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‗Listen to your Heart. Everything else will follow.‘  

- Theodore Emile, 2013. 
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ABSTRACT 

―Three things cannot be long hidden: the Sun, the Moon, and the Truth.‖ 

- BUDDHA   

You are on a ship floating in the vast ocean of space. You can fly to the moon and back. 

And on the moon you sing to break the silence and dance with melodies of music and 

gaze upon the vastness of space. You find yourself in between the past and the future. 

Living within Earth Bound Dreams. For fortnights of Light and fortnights of Darkness you 

are floating inside the vast voids of the soul. With dreams of tomorrow drifting gently 

across of the universe. 

 

Our dreams shape realities and our knowledge challenges space and time, with 

inspirations and exposures into the known and the unknown. Experiences define us and 

in turn are reflected in our actions. The human mind, the world of dreams – The Brain – 

drives cars, calculates complex math problems, draws comic fantasies, writes literary 

wonders, measures distances, cooks fancy dishes, dances with music and sings to 

make sense of it all; we remember and we forget; we forge the future, reconstruct the 

past and govern the present. We work collectively and display cognitive attitude. We 

reveal emotions and expose craziness. We transform with experiences. We are the 

bridge between the dream world and the reality of it all. We are Humane. 

 

Nevertheless look at what we have achieved. We have analysed the globe and beyond 

in search of the blueprint of the universe to know about ourselves, why we are and who 

we are. We have found ways to mimic ourselves by constructing machines and enter 

other thresholds of existence, creating new layers of possibilities. That is, in an era 

where human population is growing in an exponential rate, and we are aided by 

technology for global, climatic, spiritual, political and individual transformations. The 

bridge, silver lining, between war and peace is hence forever constant and in contrast. 

We humans are the agent of order and change.  

 

I started this project as a conceptual experimentation and evolution on self, investigating 

into ones core; important for the future generations to dream for themselves under the 

reflection of the moon, and unlock their creative potential; which will continue with top 

down, bottom up, qualitative and quantitative background study of Outer Space, Lunar 

Architectural Analysis, Human Anthropometry and Biomechanics in artificial gravity, 

Human Psychology, Geometric Analysis and Transformation of Form and Function. One 

must make great leaps to unlock oneself, of human nature and of one’s creative 

potential. The results unfold through the course of time. Future design solutions can be 

prepared based on the studies made in this paper. Please refer to the bibliography for 

expanded information on this research. Should we return to the Moon, is a decision 

beyond one man‘s comprehension. But that doesn‘t stop one from dreaming. 

 

 

http://www.brainyquote.com/quotes/quotes/b/buddha133884.html
http://www.brainyquote.com/quotes/authors/b/buddha.html
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CHAPTER | 1 

INTRODUCTION 

Life is a fascinating thing, has a source of origin – birth, and an inevitable fate – death. And 

such is true for the entire universe. They say it all started with the Big Bang and will 

eventually expire with the Big Crunch. That is the base of our knowledge at the dawn of the 

21st century.  

 

We dwell on planet Earth, the third planet in our solar system, along with other planets 

orbiting around the 5 billion years old star – the Sun. The enormous mass of the Sun 

influences the gravitational fields of the planets and holds them in their distinct orbits. Our 

Earth is a work of art, a complex system made up of various interconnected processes that 

keep conditions stable and suitable for life. Diverse forms of life prosper on Earth, because 

of bizarre and spontaneous chemical reactions co-existing in every instant on the surface of 

the planet. But our Earth is a casualty of solar radiation and cosmic rays. Celestial radiations 

constantly cross Earth‘s orbit, threatening all life. Countless ‗Extinction-Level Events‘ would 

have sterilized the surface of our planet had it not been for our constant companion and 

benefactor; a body which unintentionally wards away many of the ills that could befall us – 

the Moon. 

The Moon is unique amongst other celestial bodies; there is no other satellite closer in size 

and composition to its mother-planet; the Earth–Moon system is the only tidally locked pair. 

Furthermore, it also happens to be the only moon in the solar system which is orbiting an 

intelligent civilization – a factor which may not be a mere coincidence. At the time Earth was 

formed 4.5 billion years ago, other smaller planetary bodies were also growing. One 

particularly promising young Proto-Planet, Thiea, hit Earth late in its growth process, blowing 

out rocky debris. A fraction of that debris went into orbit around the Earth and aggregated 

into the Moon. This hypothesis is based on the findings by astrophysicist V. S. Safronov, and 

later by Hartmann and Davis. This theory verifies why Earth has a much larger iron core 

density than the Moon, and why the oxygen isotope composition of the Moon is exactly the 

same as the Earth. ‗The Moon today is as it has been for about 3 billion years. Volcanism 

has ended. Meteorite impacts are rare. The quiet landscape awaits human intervention‘. 

(William K. Hartmann) 

Observations of the solar system show us that the Moon's birth was rather unusual. All of the 

other worlds either lack satellites or have captured them from other places. Of course the 

moon isn't Earth's only unusual resident; Earth‘s surface crawls with all manner of bizarre 

and delicate carbon-based life forms. The Rare Earth Theory hypothesize that a large moon 
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such as ours is not merely a benefit for life, but essentially a requirement. The tidal 

fluctuations due to the gravitational attraction of the moon have been invaluable to the 

evolution of life on our planet; the regular shift of dry and wet ocean current, has given way 

for prehistoric life forms to reach out of the ocean and take advantage of this gradual change 

to adapt to the diverse environment outside the ocean. 

In this unlikely set of circumstances brought forth by our moon, perhaps Earth is the only 

planetary system in the entire, vast universe, hospitable for life. But every once in a great 

while, when the time is right, two proto planets bump into each other and life can come 

together. Without the magical astronomical event we certainly would not be here. 

The chapters in this thesis paper are revealed in the following layout. 

Chapters 2 will continue with a brief study on the nature of our Universe, the Earth and the 

Moon, based on our current understanding of the space and time.  

Chapter 3 consists of the study of Human Intervention in Outer Space, gathered information 

about Anthropometry and Biomechanics of Humans in space from International Space 

Agencies. 

Chapter 4 deals with Architectural Considerations in Micro Gravity and essential guidelines 

required for space flight. 

Chapter 5 contains a brief on current thoughts and resources about lunar discoveries, and 

future assumptions. 

Chapter 6 ventures into outer space and the architectural implications in artificial gravity. 

Chapter 7 consists of the synthesis and sketches drawn during the thesis timeline. 

Chapter 8 is conclusion and future potentials of the research. 
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CHAPTER | 2 

2.1 | THE BIG BANG AND THE UNIVERSE 

 

 

“I think that if it had been a religion that first maintained the notion that all the matter in the 

entire universe had once been contained in an area smaller than the point of a pin, scientists 

probably would have laughed at the idea." 

Marilyn Vos Savant, February 1996, 

 

In the beginning there was a Big Bang. Our Universe today is much different from the one it 

was few billions years ago. Scientists have yet to determine how it all begun, what we know 

now is that it started in an instant and it begun to expand rapidly from a singularity – The Big 

Bang. As of 2013, this expansion is estimated to have begun 13.798 ± 0.037 billion years 

ago. It is convenient to divide the evolution of the universe so far into few phases. 

 

 PLANCK ERA - The time just before the Planck time (1/10^43 seconds). In this era, 

random energy fluctuations were so large that we cannot explain the physics at these 

high energies. Energy and mass are equivalent and so energy fluctuations cause 

changes in space and time. These fluctuations arise naturally out of the ‗Heisenberg 

Uncertainty Principle‘. So far, we do not know what happens during this time. 

 

 GUT ERA - GUT stands for Grand Unified Theories. This is a theory that unites three of 

the four known forces. The four forces are Gravity, Electromagnetism, the Weak Force, 

and the Strong Force. GUT combines the strong force with the electroweak force (the 

combination of weak and electromagnetic force). The forces are separate but under high 

temperatures they come together. So the GUT era is when Gravity and GUT force 

http://en.wikipedia.org/wiki/Planck_%28spacecraft%29#2013_data_release
http://en.wikipedia.org/wiki/1,000,000,000_%28number%29
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controlled the Universe. During the GUT Era is when we think INFLATION occurred - the 

point in which the Universe underwent a dramatic expansion. When the strong force 

froze out of the GUT force, caused an enormous release of energy. Inflation is an 

important aspect of the Big Bang since it explains the structure, the smoothness, and the 

fact that we are at the critical density.  

 

Image comment: Schematic showing the history of the Universe, according Big Bang theory. 

Image source: maths.monash.edu 

 

 ELECTROWEAK ERA - The electromagnetic and weak forces were still united. 

Conditions of this era were actually achieved in a particle accelerator in 1983. 

 

 PARTICLE ERA - During this era the Universe was just the right temperature for particles 

to be created and destroyed continuously. What happens is the photons have the right 

energy to come together and annihilate each other to form matter and antimatter. And 

then the matter and antimatter smash together and form gamma-rays. This continues 
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until the Universe cools enough such that the photons do not have enough energy 

anymore to create particles, and we are then stuck with whatever was left at that point. 

At the end of the particle era, there were slightly more protons than antiprotons. For 

every billion antiprotons there were a billion and one protons. Another way to look at it is 

one billion protons were annihilated with one billion antiprotons to make a billion photons, 

which would result in leaving one proton in the end. It is this slight excess that makes up 

most of the matter in the Universe. 

 

 NUCLEOSYNTHESIS ERA - Protons and Neutrons would come together for a short 

while before interactions broke them up again. Essentially, the Universe was a big 

continuous fusion reaction. This era ended when the Universe was 3 minutes old. It was 

at the end of this era that set the chemical composition of the Universe. 

 ERA of NUCLEI - During this time, protons and neutrons were together in nuclei. 

Electrons would form an atom with this nucleus but would soon be ionized as a photon 

hit it. Thus, neither an atom could form nor could a photon travel very far. At the end of 

this era the Universe was cool enough that photons did not instantly destroy atoms and 

very quickly the electrons found the nuclei, and the photons were free to travel around. 

This is what makes the cosmic background radiation and it happened at a temperature of 

3000 Kelvin (about the temperature on the surface of red giant stars).  

 ERA of ATOMS - this era is marked by the first structures beginning to form and it blends 

in with the ERA of GALAXIES. This is about the time when astronomers take over from 

physicists in terms of trying to explain the Universe. The era of atoms lasts for a long 

time and is sometimes referred to as the DARK AGES: that point where we have 

essentially no information on what was going on. Galaxies had not formed yet and so we 

don't see bright objects. However, gamma-ray bursts may allow us to penetrate into this 

era. It is during this era that maybe black holes played a key role in terms of galaxy 

formation. Also, dark matter is crucial to understand as well. There are a few missions 

planned to observe the dark ages. Because it is at such a high red shift, the important 

features are shifted out of the normal wavelengths that we like to observe in (i.e., the 

optical). Through infrared observation we can gain information about this era.  
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Image comment: Multi wavelength of the Milky Way 

Image source: http://adc.gsfc.nasa.gov/mw 

 

 

2.1.1 | STRUCTURE FORMATION 

Structure formation in the big bang model proceeds hierarchically, with smaller structures 

forming before larger ones. The first structures to form are Quasars, which are thought to be 

bright, early active galaxies, and Population III stars. Before this epoch, the evolution of the 

universe could be understood through linear cosmological perturbation theory: that is, all 

structures could be understood as small deviations from a perfect homogeneous universe. 

This is computationally relatively easy to study. At this point non-linear structures begin to 

form, and the computational problem becomes much more difficult, involving, for 

example, N-body simulations with billions of particles. The first stars and quasars form from 

gravitational collapse. The intense radiation they emit Re-ionizes the surrounding universe. 

From this point on, most of the universe is composed of plasma. 

http://adc.gsfc.nasa.gov/mw
https://en.wikipedia.org/wiki/Quasar
https://en.wikipedia.org/wiki/Active_galaxies
https://en.wikipedia.org/wiki/Population_III_stars
https://en.wikipedia.org/wiki/Perturbation_theory
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/N-body_simulation
https://en.wikipedia.org/wiki/Plasma_(physics)
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2.1.1.1 | FORMATION OF STARS  

The first stars, most likely Population III stars, form and start the process of turning the light 

elements that were formed in the Big Bang (hydrogen, helium and lithium) into heavier 

elements. However, as yet there have been no observed Population III stars, and 

understanding of them is currently based on computational models of their formation and 

evolution. 

Large volumes of matter collapse to form a galaxy. The Hubble Ultra Deep Field shows a 

number of small galaxies merging to form larger ones, at 13 billion light years, when the 

Universe was only 5% its current age. Based upon the emerging science of Nucleo-Cosmo-

Chronology, the Galactic thin disk of the Milky Way is estimated to have been formed 8.8 ± 

1.7 billion years ago. Gravitational attraction pulls galaxies towards each other to form 

Groups, Clusters and Super Clusters. 

 

2.1.1.2 | FORMATION OF THE SOLAR SYSTEM 

The Solar System began forming about 4.6 billion years ago, or about 9 billion years after 

the Big Bang. A molecular cloud made mostly of hydrogen and traces of other elements 

began to collapse, forming a large sphere in the center which would become the Sun, as 

well as a surrounding disk. The surrounding accretion disk would coalesce into a multitude of 

smaller objects that would become planets, asteroids, and comets. The Sun is a late-

generation star, and the Solar System incorporates matter created by previous generations 

of stars. 

 

Image comment: Universe_Reference_Map 

Image source: http://upload.wikimedia.org/wikipedia/ 

 

 

 

https://en.wikipedia.org/wiki/Population_III
https://en.wikipedia.org/wiki/Hubble_Ultra_Deep_Field
https://en.wikipedia.org/wiki/Nucleocosmochronology
https://en.wikipedia.org/wiki/Nucleocosmochronology
https://en.wikipedia.org/wiki/Solar_System
http://upload.wikimedia.org/wikipedia/
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2.1.2 | FATE OF THE UNIVERSE 

To understand what happened in the very early universe, advances in fundamental physics 

are required before it will be possible to know the ultimate fate of the universe with any 

certainty. Below are some of the major possibilities. 

The current scientific consensus of most cosmologists is that the ultimate fate of the 

universe depends on its overall shape, how much dark energy it contains, and on the 

equation of state which determines how the dark energy density responds to the expansion 

of the universe. Recent observations have shown that, from 7.5 billion years after the Big 

Bang onwards, the expansion rate of the universe has actually been increasing, 

commensurate with the Open Universe theory. Recent measurements by Wilkinson 

Microwave Anisotropy Probe have confirmed that the universe is flat.  

 

 

 

 

 

 

 

 

CLOSED UNIVERSE 

 

If Ω > 1, then the geometry of space is closed like the surface of a sphere. The sum of the 

angles of a triangle exceeds 180 degrees and there are no parallel lines; all lines eventually 

meet. The geometry of the universe is, at least on a very large scale, elliptic. In a closed 

universe lacking the repulsive effect of dark energy, gravity eventually stops the expansion of 

the universe, after which it starts to contract until all matter in the universe collapses to a 

point, a final singularity termed the "Big Crunch", by analogy with Big Bang. However, if the 

universe has a significant amount of dark energy then the expansion of the universe can 

continue forever—even if Ω > 1.  

 

http://en.wikipedia.org/wiki/Dark_energy
http://en.wikipedia.org/wiki/Equation_of_state_%28cosmology%29
http://en.wikipedia.org/wiki/Graphical_timeline_of_the_Big_Bang
http://en.wikipedia.org/wiki/Big_Bang
http://en.wikipedia.org/wiki/Big_Bang
http://en.wikipedia.org/wiki/Wilkinson_Microwave_Anisotropy_Probe
http://en.wikipedia.org/wiki/Wilkinson_Microwave_Anisotropy_Probe
http://en.wikipedia.org/wiki/Density_parameter#Density_parameter
http://en.wikipedia.org/wiki/Elliptic_geometry
http://en.wikipedia.org/wiki/Big_Crunch
http://en.wikipedia.org/wiki/Big_Bang


T H E O D O R E  H A L D E R  | 19 

 

OPEN UNIVERSE 

If Ω < 1, the geometry of space is open, i.e., negatively curved like the surface of a saddle. 

The angles of a triangle sum to less than 180 degrees, and lines that do not meet are never 

equidistant; they have a point of least distance and otherwise grow apart. The geometry of 

such a universe is hyperbolic. Even without dark energy, a negatively curved universe 

expands forever, with gravity barely slowing the rate of expansion. With dark energy, the 

expansion not only continues but accelerates. The ultimate fate of an open universe is either 

universal heat death, the "Big Freeze", or the "Big Rip", where the acceleration caused by 

dark energy eventually becomes so strong that it completely overwhelms the effects of the 

gravitational, electromagnetic and strong binding forces. Conversely, a negative 

cosmological constant, which would correspond to a negative energy density and positive 

pressure, would cause even an open universe to recollapse to a big crunch. This option has 

been ruled out by observations. 

 

FLAT UNIVERSE 

If the average density of the universe exactly equals the critical density so that Ω = 1, then 

the geometry of the universe is flat: as in Euclidean geometry, the sum of the angles of a 

triangle is 180 degrees and parallel lines continuously maintain the same distance. 

Measurements from Wilkinson Microwave Anisotropy Probe have confirmed the universe is 

flat with only a 0.4% margin of error. Absent of dark energy, a flat universe expands forever 

but at a continually decelerating rate, with expansion asymptotically approaching zero. With 

dark energy, the expansion rate of the universe initially slows down, due to the effect of 

gravity, but eventually increases. The ultimate fate of the universe is the same as an open 

universe. 
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 FATE OF THE SOLAR SYSTEM: 1 TO 5 BILLION YEARS 

Over a timescale of a billion years or more, the Earth and Solar System are unstable. Earth's 

existing biosphere is expected to vanish in about a billion years, as the Sun's heat 

production gradually increases to the point that liquid water and life are unlikely; the Earth's 

magnetic fields, axial tilt and atmosphere are subject to long term change; and the Solar 

System itself is chaotic over million- and billion-year timescales; Eventually in around 

5.4 billion years from now, the core of the Sun will become hot enough to trigger hydrogen 

fusion in its surrounding shell. This will cause the outer layers of the star to expand greatly, 

and the star will enter a phase of its life in which it is called a red giant. Within 7.5 billion 

years, the Sun will have expanded to a radius of 1.2 AU—256 times its current size, and 

studies announced in 2008 show that due to tidal interaction between Sun and Earth, Earth 

would actually fall back into a lower orbit, and get engulfed and incorporated inside the Sun 

before the Sun reaches its largest size, despite the Sun losing about 38% of its mass. The 

Sun itself will continue to exist for many billions of years, passing through a number of 

phases, and eventually (if nothing else changes) ending up as a long-lived white dwarf. 

Eventually, after billions more years, the Sun will finally cease to shine altogether, becoming 

a black dwarf.  

 

Image comment: Stellar Evolution 

Image source:  http://web.jasper.k12.ga.us/~tharty/files/Extracurricular/ScienceOlympiad/2013/ 
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 BIG FREEZE: 1014 YEARS AND BEYOND 

This scenario is generally considered to be the most likely, as it occurs if the universe 

continues expanding as it has been. Over a time scale on the order of 1014 years or less, 

existing stars burn out, stars cease to be created, and the universe goes dark. Over a much 

longer time scale in the eras following this, the galaxy evaporates as the stellar 

remnants comprising it escape into space, and black holes evaporate via Hawking 

radiation. In some grand unified theories, proton decay after at least 1034 years will convert 

the remaining interstellar gas and stellar remnants into leptons (such as positrons and 

electrons) and photons. Some positrons and electrons will then recombine into photons. In 

this case, the universe has reached a high-entropy state consisting of a bath of particles and 

low-energy radiation. It is not known however whether it eventually achieves thermodynamic 

equilibrium. 

 BIG CRUNCH: 100+ BILLION YEARS FROM NOW 

If the energy density of dark energy were negative or the universe were closed, then it would 

be possible that the expansion of the universe would reverse and the universe would 

contract towards a hot, dense state. This is a required element of oscillatory 

universe scenarios, such as thecyclic model, although a Big Crunch does not necessarily 

imply an oscillatory Universe. Current observations suggest that this model of the universe is 

unlikely to be correct, and the expansion will continue or even accelerate. 

 BIG RIP: 20+ BILLION YEARS FROM NOW 

This scenario is possible only if the energy density of dark energy actually increases without 

limit over time. Such dark energy is called phantom energy and is unlike any known kind of 

energy. In this case, the expansion rate of the universe will increase without limit. 

Gravitationally bound systems, such as clusters of galaxies, galaxies, and ultimately the 

Solar System will be torn apart. Eventually the expansion will be so rapid as to overcome the 

electromagnetic forces holding molecules and atoms together. Finally even atomic nuclei will 

be torn apart and the universe as we know it will end in an unusual kind of gravitational 

singularity. At the time of this singularity, the expansion rate of the universe will reach infinity, 

so that any and all forces (no matter how strong) that hold composite objects together (no 

matter how closely) will be overcome by this expansion, literally tearing everything apart. 
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 VACUUM METASTABILITY EVENT 

If our universe is in a very long-lived false vacuum, it is possible that a small region of the 

universe will tunnel into a lower energy state, also known as Nucleation. If this happens, all 

structures within will be destroyed instantaneously and the region will expand at near light 

speed, bringing destruction without any forewarning. 

 HEAT DEATH: 10150+ YEARS FROM NOW 

The heat death is a possible final state of the universe, estimated at after 10150 years, in 

which it has "run down" to a state of no thermodynamic free energy to sustain motion or life. 

In physical terms, it has reached maximum entropy (because of this, the term "entropy" has 

often been confused with Heat Death, to the point of entropy being labeled as the "force 

killing the universe"). The hypothesis of a universal heat death stems from the 1850s ideas 

of William Thomson (Lord Kelvin) who extrapolated the theory of heat views of mechanical 

energy loss in nature, as embodied in the first two laws of thermodynamics, to universal 

operation. 

Scientific understanding of the ultimate fate of life in the universe merges almost flawlessly 

into science fiction. Many works describe the end of the universe — rarely purely educational 

exercises describing theories of the day, more often exploiting its potential as the ultimate 

sense of wonder plot device, or mocking the pretensions of humanity in general and 

cosmologists in particular. Science fiction can try to suggest a scientific eschatology that 

searches for meaning in the face of the new knowledge. Countless sci-fi fantasy works use 

the threatened destruction of the universe as their plot device, usually with an evil super 

villain and/or the incompetence of humanity as the cause, and usually with human ingenuity 

saving the day. 

Religion is not wholly excluded from science fiction's explorations of the end of our universe. 

Olaf Stapledon's 1937 science fiction novel ‗Star Maker‘ describes intelligent life in the far 

future in each galaxy merging into hive mind-like Galactic Minds which themselves finally 

merge into a Cosmic Mind which, ascending into hyperspace, encounters God (the Star 

Maker). The "Star Maker" reveals to the "Cosmic Mind" a vision of the simpler Cosmoses He 

created in the past and of those more complex Cosmoses He will create in the future.  
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Image comment: The Size of the Universe 

Image source:  http://ripetungi.com/the-size-of-the-universe/ 

 

2.2 | THE SOLAR SYSTEM 

When we gaze up upon the cosmic ocean, our existence seems so futile and empty. We 

often ask ourselves the question, are we alone? From our small world our decisions and 

choices make little or no change in the bigger picture, or do they? Our actions have a cause 

and effect on earth and the spaces we dwell in. The act of observation is changing the 

universe as it is; and as we are expanding our consciousness far beyond physical Earth, as 

well as deep into the matrix of Earth, we start to understand there are greater forces at work, 

a cosmological consciousness at play. Stargazers and astronomers in ancient times 

observed points of light that appeared to move among the stars. They called these objects 

Planets, meaning Wanderers, and named them after Roman deities - Jupiter, king of the 

gods; Mars, the god of war; Mercury, messenger of the gods; Venus, the goddess of love 

and beauty; and Saturn, father of Jupiter and god of agriculture. 

A Solar System can be defined as a star and all the objects orbiting it as well as all the 

material in that system. Our solar system includes the Sun together with the eight planets 

and their moons as well as all other celestial bodies that orbit the Sun. Since the invention of 

the telescope, three more planets have been discovered in our solar system: Uranus (1781), 

Neptune (1846) and Pluto (1930). In addition, our solar system is populated by thousands of 

small bodies such as asteroids and comets. Most of the asteroids orbit in a region between 

the orbits of Mars and Jupiter, while the home of comets lies far beyond the orbit of the dwarf 

planet Pluto, in the Oort Cloud. 
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The four planets closest to the Sun -- Mercury, Venus, Earth, and Mars -- are called the 

terrestrial planets because they have solid rocky surfaces. The four large planets beyond the 

orbit of Mars -- Jupiter, Saturn, Uranus, and Neptune -- are called the gas giants. Beyond 

Neptune, on the edge of the Kuiper Belt, tiny, distant, dwarf planet Pluto has a solid but icier 

surface than the terrestrial planets. 

2.2.1 | THE SUN 

The centre of our solar system - the Sun - produces temperatures and densities in its core, 

high enough to sustain nuclear fusion, and mostly radiation into space as electromagnetic 

radiation. The Sun is a type G2 main-sequence star, a population I star; it was born in the 

later stages of the universe's evolution and thus contains more elements heavier than 

hydrogen and helium than the older population II stars. Elements heavier than hydrogen and 

helium were formed in the cores of ancient and exploding stars, so the first generation of 

stars had to die before the universe could be enriched with these atoms.  

