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ABSTRACT 
 

 

The intention of this thesis paper is to deploy a parallel implementation of the optical 

flow detection algorithm known as the Lucas-Kanade algorithm. As an important algorithm in 

the field of computer vision, it is believed that it holds much promise and shows much potential 

for benefiting from techniques used to enhance performance through parallel programming 

which can be executed with the use of CUDA. 

Though more techniques of parallel programming exist that can be used to fasten the process, 

Lucas-Kanade has never been implemented in parallel programming before. The result of the 

research has shown both serial and parallel implementation of optical flow detection using 

deferent processing units (CPUs and GPUs). The parallel implementation have lessened 2 to 13 

seconds of processing time (depending on the hardware configuration) for the same database 

compare to serial implementation. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

 The main motivation was to learn parallel programming with one of the best topic. 

Optical flow detection is a very important subject to modern science for finding solution to many 

problems like traffic control, airport security, medical research, controlling robots and many 

others. So we had chosen optical flow detection and solved it with parallel programming 

algorithm using Matlab. Parallel programming is also useful for modern hardware 

implementation of software. The reason behind it is the high efficiency of modern GPUs which 

are designed to work with different problems simultaneously. 

 

1.2 Methodology 

The purpose of this paper is to propose a design to detect important flow changes 

between images solving with a parallel programming method which gives most of the times a 

better performance. 

We begin by detecting optical flow between two images using a simple and not parallel 

algorithm. At first we run the codes in CPU only comparing two images. Then we run the codes 

on a video which is not more than a number of images. After that we run the algorithm parallel 

with the help of MatLab and its CUDA library on GPU. The parallel programming model helps a 

lot with boosting the performance with an increase of CUDA core of the GPU.       

 

1.3 Tools Used 

This simulation software utilizes Nvidia Compute Unified Device Architecture (CUDA) 

GPU Computing Platform in order to achieve the communication with the graphics device. The 

CUDA platform is a proprietary platform of Nvidia Corporations and is only supported by 

Nvidia Graphics Processors. The other alternative to this platform is the OpenCL (Open 

Computing Library) which is open-source and free to use and is supported by most every 

graphics processors with programmable pipelines. However, the CUDA platform provides some 

more benefits such as better support and more efficient communication between supported 

devices compared to OpenCL as well as better documentation and more efficient libraries. 
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The algorithm is programmed in MatLab and implemented on CUDA to improve 

performance with running the algorithm in parallel.   

This method improves upon the time factor of the simulation significantly with respect to the 

CPU only implementation and allows for distributed computing using multiple CPU as well as 

multiple GPU giving this a very large scale implementation possibility. 

 We also needed to install visual studio as a requirement of installing CUDA. We used 

Windows 8 as our operating system. 
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Chapter 2 

Optical Flow Detection and Implementation 
 

2.1 Problem definition     

 Optic flow is defined as the change of structured light in the image, e.g. on the retina or the 

camera’s sensor, due to a relative motion between the eyeball or camera and the scene. Further definitions 

from the literature highlight different properties of optic flow. 

In a bio-inspired context retinal flow is the change of structured patterns of light on the retina that lead to 

an impression of movement of the visual imagery projected onto the retina. Figure 2.1a depicts the 

production of retinal optic flow for the displacements of two exemplary visual features. In technical terms 

and in the context of computer vision, changes of the environment in the image are represented by a series 

of image frames. Figure 2.1b shows three frames of an image sequence, which can be obtained by a 

spatial and temporal sampling of the incoming light. Optic flow captures the change in these images 

through a vector field. Research emphasizes on the accurate, pixel-wise estimation of optic flow, which is 

a computationally demanding task. Nowadays, optic flow can be estimated in close to real-time for a 

reasonable image resolution. 

 

Figure 2.1 a and b 
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This figure 2.1 shows the production and detection of optic flow. a) Optic flow is 

generated on the retina by changes in the patterns of light. The example shows the shift of two 

visual features (star and hexagon) on a plane and their angular displacements on the surface of 

the eyeball. b) If the structured light is sampled spatially and temporally this results in an image 

sequence. The example shows three frames, which show the movement of the silhouette of a 

head. The optic flow is depicted as the correspondence of contour pixels between frame 1 and 2 

as well as frame 2 and 3. For methods estimating flow, the challenge is to find the point 

correspondence for each pixel in the image, not only the contour pixels. 

 

2.2 Background  

 

2.2.1 Principle Component analysis 

 

2.2.1.1 Taylor Series 

 In mathematics, a Taylor series is a representation of a function as an infinite sum of 

terms that are calculated from the values of the function's derivatives at a single point. 

