

technique of a fly catcher. And for drone applications maneuverability is a great concern always. 

We can ignore it for passenger flying vehicles considering many reasons behind but for drone 

applications with matching operational purpose this fake birds can be a deadly weapon. 
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