2.2.2 | INTERPLANETARY MEDIUM 

The vast majority of the volume of the Solar System consists of a near-vacuum known as the 

interplanetary medium. However, along with light, the Sun radiates a continuous stream of 

charged particles (a plasma) known as the solar wind. This stream of particles spreads 

outwards at roughly 1.5 million kilometres (932 thousand miles) per hour, creating a tenuous 

atmosphere (the heliosphere) that permeates the interplanetary medium out to at least 

100 AU. Activity on the Sun's surface, such as solar flares and coronal mass ejections, 

disturb the heliosphere, creating space weather and causing geomagnetic storms.  

 

Earth's magnetic field stops its atmosphere from being stripped away by the solar wind. 

Venus and Mars do not have magnetic fields, and as a result, the solar wind causes their 

atmospheres to gradually bleed away into space. Coronal mass ejections and similar events 

blow a magnetic field and huge quantities of material from the surface of the Sun.  

 

2.2.3 | INNER SOLAR SYSTEM 

The inner Solar System is the traditional name for the region comprising the terrestrial 

planets and asteroids. Composed mainly of silicates and metals, the objects of the inner 

Solar System are relatively close to the Sun; the radius of this entire region is shorter than 

the distance between the orbits of Jupiter and Saturn.  
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The four inner or terrestrial planets have dense, rocky compositions, few or no moons, and 

no ring systems. They are composed largely of refractory minerals, such as the silicates, 

which form their crusts and mantles, and metals such as iron and nickel, which form their 

cores. Three of the four inner planets (Venus, Earth and Mars) have atmospheres 

substantial enough to generate weather; all have impact craters and tectonic surface 

features such as rift valleys and volcanoes. The term inner planet should not be confused 

with inferior planet, which designates those planets that are closer to the Sun than Earth is 

(i.e. Mercury and Venus). 

Asteroids are small Solar System bodies composed mainly of refractory rocky and metallic 

minerals, with some ice. The asteroid belt occupies the orbit between Mars and Jupiter, 

between 2.3 and 3.3 AU from the Sun. It is thought to be remnants from the Solar System's 

formation that failed to coalesce because of the gravitational interference of Jupiter. 

Asteroids range in size from hundreds of kilometers across to microscopic. All asteroids 

except the largest, Ceres, are classified as small Solar System bodies.   

 

Image comment: Solar System Details 

Image source:  www.bestinfographics.info/solar-system/  
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Image comment: The Solar System 

Image credits:  mail.colonial.net/~hkaiter/solarsysteminfo.html 

2.2.4 | OUTER SOLAR SYSTEM 

The outer region of the Solar System is home to the gas giants and their large moons. Many 

short-period comets, including the centaurs, also orbit in this region. Due to their greater 

distance from the Sun, the solid objects in the outer Solar System contain a higher 

proportion of volatiles, such as water, ammonia and methane, than the rocky denizens of the 

inner Solar System because the colder temperatures allow these compounds to remain 

solid. 

The four outer planets, or gas giants collectively make up 99% of the mass known to orbit 

the Sun. Jupiter and Saturn are each many tens of times the mass of the Earth and consist 

overwhelmingly of hydrogen and helium; Uranus and Neptune are far less massive (<20 

Earth masses) and possess more ices in their makeup. For these reasons, some 

astronomers suggest they belong in their own category, "Ice Giants". All four gas giants have 

rings, although only Saturn's ring system is easily observed from Earth. The term outer 

planet should not be confused with superior planet, which designates planets outside Earth's 

orbit and thus includes both the outer planets and Mars. 
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2.3 | THE SUN 

 

Our solar system's central star - the Sun - has inspired mythological stories in cultures 

around the world, including those of the ancient Egyptians, the Aztecs of Mexico, Native 

American tribes of North America and Canada, the Chinese and many others. A number of 

ancient cultures built stone structures or modified natural rock formations to mark the 

motions of the sun and Earth's Moon - they charted the seasons, created calendars and 

monitored solar and lunar eclipses. These architectural sites show evidence of deliberate 

alignments to astronomical phenomena: sunrises, moonrises, moonsets, even stars or 

planets. Many cultures believed that the Earth was immovable and the sun, other planets, 

and stars revolved around it. Ancient Greek astronomers and philosophers knew this 

geocentric concept from as early as the 6th century B.C. The sun has many names in many 

cultures. The ancient Greeks called it Helios and the ancient Romans called it "Sol," which 

was translated into sun in modern English.  

The sun is the closest star to Earth, at a mean distance from our planet of 149.60 million km 

(92.96 million miles). This distance is known as an astronomical unit (abbreviated AU), and 

sets the scale for measuring distances all across our solar system. The sun, a huge sphere 

of mostly ionized gas, supports life here on Earth. The connection and interactions between 

the sun and Earth drive the seasons, ocean currents, weather and climate. 

About one million Earths could fit inside the sun. It is held together by gravitational attraction, 

producing immense pressure and temperature at its core. The sun has six regions -- the 

http://solarsystem.nasa.gov/planets/profile.cfm?Object=Moon
http://solarsystem.nasa.gov/planets/profile.cfm?Object=Earth
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core, the radiative zone, and the convective zone in the interior; the visible surface (the 

photosphere); the chromosphere; and the outermost region -- the corona. 

At the core, the temperature is about 27 million degrees Fahrenheit (15 million degrees 

Celsius), which is sufficient to sustain thermonuclear fusion. The energy produced in the 

core powers the sun and produces essentially all the heat and light we receive on Earth. 

Energy from the core is carried outward by radiation, which bounces around the radiative 

zone, taking about 170,000 years to get from the core to the convective zone. The 

temperature drops below 3.5 million degrees Fahrenheit (2 million degrees Celsius) in the 

convective zone, where large bubbles of hot plasma (a soup of ionized atoms) move 

upwards. 

The sun's surface -- the photosphere -- is a 500-km thick (300-mile-thick) region, from which 

most of the sun's radiation escapes outward and is detected as the sunlight we observe here 

on Earth about eight minutes after it leaves the sun. Sunspots in the photosphere are areas 

with strong magnetic fields that are cooler, and thus darker, than the surrounding region. The 

number of sunspots goes up and down every 11 years as part of the sun's magnetic activity 

cycle. Also connected to this cycle are bright solar flares and huge coronal mass ejections 

that blast off the sun. 

The temperature of the photosphere is about 10,000 degrees Fahrenheit (5,500 degrees 

Celsius). Above the photosphere lie the tenuous chromosphere and the corona ("crown"). 

Visible light from these top regions is usually too weak to be seen against the brighter 

photosphere, but during total solar eclipses, when the Moon covers the photosphere, the 

chromosphere can be seen as a red rim around the sun while the corona forms a beautiful 

white crown with plasma streaming outward, forming the points of the crown. 

The temperature increases with altitude, reaching temperatures as high as 3.5 million 

degrees Fahrenheit (2 million degrees Celsius). The source of coronal heating has been a 

scientific mystery for more than 50 years. Likely solutions have emerged from observations 

by the SOHO and TRACE missions, which found patches of magnetic field covering the 

entire solar surface. Scientists now think that this magnetic carpet is probably a source of the 

corona's intense heat. The corona cools rapidly, losing heat as radiation and in the form of 

the solar wind -- a stream of charged particles that flows to the edge of the solar system. 
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2.3.1 | FACTS AND FIGURES – THE SUN 
   

   

Mean Radius 
 

 

Metric: 695,508 km 

English: 432,168.6 miles 

Scientific Notation: 6.9551 x 10
5
 km 

By Comparison: 109.2 x that of Earth 
 

   

Equatorial Circumference 
 

 

Metric: 4,370,005.6 km 

English: 2,715,395.6 miles 

Scientific Notation: 4.37001 x 10
6
 km 

By Comparison: 109.2 x that of Earth 
 

   

Volume 
 

 

Metric: 1,409,272,569,059,860,000 km
3
 

English: 338,102,469,632,763,000 mi
3
 

Scientific Notation: 1.40927 x 10
18

 km
3
 

By Comparison: 1,301,018.805 Earths 
 

   

Mass 
 

 

Metric: 1,989,100,000,000,000,000,000,000,000,000 kg 

English: 4,385,214,857,119,400,000,000,000,000,000 lbs 

Scientific Notation: 1.989 x 10
30

 kg 

By Comparison: 333,060.402 x Earth's 
 

   

Density 
 

 

Metric: 1.409 g/cm
3
 

By Comparison: 0.256 that of Earth 
 

   

Surface Area 
 

 

Metric: 6,078,747,774,547 km
2
 

English: 2,347,017,636,988 square miles 

Scientific Notation: 6.07877 x 10
12

 km
2
 

By Comparison: 11,917.607 Earths 
 

   

Surface Gravity 
 

 

Metric: 274.0 m/s
2
 

English: 899.0 ft/s
2
 

Scientific Notation: 2.740 x 10
2
 m/s

2
 

By Comparison: 27.96 x Earth's surface gravity 
 

   

Escape Velocity 
 

 

Metric: 2,223,720 km/h 

English: 1,381,756 mph 

Scientific Notation: 6.177 x 10
5
 m/s 

By Comparison: 55.20 x Earth 
 

   

Sidereal Rotation Period (Length of Day) 
 

 

25.38 Earth days  

609.12 hours  

By Comparison: Rotation slows to about 35 days at the poles. 
 

   

Minimum/Maximum Surface Temperature 
 

 

Metric: 5,500 °C 

English: 10,000 °F 
 

   

Effective Temperature 
 

 

Metric: 5504 °C 

English: 9939 °F 

Scientific Notation: 5777 K 
 

   
 

 

Source:  http://www.nasa.gov/home/index.html 
 

http://www.nasa.gov/home/index.html
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Image comment: Life cycle of the Sun 

Image source: http://jcconwell.files.wordpress.com/2009/07/sun_life.png?w=460 

 

THE SUN - INFORMATION: 

Age: 4.6 Billion Years 

Composition: 92.1% Hydrogen, 7.8% Helium  

Spectral Type: G2 V Luminosity: 3.83 x 10 33 ergs/sec. 

Synodic Period: 27.2753 days 

Rotation Period at Equator: 26.8 days 

Rotation Period at Poles: 36 days 

Velocity Relative to Near Stars: 19.7 km/s 

Mean Distance to Earth: 149.60 million km (92.96 million mi) (1 astronomical unit) 

Solar Constant (Total Solar Irradiance): 1.365 - 1.369 kW/m2  

 

 

 

Image comment: Solar Magnetic Field 

Image source:  www.jpl.nasa.gov/news/news.php?release=2012-177  

Solar wind is the plasma of charged particles (protons, electrons, and heavier ionized 

atoms) coming out of the Sun in all directions at very high speeds -- an average of about 

400 km/sec, almost a million mph! It is responsible for the anti-sunward tails of comets 

and the shape of the magnetic fields around the planets. Solar wind can also have a 

measurable effect on the flight paths of spacecraft. 
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http://helios.gsfc.nasa.gov/gloss_mn.html#magfield
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Image comment: Solar Anatomy 

Image source:  http://www.nasa.gov/images/ 
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2.4 | THE EARTH AND THE MOON 

 

The Blue marvel – Earth – the only planet where the magic exists, and it exists in varieties. 

Layers upon layers of ingredients have molded earth to its current form, with tectonic plates 

aligning continents and nations booming with cities, farmlands and forbidden landmasses, 

we are in the age where outer space is the next limit. Let us strip down all the political 

boundaries, the ethical dissimilarities, and multi-cultural philosophical insights, which wage 

war amongst ourselves and the coexistences of the copious systems. We are but children of 

the earth, and we share this planet with many living beings.  

 

Once upon a time the micro bacteria prospered on sea beds, small single celled living 

organisms; sequentially came an age when sea creatures and giant reptiles, aka dinosaurs 

ruled over earth and ocean floors. Then came an age where mammals, warm blooded 

creatures, started ovulating offspring in themselves. It needed shelter and enclosure from its 

surroundings, to stay in a constant environment. Gradually some of them started 

understanding the idea of self and their existence as a thought.  

 

In this day and age when humans rein superior; they find themselves building concrete 

systems and dazzled themselves with puzzling artifacts, new fashion trends and plastic 

knick-knacks. They have taken up the quest for reconnecting all that is seen and unseen. 

They have sent rockets into outer space to probe the galaxies and find celestial life, similar 

to our planet; and built Large Hadron Collider, expecting to address some of the still 

unsolved questions of science, advancing human understanding of the physical laws. God 

knows what they‘ll end up doing next. 

 

And all this time, the Moon was rotating around Earth, nonchalantly.  

https://en.wikipedia.org/wiki/Large_Hadron_Collider
https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_physics#High_energy_physics.2Fparticle_physics
https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_physics#High_energy_physics.2Fparticle_physics
https://en.wikipedia.org/wiki/Physical_law
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The Moon - Where did that come from? Is it just the one, or were there more before that?  

After years of research, studying gamma rays and rock samples from the Earth and the 

Moon, it is generally accepted that the ages of the Earth and the Moon are the same. There 

are several theories on its formation. 

 

 IMPACT: One theory is that it was formed from the Earth's crust, following the impact 

of a large (Mars-sized) asteroid. A long string of rocky fragments were blown out from 

the Earth in the form of a trail, which coalesced into the Moon. Supporting this, the 

Earth has a large iron core but the Moon does not: the Earth's iron would have 

already sunken into the core by the time the giant impact happened. 

 

 COACCRETION: Another theory, advocated by Edward Roche, is known as co 

accretion. It proposes the concurrent information of both the Earth and the Moon 

from clouds of space material. As a result the new Moon gets spun by the Earth's 

gravity field and starts to circle the Earth. The fact is that all smaller solar bodies 

appear to be irregularly shaped, but larger ones are nearly spherical. 

 

 FISSION: The fission theory states that the Moon long ago split off from a fast-

rotating Earth, like mud flung from a spinning bicycle wheel. The present Pacific 

Ocean basin is the most popular site for the part of the Earth from which the Moon 

may have come. This is not supported by evidence of higher rotational speed in the 

past. 

 

 CAPTURE: If the Moon formed separately, it could have come close enough to the 

Earth's gravitational field to be trapped. The angle of orbital approach would have to 

be within narrow parameters in relationship to the moving centre of the orbiting Earth. 

The chance of this occurrence is very low without some other gravitational 

interaction. 
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The prevailing theory at present is some form of early impact, possibly by a co-orbiting 

object that fused with the Earth after the collision, but that blasted loose the material which 

later formed the Moon.  

 

It is believed that the moon formed around 4.5 billion years ago and only a few hundred 

million years after the Earth. Today, based on the evidence, the most widely accepted 

scientific explanation for the formation of the Moon is called the Giant Impact Hypothesis. 

According to this model, the Moon formed from debris that was the result of a huge collision. 

Not long after Earth formed, a proto-planet about the size of Mars (often called Theia) 

smashed into it at a low angle and relatively low speed. The cataclysmic impact rendered the 

entire Earth molten, and caused significant amounts of its mantle and crust to be blown into 

space. The metallic core of the impactor sunk through the Earth's mantle to fuse with Earth's 

core, thereby depleting the Moon of metallic material and explaining its unusual composition. 

The force of the collision is also believed to have been responsible for tilting the Earth at 

angle of 23.5 degrees, allowing for seasons.  

 

The debris from the collision began orbiting the Earth and gathered together through gravity 

to form a sphere: the Moon. The Moon formed surprisingly quickly, possibly in less than a 

month but no more than a century. It started out closer to the Earth than it is today, and must 

have caused massive tides. Slowly, due to conservation of angular momentum, it moved 

further and further out until it got to the familiar orbit it is now. Even today, the Moon is 

receding from Earth by an inch and a half every year, but it will take billions of years for the 

Moon to escape from Earth's gravity altogether.  

There are still some problems with the Giant Impact hypothesis that need to be overcome. 

For example, the ratios of the Moon's volatile elements (such as water) are not explained by 

this model. Also, the moon's oxygen isotopic ratios are essentially identical to Earth's when 

they should be different. Regardless, the Giant Impact model is currently the best 

explanation scientists have based on the evidence that has been gathered, and holds more 

weight than the other theories for the Moon's formation. A detailed comparison of the 

properties of Lunar and Earth rock samples has placed very strong constraints on the 

possible validity of these hypotheses. For example, if the Moon came from material that 

once made up the Earth, then Lunar and Terrestrial rocks should be much more similar in 

composition than if the Moon was formed somewhere else and only later was captured by 

the Earth.  
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Image comment:  Formation of Earth – Moon System 

Image source:  http://moonandback.com/wp-content/uploads/2012/10/Canup_moonformation.jpg 

http://moonandback.com/wp-content/uploads/2012/10/Canup_moonformation.jpg
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These analyses indicate that the abundances of elements in Lunar and Terrestrial material 

are sufficiently different to make it unlikely that the Moon formed directly from the Earth. 

Generally, work over the last 10 years has essentially ruled out the first two explanations and 

made the third one rather unlikely. At present the fifth hypothesis, that the Moon was formed 

from a ring of matter ejected by collision of a large object with the Earth, is the favored 

hypothesis; however, the question is not completely settled and many details remain to the 

accounted for. The near symmetry of the collision causes the disk‘s composition to be 

extremely similar to that of the final planet‘s mantle over a relatively broad range of impact 

angles and speeds, consistent with the Earth-Moon compositional similarities. The new 

impacts produce an Earth that is rotating 2 to 2.5 times faster than implied by the current 

angular momentum of the Earth-Moon system, which is contained in both the Earth‘s rotation 

and the Moon‘s orbit. 

However, in an accompanying paper in Science, Dr. Matija Ćuk, SETI Institute, and Dr. 

Sarah T. Stewart, Harvard University, show that a resonant interaction between the early 

Moon and the Sun — known as the evection resonance — could have decreased the 

angular momentum of the Earth-Moon system by this amount soon after the Moon-forming 

impact. In addition to the impacts identified in Canup‘s paper, Ćuk and Stewart show that 

impacts involving a much smaller, high-velocity impactor colliding into a target that is rotating 

very rapidly due to a prior impact can also produce a disk-planet system with similar 

compositions. After colliding once, the two similar-sized bodies re-collided and then merged 

briefly before separating into an early Earth surrounded by a disk of material that would 

coalesce into the Moon. The re-collision and merging left the two bodies with the similar 

chemical compositions seen today. One of the challenges to longstanding theory of the 

collision is that it likely would have left the Earth and Moon with different chemical 

compositions. The giant impact hypothesis has been a widely accepted theory for how the 

Earth-Moon system formed. In the giant impact scenario, the Moon forms from debris 

ejected into an Earth-orbiting disk by the collision of a smaller proto-planet with the early 

Earth. Earlier models found that most or much of the disk material would have originated 

from the Mars-sized impacting body, whose composition likely would have differed 

substantially from that of Earth. 

 

 

 

 

 



T H E O D O R E  H A L D E R  | 37 

 

2.4.1 | EARTH 

 

The third planet from the Sun – Earth – is a marvel of its kind. This Blue Planet, Earth 

formed approximately 4.54 billion years ago, and the only planet where life prospers on its 

surface. Earth's biosphere then significantly altered the atmospheric and other basic physical 

conditions, which enabled the explosion of organisms as well as the formation of the ozone 

layer, which together with Earth's magnetic field blocked harmful solar radiation, and 

permitted formerly ocean-confined life to move safely to land. The physical properties of the 

Earth, as well as its geological history and orbit, have allowed life to persist. Estimates on 

how much longer the planet will be able to continue to support life range from 500 million  

Image comment: Formation of Earth  

Image source: www.skepticblog.org/tag/expanding-earth 

 

Earth's lithosphere is divided into several rigid segments, or tectonic plates, that migrate 

across the surface over periods of many millions of years. About 71% of the surface is 

covered by salt water oceans, with the remainder consisting of continents and islands which 

together have many lakes and other sources of water that contribute to the hydrosphere. 

Earth's poles are mostly covered with ice that is the solid ice of the Antarctic ice sheet and 

the sea ice that is the polar ice packs. The planet's interior remains active, with a solid iron 

inner core, a liquid outer core that generates the magnetic field, and a thick layer of relatively 

solid mantle. 
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Earth gravitationally interacts with other objects in space, especially the Sun and the Moon. 

During one orbit around the Sun, the Earth rotates about its own axis 366.26 times, creating 

365.26 solar days, or one sidereal year. The Earth's axis of rotation is tilted 23.4° away from 

the perpendicular of its orbital plane, producing seasonal variations on the planet's surface 

with a period of one tropical year (365.24 solar days).  

Earth is a terrestrial planet, meaning that it is a rocky body, rather than a gas 

giant like Jupiter. It is the largest of the four terrestrial planets in size and mass. Of these 

four planets, Earth also has the highest density, the highest surface gravity, the strongest 

magnetic field, and fastest rotation, and is probably the only one with active plate tectonics. 

 

Image comment:  Inside Earth 

Image source: http://osprotetoresonline.blogspot.com/2012_11_01_archive.html 

2.4.1.1 | SHAPE 

The shape of the Earth approximates an oblate spheroid, a sphere flattened along the axis 

from pole to pole such that there is a bulge around the equator. This bulge results from 

the rotation of the Earth, and causes the diameter at the equator to be 43 km (kilometer) 

larger than the pole-to-pole diameter. For this reason the furthest point on the surface from 

the Earth's center of mass is the Chimborazo volcano in Ecuador. The average diameter of 

the reference spheroid is about12,742 km, which is approximately 40,000 km/π, as 

the meter was originally defined as 1/10,000,000 of the distance from the equator to 

the North Pole through Paris, France.  
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Local topography deviates from this idealized spheroid, although on a global scale, these 

deviations are small: Earth has a tolerance of about one part in about 584, or 0.17%, from 

the reference spheroid, which is less than the 0.22% tolerance allowed in billiard balls. The 

largest local deviations in the rocky surface of the Earth are Mount Everest (8,848 m above 

local sea level) and the Mariana Trench (10,911 m below local sea level). Due to the 

equatorial bulge, the surface locations farthest from the center of the Earth are the summits 

of Mount Chimborazo in Ecuador and Huascarán in Peru. 

 

2.4.1.2 | CHEMICAL COMPOSITION 

The mass of the Earth is approximately 5.98×1024 kg. It is composed mostly 

of iron (32.1%), oxygen (30.1%), silicon (15.1%), magnesium (13.9%), sulfur (2.9%), nickel  

(1.8%), calcium (1.5%), and aluminium (1.4%); with the remaining 1.2% consisting of trace 

amounts of other elements. Due to mass segregation, the core region is believed to be 

primarily composed of iron (88.8%), with smaller amounts of nickel (5.8%), sulfur (4.5%), 

and less than 1% trace elements.  

The geochemist F. W. Clarke calculated that a little more than 47% of the 

Earth's crust consists of oxygen. The more common rock constituents of the Earth's crust 

are nearly all oxides; chlorine, sulfur and fluorine are the only important exceptions to this 

and their total amount in any rock is usually much less than 1%. The principal oxides are 

silica, alumina, iron oxides, lime, magnesia, potash and soda. The silica functions principally 

as an acid, forming silicates, and all the commonest minerals of igneous rocks are of this 

nature. From a computation based on 1,672 analyses of all kinds of rocks, Clarke deduced 

that 99.22% were composed of 11 oxides (see the table at right), with the other constituents 

occurring in minute quantities.  

 

2.4.1.3 | INTERNAL STRUCTURE 

The interior of the Earth, like that of the other terrestrial planets, is divided into layers by 

their chemical or physical (rheological) properties, but unlike the other terrestrial planets, it 

has a distinct outer and inner core. The outer layer of the Earth is a chemically 

distinct silicate solid crust, which is underlain by a highly viscous solid mantle. The crust is 

separated from the mantle by the Mohorovičić discontinuity, and the thickness of the crust 

varies: averaging 6 km(kilometers) under the oceans and 30-50 km on the continents. The 

crust and the cold, rigid, top of the upper mantle are collectively known as the lithosphere, 

and it is of the lithosphere that the tectonic plates are comprised. Beneath the lithosphere is 

the asthenosphere, a relatively low-viscosity layer on which the lithosphere rides. Important 

changes in crystal structure within the mantle occur at 410 and 660 km below the surface, 
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spanning a transition zone that separates the upper and lower mantle. Beneath the mantle, 

an extremely low viscosity liquid outer core lies above a solid inner core. The inner core may 

rotate at a slightly higher angular velocity than the remainder of the planet, advancing by 

0.1–0.5° per year.  

 

2.4.1.4 | HEAT 

Earth's internal heat comes from a combination of residual heat from planetary 

accretion (about 20%) and heat produced through radioactive decay (80%). The major heat-

producing isotopes in the Earth are potassium-40, uranium-238, uranium-235, and thorium-

232. At the center of the planet, the temperature may be up to 6,000 °C (10,830 °F), and the 

pressure could reach 360 GPa. Because much of the heat is provided by radioactive decay, 

scientists believe that early in Earth history, before isotopes with short half-lives had been 

depleted, Earth's heat production would have been much higher. This extra heat production, 

twice present-day at approximately 3 byr, would have increased temperature gradients 

within the Earth, increasing the rates of mantle convection and plate tectonics, and allowing 

the production of igneous rocks such as komatiites that are not formed today.  

 

Image comment:  The Earth‘s Core 

Image source: http://scientificillustration.tumblr.com/post/25350933578/rhamphotheca-earths-core-the-enigma-1-800 

 

The mechanically rigid outer layer of the Earth, the lithosphere, is broken into pieces called 

tectonic plates. These plates are rigid segments that move in relation to one another at one 

of three types of plate boundaries: Convergent boundaries, at which two plates come 
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together, Divergent boundaries, at which two plates are pulled apart, and Transform 

boundaries, in which two plates slide past one another laterally. Earthquakes, volcanic 

activity, mountain-building, and trench formation can occur along these plate 

boundaries. The tectonic plates ride on top of the asthenosphere, the solid but less-viscous 

part of the upper mantle that can flow and move along with the plates, and their motion is 

strongly coupled with convection patterns inside the Earth's mantle. 