The concept of a Taylor series was discovered by the Scottish mathematician James Gregory and 

formally introduced by the English mathematician Brook Taylor in 1715. If the Taylor series is 

centered at zero, then that series is also called a Maclaurin series, named after the Scottish 

mathematician Colin Maclaurin, who made extensive use of this special case of Taylor series in 

the 18th century. 

It is common practice to approximate a function by using a finite number of terms of its Taylor 

series. Taylor's theorem gives quantitative estimates on the error in this approximation. Any 

finite number of initial terms of the Taylor series of a function is called a Taylor polynomial. The 

Taylor series of a function is the limit of that function's Taylor polynomials, provided that the 

limit exists. A function may not be equal to its Taylor series, even if its Taylor series converges 

at every point. A function that is equal to its Taylor series in an open interval (or a disc in the 

complex plane) is known as an analytic function. 

The Taylor series of a real or complex-valued function ƒ(x) that is infinitely differentiable at a 

real or complex number a is the power series, 
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(   )  

   ( )

  
(   )  

    ( )  

  
(   )  

which can be written in the more compact sigma notation as, 

∑
  ( )

  
(   ) 

 

   

 

where n! denotes the factorial of n and ƒ
 (n)

(a) denotes the nth derivative of ƒ evaluated at the 

point a. The derivative of order zero ƒ is defined to be ƒ itself and (x − a)
0
 and 0! are both 

defined to be 1. When a = 0, the series is also called a Maclaurin series. 

2.2.1.2 Transpose of Matrix 

 In linear algebra, the transpose of a matrix A is another matrix A
T
 (also written A′, A

tr
,
t
A 

or A
t
) created by any one of the following equivalent actions: 

● reflect A over its main diagonal (which runs from top-left to bottom-right) to obtain 

A
T
 

● write the rows of A as the columns of A
T
 

● write the columns of A as the rows of A
T
 

Formally, the i th row, j th column element of A
T
 is the j th row, i th column element of A: 

[  ]   [ ]   

If A is an m × n matrix then A
T
 is an n × m matrix. 

2.2.1.3 Partial Derivatives 

 In mathematics, a partial derivative of a function of several variables is its derivative with 

respect to one of those variables, with the others held constant (as opposed to the total derivative, 

in which all variables are allowed to vary). Partial derivatives are used in vector calculus and 

differential geometry. 

The partial derivative of a function f with respect to the variable x is variously denoted by 

  
         

 

  
     

  

  
 

The partial-derivative symbol is ∂. One of the first known uses of the symbol in mathematics is 
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by Marquis de Condorcet from 1770, who used it for partial differences. The modern partial 

derivative notation is by Adrien-Marie Legendre (1786), though he later abandoned it; Carl 

Gustav Jacob Jacobi re-introduced the symbol in 1841. 

If ƒ is a function of more than one variable. For instance, 

   (   )          

 

Figure 2.2.1.3.a Graph representation of z = x2 + xy + y2 

A graph of z = x
2
 + xy + y

2
. For the partial derivative at (1, 1, 3) that leaves y constant, the 

corresponding tangent line is parallel to the xz-plane. 

 

Figure 2.2.1.3.b Graph in the xz-plane at y= 1 
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A slice of the graph above showing the function in the xz-plane at y= 1 

The graph of this function defines a surface in Euclidean space. To every point on this surface, 

there are an infinite number of tangent lines. Partial differentiation is the act of choosing one of 

these lines and finding its slope. Usually, the lines of most interest are those that are parallel to 

the xz-plane, and those that are parallel to the yz-plane (which result from holding either y or x 

constant, respectively.) 

To find the slope of the line tangent to the function at P(1, 1, 3) that is parallel to the xz-plane, 

the y variable is treated as constant. The graph and this plane are shown on the right. On the 

graph below it, we see the way the function looks on the plane y = 1. By finding the derivative of 

the equation while assuming that y is a constant, the slope of ƒ at the point (x, y, z) is found to be: 

  

  
      

So at (1, 1, 3), by substitution, the slope is 3. Therefore 

  

  
   

at the point (1, 1, 3). That is, the partial derivative of z with respect to x at (1, 1, 3) is 3. 