As the tectonic plates migrate across the planet, the ocean floor is subducted under the 

leading edges of the plates at convergent boundaries. At the same time, the upwelling of 

mantle material at divergent boundaries creates mid-ocean ridges. The combination of these 

processes continually recycles the oceanic crust back into the mantle. Due to this recycling, 

most of the ocean floor is less than 100 myr old in age. The oldest oceanic crust is located in 

the Western Pacific, and has an estimated age of about 200 myr. By comparison, the oldest 

dated continental crust is 4,030 myr.  

The seven major plates are the Pacific, North American, Eurasian, African, Antarctic, Indo-

Australian, and South American. Other notable plates include the Arabian Plate, 

the Caribbean Plate, the Nazca Plate off the west coast of South America and the Scotia 

Plate in the southern Atlantic Ocean. The Australian Plate fused with the Indian Plate 

between 50 and 55 mya. The fastest-moving plates are the oceanic plates, with the Cocos 

Plate advancing at a rate of 75 mm/year and the Pacific Plate moving 52–69 mm/year. At the 

other extreme, the slowest-moving plate is the Eurasian Plate, progressing at a typical rate 

of about 21 mm/year.  

 

 

Image comment:  Continental Plate Tectonic Movement 

Image source: http://www.earthhistory.org.uk/key-concepts/plate-tectonics-1 
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2.4.1.5 | SURFACE 

The Earth's terrain varies greatly from place to place. About 70.8% of the surface is covered 

by water, with much of the continental shelf below sea level. This equates 

to 361.132 million km2 (139.43 million sq mi). The submerged surface has mountainous 

features, including a globe-spanning mid-ocean ridge system, as well as undersea 

volcanoes, oceanic trenches, submarine canyons, oceanic plateaus and abyssal plains. The 

remaining 29.2% (148.94 million km2, or 57.51 million sq mi) not covered by water consists 

of mountains, deserts, plains, plateaus, and other geomorphologies. 

The planetary surface undergoes reshaping over geological time periods due to tectonics 

and erosion. The surface features built up or deformed through plate tectonics are subject to 

steady weathering from precipitation, thermal cycles, and chemical effects. Glaciations,   

coastal erosion, the build-up of coral reefs, and large meteorite impacts also act to reshape 

the landscape. 

The continental crust consists of lower density material such as the igneous 

rocks granite and andesite. Less common is basalt, a denser volcanic rock that is the 

primary constituent of the ocean floors. Sedimentary rock is formed from the accumulation of 

sediment that becomes compacted together. Nearly 75% of the continental surfaces are 

covered by sedimentary rocks, although they form only about 5% of the crust. The third form 

of rock material found on Earth is metamorphic rock, which is created from the 

transformation of pre-existing rock types through high pressures, high temperatures, or both. 

The most abundant silicate minerals on the Earth's surface include quartz, 

the feldspars, amphibole, mica, pyroxene and olivine. Common carbonate minerals 

include calcite (found in limestone) and dolomite.  

The pedosphere is the outermost layer of the Earth that is composed of soil and subject 

to soil formation processes. It exists at the interface of the lithosphere, atmosphere, 

 hydrosphere and biosphere. Currently the total arable land is 13.31% of the land surface, 

with only 4.71% supporting permanent crops. Close to 40% of the Earth's land surface is 

presently used for cropland and pasture, or an estimated 1.3×107 km2 of cropland and 

3.4×107 km2 of pastureland.  

The elevation of the land surface of the Earth varies from the low point of −418 m at 

the Dead Sea, to a 2005-estimated maximum altitude of 8,848 m at the top of Mount 

Everest. The mean height of land above sea level is 840 m.  

Besides being divided logically into Northern and Southern Hemispheres centered on the 

earth‘s poles, the earth has been divided arbitrarily into Eastern and Western Hemispheres. 
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Image comment: Earth Lighting Equinox 

Image credits: en.wikipedia.org/wiki/Equinox 

 

2.4.1.6 | HYDROSPHERE 

The abundance of water on Earth's surface is a unique feature that distinguishes the "Blue 

Planet" from others in the Solar System. The Earth's hydrosphere consists chiefly of the 

oceans, but technically includes all water surfaces in the world, including inland seas, lakes, 

rivers, and underground waters down to a depth of 2,000 m. The deepest underwater 

location is Challenger Deep of the Mariana Trenchin the Pacific Ocean with a depth of 

−10,911.4 m.  

 

The mass of the oceans is approximately 1.35×1018 metric tons, or about 1/4400 of the total 

mass of the Earth. The oceans cover an area of 3.618×108 km2 with a mean depth 

of 3,682 m, resulting in an estimated volume of1.332×109 km3. If all the land on Earth were 

spread evenly, water would rise to an altitude of more than 2.7 km. About 97.5% of the water 

is saline, while the remaining 2.5% is fresh water. Most fresh water, about 68.7%, is 

currently ice.  

 

The average salinity of the Earth's oceans is about 35 grams of salt per kilogram of sea 

water (35 ‰ salt). Most of this salt was released from volcanic activity or extracted from cool, 

igneous rocks. The oceans are also a reservoir of dissolved atmospheric gases, which are 

essential for the survival of many aquatic life forms. Sea water has an important influence on 

the world's climate, with the oceans acting as a large heat reservoir. Shifts in the oceanic 

temperature distribution can cause significant weather shifts, such as the El Niño-Southern 

Oscillation.  
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2.4.1.7 | WEATHER AND CLIMATE 

The Earth's atmosphere has no definite boundary, slowly becoming thinner and fading into 

outer space. Three-quarters of the atmosphere's mass is contained within the first 11 km of 

the planet's surface. This lowest layer is called the troposphere. Energy from the Sun heats 

this layer, and the surface below, causing expansion of the air. This lower-density air then 

rises, and is replaced by cooler, higher-density air. The result is atmospheric circulation that 

drives the weather and climate through redistribution of thermal energy.  

 

The primary atmospheric circulation bands consist of the trade winds in the equatorial region 

below 30° latitude and the westerlies in the mid-latitudes between 30° and 60°. Ocean 

currents are also important factors in determining climate, particularly the thermohaline 

circulation that distributes thermal energy from the equatorial oceans to the polar regions.  

 

Water vapor generated through surface evaporation is transported by circulatory patterns in 

the atmosphere. When atmospheric conditions permit an uplift of warm, humid air, this water 

condenses and settles to the surface as precipitation. Most of the water is then transported 

to lower elevations by river systems and usually returned to the oceans or deposited into 

lakes. This water cycle is a vital mechanism for supporting life on land, and is a primary 

factor in the erosion of surface features over geological periods. Precipitation patterns vary 

widely, ranging from several meters of water per year to less than a millimeter. Atmospheric 

circulation, topological features and temperature differences determine the average 

precipitation that falls in each region.  

 

The amount of solar energy reaching the Earth's decreases with increasing latitude. At 

higher latitudes the sunlight reaches the surface at lower angles and it must pass through 

thicker columns of the atmosphere. As a result, the mean annual air temperature at sea level 

decreases by about 0.4 °C per degree of latitude away from the equator. The Earth can be 

subdivided into specific latitudinal belts of approximately homogeneous climate. Ranging 

from the equator to the polar regions, these are the tropical (or equatorial), subtropical,  

temperate and polar climates. Climate can also be classified based on the temperature and 

precipitation, with the climate regions characterized by fairly uniform air masses. The 

commonly used Köppen climate classification system (as modified by Wladimir Köppen's 

student Rudolph Geiger) has five broad groups (humid tropics, arid, humid middle 

latitudes, continental and cold polar), which are further divided into more specific subtypes.  
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2.4.1.8 | UPPER ATMOSPHERE 

 

Image comment:  The Upper Atmosphere 

Image credits: http://www.whatkatiedoes.net/2009/11/vintage-vs-modern-infographics.html 

Above the troposphere, the atmosphere is usually divided into the stratosphere, mesosphere 

and thermosphere. Each layer has a different lapse rate, defining the rate of change in 

temperature with height. Beyond these, the exosphere thins out into the magnetosphere, 

where the Earth's magnetic fields interact with the solar wind. Within the stratosphere is the 

ozone layer, a component that partially shields the surface from ultraviolet light and thus is 

important for life on Earth. TheKármán line, defined as 100 km above the Earth's surface, is 

a working definition for the boundary between atmosphere and space.  

 

Thermal energy causes some of the molecules at the outer edge of the Earth's atmosphere 

to increase their velocity to the point where they can escape from the planet's gravity. This 

causes a slow but steady leakage of the atmosphere into space. Because 

unfixed hydrogen has a low molecular weight, it can achieve escape velocity more readily 

and it leaks into outer space at a greater rate than other gasses. The leakage of hydrogen 

into space contributes to the pushing of the Earth from an initially reducing state to its 

current oxidizing one. Photosynthesis provided a source of free oxygen, but the loss of 

reducing agents such as hydrogen is believed to have been a necessary precondition for the 

widespread accumulation of oxygen in the atmosphere. Hence the ability of hydrogen to 

escape from the Earth's atmosphere may have influenced the nature of life that developed 
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on the planet. In the current, oxygen-rich atmosphere most hydrogen is converted into water 

before it has an opportunity to escape. Instead, most of the hydrogen loss comes from the 

destruction of methane in the upper atmosphere.  

 

2.4.1.9 | MAGNETIC FIELD 

 

Image comment:  Sun - Earth Magnetic Fields 

Image credits: http://www.whatkatiedoes.net/2009/magnet 

  

The Earth's magnetic field is shaped roughly as a magnetic dipole, with the poles currently 

located proximate to the planet's geographic poles. At the equator of the magnetic field, the 

magnetic field strength at the planet's surface is3.05 × 10−5 T, with global magnetic dipole 

moment of 7.91 × 1015 T m3. According to dynamo theory, the field is generated within the 

molten outer core region where heat creates convection motions of conducting materials, 

generating electric currents. These in turn produce the Earth's magnetic field. The 

convection movements in the core are chaotic; the magnetic poles drift and periodically 

change alignment. This causes field reversals at irregular intervals averaging a few times 

every million years. The most recent reversal occurred approximately 700,000 years ago. 

 

The field forms the magnetosphere, which deflects particles in the solar wind. The sunward 

edge of the bow shock is located at about 13 times the radius of the Earth. The collision 

between the magnetic field and the solar wind forms the Van Allen radiation belts, a pair of 

concentric, torus-shaped regions of energetic charged particles. When the plasma enters the 

Earth's atmosphere at the magnetic poles, it forms the aurora.  
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2.4.1.10 | ROTATION 

Earth's rotation period relative to the Sun—its mean solar day—is 86,400 seconds of mean 

solar time (86,400.0025 SI seconds). As the Earth's solar day is now slightly longer than it 

was during the 19th century due to tidal acceleration, each day varies between 0 and 

2 SI ms longer.  

 

Earth's rotation period relative to the fixed stars, called its stellar day by the International 

Earth Rotation and Reference Systems Service (IERS), is 86,164.098903691 seconds of 

mean solar time (UT1), or23h 56m 4.098903691s. Earth's rotation period relative to 

the processing or moving mean vernal equinox, misnamed its sidereal day, 

is 86,164.09053083288 seconds of mean solar time (UT1) (23h 56m 4.09053083288s) as of 

1982. Thus the sidereal day is shorter than the stellar day by about 8.4 ms. The length of the 

mean solar day in SI seconds is available from the IERS for the periods 1623–2005 and 

1962–2005.  

Apart from meteors within the atmosphere and low-orbiting satellites, the main apparent 

motion of celestial bodies in the Earth's sky is to the west at a rate of 15°/h = 15'/min. For 

bodies near the celestial equator, this is equivalent to an apparent diameter of the Sun or 

Moon every two minutes; from the planet's surface, the apparent sizes of the Sun and the 

Moon are approximately the same.  

 

2.4.1.11 | ORBIT 

Earth orbits the Sun at an average distance of about 150 million kilometers every 365.2564 

mean solar days, or one sidereal year. From Earth, this gives an apparent movement of the 

Sun eastward with respect to the stars at a rate of about 1°/day, which is one apparent Sun 

or Moon diameter every 12 hours. Due to this motion, on average it takes 24 hours—a solar 

day—for Earth to complete a full rotation about its axis so that the Sun returns to 

the meridian. The orbital speed of the Earth averages about 29.8 km/s (107,000 km/h), 

which is fast enough to travel a distance equal to the planet's diameter, about 12,742 km, in 

seven minutes, and the distance to the Moon, 384,000 km, in about 3.5 hours.  

The Moon revolves with the Earth around a common barycenter every 27.32 days relative to 

the background stars. When combined with the Earth–Moon system's common revolution 

around the Sun, the period of the synodic month, from new moon to new moon, is 

29.53 days. Viewed from the celestial north pole, the motion of Earth, the Moon and their 

axial rotations are all counterclockwise. Viewed from a vantage point above the north poles 
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of both the Sun and the Earth, the Earth revolves in a counterclockwise direction about the 

Sun. The orbital and axial planes are not precisely aligned: Earth's axis is tilted some 

23.4 degrees from the perpendicular to the Earth–Sun plane (the ecliptic), and the Earth–

Moon plane is tilted up to ±5.1 degrees against the Earth–Sun plane. Without this tilt, there 

would be an eclipse every two weeks, alternating between lunar eclipses and solar 

eclipses.[3][144] 

The Hill sphere, or gravitational sphere of influence, of the Earth is about 1.5 Gm or 

1,500,000 km in radius. This is the maximum distance at which the Earth's gravitational 

influence is stronger than the more distant Sun and planets. Objects must orbit the Earth 

within this radius, or they can become unbound by the gravitational perturbation of the Sun. 

Earth, along with the Solar System, is situated in the Milky Way galaxy and orbits about 

28,000 light years from the center of the galaxy. It is currently about 20 light years above 

the galactic plane in the Orion spiral arm.  
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Image comment:  8 Phases of the Moon 

Image credits:  visual.ly/8-phases-moon 
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2.4.1.12 | AXIAL TILT AND SEASONS 

 

Image comment:  Earth-Moon-Incline 

Image credits: http://www.dailykos.com/story/2012/02/13/1053999/-Getting-to-Know-Your-Solar-System-10-Luna 

Due to the axial tilt of the Earth, the amount of sunlight reaching any given point on the 

surface varies over the course of the year. This causes seasonal change in climate, with 

summer in the northern hemisphere occurring when the North Pole is pointing toward the 

Sun, and winter taking place when the pole is pointed away. During the summer, the day 

lasts longer and the Sun climbs higher in the sky. In winter, the climate becomes generally 

cooler and the days shorter. Above the Arctic Circle, an extreme case is reached where 

there is no daylight at all for part of the year—a polar night. In the southern hemisphere the 

situation is exactly reversed, with the South Pole oriented opposite the direction of the North 

Pole. 

By astronomical convention, the four seasons are determined by the solstices—the point in 

the orbit of maximum axial tilt toward or away from the Sun—and the equinoxes, when the 

direction of the tilt and the direction to the Sun are perpendicular. In the northern 

hemisphere, Winter Solstice occurs on about December 21, Summer Solstice is near 

June 21, Spring Equinox is around March 20 and Autumnal Equinox is about September 23. 

In the Southern hemisphere, the situation is reversed, with the Summer and Winter Solstices 

exchanged and the Spring and Autumnal Equinox dates switched.  

The angle of the Earth's tilt is relatively stable over long periods of time. The tilt does 

undergo nutation; a slight, irregular motion with a main period of 18.6 years.[148] The 

orientation (rather than the angle) of the Earth's axis also changes over time, 

precessing around in a complete circle over each 25,800 year cycle; this precession is the 
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reason for the difference between a sidereal year and a tropical year. Both of these motions 

are caused by the varying attraction of the Sun and Moon on the Earth's equatorial bulge. 

From the perspective of the Earth, the poles also migrate a few meters across the surface. 

This polar motion has multiple, cyclical components, which collectively are 

termed quasiperiodic motion. In addition to an annual component to this motion, there is a 

14-month cycle called the Chandler wobble. The rotational velocity of the Earth also varies in 

a phenomenon known as length of day variation.  

In modern times, Earth's perihelion occurs around January 3, and the aphelion around 

July 4. These dates change over time due to precession and other orbital factors, which 

follow cyclical patterns known as Milankovitch cycles. The changing Earth–Sun distance 

causes an increase of about 6.9% in solar energy reaching the Earth at perihelion relative to 

aphelion. Since the southern hemisphere is tilted toward the Sun at about the same time that 

the Earth reaches the closest approach to the Sun, the southern hemisphere receives 

slightly more energy from the Sun than does the northern over the course of a year. This 

effect is much less significant than the total energy change due to the axial tilt, and most of 

the excess energy is absorbed by the higher proportion of water in the southern hemisphere.  

 

2.4.1.13 | HABITABILITY 

A planet that can sustain life is termed habitable, even if life did not originate there. The 

Earth provides liquid water—an environment where complex organic molecules can 

assemble and interact, and sufficient energy to sustain metabolism. The distance of the 

Earth from the Sun, as well as its orbital eccentricity, rate of rotation, axial tilt, geological 

history, sustaining atmosphere and protective magnetic field all contribute to the current 

climatic conditions at the surface.  

 

2.4.1.14 | BIOSPHERE 

A planet's life forms are sometimes said to form a "biosphere". The Earth's biosphere is 

generally believed to have begun evolving about 3.5 bya. The biosphere is divided into a 

number of biomes, inhabited by broadly similar plants and animals. On land, biomes are 

separated primarily by differences in latitude, height above sea level and humidity. 

Terrestrial biomes lying within the Arctic or Antarctic Circles, at high altitudes or in extremely 

arid areas are relatively barren of plant and animal life; species diversity reaches a peak 

in humid lowlands at equatorial latitudes. 

http://en.wikipedia.org/wiki/Tropical_year
http://en.wikipedia.org/wiki/Polar_motion
http://en.wikipedia.org/wiki/Quasiperiodic_motion
http://en.wikipedia.org/wiki/Chandler_wobble
http://en.wikipedia.org/wiki/Perihelion
http://en.wikipedia.org/wiki/Aphelion
http://en.wikipedia.org/wiki/Precession_%28astronomy%29
http://en.wikipedia.org/wiki/Milankovitch_cycles
http://en.wikipedia.org/wiki/Metabolism
http://en.wikipedia.org/wiki/Evolution
http://en.wikipedia.org/wiki/Biome
http://en.wikipedia.org/wiki/Elevation
http://en.wikipedia.org/wiki/Humidity
http://en.wikipedia.org/wiki/Tundra
http://en.wikipedia.org/wiki/Arctic_Circle
http://en.wikipedia.org/wiki/Antarctic_Circle
http://en.wikipedia.org/wiki/Alpine_tundra
http://en.wikipedia.org/wiki/Desert
http://en.wikipedia.org/wiki/Desert
http://en.wikipedia.org/wiki/Latitudinal_gradients_in_species_diversity
http://en.wikipedia.org/wiki/Tropical_rainforest


52 | T H E O D O R E  H A L D E R   

 

The Earth provides resources that are exploitable by humans for useful purposes. Some of 

these are non-renewable resources, such as mineral fuels, that are difficult to replenish on a 

short time scale. 

Large deposits of fossil fuels are obtained from the Earth's crust, consisting of coal, 

petroleum, natural gas and methane clathrate. These deposits are used by humans both for 

energy production and as feedstock for chemical production. Mineral ore bodies have also 

been formed in Earth's crust through a process of Ore genesis, resulting from actions of 

erosion and plate tectonics. These bodies form concentrated sources for many metals and 

other useful elements. 

The Earth's biosphere produces many useful biological products for humans, including (but 

far from limited to) food, wood, pharmaceuticals, oxygen, and the recycling of many organic 

wastes. The land-based ecosystem depends upon topsoil and fresh water, and the oceanic 

ecosystem depends upon dissolved nutrients washed down from the land. In 1980, 

5,053 Mha of the Earth's land surface consisted of forest and woodlands, 6,788 Mha were 

grasslands and pasture, and 1,501 Mha was cultivated as croplands. The estimated amount 

of irrigated land in 1993 was 2,481,250 square kilometres (958,020 sq mi). Humans also live 

on the land by using building materials to construct shelters. 

 

2.4.1.15 | NATURAL AND ENVIRONMENTAL HAZARDS 

Large areas of the Earth's surface are subject to extreme weather such as 

tropical cyclones, hurricanes, or typhoons that dominate life in those areas. From 1980 to 

2000, these events caused an average of 11,800 deaths per year. Many places are subject 

to earthquakes, landslides, tsunamis, volcanic eruptions, tornadoes, sinkholes, blizzards, 

floods, droughts, wildfires, and other calamities and disasters. 

Many localized areas are subject to human-made pollution of the air and water, acid rain and 

toxic substances, loss of vegetation (overgrazing, deforestation, desertification), loss of 

wildlife, species extinction, soil degradation, soil depletion, erosion, and introduction 

of invasive species. 

According to the United Nations, a scientific consensus exists linking human activities 

to global warming due to industrial carbon dioxide emissions. This is predicted to produce 

changes such as the melting of glaciers and ice sheets, more extreme temperature ranges, 

significant changes in weather and a global rise in average sea levels.  
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2.4.1.16 | HUMAN GEOGRAPHY 

Cartography, the study and practice of map making, and vicariously geography, have 

historically been the disciplines devoted to depicting the Earth. Surveying, the determination 

of locations and distances, and to a lesser extent navigation, the determination of position 

and direction, have developed alongside cartography and geography, providing and suitably 

quantifying the requisite information. 

Earth has reached approximately 7,000,000,000 human inhabitants as of October 31, 

2011. Projections indicate that the world's human population will reach 9.2 billion in 

2050. Most of the growth is expected to take place in developing nations. Human population 

density varies widely around the world, but a majority live in Asia. By 2020, 60% of the 

world's population is expected to be living in urban, rather than rural, areas.  

It is estimated that only one-eighth of the surface of the Earth is suitable for humans to live 

on—three-quarters is covered by oceans, and half of the land area is either desert 

(14%), high mountains (27%), or other less suitable terrain. The northernmost permanent 

settlement in the world is Alert, on Ellesmere Island in Nunavut, Canada. (82°28′N) The 

southernmost is the Amundsen-Scott South Pole Station, in Antarctica, almost exactly at the 

South Pole. (90°S) 

Independent sovereign nations claim the planet's entire land surface, except for some parts 

of Antarctica and the odd unclaimed area of Bir Tawil between Egypt and Sudan. As of 

2013, there are 206 sovereign states, including the 193 United Nations member states. In 

addition, there are 59 dependent territories, and a number of autonomous areas, territories 

under dispute and other entities. Historically, Earth has never had asovereign government 

with authority over the entire globe, although a number of nation-states have striven 

for world domination and failed.  

The United Nations is a worldwide intergovernmental organization that was created with the 

goal of intervening in the disputes between nations, thereby avoiding armed conflict. The 

U.N. serves primarily as a forum for international diplomacy and international law. When the 

consensus of the membership permits, it provides a mechanism for armed intervention. 

The first human to orbit the Earth was Yuri Gagarin on April 12, 1961. In total, about 487 

people have visited outer space and reached Earth orbit as of July 30, 2010, and, of 

these, twelve have walked on the Moon. Normally the only humans in space are those on 

the International Space Station. The station's crew, currently six people, is usually replaced 

every six months. The furthest humans have travelled from Earth is 400,171 km, achieved 

during the 1970 Apollo 13 mission.  
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The 7 continents:      North America,     South America,      Antarctica,   

     Africa,      Europe,       Asia,      Australia 

Image comment:  7 continents of Earth 

Image credits: expattutor.wordpress.com/tag/how-many-continents-are-there/ 

2.4.1.17 | CULTURAL AND HISTORICAL VIEWPOINT 

The standard astronomical symbol of the Earth consists of a cross circumscribed by a circle.  

Unlike the rest of the planets in the Solar System, humankind did not begin to view the Earth 

as a moving object in orbit around the Sun until the 16th century. Earth has often been 

personified as a deity, in particular a goddess. In many cultures a mother goddess is also 

portrayed as a fertility deity. Creation myths in many religions recall a story involving the 

creation of the Earth by a supernatural deity or deities. A variety of religious groups, often 

associated with fundamentalist branches of Protestantism or Islam, assert that 

their interpretations of these creation myths in sacred texts are literal truth and should be 

considered alongside or replace conventional scientific accounts of the formation of the 

Earth and the origin and development of life. Such assertions are opposed by the scientific 

community and by other religious groups. A prominent example is the creation–evolution 

controversy. 

In the past, there were varying levels of belief in a flat Earth, but this was displaced 

by spherical Earth, a concept that has been credited to Pythagoras (6th century BC). The 

human perspective regarding the Earth has changed following the advent of spaceflight, and 

the biosphere is now widely viewed from a globally integrated perspective. This is reflected 

in a growing environmental movement that is concerned about humankind's effects on the 

planet.  
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The planet is home to millions of species of life, including humans.[29] Both the mineral 

resources of the planet and the products of the biosphere contribute resources that are used 

to support a global human population. These inhabitants are grouped into about 200 

independent sovereign states, which interact through diplomacy, travel, trade, and military 

action. Human cultures have developed many views of the planet, including its 

personification as a planetary deity, its shape as flat, its position as the center of the 

universe, and in the modern Gaia Principle, as a single, self-regulating organism in its own 

right. 