 

2.2.2 Optical Flow Detection 

 

2.2.2.1 Introduction  

Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and 

edges in a visual scene caused by the relative motion between an observer (an eye or a camera) 

and the scene. The concept of optical flow was introduced by the American psychologist James 

J. Gibson in the 1940s to describe the visual stimulus provided to animals moving through the 

world. James Gibson stressed the importance of optic flow for affordance perception, the ability 

to discern possibilities for action within the environment. Followers of Gibson and his ecological 

approach to psychology have further demonstrated the role of the optical flow stimulus for the 

perception of movement by the observer in the world perception of the shape, distance and 

movement of objects in the world; and the control of locomotion. Recently the term optical flow 

has been co-opted by robot cists to incorporate related techniques from image processing and 

control of navigation, such as motion detection, object segmentation, time-to-contact 

information, and focus of expansion calculations, luminance, and motion compensated encoding, 

and stereo disparity measurement. 
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Figure: 2.2.2.1 Optical flow representations 

 

2.2.2.2 Block Matching Method  

This is the simplest way of optical flow detection from images. Considering a Region of Interest 

in first image (a block), the purpose is to find the displacement of this ROI in the next one. To this end, 

we compare the correlation scores between the original block and a family of candidates into a search 

area  ROI, in the second frame. Among the correlation criteria of the most often used, one can find some 

well-known cost functions to minimize, as the sum of absolute differences (SAD) or the sum of squared 

differences (SSD), 

 

SSD = ∑ ( (     )   (            )     ). 

SAD= ∑   (     )   (            )     . 

 

To avoid exhaustive search in W and speed up the process, a lot of exploration algorithms have been 

developed. However, the main problem of such a method remains its pixel accuracy. Working on over-

sampled images is a way to solve this this issue, but also increases the amount of computation. 

 

2.2.2.3 Lucas-Kanade Method 

 The Lucas–Kanade method assumes that the displacement of the image contents between two 

nearby instants (frames) is small and approximately constant within a neighborhood of the point p under 

consideration. Thus the optical flow equation can be assumed to hold for all pixels within a window 

centered at p namely, the local image flow (velocity) vector (Vx,, Vy ) must satisfy 

 x(q1)Vx + Iy(q1)Vy = - It(q1) 

 x(q2)Vx + Iy(q2)Vy = - It(q2) 

………………………………………………….. 

 x(qn)Vx + Iy(qn)Vy = - It(qn) 

Where q1, q2,…… qn  are the pixels inside the window, and   y(qi),  y(qi),  t(qi) are the partial derivatives 

of the image I with respect to position x, y and time t, evaluated at the point  and at the current time. 

 



 
 

18 

 

These equations can be written in matrix form,     , where, 

A =  [

  (  )   (  )

  (  )    (  )
       

  (  )   (  )

]   ,    [
  
  

]  and    [

    (  )
    (  )
    (  )

] 

This system has more equations than unknowns and thus it is usually over-determined. The Lucas–

Kanade method obtains a compromise solution by the least squares principle. Namely, it solves the 2×2 

system 

A
T
Av = A

T
b or 

V= (A
T
A)

-1
A

T 
b 

Where, A
T
 is the transpose of matrix A . That is, it computes 

[
  
  

] = [
∑   (  ) 

 ∑   (  )   (  )

∑   (  )   (  ) ∑   (  ) 
 ]

  

[
 ∑   (  )   (  )

 ∑   (  )   (  )
] 

with the sums running from i=1 to n. 

The matrix A
T
A is often called the structure tensor of the image at the point p. 

The plain least squares solution above gives the same importance to all n pixels  in the window. In 

practice it is usually better to give more weight to the pixels that are closer to the central pixel p. For that, 

one uses the weighted version of the least squares equation, 

A
T
WAv = A

T
Wb or 

V= (A
T
WA)

-1
A

b
Wb 

Where, W is an n×n diagonal matrix containing the weights Wii=wi to be assigned to the equation of 

pixel qi. That is, it computes 

[
  
  

] = [
∑     (  ) 

 ∑     (  )   (  )

∑     (  )   (  ) ∑     (  ) 
 ]

  

[
 ∑     (  )   (  )

 ∑     (  )   (  )
] 

The weight     is usually set to a Gaussian function of the distance between   and p. 

  

 

 

 

 

 

 

 

 

 



 
 

19 

2.2.3 Parallel Programming 

 

2.2.3.1 Introduction 

Parallel computing is a form of computation in which many calculations are carried out 

simultaneously, operating on the principle that large problems can often be divided into smaller 

ones, which are then solved concurrently ("in parallel"). There are several different forms of 

parallel computing: bit-level, instruction level, data, and task parallelism. Parallelism has been 

employed for many years, mainly in high-performance computing, but interest in it has grown 

lately due to the physical constraints preventing frequency scaling.
 