2.4.1.18 | FACTS AND FIGURES – EARTH 

 

Orbit Size Around Sun (semi-major axis) 

 

 

Metric: 149,598,262 km 

English: 92,956,050 miles 

Scientific Notation: 1.4959826 x 10
8
 km (1.000 A.U.) 

 

   

Perihelion (closest) 

 

 

Metric: 147,098,291 km 

English: 91,402,640 miles 

Scientific Notation: 1.47098 x 10
8
 km (9.833 x 10

-1
 A.U.) 

 

   

Aphelion (farthest) 

 

 

Metric: 152,098,233 km 

English: 94,509,460 miles 

Scientific Notation: 1.52098 x 10
8
 km (1.017 A.U.) 

 

   

Sidereal Orbit Period (Length of Year) 

 

 

1.0000174 Earth days 

365.26 Earth hours 

 

   

Orbit Circumference 

 

 

Metric: 939,887,974 km 

English: 584,019,311 miles 

Scientific Notation: 9.399 x 10
8
 km 

 

   

Average Orbit Velocity 

 

 

Metric: 107,218 km/h 

English: 66,622 mph 

Scientific Notation: 2.9783 x 10
4
 m/s 

 

   

Orbit Eccentricity 

 

 0.01671123 

 

   

Orbit Inclination 

 

 0.00005 degrees 

 

   

Equatorial Inclination to Orbit 

 

 23.4393 degrees 

 

   

Mean Radius 

 

 

Metric: 6,371.00 km 

English: 3,958.8 miles 

Scientific Notation: 6.3710 x 10
3
 km 

 

   

Equatorial Circumference 

 

 

Metric: 40,030.2 km 

English: 24,873.6 miles 

Scientific Notation: 4.00302 x 10
4
 km 
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Volume 

 

 

Metric: 1,083,206,916,846 km
3
 

English: 259,875,159,532 mi
3
 

Scientific Notation: 1.08321 x 10
12

 km
3
 

 

   

Mass 

 

 

Metric: 5,972,190,000,000,000,000,000,000 kg 

Scientific Notation: 5.9722 x 10
24

 kg 

 

   

Density 

 

 Metric: 5.513 g/cm
3
 

 

   

Surface Area 

 

 

Metric: 510,064,472 km
2
 

English: 196,936,994 square miles 

Scientific Notation: 5.1006 x 10
8
 km

2
 

 

   

Surface Gravity 

 

 

Metric: 9.80665 m/s
2
 

English: 32.041 ft/s
2
 

 

   

Escape Velocity 

 

 

Metric: 40,284 km/h 

English: 25,031 mph 

Scientific Notation: 1.119 x 10
4
 m/s 

 

   

Sidereal Rotation Period (Length of Day) 

 

 

0.99726968 Earth days 

23.934 hours 

 

   

Minimum/Maximum Surface Temperature 

 

 

Metric: -88/58 (min/max) °C 

English: -126/136 (min/max) °F 

Scientific Notation: 185/331 (min/max) K 

 

   

Atmospheric Constituents 

 

 

Nitrogen, Oxygen 

Scientific Notation: N2, O2 

 

Source:  http://www.nasa.gov/home/index.html 

We think of ourselves as living on a single planet, but in reality, we live in a system of two 

worlds. Our sister world, the Moon, is easily visible in our sky, and we can see its daily 

effects on ocean tides. The relationship between the two bodies was first appreciated in 

1968, when humans started to explore the other half of our system. 

The Moon affects the Earth in several observable ways. Consider the monthly movement of 

the Moon around our planet – we see the phases of the Moon cycle daily, as different parts 

of the Earth-facing side of the Moon are illuminated by the Sun. Many people superstitiously 

believe that the Moon influences human behavior by some unknown force, causing people to 

act strangely during a full Moon. However, this has never been convincingly proven. (Though 

there may be some tendency for more people to be out on full Moon nights and hence for 

more interesting events to happen.) 
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2.4.2 | THE MOON 

 

Image comment:  Lunar Phases 

Image credits:  http://3.bp.blogspot.com/-F1HQsufc4Qg/UFiBzjswAJI/AAAAAAAAAUI/2jdZMWLIR00/s1600/fases+lunares.png 

As Newton discovered, Earth‘s gravity attracts the Moon toward the Earth, and keeps it in 

orbit around the Earth. But gravity is a mutually attractive force. So the Moon is attracting the 

Earth, too. Since the force of gravity depends on the inverse square of the distance, the side 

of the Earth facing the Moon has a stronger force pulling toward the Moon than the opposite 

side, because it is closer to the Moon. The two unequal forces cause a net stretching force 

along the Earth-Moon axis, called a tidal force. Tidal forces occur any time there is a 

difference between the gravity on the two sides of a celestial body caused by the attraction 

of another body. The actual effect is to stretch the whole planet into a slightly football-like 

shape. This elongation of the solid Earth is actually very subtle – it results in a difference in 

the radii at the poles and the equator of only about 20 centimeters! 

The liquid ocean can move much more freely in response to tidal forces than the solid rocks 

inside the Earth. Water flows until it ―piles up‖ in tidal bulges on each side of the Earth. You 

may wonder about the fact that tides occur on both sides of the Earth. Why doesn‘t the 

attraction of gravity just cause the water to pile up on the side closest to the Earth? Just as 

the force of gravity is strongest on the side of the Earth facing the Moon, the force is weakest 

on the side away from the Moon. Less gravitational force on the far side means the water is 

not attracted as strongly, and it moves away from the center of gravity. Think of a spring as 

an analogy. When the spring is stretched, the distance between all parts of the spring 

increases. In the same way, the tidal stretching force applies to the oceans on both sides of 

the Earth. Since there are tides on opposite sides of the Earth, and the Earth rotates once 

per day, a given spot on the rotating Earth passes through two high-tide zones in one day. 
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If the tug of the Moon were the only thing causing tides, high tides would occur whenever the 

Moon is overhead, and then exactly 12 hours later. In fact, three effects complicate ocean 

tides. First, the Earth‘s rotation drags the tidal bulges out of line with the direction to the 

Moon. Second, coastlines complicate the flow of water, so that actual high tides occur in a 

complex rhythmic pattern. Third, the Sun contributes its own tidal forces. 

Image comment:  Lagrange_points 

Image credits: davesbrain.ca/art/science_illos/ 

The Sun is much more massive than the Moon, but it‘s also a lot farther away. When you 

calculate the resulting gravitational forces, the Sun‘s gravitational force on the Earth is much 

stronger than the Moon‘s gravitational force on the Earth. This is how the Sun keeps the 

Earth in orbit around it. However, because the Moon is so much closer, the differential force 

caused by the Moon is larger than the differential force caused by the Sun. So the Moon‘s 

tidal force is larger. The Sun has some tidal force on the Earth, too – but solar tides are only 

about half as high as lunar ones. When the Sun and Moon line up (new Moon and full 

Moon), the tides on Earth are especially high (spring tides). When they are 90º in opposition, 

the tides partially cancel each other out, and the resulting lower tides are called neap tides. 

The liquid oceans can move easily to respond to the Moon‘s influence. But the rocky mass of 

the Earth feels the same tidal forces, and it can‘t alleviate the stress by flowing freely. Land 

tides put extra stresses on the brittle rocks of the lithosphere. This can lead to earthquakes. 

Geologists have found that earthquakes do not occur randomly over time. There is a slightly 

higher chance of earthquakes near full Moon or new Moon, when the tidal forces are largest. 

You‘ve probably noticed that the features of the Moon always appear the same – the Moon 

actually orbits the Earth in such a way that the same side always points towards the Earth. 

This is because the force of gravity is working both ways – the Moon is slightly elongated by 
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its own tides, caused by the gravity of the Earth. Earth‘s gravity has forced the long axis of 

the Moon to face the planet, so that the Moon is tidally locked in synchronous rotation. 

Through a complex interplay of gravity, tidal forces are also slowing down the rotation of 

Earth. At the same time, the Moon is slowly spiraling further away from Earth. This is yet 

another example of the conservation of energy. As the Earth loses rotational kinetic energy 

by spinning more slowly, the gravitational potential energy increases as the Moon moves to 

a larger distance from the Earth. The total energy in the Earth-Moon system is conserved. If 

we follow these changes in reverse, backwards in time, we find that the Earth rotated faster. 

The Moon was closer to the Earth, so it orbited the Earth in fewer days. 

 

Image comment:  Interior of the Moon 

Image credits: zebu.uoregon.edu/~imamura/121/nov10/nov10.html  

 

What evidence do we have to support the theory that the spin of the Earth is slowing down? 

The Apollo astronauts placed laser reflectors on the Moon in order to measure lunar motions 

precisely. These measurements confirm that the Moon is moving very slowly away from the 

Earth, as predicted. In addition, paleontologists have studied the daily and monthly growth 

rings in fossilized coral and other organisms. The results show that one billion years ago, the 

Moon took only 23 days to go around the Earth, and the Earth rotated in only 18 hours! 

Somewhat controversial fossil data from 2.8 billion years ago suggest that the lunar month 

was as short as 17 days!  
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Image comment: Moon gravity acceleration Map 

Image credits: http://ottawa-rasc.ca/wiki/index.php?title=Hanmer-Articles-Moon-Two-Faces 
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2.4.2.1 | FACTS AND FIGURES – MOON 

Orbit Size Around Earth (semi-major 

axis) 
 

 

Metric: 384,400 km 

English: 238,855 miles 

Scientific Notation: 3.84400 x 10
5
 km (0.00257 A.U.) 

By Comparison: 0.00257 x Earth's Distance from the Sun 
 

   

Average Distance from Earth 
 

 

Metric: 384,400 km 

English: 238,855 miles 

Scientific Notation: 3.844 x 10
5
 km (2.570 x 10

-3
 A.U.) 

By Comparison: 0.00257 x Earth's distance from the Sun 
 

   

Perigee (closest) 
 

 

Metric: 363,104 km 

English: 225,623 miles 

Scientific Notation: 3.631 x 10
5
 km (2.427 x 10

-3
 A.U.) 

By Comparison: 0.00243 x Earth's distance from the Sun 
 

   

Apogee (farthest) 
 

 

Metric: 405,696 km 

English: 252,088 miles 

Scientific Notation: 4.051 x 10
5
 km (2.712 x 10

-3
 A.U.) 

By Comparison: 0.00271 x Earth's distance from the Sun 
 

   

Sidereal Orbit Period (Length of Year) 
 

 

0.074803559 Earth days 

27.322 Earth hours 
 

   

Orbit Circumference 
 

 

Metric: 2,413,402.16 km 

English: 1,499,618.58 miles 

Scientific Notation: 2.413 x 10
6
 km 

 

   

Average Orbit Velocity 
 

 

Metric: 3,680.5 km/h 

English: 2,287.0 mph 

Scientific Notation: 1,022 m/s 

By Comparison: 0.034 x Earth 
 

   

Orbit Eccentricity 
 

 

0.0554 

By Comparison: 3.315 x Earth 
 

   

Orbit Inclination 
 

 

5.16 degrees 

By Comparison: Oscillates roughly 0.15 degrees in 173 

days. 
 

   

Equatorial Inclination to Orbit 
 

 6.68 degrees 
 

   

Mean Radius 
 

 

Metric: 1737.5 km 

English: 1079.6 miles 

Scientific Notation: 1.738 x 10
3
 km 

By Comparison: 0.2727 x Earth 
 

   

Equatorial Circumference 
 

 

Metric: 10,917.0 km 

English: 6,783.5 miles 

Scientific Notation: 1.0917 x 10
4
 km 

 

   

Volume 
 

 

Metric: 21,971,669,064 km
3
 

Scientific Notation: 2.197 x 10
10

 km
3
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By Comparison: 0.020 x Earth 
 

   

Mass 
 

 

Metric: 73,476,730,924,573,500,000,000 kg 

Scientific Notation: 7.3477 x 10
22

 kg 

By Comparison: 0.0123 x Earth 
 

   

Density 
 

 

Metric: 3.344 g/cm
3
 

By Comparison: 0.607 x Earth 
 

   

Surface Area 
 

 

Metric: 37,936,694.79 km
2
 

English: 14,647,439.75 square miles 

Scientific Notation: 3.793669 x 10
7
 km

2
 

By Comparison: 0.074 x Earth 
 

   

Surface Gravity 
 

 

Metric: 1.624 m/s
2
 

English: 5.328 ft/s
2
 

Scientific Notation: 1.624 m/s
2
 

By Comparison: 0.166 x Earth 
 

   

Escape Velocity 
 

 

Metric: 8,552 km/h 

English: 5,314 mph 

Scientific Notation: 2,376 m/s 

By Comparison: 0.212 x Earth 
 

   

Sidereal Rotation Period (Length of 

Day) 
 

 

27.322 Earth days 

655.73 hours 

By Comparison: Synchronous with Orbital Period 
 

   

Minimum/Maximum Surface 

Temperature 
 

 

Metric: -233/123 °C 

English: -387/253 °F 

Scientific Notation: 40/396 K 
 

http://www.nasa.gov/home/index.html 

By studying the Earth and the Moon, scientists have been able to piece together their linked 

histories. Our planet and its satellite are a double system that formed 4.6 billion years ago. 

The Moon probably originated during a gigantic collision in the late stages of planetary 

formation, after the Earth‘s iron core formed. The Moon formed close to the Earth from the 

ejected material, and it has been slowly moving outward in its orbit ever since, due to tidal 

forces. The age of the Earth-Moon system and the chronology of the Earth‘s history are 

measured using the technique of radioactive decay. This well-understood physical process 

also provides the energy that drives most of the Earth‘s geological evolution. 

Both the Earth and the Moon at one time had molten or partially molten interiors. This 

allowed differentiation – the gravitational separation of rocks by their density within a planet. 

This process explains the overall compositional structure of the Earth and the Moon, with a 

dense core at the center and lighter rocks forming a crust at the surface. 
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Unlike the Moon, the Earth is large enough to have retained a large part of that original 

internal heat for the past 4.5 billion years, and it is also experiencing continued heating from 

the radioactive decay of materials in its crust. Only the thin outer lithosphere is rigid. Much of 

its mantle is hot and plastic, with a slow circulation of molten rock that create stresses in the 

lithosphere, causing earthquakes and plate tectonic activity. Plate tectonics describe the 

constant shifting and reformation of plates, including continents, on the Earth‘s surface. This 

geological activity explains why most of the Earth‘s surface is relatively young, most of it 

being no more than a few hundred million years old. 

By contrast, the neighboring Moon‘s surface is three to four billion years old, and heavily 

cratered. Because it‘s so small, the Moon cooled off more rapidly, and now it has a relatively 

dead interior and a thick lithosphere. It shows fewer signs of surface sculpting from below, 

and those date from its early history, when it was still warm inside. The dominant process 

that has sculpted the Moon‘s surface in the last three billion years comes from outside, not 

from inside. Eons of asteroids and comets have slammed into the Moon, creating its 

characteristic cratered surface. The granular soil the Apollo astronauts walked on is the 

result of small meteorites pulverizing the surface. No internal processes exist to ―recycle‖ the 

surface. Earth is subject to the same onslaught of asteroids and comets, but the atmosphere 

burns up the smaller projectiles before they land. Tectonics, volcanism, and erosion by wind 

and rain have obscured most of the remaining cratering record. 

Combining studies of rock strata, the fossil record, and radioactive ages, yields a chronology 

of the Earth, known as the geological time scale. The layers of the Earth reveal a succession 

of prehistoric species, generally from less complex to more complex, with distinct breaks in 

the fossil record. The vast majority of these fossil species are now extinct. The impact of an 

interplanetary body 65 million years ago caused one of these breaks, or mass extinctions. 

The largest mass extinction was about 250 million years ago, and its cause is uncertain. The 

evolution of life on Earth has been punctuated by catastrophes caused by space debris. The 

Earth‘s history doesn‘t occur in a closed environment, but is subject to cosmic influences. 

Most of the Earth‘s environmental changes have occurred slowly, over many millions of 

years. This includes the buildup of oxygen in the atmosphere due to the respiration of tiny 

organisms several billion years ago. Environmental changes continue, some caused by 

human activity on a very short time scale (compared to longer time scales that allow 

biological evolution to respond). Human activity has depleted the ozone layer and increased 

the carbon dioxide content of the atmosphere, which may lead to global warming. 
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Mass explains most of the difference between the Earth and the Moon. The Earth is so 

massive that a lot of energy is released by radioactive decay within the interior rocks. This 

heats and liquefies the rock, which then drives the activity of the crust. The Moon is 80 times 

less massive, so it has proportionately less energy from radioactive decay. The heat 

generated within the Moon is insufficient to melt rocks and drive geological activity. This 

simple difference illustrates the fundamental contest between internal and external forces in 

determining the surface conditions on planets. In general, a massive planet is more likely to 

retain a hot interior, and internal geological forces win the contest to shape the surface. 

Smaller worlds lose their heat and have little internal geological activity, so external impacts 

play the dominant role in shaping surface features. 

2.5 | HUMANS AND SPACE TRAVEL 

 

 Image comment: Nasa Apollo Mission 

 Image source: http://www.space.com/12771-nasa-apollo-missions-photo-countdown.html 

 

The people who used to investigate space were called Astronomers and Astrologers, who 

saw the moving but unchanging patterns of stars as clues to how the world worked. Until the 

invention of the telescope, all they knew were gross delineations: wandering stars (planets), 

fixed stars, nebulae, and comets. The Moon and Sun were of particular interest because the 

two marked the passage of days, of months, and of years. Their relationship to the weather, 

to the tides, and to the seasons, made them important to civilization. 
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The serious development of rocketry in the 20th century made direct exploration of space 

possible. Jules Verne and others had examined it in fiction, but advances in metallurgy, 

chemistry, and mechanical systems made it feasible in reality. The German V-2 rockets of 

the early 1940s were a major step, and both the Soviet Union and the United States made 

use of captured specimens to augment their own technology. The political dichotomy after 

World War II, communism versus democracy, spurred an arms race that soon included 

space. So the purely scientific inquiries were studied hand-in-hand with the development of 

advanced weapons systems. The Soviets had the first artificial satellite, and the first man in 

space, but their technology soon lagged behind the US juggernaut that put men on the 

Moon. 

 

By the 1970s, the satellite had become an integral part of life on Earth, and civilian uses 

soon outnumbered the military ones. Governments and businesses cooperatively utilized 

space for communications, weather, and the study of resources on Earth.  

 

Once the Moon was reached, the impetus for competition waned, and the Russians and 

Americans were soon assisting each other in building space stations, and sending probes to 

the planets. On the ground and in orbit, there were new means of observing the universe, 

and new mathematical concepts of how it worked. Scientists and astronauts from around the 

world continue to study space, but the major reason is to understand life here on Earth. 

 

Image comment: 50 years of space exploration 

Image source: http://www.edudemic.com/2012/08/50-years-of-space-exploration-explained-in-one-visualization/ 

 

Humans have been continually present in space for 12 years and 270 days on the 

International Space Station. The first manned spaceflight was launched by the Soviet Union 

on April 12, 1961 as a part of the Vostok program, with cosmonaut Yuri Gagarin aboard. 

Currently, only Russia and China maintain human spaceflight capability independent of 

http://en.wikipedia.org/wiki/International_Space_Station
http://en.wikipedia.org/wiki/USSR
http://en.wikipedia.org/wiki/Cosmonautics_Day
http://en.wikipedia.org/wiki/Vostok_program
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http://en.wikipedia.org/wiki/Russia
http://en.wikipedia.org/wiki/China
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international cooperation. As of 2013, human spaceflights are only launched by the Soyuz 

program conducted by the Russian Federal Space Agency and the Shenzhou program 

conducted by the China National Space Administration. The United States lost human 

spaceflight launch capability upon retirement of the space shuttle in 2011. 

 

In recent years there has been a gradual movement towards more commercial means of 

spaceflight. The first private human spaceflight took place on June 21, 2004, when Space 

Ship One conducted a suborbital flight. A number of non-governmental startup companies 

have sprung up, hoping to create a space tourism industry. NASA has also tried to stimulate 

private spaceflight through programs such as Commercial Crew Development (CCDev) and 

Commercial Orbital Transportation Services (COTS).  
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Image source: visual.ly/space-launches 
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Image comment: 40years of Apollo 11 

Image source: ouniversodegian.blogspot.com/2012/08/homem-na-lua.html 
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CHAPTER | 3 

HUMAN AND OUTER SPACE 

 

3.1 | HUMAN AND OUTER SPACE 

 

Image comment: Human in space 

Image credits: en.wikipedia.org/wiki/Outer_space 

 

We humans are physiologically well-adapted to life on Earth. Consequently, spaceflight has 

many negative effects on the body. The most significant adverse effects of long-term 

weightlessness are muscle atrophy and deterioration of the skeleton. Other significant 

effects include a slowing of cardiovascular system functions, decreased production of red 

blood cells, balance disorders, and a weakening of the immune system. Lesser symptoms 

include fluid redistribution (causing the "moon-face" appearance typical in pictures of 

astronauts experiencing weightlessness), loss of body mass, nasal congestion, sleep 

disturbance, and excess flatulence. Most of these effects begin to reverse quickly upon 

return to Earth. 

The engineering problems associated with leaving Earth and developing space propulsion 

systems have been examined for over a century, and millions of man-hours of research have 

been spent on them. In recent years there has been an increase in research on the issue of 

how humans can survive and work in space for extended and possibly indefinite periods of 

time. This question requires input from the physical and biological sciences and has now 

become the greatest challenge (other than funding) facing human space exploration. A 

fundamental step in overcoming this challenge is trying to understand the effects and impact 

of long-term space travel on the human body. 
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What motivates an astronaut, an outer space explorer, to spend a lot of time under water in 

an underwater habitat? The answer is, it's a great way to simulate many aspects of zero 

gravity living and long term confinement that are experienced in space vehicles and stations. 

For decades, NASA has been studying astronaut's physiological responses to being 

exposed to zero gravity, to living in outer space and to staying in a space vehicles and space 

stations for extended periods of time. Researchers William Toscano and Pat Cowing have 

been doing this kind of research for several decades. Some of their most interesting work 

has involved researching the problem of Zero Gravity illness, which is sort of like car or sea-

sickness. It's a common problem among astronauts. 

New, microminiaturization technologies have enabled the NASA researchers to use 

commercially produced biomedical devices like the FlexComp Infiniti™ to do what used to 

take a wall full of equipment easily weighing over 1000 pounds. Now, the device, 

manufactured by Thought Technology, weighs less than a pound and has built-in data 

storage using flash memory cards. 

3.1.1 | THE EFFECTS OF SPACE ON HUMAN PHYSIOLOGY 

Space medicine is a developing medical practice that studies the health of astronauts living 

in outer space. The main purpose of this academic pursuit is to discover how well and for 

how long people can survive the extreme conditions in space, and how fast they can re-

adapt to the Earth's environment after returning from space. Space medicine also seeks to 

develop preventative and palliative measures to ease the suffering caused by living in an 

environment to which humans are not well adapted. 

Many of the environmental conditions experienced by humans during spaceflight are very 

different from those in which humans evolved; however, technology is able to shield people 

from the harshest conditions, such as that offered by a spaceship or spacesuit. The 

immediate needs for breathable air and drinkable water are addressed by a life support 

system, a group of devices that allow human beings to survive in outer space. The life 

support system supplies air, water and food. It must also maintain temperature and pressure 

within acceptable limits and deal with the body's waste products. Shielding against harmful 

external influences such as radiation and micro-meteorites is also necessary. 

Of course, it is not possible to remove all hazards; the most important factor affecting human 

physical well-being in space is weightlessness, more accurately defined as microgravity. 
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Living in this type of environment impacts the body in three important ways: loss of 

proprioception, changes in fluid distribution, and deterioration of the musculoskeletal system. 

The environment of space is lethal without appropriate protection: the greatest threat in the 

vacuum of space derives from the lack of oxygen and pressure, although temperature and 

radiation also pose risks. 

3.1.2 | THE VACUUM OF SPACE 

Human physiology is adapted to living within the atmosphere of Earth, and a certain amount 

of oxygen is required in the air we breathe. The minimum concentration, or partial pressure, 

of oxygen that can be tolerated is 16 kPa. Below this, the astronaut is at risk of becoming 

unconscious and dying from hypoxia. In the vacuum of space, gas exchange in the lungs 

continues as normal but results in the removal of all gases, including oxygen, from the 

bloodstream. After 9 to 12 seconds, the deoxygenated blood reaches the brain, and loss of 

consciousness results. Death would gradually follow after two minutes of exposure—though 

the absolute limits are uncertain. 

Humans and other animals exposed to vacuum lose consciousness after a few seconds and 

die of hypoxia within minutes, but the symptoms are not nearly as graphic as the imagery in 

the public media suggests. Blood and other body fluids do boil when their pressure drops 

below 6.3 kPa, the vapor pressure of water at body temperature. This condition is called 

ebullism. The steam may bloat the body to twice its normal size and slow circulation, but 

tissues are elastic and porous enough to prevent rupture. Ebullism is slowed by the pressure 

containment of blood vessels, so some blood remains liquid. Swelling and ebullism can be 

reduced by containment in a flight suit. Space Shuttle astronauts wore a fitted elastic 

garment called a Crew Altitude Protection Suit (CAPS) which prevented ebullism at 

pressures as low as 2 kPa. Spacesuits are necessary to prevent ebullism above 19 km. 