As power consumption (and 

consequently heat generation) by computers has become a concern in recent years, parallel 

computing has become the dominant paradigm in computer architecture, mainly in the form of 

multi-core processors. 

Parallel computers can be roughly classified according to the level at which the hardware 

supports parallelism, with multicore and multiprocessor computers having multiple processing 

elements within a single machine, while clusters, MPPs, and grids use multiple computers to 

work on the same task. Specialized parallel computer architectures are sometimes used alongside 

traditional processors, for accelerating specific tasks. 

Traditionally, computer software has been written for serial computation. To solve a problem, an 

algorithm is constructed and implemented as a serial stream of instructions. These instructions 

are executed on a central processing unit on one computer. Only one instruction may execute at a 

time after that instruction is finished, the next is executed. 

Parallel computing, on the other hand, uses multiple processing elements simultaneously to solve 

a problem. This is accomplished by breaking the problem into independent parts so that each 

processing element can execute its part of the algorithm simultaneously with the others. The 

processing elements can be diverse and include resources such as a single computer with 

multiple processors, several networked computers, specialized hardware, or any combination of 

the above. 
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2.2.3.1 Amdahl’s Law 

Optimally, the speedup from parallelization would be linear doubling the number of 

processing elements should halve the runtime, and doubling it a second time should again halve 

the runtime. However, very few parallel algorithms achieve optimal speed-up. Most of them 

have a near-linear speed-up for small numbers of processing elements, which flattens out into a 

constant value for large numbers of processing elements. 

The potential speedup of an algorithm on a parallel computing platform is given by Amdahl's 

law, originally formulated by Gene Amdahl in the 1960s. It states that a small portion of the 

program which cannot be parallelized will limit the overall speedup available from 

parallelization.  A program solving a large mathematical or engineering problem will typically 

consist of several parallelizable parts and several non-parallelizable (sequential) parts. If  is the 

fraction of running time a program spends on non-parallelizable parts, then 

   
   

 
 

   
   

  
 

 
 

is the maximum speed-up with parallelization of the program. If the sequential portion of a 

program accounts for 10% of the runtime(     ), we can get no more than a 10x speed-up, 

regardless of how many processors are added. This puts an upper limit on the usefulness of 

adding more parallel execution units. When a task cannot be partitioned because of sequential 

constraints, the application of more effort has no effect on the schedule. The bearing of a child 

takes nine months, no matter how many women are assigned. 

2.2.3.2 Gustafson’s Law 

Gustafson's law is another law in computing, closely related to Amdahl's law. It states that the 

speedup with P processors is 
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Figure: 2.2.3.2 Comparison of two process using Gustafson’s Law  

Assume that a task has two independent parts, A and B. B takes roughly 25% of the time of the 

whole computation. With effort, a programmer may be able to make this part five times faster, 

but this only reduces the time for the whole computation by a little. In contrast, one may need to 

perform less work to make part A twice as fast. This will make the computation much faster than 

by optimizing part B, even though B got a greater speed-up (5x versus 2x). 

 ( )      (   )     (   ) 

Both Amdahl's law and Gustafson's law assume that the running time of the sequential portion of 

the program is independent of the number of processors. Amdahl's law assumes that the entire 

problem is of fixed size so that the total amount of work to be done in parallel is also 

independent of the number of processors, whereas Gustafson's law assumes that the total amount 

of work to be done in parallel varies linearly with the number of processors. 

2.2.3.3 Flynn's taxonomy 

Michael J. Flynn created one of the earliest classification systems for parallel (and sequential) 

computers and programs, now known as Flynn's taxonomy. Flynn classified programs and computers by 

whether they were operating using a single set or multiple sets of instructions, and whether or not those 

instructions were using a single set or multiple sets of data. 
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  Single 

instruction 

Multiple 

instruction 

Single data SISD MISD 

Multiple 

data 

SIMD MIMD 

Table: 2.2.3.3 Comparison between single and multiple instruction 

The single-instruction-single-data (SISD) classification is equivalent to an entirely sequential 

program. The single-instruction-multiple-data (SIMD) classification is analogous to doing the 

same operation repeatedly over a large data set. This is commonly done in signal processing 

applications. Multiple-instruction-single-data (MISD) is a rarely used classification. While 

computer architectures to deal with this were devised (such as systolic arrays), few applications 

that fit this class materialized. Multiple-instruction-multiple-data (MIMD) programs are by far 

the most common type of parallel programs. 

According to David A. Patterson and John L. Hennessy, "Some machines are hybrids of these 

categories, of course, but this classic model has survived because it is simple, easy to understand, 

and gives a good first approximation. It is also—perhaps because of its understandability—the 

most widely used scheme. 

2.2.3.4 CUDA Parallel Programming Language 

 

CUDA is a parallel computing platform and programming model invented by NVIDIA. It 

enables dramatic increases in computing performance by harnessing the power of the graphics 

processing unit (GPU). 

With millions of CUDA-enabled GPUs sold to date, software developers, scientists and 

researchers are finding broad-ranging uses for GPU computing with CUDA. Here are a few 

examples, 

Identify hidden plaque in arteries: Heart attacks are the leading cause of death worldwide. 

Harvard Engineering, Harvard Medical School and Brigham & Women's Hospital have teamed 

up to use GPUs to simulate blood flow and identify hidden arterial plaque without invasive 

imaging techniques or exploratory surgery. 
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Analyze air traffic flow: The National Airspace System manages the nationwide coordination of 

air traffic flow. Computer models help identify new ways to alleviate congestion and keep 

airplane traffic moving efficiently. Using the computational power of GPUs, a team at NASA 

obtained a large performance gain, reducing analysis time from ten minutes to three seconds. 

Visualize molecules: A molecular simulation called NAMD (Nano scale molecular dynamics) 

gets a large performance boost with GPUs. The speed-up is a result of the parallel architecture of 

GPUs, which enables NAMD developers to port compute-intensive portions of the application to 

the GPU using the CUDA Toolkit. 

 

2.3 Real Time Flow Detection 

 

2.3.1 Proposed Algorithm 

 We are using Lucas-Kanade Algorithm to find the optical flow between images for our 

thesis as Lucas-Kanade is very efficient and can be implemented in parallel programming model 

very easily. 

 

2.3.2 Flow Colors Computation 

The commonest form of color wheel shows the three subtractive primaries, red, yellow, 

and blue, with equal spacing. 

The Munsell system of colors, which is one of the best color systems, uses a circle with ten hues; 

the five colors red, yellow, green, blue, and purple are equally spaced. Red, yellow, green, and 

blue are identified as the "psychological primaries". Color television and our computer monitor 

uses red, green and blue as additive primaries and color printing unlike color painting, terms the 

subtractive primaries magenta, yellow, and cyan. 

 

Figure: 2.3.2 color hue representation 
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Red is closest to yellow, blue is further away from red, since those two colors stand at opposite 

ends of the spectrum and blue is farthest from yellow, since green is perceived as almost a 

primary and the distance between blue and green equals the distance between green and yellow 

and both are less than the distance between red and yellow. A nice color circle meeting those 

conditions with 60 divisions can be produced by using the sequence of numbers 4-5-6. 

Red to orange and orange to yellow are each 8 hues apart. Blue to purple and purple to red are 

each 10 hues apart. Yellow to green and green to blue are each 12 hues apart. Here's the color 

circle on that basis. 

 

2.3.3 Flow Detection Steps 

 

 

 

Figure: 2.3.3 flow detection steps. 
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Chapter 3 

Results and Discussion 

 

3.1 Database 

We have taken a video of resolution 160*120(width * height), with 15 frame rate(fps) 

named ―viptraffic‖ from Matlab example. The length of the video is 8 second and total extracted 

images are 120.  

 

3.2 Runtime Environment 

We have used 2 computers of different specifications for optical flow detection. The 

specifications of these computers are discussed below. 

 

No. 1 PC Specification 

 Intel Core i7 4770 3.40GHz. 

 Number of cores in CPU: 8 cores.   

 Ram 16 GB. 

 GPU: NVidia GTX 660 

 Multiprocessor Count for GPU: 6. 

 Number of CUDA core in GPU: 960. 

 GPU memory size: 1GB. 

 GPU memory Interface width: 192-bit. 

  

No. 2 PC Specification 

 Intel Core i7 4770 3.40GHz. 

 Number of cores in CPU: 8 cores.   

 Ram 16 GB. 

 GPU: NVidia GTX 780 

 Multiprocessor Count for GPU: 12. 

 Number of CUDA core in GPU: 2304. 

 GPU memory size: 3GB. 

 GPU memory Interface width: 384-bit. 