Most spacesuits use 20 kPa of pure oxygen, just enough to sustain full consciousness. This 

pressure is high enough to prevent ebullism, but simple evaporation of blood, or of gases 

dissolved in the blood, can still cause decompression sickness (the bends) and gas 

embolisms if not managed. 

A short-term exposure to vacuum of up to 30 seconds is unlikely to cause permanent 

physical damage. Animal experiments show that rapid and complete recovery is normal for 

exposures shorter than 90 seconds, while longer full-body exposures are fatal and 

resuscitation has never been successful. There is only a limited amount of data available 

from human accidents, but it is consistent with animal data. Limbs may be exposed for much 

longer if breathing is not impaired. Rapid decompression can be much more dangerous than 
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vacuum exposure itself. Even if the victim does not hold his breath, venting through the 

windpipe may be too slow to prevent the fatal rupture of the delicate alveoli of the lungs. 

Eardrums and sinuses may be ruptured by rapid decompression, soft tissues may bruise 

and seep blood, and the stress of shock accelerates oxygen consumption, leading to 

hypoxia. Injuries caused by rapid decompression are called barotrauma, and are well known 

from scuba diving accidents.  

3.1.3 | EXTREME VARIATIONS IN TEMPERATURE AND RADIATION 

In a vacuum, there is no medium for removing heat from the body by conduction or 

convection. Loss of heat is by radiation from the 310 K temperature of a person to the 3 K of 

outer space. This is a slow process, especially in a clothed person, so there is no danger of 

immediately freezing. Rapid evaporative cooling of skin moisture in a vacuum may create 

frost, particularly in the mouth, but this is not a significant hazard.  

Exposure to the intense radiation of direct, unfiltered sunlight would lead to local heating, 

though that would likely be well distributed by the body's conductivity and blood circulation. 

Other solar radiation, particularly ultraviolet rays, however, may cause severe sunburn in a 

few seconds. 

Without the protection of Earth's atmosphere and magnetosphere astronauts are exposed to 

high levels of radiation. A year in low-earth orbit results in a dose of radiation 10 times that of 

the annual dose on earth. High levels of radiation damage lymphocytes, cells heavily 

involved in maintaining the immune system; this damage contributes to the lowered 

immunity experienced by astronauts. Radiation has also recently been linked to a higher 

incidence of cataracts in astronauts. Outside of the protection of low-earth orbit, galactic 

cosmic rays present further challenges to human spaceflight, as the health threat from 

cosmic rays significantly increases the chances of cancer over a decade or more of 

exposure. Solar flare events (though rare) can give a fatal radiation dose in minutes. It is 

thought that protective shielding and protective drugs may ultimately lower the risks to an 

acceptable level.  

Crew living on the International Space Station (ISS) are partially protected from the space 

environment by Earth's magnetic field, as the magnetosphere deflects solar wind around the 

earth and the ISS. Nevertheless, solar flares are powerful enough to warp and penetrate the 

magnetic defenses, and so are still a hazard to the crew. The crew of Expedition 10 took 

shelter as a precaution in 2005 in a more heavily shielded part of the station designed for 

this purpose. However, beyond the limited protection of Earth's magnetosphere, 

interplanetary manned missions are much more vulnerable.  
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3.1.4 | THE EFFECTS OF WEIGHTLESSNESS 

Following the advent of space stations that can be inhabited for long periods of time, 

exposure to weightlessness has been demonstrated to have some deleterious effects on 

human health. Humans are well-adapted to the physical conditions at the surface of the 

earth, and so in response to weightlessness, various physiological systems begin to change, 

and in some cases, atrophy. Though these changes are usually temporary, some do have a 

long-term impact on human health. 

Short-term exposure to microgravity causes space adaptation syndrome, a self-limiting 

nausea caused by derangement of the vestibular system. Long-term exposure causes 

multiple health problems, one of the most significant being loss of bone and muscle mass. 

Over time these deconditioning effects can impair astronauts‘ performance, increase their 

risk of injury, reduce their aerobic capacity, and slow down their cardiovascular system. As 

the human body consists mostly of fluids, gravity tends to force them into the lower half of 

the body, and our bodies have many systems to balance this situation. When released from 

the pull of gravity, these systems continue to work, causing a general redistribution of fluids 

into the upper half of the body. This is the cause of the round-faced 'puffiness' seen in 

astronauts. Redistributing fluids around the body itself causes balance disorders, distorted 

vision, and a loss of taste and smell. 

A major effect of long-term weightlessness involves the loss of bone and muscle mass. 

Without the effects of gravity, skeletal muscle is no longer required to maintain posture and 

the muscle groups used in moving around in a weightless environment differ from those 

required in terrestrial locomotion. In a weightless environment, astronauts put almost no 

weight on the back muscles or leg muscles used for standing up. Those muscles then start 

to weaken and eventually get smaller. Consequently some muscles atrophy rapidly, and 

astronauts can lose up to 25% of their muscle mass on long flights. The types of muscle 

fibre prominent in muscles also change. Slow twitch endurance fibres used to maintain 

posture are replaced by fast twitch rapidly contracting fibres that are insufficient for any 

heavy labour. Advances in research on exercise, hormone supplements and medication may 

help maintain muscle and body mass. Bone metabolism also changes. Normally, bone is laid 

down in the direction of mechanical stress, however in a microgravity environment there is 

very little mechanical stress. This results in a loss of bone tissue approximately 1.5% per 

month especially from the lower vertebrae, hip and femur. Elevated blood calcium levels 

from the lost bone result in dangerous calcification of soft tissues and potential kidney stone 

formation. It is still unknown whether bone recovers completely. Unlike people with 
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osteoporosis, astronauts eventually regain their bone density. After a 3-4 month trip into 

space, it takes about 2–3 years to regain lost bone density. New techniques are being 

developed to help astronauts recover faster. Research on diet, exercise and medication may 

hold the potential to aid the process of growing new bone. 

Currently, NASA is using advanced computational tools to understand the how to best 

counteract the bone and muscle atrophy experienced by astronauts in microgravity 

environments for prolonged periods of time. The Human Research Program's Human Health 

Countermeasures Element chartered the Digital Astronaut Project to investigate targeted 

questions about exercise countermeasure regimes. NASA is focusing on integrating a model 

of the advanced Resistive Exercise Device (ARED) currently on board the International 

Space Station with Open Sim musculoskeletal models of humans exercising with the device. 

The goal of this work is to use inverse dynamics to estimate joint torques and muscle forces 

resulting from using the ARED, and thus more accurately prescribe exercise regimens for 

the astronauts.  

3.1.5 | ADVERSE EFFECTS OF WEIGHTLESSNESS  

It is ironic that, having gone to great expense to escape Earth gravity, it may be necessary to 

incur the additional expense of simulating gravity in orbit. Before opting for artificial gravity, it 

is worth reviewing the consequences of long-term exposure to weightlessness.  

1. Fluid redistribution: Bodily fluids shift from the lower extremities toward the head.  

2. Fluid loss: The brain interprets the increase of fluid in the cephalic area as an 

increase in total fluid volume. In response, it activates excretory mechanisms. This 

compounds calcium loss and bone demineralization. Blood volume may decrease by 

10 percent, which contributes to cardiovascular deconditioning. Space crew members 

must beware of dehydration.  

3. Electrolyte imbalances: Changes in fluid distribution lead to imbalances in 

potassium and sodium and disturb the autonomic regulatory system.  

4. Cardiovascular changes: An increase of fluid in the thoracic area leads initially to 

increases in left ventricular volume and cardiac output. As the body seeks a new 

equilibrium, fluid is excreted, the left ventricle shrinks and cardiac output decreases. 

Upon return to gravity, fluid is pulled back into the lower extremities and cardiac 

output falls to subnormal levels. It may take several weeks for fluid volume, 

peripheral resistance, cardiac size and cardiac output to return to normal.  

5. Red blood cell loss: Blood samples taken before and after American and Soviet 

flights have indicated a loss of as much as 0.5 liters of red blood cells. Scientists are 
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investigating the possibility that weightlessness causes a change in splenic function 

that result in premature destruction of red blood cells. In animal studies there is some 

evidence of loss through microhemorrhages in muscle tissue as well.  

6. Muscle damage: Muscles atrophy from lack of use. Contractile proteins are lost and 

tissue shrinks. Muscle loss may be accompanied by a change in muscle type: rats 

exposed to weightlessness show an increase in the amount of "fast-twitch" white 

fiber relative to the bulkier "slow-twitch" red fiber. In 1987, rats exposed to 12.5 days 

of weightlessness showed a loss of 40 percent of their muscle mass and "serious 

damage" in 4 to 7 percent of their muscle fibers. The affected fibers were swollen and 

had been invaded by white blood cells. Blood vessels had broken and red blood cells 

had entered the muscle. Half the muscles had damaged nerve endings. The damage 

may have resulted from factors other than simple disuse, in particular: stress, poor 

nutrition, and reduced circulation - all of which are compounded by weightlessness; 

and radiation exposure - which is independent of weightlessness. There is concern 

that damaged blood supply to muscle may adversely affect the blood supply to bone 

as well.  

7. Bone damage: Bone tissue is deposited where needed and resorbed where not 

needed. This process is regulated by the piezoelectric behavior of bone tissue under 

stress. Because the mechanical demands on bones are greatly reduced in micro 

gravity, they essentially dissolve. While cortical bone may regenerate, loss of 

trabecular bone may be irreversible. Diet and exercise have been only partially 

effective in reducing the damage. Short periods of high-load strength training may be 

more effective than long endurance exercise on the treadmills and bicycles 

commonly used in orbit. Evidence suggests that the loss occurs primarily in the 

weight-bearing bones of the legs and spine. Non-weight-bearing bones, such as the 

skull and fingers, do not seem to be affected.  

8. Hypercalcemia: Fluid loss and bone demineralization conspire to increase the 

concentration of calcium in the blood, with a consequent increase in the risk of 

developing urinary stones.  

9. Immune system changes: There is an increase in neutrophil concentration, 

decreases in eosinophils, monocytes and B-cells, a rise in steroid hormones and 

damage to T-cells. In 1983 aboard Spacelab I, when human lymphocyte cultures 

were exposed in vitro to concanavalin A, the T-cells were activated at only 3 percent 

of the rate of similarly treated cultures on Earth. Loss of T-cell function may hamper 

the body's resistance to cancer - a danger exacerbated by the high-radiation 

environment of space.  
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10. Interference with medical procedures: Fluid redistribution affects the way drugs 

are taken up by the body, with important consequences for space pharmacology. 

Bacterial cell membranes become thicker and less permeable, reducing the 

effectiveness of antibiotics. Space surgery will also be greatly affected: organs will 

drift, blood will not pool, and transfusions will require mechanical assistance.  

11. Vertigo and spatial disorientation: Without a stable gravitational reference, crew 

members experience arbitrary and unexpected changes in their sense of verticality. 

Rooms that are thoroughly familiar when viewed in one orientation may become 

unfamiliar when viewed from a different up-down reference. Skylab astronaut Ed 

Gibson reported a sharp transition in the familiarity of the wardroom when rotated 

approximately 45 degrees from the "normal" vertical attitude in which he had trained. 

There is evidence that, in adapting to weightlessness, the brain comes to rely more 

on visual cues and less on other senses of motion or position. In orbit, Skylab 

astronauts lost the sense of where objects were located relative to their bodies when 

they could not actually see the objects. After returning home, one of them fell down in 

his own house when the lights went out unexpectedly.  

12. Space adaptation syndrome: About half of all astronauts and cosmonauts are 

afflicted. Symptoms include nausea, vomiting, anorexia, headache, malaise, 

drowsiness, lethargy, pallor and sweating. Susceptibility to Earth-bound motion 

sickness does not correlate with susceptibility to space sickness. The sickness 

usually subsides in 1 to 3 days.  

13. Loss of exercise capacity: This may be due to decreased motivation as well as 

physiological changes. Cosmonaut Valeriy Ryumin wrote in his memoirs: "On the 

ground, [exercise] was a pleasure, but [in space] we had to force ourselves to do it. 

Besides being simple hard work, it was also boring and monotonous." 

Weightlessness also makes it clumsy: equipment such as treadmills, bicycles and 

rowing machines must be festooned with restraints. Perspiration doesn't drip but 

simply accumulates. Skylab astronauts described disgusting pools of sweat half an 

inch deep sloshing around on their breastbones. Clothing becomes saturated.  

14. Degraded sense of smell and taste: The increase of fluids in the head causes 

stuffiness similar to a head cold. Foods take on an aura of sameness and there is a 

craving for spices and strong flavorings such as horseradish, mustard and taco 

sauce.  

15. Weight loss: Fluid loss, lack of exercise and diminished appetite result in weight 

loss. Space travelers tend not to eat enough. Meals and exercise must be planned to 

prevent excessive loss.  
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16. Flatulence: Digestive gas cannot "rise" toward the mouth and is more likely to pass 

through the other end of the digestive tract - in the words of Skylab crewman-doctor 

Joe Kerwin: "very effectively with great volume and frequency".  

17. Facial distortion: The face becomes puffy and expressions become difficult to read, 

especially when viewed sideways or upside down. Voice pitch and tone are affected 

and speech becomes more nasal.  

18. Changes in posture and stature: The neutral body posture approaches the fetal 

position. The spine tends to lengthen. Each of the Skylab astronauts gained an inch 

or more of height, which adversely affected the fit of their space suits.  

19. Changes in coordination: Earth-normal coordination unconsciously compensates 

for self-weight. In weightlessness, the muscular effort required to reach for and grab 

an object is reduced. Hence, there is a tendency to reach too "high".  

Many of these changes do not pose problems as long as the crew remains in a weightless 

environment. Trouble ensues upon the return to life with gravity. The rapid deceleration 

during reentry is especially stressful as the apparent gravity grows from zero to more than 

one "g" in a matter of minutes. In 1984, after a 237-day mission, Soviet cosmonauts felt that 

if they had stayed in space much longer they might not have survived reentry. In 1987, in the 

later stages of his 326-day mission, Yuri Romanenko was highly fatigued, both physically 

and mentally. His work day was reduced to 4.5 hours while his sleep period was extended to 

9 hours and daily exercise on a bicycle and treadmill consumed 2.5 hours. At the end of the 

mission, the Soviets implemented the unusual procedure of sending up a "safety pilot" to 

escort Romanenko back to Earth.  

3.1.6 | OTHER PHYSICAL EFFECTS 

After two months, calluses on the bottoms of feet molt and fall off from lack of use, leaving 

soft new skin. Tops of feet become, by contrast, raw and painfully sensitive. Tears cannot be 

shed while crying, as they stick together into a ball. Various other physical discomforts such 

as back and abdominal pain are commonly experienced with no clear cause. These may be 

part of the asthenization syndrome reported by cosmonauts living in space over an extended 

period of time, but regarded as anecdotal by astronauts. Fatigue, listlessness, and 

psychosomatic worries are also part of the syndrome. The data is inconclusive; however the 

syndrome does appear to exist as a manifestation of all the internal and external stress 

crews in space must face.  
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3.1.7 | PSYCHOLOGICAL EFFECTS OF SPACE FLIGHT 

The psychological effects of living in space have not been clearly analyzed but analogies on 

Earth do exist, such as Arctic research stations and submarines. The enormous stress on 

the crew, coupled with the body adapting to other environmental changes, can result in 

anxiety, insomnia and depression. According to current data, however, astronauts and 

cosmonauts seem extremely resilient to psychological stresses. 

There has been considerable evidence that psychosocial stressors are among the most 

important impediments to optimal crew morale and performance. Cosmonaut Valery Ryumin, 

twice Hero of the Soviet Union, quotes this passage from The Handbook of Hymen by O. 

Henry in his autobiographical book about the Salyut 6 mission: ―If you want to instigate the 

art of manslaughter just shut two men up in a eighteen by twenty-foot cabin for a month. 

Human nature won't stand it.‖  

The amount and quality of sleep experienced in space is poor due to highly variable light and 

dark cycles on flight decks and poor illumination during daytime hours in the space craft. 

Even the habit of looking out of the window before retiring can send the wrong messages to 

the brain, resulting in poor sleep patterns. These disturbances in circadian rhythm have 

profound effects on the neurobehavioral responses of crew and aggravate the psychological 

stresses they already experience. Sleep is disturbed on the ISS regularly due to mission 

demands, such as the scheduling of incoming or departing space vehicles. Sound levels in 

the station are unavoidably high because the atmosphere is unable to thermosyphon; fans 

are required at all times to allow processing of the atmosphere, which would stagnate in the 

freefall (zero-g) environment. Fifty percent of space shuttle astronauts take sleeping pills and 

still get two hours or less of sleep. NASA is researching two areas which may provide the 

keys to a better night‘s sleep, as improved sleep decreases fatigue and increases daytime 

productivity. A variety of methods for combating this phenomenon are constantly under 

discussion. A study of the longest spaceflight concluded that the first three weeks represent 

a critical period where attention is adversely affected because of the demand to adjust to the 

extreme change of environment. Culture, Ideology and Language are some of many factors 

which may affect long time space habitation with diverse group of people from different local. 

Astronauts may not be able to quickly return to Earth or receive medical supplies, equipment 

or personnel if a medical emergency occurs. The astronauts may have to rely for long 

periods on their limited existing resources and medical advice from the ground. On 

December 31, 2012, a NASA-supported study reported that manned spaceflight may harm 

the brain of astronauts and accelerate the onset of Alzheimer's disease. 

http://en.wikipedia.org/wiki/Arctic
http://en.wikipedia.org/wiki/Submarine
http://en.wikipedia.org/wiki/Valery_Ryumin
http://en.wikipedia.org/wiki/Sleep
http://en.wikipedia.org/wiki/Circadian_rhythm
http://en.wikipedia.org/wiki/ISS
http://en.wikipedia.org/wiki/Space_shuttle
http://en.wikipedia.org/wiki/NASA
http://en.wikipedia.org/wiki/Manned_spaceflight
http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Astronauts
http://en.wikipedia.org/wiki/Alzheimer%27s_disease


78 | T H E O D O R E  H A L D E R   

 

3.1.8 | FUTURE PROSPECTS 

 

Image comment: Space Elevator 

Image source: www.innovateus.net/science/what-space-elevator 

 

Space colonization efforts must take into account the effects of space on the human body. 

The sum of human experience has resulted in the accumulation of 58 solar years in space 

and a much better understanding of how the human body adapts. In the future, 

industrialization of space and exploration of inner and outer planets will require humans to 

endure longer and longer periods in space. The majority of current data comes from 

missions of short duration and so some of the long-term physiological effects of living in 

space are still unknown. A round trip to Mars with current technology is estimated to involve 

at least 18 months in transit alone. Knowing how the human body reacts to such time 

periods in space is a vital part of the preparation for such journeys. On-board medical 

facilities need to be adequate for coping with any type of trauma or emergency as well as 

contain a huge variety of diagnostic and medical instruments in order to keep a crew healthy 

over a long period of time, as these will be the only facilities available on board a spacecraft 

for coping not only with trauma, but also with the adaptive responses of the human body in 

space. 

At the moment only rigorously tested humans have experienced the conditions of space. If 

off-world colonization someday begins, many types of people will be exposed to these 

dangers and the effects on the elderly and on the very young are completely unknown. 

Factors such as nutritional requirements and physical environments which have so far not 

http://en.wikipedia.org/wiki/Space_manufacturing
http://en.wikipedia.org/wiki/Mars
http://en.wikipedia.org/wiki/Space_colonization


T H E O D O R E  H A L D E R  | 79 

 

been examined will become important. Overall, there is little data on the manifold effects of 

living in space, and this makes attempts toward mitigating the risks during a lengthy space 

habitation difficult. Test beds such as the ISS are presently being utilized to research some 

of these risks. 

The environment of space is still largely unknown, and there will likely be as-yet-unknown 

hazards. Meanwhile, future technologies such as artificial gravity and more complex bio-

regenerative life support systems may someday be capable of mitigating some risks. 

 

Image comment: Lunar Elevator  

Image source: liftport.eventbrite.com 

 

 

http://en.wikipedia.org/wiki/Test_bed
http://en.wikipedia.org/wiki/Artificial_gravity
http://en.wikipedia.org/wiki/Life_support_system


80 | T H E O D O R E  H A L D E R   

 

3.2 | ANTHROPOMETRY AND BIOMECHANICS 

 

When in space, study of body dimensions and mobility is an important factor. For the sake of 

this research paper body dimensions and mobility descriptions are limited to the range of 

personnel considered most likely to be space module crewmembers and visiting personnel. 

It is assumed that these personnel will be in good health, fully adult in physical development. 

A wide range of ethnic and racial backgrounds may be represented, and crewmembers may 

be either male or female. Further notes about human ergonomics study can be found in the 

NASA-STD-3001 Space Flight Human-System Standard Volumes 1 (Crew Health) and 2 

(Human Factors, Habitability and Environmental Health) and NASA/SP-2010-3407 the 

Human Integration Design Handbook (HIDH) are base lined and publically available.  

(Link: http://www.nasa.gov/centers/johnson/slsd/about/divisions/hefd/standards/index.html) 

 

Image comment: Body Planes of Orientations and Planes of Segmentation 

Image credit: pp. III-78; NASA-STD-3000 260 (Rev A), 273, p.  9-15; NASA-STD-3000 264 

 

http://www.nasa.gov/centers/johnson/slsd/about/divisions/hefd/standards/index.html
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#273
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Plane Definitions 

- HEAD PLANE: A simple plane that passes through the right and left gonion points and 

nuchal. 

- NECK PLANE: A compound plane in which a horizontal plane originates at cervical and 

passes anteriorly to intersect with the second plane. The second plane originates at the 

lower of the two clavicle landmarks and passes superiorly at a45 degree angle to 

intersect the horizontal plane. 

- THORAX PLANE: A simple transverse plane that originates at the 10th rib midspine 

landmark and passes horizontally through the torso. 

- ABDOMINAL PLANE: A simple transverse plane originating at the higher of the two illica 

crest landmarks and continuing horizontally through the torso. 

- HIP PLANE: A simple plane originating midsagittaly on the perineal surface and passing 

superiorly and laterally midway between the anterior superior iliac spine and 

trochanterion landmarks, paralleling the right and left inguinal ligaments. 

- THIGH FLAP PLANE: A simple plane originating at the gluteal furrow landmark and 

passing horizontally through the thigh. 

- KNEE PLANE: A simple plane originating at the lateral femoral epicondyle and passing 

horizontally through the knee. 

- ANKLE PLANE: A simple plane originating at the sphyrion landmark and passing 

horizontally through the ankle. 

- SHOULDER PLANE: A simple plane originating at the acromion landmark and passing 

inferiorly and medially through the anterior and posterior scye point marks at the axillary 

level. 

- ELBOW PLANE: A simple plane originating at the olecranon landmark and passing 

through the medial and lateral humeral epicondyle landmarks. 

- WRIST PLANE: A simple plane originating at the ulnar and radial styloid landmarks and 

passing through the wrist perpendicular to the long axis of the forearm. 
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3.2.1 | GENERAL ANTHROPOMETRICS & BIOMECHANICS DESIGN CONSIDERATIONS 

Design and sizing of space modules should ensure accommodation, compatibility, 

operability, and maintainability by the user population. Generally, design limits are based on 

a range of the user population from the 5th percentile values for critical body dimensions, as 

appropriate. The use of this range will theoretically provide coverage for 90% of the user 

population for that dimension. 

Anthropometric data should be established form a survey of the actual user population. In 

the case of space programs, it is difficult to define the user population. With improved 

environmental controls, physical fitness will be a less important criterion. Skills and 

knowledge will be more of a factor in selection. International participation will also influence 

the character of the user population. In this document, the user population has not been 

defined.  

Equipment, whether it be a workstation or clothing, must fit the user population. The user 

population will vary in size, and the equipment design must account for this range of sizes. 

There are three ways in which a design will fit the user: 

a. Single Size For All - A single size may accommodate all members of the population. A 

workstation which has a switch located within the reach limit of the smallest person, for 

instance, will allow everyone to reach the switch. 

b. Adjustment - The design can incorporate an adjustment capability. The most common 

example of this is the automobile seat. 

c. Several Sizes - Several sizes of equipment may be required to accommodate the full 

population size-range. This is usually necessary for equipment or personal gear that must 

closely conform to the body such as clothing and space suits. 

 

All three situations require the designer to use anthropometric data. 
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3.2.2 | VARIABILITY IN HUMAN BODY SIZE DESIGN CONSIDERATIONS 

 

3.2.2.1 | MICROGRAVITY EFFECTS DESIGN CONSIDERATIONS 

The effects of weightlessness on human body size are summarized below and are 

discussed in greater detail. The primary anthropometry effects of microgravity are as follows: 

Figure 3.2.2.1-1 ANTHROPOMETRIC CHANGES IN WEIGHTLESSNESS  

Parameter Anthropometric change 

  

Short-term mission (1 to 14 days) Long-term mission (more than 14 days) 

Pre vs. during mission Pre vs. post-mission 

Height 

Slight increase during first week 
(~1.3 cm or 0.5 in). 

Height returns to normal *R+O 

Increases caused by spine 
lengthening 

Increases during first 2 
weeks then stabilizes 
at approximately 3% of 
pre-mission baseline. 
Increases caused by 
spine lengthening 

Returns to normal on R+O 

Circumferences Circumference changes in chest, waist, and limbs due primarily to fluids shifts. 

Mass 

Post flight weight losses average 
3.4%; about 2/3 of the loss is due 
to water loss, the remainder due to 
loss of lean body mass and fat. 
Center of mass shifts headward 
approximately 3-4 cm (1-2in.) See 
paragraph 3.3.7.3.2.1 for details. 