 

3.3 Experimental Results  

Experiment with No1 PC 

Core Used Total Time Taken(in Seconds) Time Taken per Frame(in 

Seconds) 

Serial 338.591614 2.8215 

1 339.614317 2.8301 

2 337.232934 2.8102 

3 336.202633 2.8016 

4 384.223449 3.2019 

5 437.585529 3.6465 

6 459.758039 3.8313 
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Table 3.3.a 

 

 
Figure: 3.3.a Time taken for used cores (GTX660) 

 

Experiment with No2 PC 

 

Core Used Total Time Taken(in Seconds) Time Taken per Frame(in 

Seconds) 

Serial 332.100913 2.7650 

1 335.343075 2.7945 

2 327.005117 2.7250 

3 319.783982 2.6648 

4 364.374475 3.0364 

5 427.749014 3.5645 

6 444.144528 3.7012 

7 515.940868 4.2995 

8 596.794590 4.9732 

9 673.641076 5.6136 

10 754.603825 6.2883 

11 832.345944 6.9362 

12 941.466541 7.8455 

Table 3.3.b 
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Figure: 3.3.b Time taken for used cores (GTX780) 

 

Example of flow detection: 

 

               
Image 1      Image 2 

 

 
Figure 3.3.c: Flow difference between image 1 and image 2 
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3.4 Discussions 

In No1 PC the GTX 660 GPU has multiprocessor count of 6. So, at best 6 cores can be 

used. Now when the code was serially implemented the time taken for the whole video which 

had 120 frames needed 338 seconds. When the code was implemented parallel in using 1 core 

the time to find flow was increased by one second. Though both had ran in 1 core but to make 

the code parallel the needed call of functions caused the extra second. When more cores are 

utilized the needed time reduced to 337 for 2 cores and 336 for 3 cores. 

In No2 PC the GTX 780 GPU has multiprocessor count of 6. So, at best 12 cores can be 

used. Now when the code was serially implemented the time taken was 332 seconds. When the 

code was implemented parallel in using 1 core the time to find flow was increased by three 

seconds. When more cores are utilized the needed time reduced to 327 for 2 cores and 319 for 3 

cores. So no 2 PC is detected flow much faster because it has more CUDA cores. So for this 

experimental video GTX 780 was 17 seconds faster for finding the optical flow.  

Here, the parallel implementation seems to lessen a very little amount of time from serial 

implementation, which is not really that small because here we used a very small video (of 

resolution and length) but if we use big videos with higher resolution and length then the amount 

of time we have lessened for computation will be bigger.    

Now here when we use more cores than 3 the needed time to detect the flow is increasing 

with gradual increase of cores. It is known that to implement parallel programs every core needs 

to communicate with other cores which need a significant amount of time. Excess use of 

processors can create overhead between the cores such as partitioning process, information 

passing, and coordination of processes. With the increase of cores the chance of overhead 

occurring increases which here resulted bigger time consumption of processing with more than 3 

cores.  

Considering that the optical flow requires the sequential input of images from one frame 

to the next frame in order to calculate the flow detection of objects, it can be said that there are 

very few prospects of being implemented in parallel. This is because without consecutive inputs 

of frames of the video calculating the direction of the objects is fairly hard, since the derivatives 

must be calculated in conjunction with each other. Therefore it is mandatory to have the frames 

extracted and processed in order to each other. This makes parallel inputs of frames unfeasible. 

As a whole considering the most important and computation intensive steps themselves are 

inherently sequential, it can be said that much of the program is unable to utilize the benefits of 

parallel programming.  
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Chapter 4 
Conclusion and Future Work 

 

4.1 Conclusion 

The aim of the research was to implement the Lucas-Kanade in parallel programming 

model and decrease the required time of detecting optical flow. The serial implementation of 

Lucas-Kanade algorithm is really efficient but implementing it with parallel programming also 

gives it a small edge as it has been done. Our parallel implementation has lessened 2 to 13 

seconds of processing time (depending on the hardware configuration) for the same database 

compare to serial implementation. Though more techniques of parallel programming exist that 

can be used to fasten the process, Lucas-Kanade has never been implemented in parallel 

programming before.       

 

4.2 Future Works 

 Today optical flow detection is a very important topic as it helps artificial intelligence 

with finding path, detecting objects. The medical use of it is also very hopeful as it can help 

doctors with surgery. It also can be used to navigate vehicles movements and more. 

The plan for future is real time implementation like path detection for robots. This research can 

be implemented using better parallel techniques like using pipelining with better hardware. 

OpenCV is one of the most customizable languages for parallel implementation in which we are 

planning to implement this research in the future.      
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