Inflight weight losses 
average 3-4% during 
first 5 days, thereafter, 
weight gradually 
declines for the 
remainder of the 
mission. Early inflight 
losses are probably 
due to loss of fluids; 
later losses are 
metabolic. Center of 
mass shifts headward 
approximately 3-4 cm 
(1-2in). 

Rapid weight gain during 
first 5 days postflight, 
mainly due to 
replenishment of fluids. 
Slower weight gain from 
R+5 to R+2 or 3 weeks. 

Limb volume 

Inflght leg volume decreases 
exponentially during first mission 
day; thereafter, rate of decrease 
declines until reaching a plateau 
within 3-5 days. Postflight 
decrements in leg volume up to 
3%; rapid increase immediately 
postflight, followed by slower return 
to pre-mission baseline. 

Early inflight period 
same as short 
missions. Leg volume 
may continue to 
decrease slightly 
throughout mission. 
Arm volume decreases 
slightly. 

Rapid increase in leg 
volume immediately 
postflight, followed by 
slower return to pre-
mission baseline. 

Posture 
Immediate assumption of neutral 
body posture (see paragraph 3.3.4) 

Immediate assumption 
of neutral body posture 
(see paragraph 3.3.4) 

Rapid return to pre-
mission posture. 

Note: *Recovery day plus post mission days  

Reference: NASA RP 1024, Anthropometric Source Book: Volume 1: Anthropometry for Designers Anthropology 

Staff/Webb Associates, NASA, 7-78, Chapter 1; 208, pp. 132-133; NASA-STD-3000 265 

http://msis.jsc.nasa.gov/sections/section03.htm#3.3.7.3.2.1
http://msis.jsc.nasa.gov/sections/section03.htm#3.3.4%20Neutral%20Body%20Posture
http://msis.jsc.nasa.gov/sections/section03.htm#3.3.4%20Neutral%20Body%20Posture
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#208
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3.2.2.2 | INTER-INDIVIDUAL VARIATION DESIGN CONSIDERATIONS 

The two major factors of inter-individual variations are sex and race. The following general 

rules apply to the anthropometric variations due to sex and race: 

a. Sex Variations - Female measurements average about 92% of comparable male 

measurements (within race). Average female weight is about 75% of male weight. 

b. Racial Variations - Blacks and Whites are very similar in terms of height and weight 

measurements. The average torso measurement of Whites is longer than Blacks and limbs 

are shorter. Asians are generally shorter and lighter than Whites and Blacks. Most of this 

stature difference is in leg length. Asian facial dimensions may be larger in proportion to 

height. 

Because of these variations, the extremes of the world population size range is represented 

in this document by the large (95th percentile) White or Black American male and the small 

(5th percentile) Asian Japanese female. 

3.2.2.3 | SECULAR CHANGES DESIGN CONSIDERATIONS 

For typical long-term space module design studies, it is appropriate to estimate the body 

dimensions of a future population of crew, passengers, and even the ground crew. Past 

experience has demonstrated that there is a historical change in average height, arm length, 

weight, and many other dimensions. This type of human variation, occurring from generation 

to generation over time, is usually referred to as secular change. Whether the effect results 

from better nutrition, improved health care, or some biological selection process has not 

been determined. 

The validity of the design requirements for the actual operational years of the space module 

depends on the accuracy of the secular trend estimation, the basic assumptions concerning 

the baseline crew population, and the operational life of the system. For this standard, an 

operational year of 2000 and a crewmember age of 40 years has been selected.  
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3.3.1 | BODY SIZE 

A partial study of the specific body distances, dimensions, contours, and techniques for use 

in developing design requirements are discussed in this section. There is no attempt to 

include all potentially useful anthropometric data in this document because much of these 

data are already available in convenient published form such as NASA RP 1024, 

Anthropometric Source Book: Volume 1: Anthropometry for Designers Anthropology 

Staff/Webb Associates, NASA, 7-78. Rather, one description set of the size range for the 

projected crewmember population is presented. The dimensions apply to nude or lightly 

clothed persons. 

3.3.1.1 | BODY SIZE DESIGN CONSIDERATIONS 

The following are considerations that should be made in applying the body size data: 

a. Effects of Clothing - In a controlled IVA environment there is little need for heavy, thick 

clothing. For most practical purposes, therefore, there is no need to consider the effect of 

IVA clothing on body size. When an individual must wear an EVA pressure garment or a 

space suit, body dimensions will be affected drastically. In this case, dimensional studies 

must be made for the user population wearing the garment. These data must then be 

substituted for unclothed or lightly clothed dimensions. 

b. Microgravity - the dimensions in Paragraph 3.3.1.3 apply to 1-G conditions only. Notations 

are made on appropriate dimensions that provide guidelines for estimating microgravity 

dimensions. 

3.3.1.2 | BODY SIZE DATA DESIGN REQUIREMENTS 

Dimensions of the year 2000, 40 year-old male and female are given in Figure 3.3.1.2-1. The 

data in this figure shall be used as appropriate to achieve effective integrations of the crew 

and space systems. The dimensions apply to 1-G conditions only. Dimension expected to 

change significantly due to microgravity are marked. Measurement data - the numbers 

adjacent to each of the dimension are reference codes.  

Notes for application of dimensions to microgravity conditions: 

1) Stature increases approximately 3% over the first 3 to 4 days in. Almost all of this change 

appear in the spinal column, and thus affects (increases) other related dimensions, such as 

http://msis.jsc.nasa.gov/sections/section03.htm#3.3.1.3
http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.1.3-1
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sitting height (buttock-vertex), shoulder height- sitting, eye height, sitting, and all dimensions 

that include the spine. 

2) Sitting height would be better named as buttock-vertex in microgravity conditions, unless 

the crewmember were measured with a firm pressure on shoulders pressing him or her 

against a fixed, flat "sitting" support surface. All sitting dimensions (vertex, eye, shoulder, 

and elbow) increase in weightlessness by two changes: 

Figure 3.3.1.2-1 ANTHROPOMETRIC DIMENSIONAL DATA FOR MALE AND FEMALE  

Body Size in One Gravity Conditions 

 

Microgravity notes No. Dimension 5th percentile 50th percentile 95th percentile 

1 805 Stature 148.9 (58.6) 157.0 (61.8) 165.1 (65.0) 

1 973 Wrist height 70.8 (27.9) 76.6 (30.2) 82.4 (32.4) 

 
64 Ankle height 5.2 (2.0) 6.1 (2.4) 7.0 (2.8) 

1 309 Elbow height 92.8 (38.5) 98.4 (38.8) 104.1 (41.0) 

 
169 Bust depth 17.4 (6.8) 20.5 (8.1) 23.6 (9.3) 

1 916 Vertical trunk circumference 136.9 (53.9) 146.0 (57.5) 155.2 (61.1) 

2 1 612 Midshoulder height, sitting 
   

 
459 Hip breadth, sitting 30.4 (12.0) 33.7 (13.3) 37.0 (14.6) 

1 921 Waist back 35.2 (13.9) 38.1 (15.0) 41.0 (16.1) 

 
506 Interscye 32.4 (12.8) 35.7 (14.1) 39.0 (15.4) 

 
639 Neck circumference 34.5 (13.6) 37.1 (14.5) 39.7 (15.6) 

 
754 Shoulder length 11.3 (4.4) 13.1 (5.1) 14.8 (5.8) 
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Microgravity notes No. Dimension 5th percentile 50th percentile 95th percentile 

1 805 Stature 169.7 (66.8) 179.9 (70.8) 190 1 (74.8) 

1 973 Wrist height 
   

 
64 Ankle height 12.0 (4.7) 13.9 (5.5) 15.8 (6.2) 

1 309 Elbow height 
   

 
236 Bust depth 21.8 (8.6) 25.0 (9.8) 28.2 (11.1) 

1 916 Vertical trunk circumference 158.7 (62.5) 170.7 (67.2) 182.6 (71.9) 

2 1 612 Midshoulder height, sitting 60.8 (23.9) 65.4 (25.7) 70.0 (27.5) 

 
459 Hip breadth, sitting 34.6 (13.6) 38.4 (15.1) 42.3 (16.6) 

1 921 Waist back 43.7 (17.2) 47.6 (18.8) 51.6 (20.3) 

 
506 Interscye 32.9 (13.0) 39.2 (15.4) 45.4 (17.9) 

 
639 Neck circumference 35.5 (14.0) 38.7 (15.2) 41.9 (16.5) 

 
754 Shoulder length 14.8 (5.8) 16.9 (6.7) 19.0 (7.5) 

 
378 Forearm-forearm breadth 48.8 (19.2) 55.1 (21.7) 61.5 (24.2) 

Values in cm with inches in parentheses 

Image Reference: 274 p. 121-128; 308; 351; NASA-STD-3000 268 

 

 

Figure 3.3.1.2-2 ANTHROPOMETRIC DIMENSIONAL DATA FOR MALE AND FEMALE 

Body Size of the Male and Female in One Gravity Conditions 

 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#274
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#308
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#351
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Microgravity notes No. Dimension 5th percentile 50th percentile 95th percentile 

2 1 758 Sitting height 78.3 (30.8) 84.8 (33.4) 91.2 (35.9) 

2 1 330 Eye height, sitting 68.1 (26.8) 73.8 (29.1) 79.5 (31.4) 

4 529 Knee height, sitting 41.6 (16.4) 45.6 (17.9) 49.5 (19.5) 

 
678 Popliteal height 34.7 (13.6) 38.3 (15.1) 41.9 (16.5) 

 
751 Shoulder-elbow length 27.2 (10.7) 29.8 (11.7) 32.4 (12.8) 

 
194 Buttock-knee length 48.9 (19.2) 53.3 (21.0) 57.8 (22.7) 

 
420 Hand length 15.8 (6.2) 17.2 (6.8) 18.7 (7.3) 

 
411 Hand breadth 6.9 (2.7) 7.8 (3.1) 8.6 (3.4) 

 
416 Hand circumference 16.5 (6.5) 17.9 (7.0) 19.3 (7.6) 

 

Microgravity notes No. Dimension 5th percentile 50th percentile 95th percentile 

2 1 758 Sitting height 88.9 (35.0) 94.2 (37.1) 99.5 (39.2) 

2 1 330 Eye height, sitting 76.8 (30.3) 81.9 (32.2) 86.9 (34.2) 

4 529 Knee height, sitting 52.6 (20.7) 56.7 (22.3) 60.9 (24.0) 

 
678 Popliteal height 40.6 (16.0) 44.4 (17.5) 48.1 (19.0) 

 
751 

Shoulder-elbow 

length 
33.7 (13.3) 36.6 (14.4) 39.4 (15.5) 

 
194 Buttock-knee length 56.8 (22.4) 61.3 (24.1) 65.8 (25.9) 

 
420 Hand length 17.9 (7.0) 19.3 (7.6) 20.6 (8.1) 

 
411 Hand breadth 8.2 (3.2) 8.9 (3.5) 9.6 (3.8) 

 
416 Hand circumference 20.3 (8.0) 21.8 (8.6) 23.4 (9.2) 

Image Reference: 274, pp. 121-128; 308; 351; NASA-STD-3000 268 

 

 

 

 

 

 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#274
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#308
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#351
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Figure 3.3.1.2-3 ANTHROPOMETRIC DIMENSIONAL DATA FOR MALE AND FEMALE 

Body Size of the Male and Female in One Gravity Conditions 

 

Microgravity 
notes 

No. Dimension 5th percentile 50th percentile 95th percentile 

 
949 Waist height 90.1 (35.5) 96.7 (38.1) 103.4 (40.7) 

 
249 Crotch height 65.2 (25.7) 70.6 (27.8) 76.1 (30.0) 

 
215 Calf height 25.5 (10.0) 28.9 (11.4) 32.3 (12.7) 

 
103 Biacromial breadth 32.4 (12.8) 35.7 (14.1) 39.0 (15.4) 

1 946 Waist front 
   

 
735 Scye circumference 32.3 (12.7) 36.1 (14.2) 39.8 (15.7) 

 
178 Buttock circumference 79.9 (31.5) 87.1 (34.3) 94.3 (37.1) 

1 2 312 Elbow rest height 20.7 (8.2) 25.0 (9.9) 29.3 (11.5) 

 
856 Thigh clearance 11.2 (4.4) 12.9 (5.1) 14.5 (5.7) 

 
381 Forearm hand length 37.3 (14.7) 41.7 (16.4) 44.6 (17.6) 

 
200 Buttock-popliteal length 37.9 (14.9) 41.7 (16.4) 45.5 (17.9) 

Values in cm with inches in parentheses 

 

Microgravity 
notes 

No. Dimension 5th percentile 50th percentile 95th percentile 

 
949 Waist height 100.4 (39.5)) 108.3 (42.6) 116.2 (45.7) 

 
249 Crotch height 79.4 (31.3) 86.4 (34.0) 93.3 (36.7) 

 
215 Calf height 32.5 (12.8) 36.2 (14.3) 40.0 (15.7) 

 
103 Biacromial breadth 37.9 (14.9) 41.1 (16.2) 44.3 (17.5) 

1 946 Waist front 37.2 (14.6) 40.9 (16.1) 44.5 (17.5) 

 
735 Scye circumference 44.4 (17.5) 49.0 (19.3) 53.6 (21.1) 

 
178 Buttock circumference 91.0 (35.8) 100.2 (39.4) 109.4 (43.1) 

1 2 312 Elbow rest height 21.1 (8.3) 25.4 (10.0) 29.7 (11.7) 

 
856 Thigh clearance 14.5 (5.7) 16.8 (6.6) 19.1 (7.5) 

 
381 Forearm hand length 

   

 
200 Buttock popliteal length 46.9 (18.5) 51.2 (20.2) 55.5 (21.9) 

Image Reference: 274, pp. 121-128; 308; 351; NASA-STD-3000 268eT 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#274
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#308
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#351
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Figure 3.3.1.2-4 ANTHROPOMETRIC DIMENSIONAL DATA FOR MALE AND FEMALE 

Body Size of the 40-Year-Old Japanese Female for Year 2000 in One Gravity Conditions  

 

Microgravity notes No. Dimension 5th percentile 50th percentile 95th percentile 

3, 1 23 Acromial (shoulder) height 119.6 (47.1) 127.1 (50.0) 134.5 (53.0) 

 
894 Trochanteric height 71.0 (28.0) 76.7 (30.2) 82.4 (32.5) 

 
873 Tibiale height 35.9 (14.1) 39.3 (15.5) 42.7 (16.8) 

 
122 Bideltoid (shoulder) breadth 35.6 (14.0) 38.9 (15.3) 42.1 (16.6) 

 
223 Chest breadth 24.5 (9.7) 26.8 (10.5) 29.0 (11.4) 

 
457 Hip breadth 30.5 (12.0) 32.9 (12.9) 35.3 (13.9) 

 
165 Bizgomatic (face) breadth 13.3 (5.2) 14.5 (5.7) 15.7 (6.2) 

 
427 Head breadth 14.4 (5.7) 15.6 (6.1) 16.8 (6.6) 

 

Microgravity notes 
No. Dimension 5th percentile 50th percentile 95th percentile 

3 1 23 Acromial (shoulder) height 138.0 (54.3) 147.6 (58.1) 157.3 (61.9) 

 
894 Trochanteric height 88.3 (34.8) 95.8 (37.8) 102.9 (40.5) 

 
873 Tibiale height 

   

 
122 Bideltoid (shoulder) breadth 44.6 (17.6) 48.9 (19.3) 53.2 (20.9) 

 
223 Chest breadth 29.7 (11.7) 33.2 (13.1) 36.7 (14.4) 

 
457 Hip breadth 32.7 (12.9) 35.8 (14.1) 39.0 (15.4) 

 
165 Bizgomatic (face) breadth 13.4 (5.3) 14.3 (5.6) 15.1 (6.0) 

 
427 Head breadth 14.8 (5.8) 15.7 (6.2) 16.5 (6.5) 

Values in cm with inches in parentheses 

Image Reference: 274, pp. 121-128; 308; 351; NASA-STD-3000 268hT  

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#274
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#308
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#351
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3.3.2 | JOINT MOTION 

This section provides information for developing design requirements related to 

biomechanics, particularly skeletal joint angular motion capabilities and limitations. Joint 

motion data can be used to determine possible positions for the various parts of body. 

3.3.2.1 | APPLICATION OF DATA DESIGN CONSIDERATIONS 

Joint motion capability varies throughout the population. The values given are for the 5th and 

95th percentile of the range. The data should be applied in the following manner: 

a. 5th Percentile - Use the 5th percentile limit when personnel must position their body to 

operate or maintain equipment. 

b. 95th Percentile - Use the 95th percentile limit when designing to accommodate a full 

range of unrestricted movement. 

3.3.2.2 | MULTI-JOINT AND SINGLE JOINT DATA DESIGN CONSIDERATION  

More often than not, human motion involves interaction of two or more joints and muscles. 

The movement range of a single joint is often drastically reduced by the movement of an 

adjacent joint. In other words, joint movement ranges are not always additive. For example, 

an engineering layout may show (using a scaled manikin) that a foot control is reachable 

with a hip flexion of 50 degrees and the knee extended (0 degrees flexion). Both of these 

ranges are within the individual joint ranges as shown in Figure 3.3.2.3.1-1.  

The joint motion studies were performed in a 1-G environment. There are no data for the 

microgravity environment. Indications are that joint motion capability will not be drastically 

affected in microgravity. Given this, the data in this section can be applied to a microgravity 

environment. 

3.3.2.2.1 | JOINT MOTION DATA FOR SINGLE JOINT DESIGN REQUIREMENTS 

Figure 3.3.2.3.1-1 shows single joint movement ranges for both males and females. These 

data apply to both 1-G and microgravity environments. These data shall be used as 

appropriate to ensure the design accommodates the required body movements for the 

crewmembers. 

 

http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.2.3.1-1
http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.2.3.1-1
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FIGURE 3.3.2.2.1-1 JOINT MOVEMENT RANGES FOR MALES AND FEMALES 

Figure 

Joint 
movement 

Range of motion (degrees) 

Figure 

Joint 
movement 

Range of motion (degrees) 

(note b) Males Female (note b) Males Female 

 
5% 95% 5% 95% 

 
5% 95% 5% 95% 

 

Neck, 
rotation 
right (A) 

73.3 99.6 74.9 108.8 

 

Forearm, 
pronation 
(B) 

78.2 116.1 82.3 118.9 

Neck, 
rotation left 
(B) 

74.3 99.1 72.2 109 
Forearm, 
supination 
(A)  

83.4 125.8 90.4 139.5 

 

Neck, 
flexion (B) 34.5 71 46 84.4 

 

Wrist, 
radial bend 
(B) 

16.9 36.7 16.1 36.1 

Neck, 
extension 
(A) 

65.4 103 4.9 103 

Wrist, 
ulnar bend 
(A) 

18.6 47.9 21.5 43 

 

Neck, 
lateral 
bend right 
(A) 

34.9 63.5 37 63.2 

 

Wrist, 
flexion (A) 61.5 94.8 68.3 98.1 

Neck, 
lateral 
bend left 
(B)  

35.5 63.5 29.1 77.2 

Wrist, 
extension 
(B) 

40.1 78 42.3 74.7 

 

Shoulder, 
abduction 

173.2 188.7 172.6 192.9 

 

Hip, flexion  116.5 148 118.5 145 

 

Shoulder, 
rotation 

lateral (A) 
46.3 96.7 53.8 85.8 

 

Hip, 
abduction 
(B) 

26.8 53.5 27.2 55.9 

Shoulder, 
rotation 

medial (B) 

90.5 126.6 95.8 130.9 

 

Knee, 
flexion 

118.4 145.6 125.2 145.2 

 

Shoulder, 
flexion (A) 

164.4 210.9 152 217 

 

Ankle, 
plantar 
extension 
(A) 

36.1 79.6 44.2 91.1 

Shoulder, 
extension 
(B)  

39.6 83.3 33.7 87.9 Ankle, 
dorsi 
flexion (B) 

8.1 19.9 6.9 17.4 

 

Elbow, 
flexion (A) 

140.5 159 144.9 165.9 
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3.3.2.2.2 | JOINT MOTION DATA FOR TWO JOINT DESIGN REQUIREMENTS 

Data to determine the range of movement for two joints are given in Figure 3.3.2.3.2-1. 

Figure 3.3.2.3.2-1 defines the changes in range of motion of a given joint when 

supplemented by the movement of an adjacent joint. These data apply to both 1-G and 

microgravity environments. These data shall be used as appropriate to ensure the design 

accommodates the required body movements of the crewmembers. 

Figure 3.3.2.2.2-1 Change in Range of Movement With Movement in Adjacent Joint 

Two-joint movement 
Full range of A 

(degrees) 

Change in range of movement of A (degrees) 

Movement of B (fraction of full range) 

Zero 1/3 1/2 2/3 Full 

Shoulder extension (A) 
with elbow flexion (B) 

59.3 deg 
 

+1.6 deg 

(102.7%) 
 

+0.9 deg 

(101.5%) 

+5.3 deg 

(108.9%) 

Shoulder flexion (A) 
with elbow flexion (B) 

190.7 deg 
 

-24.9 deg 

(86.9%) 
 

-36.1 deg 

(81.0%) 

-47.4 deg 

(75.0%) 

Elbow flexion (A) 
with shoulder extension (A) 

152.2 deg 
  

-3.78 deg 

(97.5%) 
 

-1.22 deg 

(99.2%) 

Elbow flexion (A) 
with shoulder flexion (B) 

152.2 deg 
 

-0.6 deg 

(99.6%) 
 

-0.8 deg 

(99.5%) 

-69.0 deg 

(54.7%) 

Hip flexion (A) 
with shoulder flexion (B) 

53.3 deg 

-35.6 deg * 

(33.2%) 

-24.0 deg 

(55.0%) 
 

-6.2 deg 

(88.4%) 

-12.3 deg 

(76.9%) 

Ankle plantar flexion (A) 
with knee flexion (B) 

48.0 deg 
 

-3.4 deg 

(92.9%) 
 

+0.2 deg 

(100.4%) 

+1.6 deg 

(103.3%) 

Ankle dorsiflexion (A) 
with knee flexion (B) 

26.1 deg 
 

-7.3 deg 

(72.0%) 
 

-2.7 deg 

(89.7%) 

-3.2 deg 

(87.7%) 

Knee flexion (A) 
with ankle plantar flexion (B) 

127.0 deg 
  

-9.9 deg 

(92.2%) 
 

-4.7 deg 

(96.3%) 

Knee flexion (A) 
with ankle dorsiflexion (B) 

127.0 deg 
    

-8.7 deg 

(93.0%) 

Knee flexion (A) 
with hip flexion (B) 

127.0 deg 
  

-19.6 deg 

(84.6%) 
 

-33.6 deg 

(73.5%) 

 

Notes:* The knee joint is locked and the unsupported leg extends out in front of the subject. 

The following is an example of how the Figure is to be used. The first entry is as follows: the shoulder can be 
extended as far as 59.3 degrees ( the mean of the subjects tested) with the elbow in a neutral position (locked in 
hyperextension). When shoulder extension was measured with the elbow flexed to 1/3 of its full joint range, the mean 
value of shoulder extension was found to increase by 1.6 degrees, or 102.7% of the base value. The results for other 
movements and adjacent joint positions are presented in a similar manner. 

Reference: 16, pp. VI-12 to VI-15; NASA-STD-3000 289 

 

http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.2.3.2-1
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#16
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3.3.2.3 | REACH DATA DESIGN REQUIREMENTS 

Equipment and controls required to perform a task shall be within the reach limit of the 

crewmember performing the task. The reach limit envelope cannot be considered a working 

reach envelope. Reach is effected by fatigue and force exerted and there is a marked 

variation in strength which can be exerted throughout this envelope. Tasks which require 

strength and dexterity should be located well within the perimeter of the reach limit envelope. 

This is especially true of repetitious tasks. For strength limitations, see Section 4.9. The 

following are functional reach limits for persons wearing non-restrictive clothing: 

a. Torso Restrained Reach Boundaries - Equipment and controls operated by crewmembers 

restrained at the torso, shall be within the functional reach boundaries given in Figure 

3.3.2.3.1-1. These boundaries shall be adjusted as appropriate to the task conditions: 

1. Backrest Angle - The boundaries in Figure 3.3.3.3.1-1 apply when the operator's 

shoulders are against a flat backrest inclined 13 degrees from vertical. Adjustments shall be 

made for different backrest angles using the approximations in Figure 3.3.3.3.1-2. 

2. Task Type - The functional reach boundaries apply to tasks requiring thumb and forefinger 

grasp only. Adjustment for other grasp requirements shall be made in accordance with 

Figure 3.3.3.3.1-5. 

Figure 3.3.2.3 -1, 2 Grasp Reach Limits with Right hand for Male and Female  

 

 

 

http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.3.3.1-1
http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.3.3.1-1
http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.3.3.1-1
http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.3.3.1-2
http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.3.3.1-5
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b. Microgravity Handhold Restraint - Equipment and controls operated in microgravity by 

crewmembers using a handhold restraint, shall be within the functional reach boundaries 

given in Figure 3.3.2.3.1-3. The functional reach boundaries apply to tasks requiring fingertip 

operation only. Adjustment for other grasp operations shall be made in accordance with 

Figure 3.3.2.3-5. 

c. Microgravity Foot Restraint - Equipment and controls operated in microgravity by 

crewmembers using a foot restraint, shall be within the functional reach boundaries given in 

Figures 3.3.2.3-4 and 3.3.2.3-5. The functional reach boundaries apply to tasks requiring 

fingertip operation only. Adjustment for grasp operations shall be made in accordance with 

Figure 3.3.2.3-5. 

Figure 3.3.2.3-3 Microgravity Handhold Restraint Reach Boundaries 

 

  Radius of fingertip reach boundary 

95th percentile male 195 cm (77 inches) 

5th percentile female 150 cm (63 inches) 

Notes: 

a. Subjects - These data were generated using a computer-based anthropometric model. The 

computer model was developed using a sample of 192 male astronaut candidates and 22 

http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.3.3.1-3
http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.3.3.1-5
http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.3.3.1-4
http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.3.3.1-5
http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.3.3.1-5
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female astronaut candidates measured in 1979 and 1980 (Reference 365). The 5th 

percentile stature of the male population is 167.9 cm (66.1 inches) and the 95th percentile 

male stature is 189.0 cm (74.4 inches). The 5th percentile stature of the female population is 

157.6 cm (62.0 inches) and the 95th percentile female is 175.7 cm (69.2 inches). 

 

b.  Gravity conditions - Although the motions apply to a microgravity condition, the effects of 

spinal lengthening have not been considered. 

 Figure 3.3.2.3-4, 5 Microgravity Foot Restraint Reach Boundaries - Fore/Aft 

 

Subject 

Radius Of Reach Fingertip Boundary In X-Z Plane 

Flexible arch 

support 
Fixed 'flat' foot restraint foot restraint 

95th percentile Male  222 cm (87 in) 212 cm (83 in) 

5th percentile Female 188 cm (74 in) 172 cm (68 in) 

 

 

 

 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#365
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Dimensions of fingertip reach boundary in YZ plane  

  
Angle 

(degrees) 

Y-axis 

dimension 
Z-axis dimension 

95th percentile male 

90 0 222 cm 

75 80 cm (31 in) 193 cm (76 in) 

60 110 cm (43 in) 160 cm (63 in) 

5th percentile male 

90 0 188 cm (74 in) 

75 28 cm (11 in) 175 com (69 in) 

60 80 cm (31 in) 140 cm (55 in) 

 

3.3.2.3.1 | STRIKE REACH ENVELOPE DATA DESIGN REQUIREMENTS 

If abrupt high accelerations are expected, items within the strike envelope shall be designed 

to minimize injury to the crewmember. Body strike envelopes as defined in Figures 3.3.2.3.1-

1 and 3.3.2.1.1-2 shall be used as appropriate 

Figure 3.3.2.3.1-1 4-G Strike reach envelope of a Seated 95th Percentile Male  

Notes: These figures show 

the envelope that the body 

extremities (arms, legs, 

head, and torso) could 

strike when the seated 

person is subjected to 4-G 

acceleration either fore and 

aft or to the side (± Gx or ± 

Gy). Refer to Paragraph 

5.3.1, Introduction, for 

acceleration vector 

reference conventions). 

 

 

http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.3.3.2-1
http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.3.3.2-1
http://msis.jsc.nasa.gov/sections/section03.htm#Figure%203.3.3.3.2-2
http://msis.jsc.nasa.gov/sections/section05.htm#5.3.1
http://msis.jsc.nasa.gov/sections/section05.htm#5.3.1
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Wearing Full Restraint 

(Seat Belt and Dual 

Shoulder Harness) 

Lap Belt Only 

 

Image Reference: 21, DN3Q4, p. 3; NASA-STD-3000 334-5 

3.3.3 | NEUTRAL BODY POSTURE CONSIDERATIONS 

This section describes the posture that the body assumes in microgravity. Implications for 

habitat and crew station design are given.  

The crewmembers should not be expected to maintain a 1-G posture in a microgravity 

environment. Having to maintain some 1-G postures in microgravity may produce stress 

when muscles are called on to supply forces that were normally supplied by gravity. 

Stooping and bending are examples of positions that cause fatigue in microgravity. In 

microgravity, the body assumes a neutral body posture. The natural heights and angles of 

the neutral body posture must be accommodated. Some of the areas to be considered are 

as follows: 

a. Foot Angle - Since the feet are tilted at approximately 111 degrees to a line through the 

torso, sloping rather than flat shoes or restraint surfaces should be considered. 

b. Feet and Leg Placement - foot restraints must be placed under the work surface. The 

neutral body posture is not vertical because hip/knee flexion displaces the torso backward, 

away from the footprint. The feet and legs are positioned somewhere between a location 

directly under the torso (as in standing) and a point well out in front of the torso (as in sitting). 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#21
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c. Height - The height of the crewmember in microgravity is between sitting and standing 

height. A microgravity work surface must be higher than one designed for 1-G or partial-

gravity sitting tasks. 

d. Arm and Shoulder Elevation - Elevation of the shoulder girdle and arm flexion in the 

neutral body posture also make elevation of the work surface desirable. 

e. Head Tilt - In microgravity the head is angled forward and down, a position that depresses 

the line of sight and requires that displays be lowered. 

 

Figure 3.3.3-1 Neutral Body Posture 

 

Note: The segment angles shown are means. Values in parentheses are standard deviations about the mean. 

The data was developed in Skylab studies and is based on the measurement of 12 subjects. 

Image Reference: 7, p. 24 to 26; 129, Fig. 11; NASA-STD-3000 285 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#7
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#129
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3.3.4 | BODY SURFACE AREA 

a. Gravity Environment - Body surface area estimation equations apply to 1-G conditions 

only. They do not account for the fluid shifts and spinal lengthening in microgravity. 

b. Population - The equations given are most accurate for the White or Black male and 

female body form. The equations should not be used to estimate the body surface area of 

the Asian Japanese female. 

c. Application of Data - Body surface area data have several space module design 

applications. These include: 

1. Thermal control - Estimation of body heat production for thermal environmental control. 

2. Estimation of radiation dosage. 

Estimated Body Surface Area of the Male Crewmember 

5th Percentile 17,600 cm2 (2730 in2) 

50th Percentile  20,190 cm2 (3130 in2)  

95th Percentile  22,690 cm2 (3520 in2)  

3.3.5 BODY VOLUME DATA DESIGN CONSIDERATIONS 

a. Gravity Environment - The data are based on 1-G conditions and does not account for 

fluid shifts or spinal lengthening due to weightlessness. 

b. Population - The data provided in this paragraph apply only to the White or Black male 

body form.  

Estimated Body Volume of the Male Crewmember 

5th Percentile 68,640 cm3 (4190 in3) 

50th Percentile  85,310 cm3 (5210 in3)  

95th Percentile  101,840 cm3 (6210 in3)  
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3.3.6 | BODY SEGMENT VOLUME DATA DESIGN REQUIREMENTS 

Body Segments Volume of Male Crewmember 

 

Segment Volume, cm
3
 (in

3
) 

  5th percentile 50th percentile 95th percentile 

1 Head 4260 (260) 440 (270) 4550 (280) 

2 Neck 930 (60) 1100 (70) 1270 (80) 

3 Thorax 20420 (1250) 26110 (1590) 31760 (1940) 

4 Abdomen 2030 (120) 2500 (150) 2960 (180) 

5 Pelvis 9420 (570) 12300 (750) 15150 (920) 

6 Upper arm * 1600 (100) 2500 (130) 2500 (150) 

7 Forearm * 1180 (70) 1450 (90) 1720 (100) 

8 Hand 460 (30) 530 (30) 610 (40) 

9 Hip flap * 2890 (180) 3640 (220) 4380 (270) 

10 Thigh minus flap * 5480 (330) 6700 (410) 7920 (480) 

11 Calf * 3320 (200) 4040 (250) 4760 (290) 

12 Foot * 840 (50) 1010 (60) 1180 (70) 

5 + 4 + 3 Torso 31870 (1940) 40910 (2450) 49870 (3040) 

9 + 10 Thigh * 8360 (510) 10340 (630) 12300 (750) 

7 + 8 Forearm plus hand * 1640 (100) 1980 (120) 2320 (140) 

Notes:  

*Average of right and left sides 

a. These data apply to 1-G conditions only. 

b. The male crewmember population is defined in paragraph 3.2.1, Anthropometric 

Database Design Considerations. 

3.3.7 | BODY MASS PROPERTIES 

 

a. Body Mass - Both whole-body and body-segment mass data are provided. 

b. Center of Mass - Center of mass locations are defined for both the whole body in defined 

positions and for body segments. 

c. Body Moment of Inertia - Moment of inertia data are provided for the whole body in 

defined positions and for body segments. 

All data are based 1-G measurements. 

The following are considerations for using the body mass properties data: 

a. Effects of Microgravity on the Body - Microgravity causes fluids to shift upward in the body 

and leave the legs. This results in an upward shift of the center of mass for the whole body 

and a loss of mass in the leg segments. 

http://msis.jsc.nasa.gov/sections/section03.htm#3.2.1
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b. Population - The only body mass data provided for the Japanese female is whole body 

mass. Japanese female crewmember center of mass and moment of inertia data cannot be 

specified at this time due to insufficient data. 

c. Body Weight Versus Body Mass - Although body mass remains constant, body weight will 

depend on gravity conditions. In 1-G body weight is calculated as indicated below: 

1. Weight in lbs/32.2 = Mass in slugs 

2. Weight in Newtons = mass in Kg X 9.8. 

d. Application of Data - In microgravity, the body mass properties define body reaction to 

outside forces. These forces can be: 

1. Reactive to forces exerted by the crewmember or a hand tool. 

2. Active forces from devices such as the Manned Maneuvering Unit. 

Both whole-body and body segment mass properties are given. The reaction of the body to a 

force depends on both the mass and the relative positions of the body segments. The whole-

body center of mass and moment of inertia data are provided for 8 predefined positions. 

whole-body mass properties for other positions would have to be determined by 

mathematically combining the mass properties of the individual segments. 

3.3.7.1 | BODY MASS DATA DESIGN REQUIREMENTS 

Whole body mass of year 2000 crewmember population (age 40) 

Male  Female  

5th 

percentile 

50th 

percentile 

95th 

percentile 

5th 

percentile 

50th 

percentile 

95th 

percentile 

65.8 kg 

(145.1 lb) 

82.2 kg 

(181.3 lb) 

98.5 kg  

(217.2 lb) 

41.0 kg  

(90.4 lb) 

51.5 kg  

(113.5 lb) 

61.7 kg  

(136.0 lb) 

Reference: 16, 308, pp. III-92, III-85; NASA-STD-3000 281 

  

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#16
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#308
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Body Segment Mass Data Design Requirements 

Mass of Body Segments for Male Crewmember 

 

 Segment Mass, gm (oz, weight) 

   5th percentile 50th percentile 95th percentile 

 1 Head 4260 (150) 440 (160) 4550 (160) 

 2 Neck 930 (30) 1100 (40) 1270 (40) 

 3 Thorax 20420 (720) 26110 (920) 31760 (1120) 

 4 Abdomen 2030 (70) 2500 (90) 2960 (100) 

 5 Pelvis 9420 (330) 12300 (430) 15150 (530) 

 6 Upper arm * 1600 (60) 2500 (70) 2500 (90) 

 7 Forearm * 1180 (40) 1450 (50) 1720 (60) 

 8 Hand 460 (20) 530 (20) 610 (20) 

 9 Hip flap * 2890 (100) 3640 (130) 4380 (150) 

 10 Thigh minus flap * 5480 (190) 6700 (240) 7920 (280) 

 11 Calf * 3320 (120) 4040 (140) 4760 (170) 

 12 Foot * 840 (30) 1010 (40) 1180 (40) 

 5 + 4 + 3 Torso 31870 (1120) 40910 (1440) 49870 (1760) 

 9 + 10 Thigh * 8360 (290) 10340 (360) 12300 (430) 

 7 + 8 Forearm plus hand * 1640 (60) 1980 (70) 2320 (80) 

  

Notes: 

a. These data apply to 1-G conditions. 

b. The American male crewmember population is defined in paragraph 3.2.1, 

Anthropometric Database Design Considerations Average of Right and Left 

Sides 

Image Reference: 276, pp. 32-79 With Updates; NASA-STD-3000 280 

 

 

 

 

 

 

 

 

http://msis.jsc.nasa.gov/sections/section03.htm#3.2.1
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#276
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3.3.7.2 | CENTER OF MASS DATA DESIGN REQUIREMENTS 

The whole body center of mass location data for the American male crewmember in 1-G are 

in the figure below along with equations for locating the whole body center of mass in males 

of different sizes. 

Whole Body Center of Mass and Moment of Inertia of the Male 

Crewmember 

L(Y) - 1/2 distance between anterior superior iliac spine landmarks (1/2 

bispinous breadth). 

Moment of Inertia, g=cm
2
 x 10

6
 (lb-in-sec

2
) 

Posture Dimension 
5th 

percentile 
50th 

percentile 
95th 

percentile 
 1. Standing  

 

L(X) 8.6 (3.4) 9.1 (3.6) 9.6 (3.8) C
E

N
T

E
R

 

O
F

 M
A

S
S

 

L(Y) 11.7 (4.6) 12.5 (4.9) 13.3 (5.2) 

L(Z) 75.7 (29.8) 80.2 (31.6) 84.7 (33.3) 

X 106.5 (94.2) 
144.5 

(101.3) 
182.3 

(161.2) 

M
O

M
E

N
T

 O
F

 IN
E

R
T

IA
 

Y 94.9 (83.9) 
129.2 

(114.3) 
163.4 

(144.5) 

Z 10.3 (12.7) 14.4 (12.7) 18.5 (16.4) 

2. Standing with arms over 
head 

 

L(X) 8.7 (3.4) 9.0 ((3.6) 9.4 (3.7) C
E

N
T

E
R

 

O
F

 M
A

S
S

 

L(Y) 11.7 (4.6) 12.5 (4.9) 13.3 (5.2) 

L(Z) 69.9 (27.5) 73.9 (29.1) 77.9 (30.7) 

X 
141.0 

(124.7) 
191.9 

(169.7) 
242.6 

(214.6) 

M
O

M
E

N
T

 O
F

 IN
E

R
T

IA
 

Y 
124.6 

(110.2) 
172.9 

(152.9) 
221.0 

(195.5) 

Z 10.6 (9.4) 14.1 (12.5) 17.5 (15.5) 

3. Spread Eagle  

 

L(X) 8.2 (3.2) 8.6 (3.4) 9.0 (3.6) 

C
E

N
T

E
R

 

O
F

 M
A

S
S

 

L(Y) 11.7 (4.6) 12.5 (4.9) 13.3 (5.2) 

L(Z) 69.4 (27.3) 73.5 (28.9) 77.5 (30.5) 

X 
137.2 

(121.3) 
190.4 

(168.4) 
243.4 

(215.3) 

M
O

M
E

N
T

 O
F

 

IN
E

R
T

IA
 

Y 104.2 (92.2) 
144.8 

(128.1) 
185.2 

(163.8) 

Z 32.0 (28.3) 46.6 (41.2) 61.3 (54.2) 

4. Sitting  

 

L(X) 19.4 (7.7) 20.6 (8.1) 21.8 (8.6) 

C
E

N
T

E
R

 

O
F

 M
A

S
S

 

L(Y) 11.7 (4.6) 12.5 (4.9) 13.3 (5.2) 

L(Z) 65.2 (25.7) 68.6 (27.0) 71.9 (28.3) 

X 57.3 (50.7) 76.9 (68.0) 96.5 (85.3) 

M
O

M
E

N
T

 O
F

 

IN
E

R
T

IA
 

Y 62.0 (54.8) 83.2 (73.6) 104.3 (92.2) 

Z 30.7 (27.2) 42.4 (37.3) 54.0 (47.8) 
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Posture Dimension 
5th 

percentile 
50th 

percentile 
95th 

percentile 

 

5. Sitting, Forearms Down 

 

L(X) 18.9 (7.4) 20.0 (7.9) 21.1 (8.3) C
E

N
T

E
R

 

O
F

 M
A

S
S

 
L(Y) 11.7 (4.6) 12.5 (4.9) 13.3 (5.2) 

L(Z) 66.0 (26.0) 69.3 (27.3) 72.5 (28.6) 

X 59.2 (52.4) 77.6 (68.6) 96.0 (84.9) M
O

M
E

N
T

 O
F

 

IN
E

R
T

IA
 

Y 63.9 (56.5) 86.3 (76.3) 108.6 (96.0) 

Z 30.9 (27.3) 42.8 (37.9) 54.6 (48.3) 

6. Sitting, Thighs Elevated 

 
 
 

L(X) 17.6 (6.9) 18.8 (7.4) 20.1 (7.9) C
E

N
T

E
R

 

O
F

 M
A

S
S

 

L(Y) 11.7 (4.8) 12.5 (4.9) 13.3 (5.2) 

L(Z) 57.3 (22.5) 59.4 (23.4) 61.5 (24.2) 

X 37.6 (33.3) 48.7 (43.1) 59.8 (52.9) 

M
O

M
E

N
T

 O
F

 

IN
E

R
T

IA
 

Y 37.2 (32.9) 48.6 (41.2) 55.8 (49.3) 

Z 23.9 (21.1) 33.7 (29.8) 43.5 (38.5) 

7. Mercury Configuration  

 

L(X) 19.4 (7.6) 20.5 (8.1) 21.5 (8.5) C
E

N
T

E
R

 

O
F

 M
A

S
S

 

L(Y) 11.7 (4.6) 12.5 (4.9) 13.3 (5.2) 

L(Z) 66.8 (26.3) 69.9 (27.5) 73.0 (28.7) 

X 62.5 (55.3) 82.2 (72.7) 101.8 (90.0) 

M
O

M
E

N
T

 O
F

 

IN
E

R
T

IA
 

Y 69.6 (61.6) 95.5 (84.5) 
121.3 

(107.3) 

Z 31.9 (28.2) 43.0 (38.0) 54.0 (47.8) 

8. Relaxed (weightless) 

 

L(X) 18.0 (7.1) 18.8 (7.4) 19.6 (7.7) C
E

N
T

E
R

 

O
F

 M
A

S
S

 

L(Y) 11.7 (4.6) 12.5 (4.9) 13.3 (5.2) 

L(Z) 68.0 (26.8) 70.9 (27.9) 73.7 (29.0) 

X 88.0 (77.8) 
114.5 

(101.3) 
140.9 

(124.6) 

M
O

M
E

N
T

 O
F

 

IN
E

R
T

IA
 

Y 84.1 (74.4) 
109.6 
(96.9) 

134.8 
(119.2) 

  Z 39.8 (35.2) 50.5 (44.7) 61.2 (54.1) 
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3.4 | HUMANS IN METAPHYSICAL DIMENSION 

 

The human brain – an unpredictable device – something we are slowly trying to 

understand ourselves. The unlimitated potential one carries within this one organ is 

unparallel. But not everyone is gifted the same. Our differences makes each and 

everyone unique. 

 

Evolution of Humans from the Metaphysical point of view, according to Architect Benjamin 

Betts, resides deep within the human Brain, the Consciousness. His work on the 

―Geometrical Psychology‖, tries to represent the human consciousness from the animal 

basis, the pure sense-consciousness, to the spiritual or divine consciousness; both which 

extremes are not man – the one underlying the other transcending the limits of human 

evolution. 
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When one starts to understand the geography and climate of 

one’s mind, one wonders am i but a machine, a natures 

device? My identity, my roots compact within a DNA strand, 

my actions do they have any significance in this material 

reality? 

 

We are a work of art. Through constant learning and mixture of 

skills and sorting information we express our intellegence. We 

are born with certain mental potentials, and with time we 

develop and grow with respect to our surrounding 

environments. Architect Benjamin Betts tries to look at the 

workings of the mind, the consciousness in a geometric 

approach. His attempts to trace the course of the evolution of 

life must begin at some point of the eternal circle. Mr. Betts 

has begun with the evolution of man, but the principles of 

evolution which he discovers through his studies apply equally 

to the evolutions of higher or lower forms of consciousness, 

and even to those planes of existence which we usually term 

inanimate. Only by studying ourselves, he believes, can we 

ever arrive at a true knowledge of the external.  

 

The starting-point of the human evolution is the animal sense-consciousness, which, though 

a positive plane of life for the lower animals, affords but a negative basis of consciousness 

for man. The symbolic representation of animal sense-consciousness is in two dimensions, 

and in form resembles a leaf whose apex is about equal to a right angle. The first human 

standing-ground is that of rational sense-consciousness. Self-gratification is the predominant 

motive on this ground. It is represented by a series of diagrams in two dimensions 

resembling leaf forms. They are in pairs, of which those which he calls positive or male 

forms usually have an apex less than a right angle, and those which he calls female or 

negative an apex greater than a right angle. The second standing-ground is negative, the 

reaction from the first, which is positive. It is the ground of the lower morality. Will is 

developed as distinguished from the mere impulsive volition of the first ground. Self-control 

is the predominant motive. The dimensions of the form are contracted to a point which is 

now not a mere point of possibility as at first, but a focus of realized sensuous activity, 

repressed. Commonly, however, this ground consists rather in the circumscription than 

suppression of sensuous activity (the total suppression of sensuous activity would be death), 

which is now no longer allowed exercise for its own sake, but as a means to an end. Thus 
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the representation of forms actually possible in life, instead of being a point will be a circle, or 

rather a circumference, for it is not necessarily a true circle. The third standing-ground Mr. 

Betts calls the ground of spiritual activity, but it is rather psychical than truly spiritual, the 

spiritual evolution being that of the fifth ground. Work is the motive of this ground. The 

sensuous activities are now allowed free exercise again, but as servants not as masters. 

The representative diagrams are in three dimensions, for the consciousness now has depth 

as well as surface extension. In form they resemble the corollas of flowers, the male series 

trumpet-shaped, and the female series bell-shaped.   

 

The fourth is again a negative standing-ground of life, the reaction from the third ground, as 

the second from the first. It is the sacrifice of the personal Will, from which sacrifice it is re-

born as a spiritual Will, in union with the divine or universal Will. Mr. Betts professes himself 

unable to give any representation of life on this ground, since even the most advanced of 

ordinary humanity have scarcely entered upon it; also being a negative and reactionary 

ground it would be almost un-representable by diagram. The motive of this ground is a 

yearning for union with the infinite. The fifth standing-ground is spiritual, the ground of 

intuitive knowledge. As the spiritual now becomes a positive plane of life it would be capable 

of representation if we were able to draw diagrams in four dimensions, but our present 

consciousness is limited to only three. Normal human beings have not yet attained to this 

plane of life, though the aspirations of a few tend thitherward; consequently no definite 

conception can be formed of such a condition, except by inference from the analogies and 

correspondences of lower planes of life, or through the revelation of higher beings who have 

already developed this grade of consciousness in themselves. It is the plane of the occult—

what we with our limited ideas of nature call the Supernatural. 

 
Using two dimensional diagrams he tried to represent them in a graphics,  
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CHAPTER | 4  

ARCHITECTURAL CONSIDERATIONS IN OUTERSPACE 

This section discusses the placement, arrangement, and grouping of compartments and 

crew stations in space modules. The section also includes design parameters for items 

which integrate the crew stations: 

4.1 | MICROGRAVITY DESIGN – CONSIDERATIONS 

 

Many space modules will have a microgravity environment. The following are general 

considerations that must be made when designing the overall layout of the space module for 

microgravity: 

a. Access - Microgravity allows greater access to places that would otherwise not be 

possible in 1-G. 

b. Restraints - Many of the activities in microgravity require that the individual be restrained 

or tethered. Layout of crew stations must consider the extra time for the crewmember to 

secure him or herself. Activities which require restraints should be grouped as much as 

possible within the same reach envelope. 

c. Pre-Mission Training - Training and simulation done on Earth will be conducted in 1-G. 

The design should be such that the transition from Earth to space environment does not 

completely negate the effects of this training.  

4.2 | MULTIPURPOSE USE OF VOLUME DESIGN CONSIDERATIONS 

It is often more efficient to design the workspace so that it can be used for a number of 

different activities. It may be possible to use a volume which is dedicated to a specific activity 

and which would otherwise be wasted space when that activity is not being performed. 

Multipurpose utilization of volume can increase the efficiency of the space module. The 

activities should be compatible with the surrounding area and with each other. Possible 

limitations for multipurpose utilization of a volume include: 

a. Hygiene and Contamination - One activity may contaminate another, such as body waste 

management and food preparation. 

b. Time - It may take too much time to efficiently convert the volume from one function to 

another.  

c. Privacy Infringement - An activity may infringe on the privacy of a crewmember. This is the 

main objection to having two persons on different work shifts sharing the same quarters. 
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4.3 | PHYSICAL DIMENSIONS OF CREWMEMBERS DESIGN CONSIDERATIONS 

The space module must support mixed crews with different skills living and working together 

in space for months at a time. The design goal of a space module should be to provide a 

facility that, within some understandably necessary size constraints, provides a comfortable 

and functionally efficient environment. In order to achieve this goal, consideration must be 

given to the physical dimensions of the human. The design must accommodate from the 

smallest in size to the largest of the selected design crewmember population. 

Anthropometrics and Biomechanics, Envelope Geometry for Crew Functions, provide data 

for sizing the space module to accommodate all crewmembers. 

4.4 | MODULE LAYOUT AND ARRANGEMENT DESIGN CONSIDERATIONS 

Equipment arrangement, grouping, and layout of the space module should enhance crew 

interaction and facilitate efficient operation. The module layout and arrangement should be 

based on detailed analyses using recognized human factors engineering techniques. This 

analysis process should include the following steps: 

a. Functional Definition - Definition of the system functions that must occur in the mission. 

b. Functional Allocation - Assignment of these functions to equipment, crewmembers, and 

crew stations. 

c. Definition of Tasks and Operations - Determination of the characteristics of the crew tasks 

and operations required to perform the functions, including: 

1. Frequency. 

2. Duration. 

3. Sequence. 

4. Volume required. 

5. Special environmental requirements. 

6. Privacy and personal space requirements. 

d. Space Module Layout - Using the information determined above, the layout of the space 

module should: 

1. Minimize the transit time between related crew stations. 

2. Accommodate the expected levels of activity at each station. 

3. Isolate stations when necessary for crew health, safety, performance, and privacy. 

4. Provide a safe, efficient, and comfortable work and living environment. 
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4.5 | DEDICATED - MULTI PURPOSE SPACE UTILIZATION DESIGN REQUIREMENTS 

The interior accommodations shall be designed so that multipurpose utilization of the space 

meets the requirements: 

a. Compatibility of activities within crew stations - Activities that occur within the same station 

shall not interfere with each other. It is best if the different activities occur at different times. 

b. Compatibility with surrounding activities and facilities - Each of the activities performed at 

a station shall be compatible with surrounding activities and facilities. 

 

4.6 | CREW STATION LOCATION 

 

Stations that perform related functions should be adjacent to each other, if possible. 

Activities performed at a station should be compatible with surrounding activities and 

facilities (i.e. non-interference in terms of physical, visual, or acoustical considerations). 

Crew stations should be separated or isolated if it improves the overall performance and/or 

safety of the crewmembers. Crew stations within the space module shall be arranged and 

grouped to meet the goals of accessibility, activity level and optimization of transits. 

4.6.1 | CREW STATION ADJACENCIES 

 

Design of any system or facility should be based on the logical sequence and smooth flow of 

activities that are to occur in the facility. Generally, the most efficient layout is to place crew 

stations adjacent to each other when they are used sequentially or in close coordination. 

There are some limitations to this general rule, however. Adjacent positions should not 

degrade any of the activities in the stations, nor should the positioning degrade any of the 

activities in the surrounding stations. General adjacency considerations, beyond simple 

activity flow, are listed and discussed below. 

a. Physical Interference - Some crew stations require a high volume of entering and exiting 

traffic (both personnel and equipment). Placement of these stations adjacent to each other 

could result in traffic congestion and loss of efficiency. 

b. Noise - Activities such as communications, sleeping and rest, and mental concentration 

are adversely affected by noise. Activity centers generating significant noise levels should 

not be placed adjacent to those activity centers adversely affected by noise. 
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c. Lighting - Ambient illumination from one activity center may either interfere with or benefit 

the activities in an adjacent center. Activities that require illumination will benefit from the 

Activities adversely effected by light could be: 

1. Certain experiments or lab activities such as photographic development. 

2. Sleeping. 

3. Use of some optical equipment (such as windows) and self illuminated displays. 

d. Privacy - There are cultural and individual requirements that should be considered. 

Certain personal activities such as sleeping, personal hygiene, waste management, and 

personnel interactions require some degree of privacy. These private areas should not be 

placed in passageways or highly congested activity centers. 

e. Security - Many of the experiments and production processes will be confidential to a 

specific industry or organization. These activity centers may require visual, audio, or 

electrical isolation from the rest of the space module. 

f. Vibration - Certain personal activities, such as relaxation and sleep, will be disturbed by 

vibrations and jolts. In addition, many production, experimental, and control functions will 

require a stable and vibration-free platform. Crew stations of these types should be isolated 

from sources of vibration. 

g. Contamination - Crew station activities can generate contaminants. These activities may 

include manufacture, maintenance, personal hygiene, or laboratories. Other crew station 

activities may be extremely sensitive to contamination. These activities include food storage 

and consumption, laboratory research, some production processes, and health care. 

Contaminant sources and areas highly sensitive to contamination should be physically 

separated in the overall space module layout. 

4.6.2 | CREW STATION ADJACENCIES DESIGN REQUIREMENTS 

Crew stations shall be placed adjacent to each other (or combined) when any of the 

following conditions exist: 

a. Sequential Dependency - The activities occurring in one station are sequentially 

dependent on the activities occurring in another station (i.e., one activity provides the reason 

or need to perform the other activity). 

b. High Transition Frequency - Crewmembers change frequently from the activities occurring 

in one station to the activities occurring in another station. 
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c. Shared Support Equipment - The equipment used to support the activities in each station 

is similar or identical. 

4.6.3 | SPECIFIC ADJACENCY DESIGN CONSIDERATIONS 

Analyses have been performed on typical space module crew functions to determine 

adjacency considerations for specific crew stations and functions. The functions considered 

in the analysis are listed in Figure 4.6.3-1. The following criteria were used to evaluate 

adjacency of the functions. Each of these criteria were given equal weighting: 

FIGURE 4.6.3-1 TYPICAL FUNCTIONS OF A SPACE MODULE CREW 

Crew support 

Meal preparation 

Eating  

Meal clean-up 

Exercise 

Medical care 

Full-body cleansing 

Hand/face cleansing 

Personal hygiene 

Urination/defecation 

Training 

Sleep 

Private recreation and leisure 

Small-group recreation and leisure 

Dressing/undressing 

Clothing maintenance 

Station operations  

Meetings and teleconferences 

Planning and scheduling 

Subsystem monitoring and control 

Pre/post-EVA operations 

IVA support of EVA operations 

Proximity operations 

General housekeeping 

ORU maintenance and repair 

Logistics and resupply 

Mission operations  

Payload support 

Life sciences experiments 

Materials processing experiments 

 

Figure: Consideration for the Relative Locations of Space Module Functions Based on the 

Results of Functional Relationships Analysis. 

Reference: 319, p. 60; NASA-STD-3000 86 

a. Transition Frequency - The frequency with which crewmembers switch from performing one 

function to another. 

b. Sequential Dependency - The extent to which one function provides the reason, or need, to 

perform another function. 

c. Support Equipment Commonality - The percentage of support equipment shared by the functions. 

d. Noise Output and Sensitivity - The potential for noise generated by crew activities and support 

equipment associated with one function to interfere with the performance of another function. 

e. Privacy Requirements - The similarity of the privacy requirements (both audio and visual). 

http://msis.jsc.nasa.gov/sections/section08.htm#Figure%208.3.2.2-1
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#319
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4.6.4 | NON-ADJACENT CREW STATIONS - DESIGN REQUIREMENTS 

Crew stations shall not be located adjacent to each other when any of the following 

conditions exist: 

a. Physical Interference - Crew traffic flow, equipment movement, and activities of one station 

physically restrict the activities in another station. 

b. Environmental Interference - The activities in one station affect the surrounding environment so that 

the activities in an adjacent station are degraded. These environmental effects include lighting, noise, 

vibration, heat. 

c. Degradation of Crew Health and Safety - The activities or contents of one station could, within a 

reasonable possibility, degrade the health and safety of the crew in an adjacent station. 

d. Infringement on Privacy - A station infringes on the privacy of the crew members in an adjacent 

station to an extent unacceptable to the crew members. 

e. Infringement on Security - A station infringes on the security and confidentiality of the activities of 

an adjacent station to an extent unacceptable to the mission of the two functions. 

4.7 | COMPARTMENT AND CREW STATION ORIENTATION 

This paragraph discusses the orientation of crew stations (workstations, crew activity 

centers, etc.) within the space module. The information in this section applies to a 

microgravity environment where there is no gravity to define a single orientation.  

4.7.1 | ORIENTATION DESIGN CONSIDERATIONS 

In a 1-G or partial gravity environment, orientation is not a particular problem. Down is the 

direction in which gravity acts and the human is normally required to work with feet down 

and head up. In a microgravity environment, the human working position is arbitrary. There 

is no gravity cue that defines up or down. In microgravity, orientation is defined primarily 

through visual cues which are under the control of the system designer. The orientation 

within a particular crew station is referred to as a local vertical. There are several orientation 

factors to be considered when designing a microgravity environment. 

a. Work Surfaces - Microgravity expands the number of possible work surfaces (walls, 

ceilings, as well as floors) within a given volume. This could result in a number of different 

local verticals within a module. 
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b. Training and Testing - Some of the working arrangements that are possible in microgravity 

will not easily be duplicated on Earth. Pre-mission training and testing will suffer with these 

arrangements. Additional training might have to be conducted during the actual mission. This 

could drastically reduce the effectiveness of a short duration mission. 

c. Disorientation - Humans, raised in a 1-G environment, are accustomed to forming a 

mental image of their environment with a consistent orientation. People locate themselves 

and objects according to this mental image. If the person is viewing the environment in an 

unusual orientation, this mental image is not supported. This can promote disorientation, 

space sickness, temporary loss of direction, and overall decreased performance. 

d. Visual Orientation Cues - Visual cues are needed to help the crewmember quickly adjust 

his or her orientation for a more familiar view of the world. These visual cues should define 

some sort of horizontal or vertical reference plane (such as the edges of a CRT or window). 

Of the two, it appears that the horizontal cue is more effective. Further research is presently 

being conducted by NASA to determine additional guidelines for the design of visual 

orientation cues. 

e. Equipment Operation - Due to prior training and physical characteristics of the human, 

some pieces of equipment are more efficiently operated in one specific orientation. Labeling 

must also be properly oriented to be readable. Direction of motion stereotypes exist for most 

controls. For instance, in the US, power is turned on when a switch is positioned up or 

toward the head. If equipment items, labels, and controls have different orientations within 

the same crew station, human errors are likely to occur. 

4.7.2 | ORIENTATION DESIGN REQUIREMENTS 

 

The following are design requirements for establishing an orientation within a space module: 

a. Consistent Orientation - Each crew station shall have a local vertical (a consistent 

arrangement of vertical cues within a given visual field) so that the vertical orientation 

within a specific work station or activity center shall remain consistent.  
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b. Visual Orientation Cue - A visual cue shall 

be provided to allow the crewmember to 

quickly adjust to the orientation of the activity 

center or workstation. 

c. Separation - When adjacent workstations 

or activity centers have vertical orientations 

differing by 90 degrees or more, then clearly 

definable demarcations shall separate the 

two areas. 

4.8 | LOCATION CODING 

This section discusses the standards for defining locations throughout a space module and 

or vehicle. The location coding system shall apply to all crew interface areas including:  

a. Control and display panels. 

b. Stowage areas, lockers, sub-compartments, and containers. 

c. Access panels. 

d. Systems, components, and equipment.  

 

4.8.1 | USERS OF A LOCATION CODING SYSTEM DESIGN CONSIDERATIONS 

 

Many different people will use the space module location coding system (both crewmember 

and non-crewmember personnel) and the system will be used in a wide variety of situations 

(both emergency and routine). It is therefore important that the system be simple to use, 

easy to remember, easy to communicate, and consistent throughout the system. The 

following is a list of the personnel who might use a space module location coding system 

and ways in which it might be used: 

 

a. Space Module Crew - Locations codes are necessary to minimize crew search time and 

maintain consistent equipment placement during nonuse periods. This is especially 

important for single equipment items requiring rapid use by more than one crewmember. 

 

b. Ground Support Personnel - A location coding system will be used to communicate 

information and instructions between ground and module crews. 

 

c. Crews of Other Modules - Location codes will be necessary for docking or any 

coordinated activity between modules. 
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d. Maintenance and Emergency Personnel - Repairs and rescue operations require an 

accurate and easily communicated location coding system. 

 

e. Logistics and Resupply Personnel - Location codes are required for inventory assessment 

and resupply plan development and communication. 

 

4.9 | ENVELOPE GEOMETRY FOR CREW FUNCTIONS 

This section provides information for sizing the space module for human work and 

habitation. Physical body envelopes for various crew functions are given. The information in 

this section can be used to develop a preliminary overall layout of the space module. There 

are four basic factors that affect the required habitable volume and envelope geometry in a 

space module. These factors are listed below: 

a. Mission duration.    b. Visual factors.   c. Physical body envelope.   d. Social factors. 

4.9.1 | MISSION DURATION DESIGN CONSIDERATIONS 

The duration of the mission has an overall effect on the required envelope geometry. 

Increasing mission duration requires a greater physical envelope to accommodate mission 

tasks and personal needs. Crew accommodation needs are additive, so the total required 

habitable volume per crewmember increases with mission duration. Guidelines for 

determining the amount of habitable volume per crewmember for varying mission durations 

are shown in Figure 4.9.1-1. 

Figure 4.9.1-1 guideline for determination of total habitable volume per person in the space module 

 

http://msis.jsc.nasa.gov/sections/section08.htm#Figure%208.6.2.1-1
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4.9.2 | VISUAL DESIGN CONSIDERATIONS 

As the mission duration increases, there is a greater tendency for the crew to feel confined 

and cramped. This can affect psychological health and crewmember performance. The 

judged physical space is not necessarily relative to the physical size of the room. The feeling 

of spaciousness can be achieved visually through the arrangement, color, and design of the 

walls and partitions of the space module. Some of the facts that are known about visual 

spaciousness are listed below: 

a. DISTANCE FROM VIEWER - Errors of overestimation of space increase as the 

distance from the viewer increases. This indicates desirability of long view axes. 

b. ROOM SHAPE - Irregular shaped rooms are perceived to have more volume than 

compact or regular shaped rooms of equal volume. 

c. VIEWING ALONG A SURFACE - Distances judged along surfaces are overestimated 

with respect to those judged through empty space. If an observer looks along a wall 

to another boundary wall, the boundary wall would be judged as further away than if 

it is seen from the same physical distance across the empty space of the room. 

d.  LIGHTING AND COLOR - The effects of brightness, color saturation, and 

illumination levels on perception of volume are listed in Figure 3.4.12.2-1. 

e. CLUTTER - Clutter, or items that visually detract from long view axes, decrease the 

perceived room volume. 

f.  WINDOWS - Windows allow the crewmember to focus on objects (such as Earth) 

outside the space module. This can significantly increase the sense of spaciousness 

and psychological well-being of the crewmember. 

FIGURE 4.9.2-1 EFFECTS OF BRIGHTNESS, COLOR, COLOR SATURATION, AND ILLUMINATION 

LEVEL ON PERCEPTION OF VOLUME 

Volume perception 

(roominess)  

Brightness*  Color saturation  Illumination level  

Enlarge Areas will be enlarged by 

lightness. (Use to alleviate 

feelings of oppression or 

"closed-in").  

Pale or desaturated 

colors "recede" and 

open up a room 

High 

Close-in Areas will be closed-in by 

darkness 

Dark or saturated 

hues "protrude", and 

close-in a room 

Low 

Note:  * Brightness is a function of surface reflectance and illuminance  

Reference: 134, Figure 4-35 With Updates NASA-STD-3000 91 

http://msis.jsc.nasa.gov/sections/section08.htm#Figure%208.6.2.2-1
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#134
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4.9.3 | BODY ENVELOPE DESIGN CONSIDERATIONS 

 

The interior volume of the space module must accommodate not only the static human body 

but also the body when it performs the activities required of the mission. The body motion 

envelope is a conceptual surface which just encloses the extreme body motion of an activity. 

Crewmembers vary in size and the body motion envelope varies accordingly. The space 

module should not intrude on the body motion envelope of the larger crewmembers and yet 

not be so large that it is inconvenient or inefficient for the smaller crewmembers. In 

microgravity, additional considerations must be made for an expanded range of possible 

movements and for the neutral body posture. Approximate dimensions required to 

accommodate the body motion envelope of the 95th percentile male crewmember 

performing various IVA activities in microgravity are given in Figure 4.9.3-1. These volumes 

can be arranged and grouped to give an approximate estimate of the interior volume 

required for different crew stations. 

FIGURE 4.9.3-1 APPROXIMATE DIMENSION REQUIRED TO ACCOMMODATE THE BODY 

MOTION ENVELOPE OF THE 95
TH

 PERCENTILE MALE 

 

Image Reference: 215, pp. 38, 39; 310; 320 With Updates; NASA-STD-3000 92 

4.9.4 | SOCIAL DESIGN CONSIDERATIONS 

Some of the social factors that should be considered in the layout of the interior volume of 

the space module are discussed below: 

 

a. Privacy - Visual privacy is a major concern for some activities such as body waste 

management and personal hygiene. Volumes devoted to these functions must be visually 

isolated. In addition, it has been found that a general sense of privacy increases when visual 

http://msis.jsc.nasa.gov/sections/section08.htm#Figure%208.6.2.3-1
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#215
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#310
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#320
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exposure of the individual is decreased and the individual has controllable visual access to 

the outside world. In other words, the individual feels private if he or she has the ability of 

observing without being observed. This should be considered when designing individual 

crew quarters. 

b. Leadership Role - The size and location of a crewmember's private quarters can impart a 

sense of status to other crewmembers. If desirable for organizational purposes, this fact can 

be used in configuring the space module. 

c. Proxemics - Proxemics encompasses the study of space as a communications medium. 

Some factors to consider are: 

1. When conversational or recreational space is necessary, the space should be 

configured so that the crewmembers can be at distances of 0.5 to 1.2 meters (1.5 to 4.0 

feet) and at angles of approximately 90 to 180 degrees from each other. In general, 90 

degrees is preferred for casual conversation while 180 degrees is for competitive games 

or negotiations. 

2. Equal relative heights among social conversant should be maintained through spatial 

configuration and the placement of restraints. 

3. In a socially communicating group it should be possible for all to position themselves in 

relatively similar body orientation and limb location. Maintaining a similar vertical 

orientation is also desirable. 

4.10 | ENVELOPE GEOMETRY DESIGN REQUIREMENTS 

The following are requirements for crew station body envelope geometry: 

a. Adequate Volume - Adequate crew station volume shall be provided for the crewmembers 

to perform tasks and activities (including exit and entry) without restriction. The volume shall 

also accommodate tools and equipment used in the task. 

b. Accessibility - The geometric arrangement of crew stations shall provide necessary and 

adequate ingress and egress envelopes for all functions within the station. 

c. Full Size Range Accommodation - All workstations shall be sized to meet the functional 

reach limits of the smaller of the defined crewmember size range and yet shall not constrict 

or confine the body envelope of the larger of the defined crewmember size range. 
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4.10.1 | TOTAL MODULE HABITABLE VOLUME DESIGN REQUIREMENTS 

The following requirements apply to the total habitable volume in the module: 

Mission Function Accommodation - Sufficient total habitable volume shall be provided to 

accommodate the full range of required mission functions. 

No Degradation to Mission - Sufficient habitable volume shall be provided and configured to 

decrease the possibility of degradation of crew performance due to detrimental psychological 

effects from feelings of confinement. Design shall permit total habitable volume growth to 

accommodate the full range of required mission functions as number of crewmembers and 

station operations increase. 

4.10.2 | SKYLAB FOOD MANAGEMENT COMPARTMENT 

The Skylab Food Management Compartment for a crew of three was combined with a 

wardroom. The area measured 2.29 m (7.5 ft) long by 2.44 m (8 ft) wide by 1.98 m (6.5 ft) 

high. Total combined habitable volume was 11.1 m3 (391 ft3). This compartment was used 

by three crewmembers for a mission of 84 days.  

4.10.3 | SKYLAB SLEEP COMPARTMENT 

The Skylab sleep compartment for one crew member was 0.92 m (3 ft) long by 1.07 m (3.5 

ft) wide by 1.98 m (6.5 ft) high. The total habitable volume was approximately 1.92 m3 (68 

ft3). 

4.10.4 | SKYLAB WASTE MANAGEMENT AND PERSONAL HYGIENE COMPARTMENTS 

The Skylab combined both the waste management and hygiene functions in a single 

compartment. The dimensions were 1.98 m (6.5 ft) long by 0.92 m (3.0 ft) wide by 1.98 m (6.5 ft) 

high. The total combined free volume was 3.57 m
3
 (126 ft

3
). The total habitable volume utilized 

by the hygiene function was approximately 2.42 m
3
 (85 ft

3
). The total habitable volume utilized by 

the waste management function was approximately 2.42 m
3
 (85 ft

3
). This compartment was 

satisfactory for three crewmembers for 85 days, but interference between crewmen doing 

both functions simultaneously led to their suggesting separate compartments. 
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Figure 4.10.4-1 Skylab Food Management Compartment 

 

Image Reference: 130, figure 7, p. 11; NASA-STD-3000 93, 155, p. 3-4; NASA-STD-3000 94 

Figure 4.10.4-2 Skylab Sleep Compartments 

 

4.11 | TRAFFIC FLOW 

The following analytical process can help to optimize traffic flow and crew functioning: 

a. Analyze Functions and Tasks - Determine the type and level of activity that occur at each 

of the crew stations and the required movement of crew and equipment between the 

stations. 

b. Locate Crew Stations - Locate crew stations to minimize the traffic flow. 

c. Design Translation Paths - Once the crew stations are located, design the translation 

paths for efficient traffic flow. First, design the paths to accommodate the traffic flow 

requirements of the worst case conditions. Then, complete the design to meet other traffic 

flow requirements. The following are steps for translation path design: 

Figure 4.11-1 Guide for Determining Type of Translation Path 

Priorities of 

Functions  

Usage Type of translation path 

Primary - - IVA 

and EVA 

Frequently traveled path by both IVA and EVA suited 

crewmembers. Will accommodate translation of an EVA 

crewmember with package. Can be used as an 

emergency path 

Primary passageway 

Primary -- IVA 

only 

Frequently traveled path but only by IVA suited 

crewmembers. Will accommodate translation of an IVA 

crewmember with package. Can be used as an 

emergency IVA path 

Standard passageway. 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#130
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#155
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Secondary - - 

IVA only 

Very low frequency transit from one point to another, IVA 

only 

Pass-through 

Emergency Infrequently traveled but necessary for emergency 

repairs, rescue, or escape. Will accommodate EVA 

suited crewmember. Packages must be translated in 

front or behind crewmember. 

Minimal passageway 

Image Reference: 250 With Updates NASA-STD-3000 178 

 

4.11.1 | CONGESTION AVOIDANCE DESIGN REQUIREMENTS 

Traffic congestion shall be avoided. The following methods shall be taken to avoid 

congestion: 

a. Reduce the Need for Traffic - Crew stations shall be located and designed to minimize the 

need for transit within the space module. 

b. Alternate Paths - Provide alternate paths around congested areas. 

c. Proper Scheduling - Schedule activities to avoid congestion. 

d. Reduce Congestion Due to Large Volume Transfer - Traffic flow patterns shall minimize 

the distance large volumes are transported and reduce as much as possible congestion 

caused by large volumes transported through tight areas. 

e. Reduce Cross Traffic - Avoid crossing heavily traveled paths. 

f. Translation Path Size - Translation paths and hatch and door openings shall be of proper 

size and configuration to accommodate predicted traffic flow. 

 

4.11.2 | EMERGENCY AND ESCAPE ROUTE DESIGN REQUIREMENTS 

The design for traffic flow shall take into account the possibility of a space module or 

subsystem failure or damage that could require evacuation. Specifically, the following 

requirements apply: 

a. Escape Routes and Isolation Areas - Crewmembers shall be provided with escape 

routes for egress and/or isolation in the event of the need for an emergency egress from 

their immediate location. 

b. Dual Escape Routes - Where practical, dual escape routes shall be provided from all 

activity areas to serve in the event that the use of one route is impossible. 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#250
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c. Protection of Entry/Exit Path - Provisions shall be made to the maximum extent possible 

to ensure that compartment entry/exit paths can be maintained in the event of an 

accident (fire, explosion, abrupt accelerations, etc.). 

 

d. Escape From Crew Stations - Crew station openings and egress paths shall be large 

enough to permit rapid egress. 

e. Emergency Rescue and Return Route - An emergency rescue and return route shall be 

available for all planned IVA activity areas. The route shall be capable of accommodating 

an EVA-suited individual. 

f. Dead End Corridors - Dead End Corridors shall be avoided whenever possible. 

g. Emergency Regulation and Routes - Emergency traffic regulations and appropriately 

marked emergency routes shall be established for safe and efficient movement of 

personnel and equipment. 

 

4.12 | TRANSLATION PATHS 

The following factors must be considered when designing translation paths in a space 

module: 

a. Type of Translation Path - The required size and shape of the translation path depend on 

its function. Design considerations for each type of translation path are given below: 

1. Pass Through - A pass-through (or tunnel) need only be large enough to permit passage 

by a crewmember with his or her long axis in the direction of travel. A pass-through is 

illustrated in Figure 4.12.1-1. By definition, the pass-through need only accommodate 

an IVA clothed crewmember. 

2. Minimal Passageway - A minimal passageway is similar to a pass-through but must 

accommodate an EVA suited crewmember. 

3. Standard Passageway - A standard passageway should accommodate a crewmember 

in an upright working position or neutral body posture. A standard passageway is 

illustrated in  

4. Primary Passageway - A primary passageway is the same as a standard passageway 

but must accommodate an EVA suited crewmember. 

 

b. Aisle Clearances - Aisles are defined as translation paths that pass crew stations. In this 

case the translation path must be located outside the maximum working envelope of the 

crew station. 

 

http://msis.jsc.nasa.gov/sections/section08.htm#Figure%208.8.2-1
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c. Translation of Packages and Equipment - The translation path should be sized to 

accommodate the largest crewmember and any packages or equipment that must be 

transported. Both the package size, the manner that the package is to be carried, and 

acceptable clearances must be considered.  

d. Number of Persons Using Translation Path - The translation path must be sized according 

to the traffic considerations. Persons often travel in pairs. A busy path may have to be wide 

enough for four crewmembers: two pairs passing each other. 

e. Orientation of the Body - Turning or rotation required to position the body to translate from 

one path to another path, module, or door requires an increase in the minimum path size. 

The minimum dimensions of the path will be defined by the body orientation and method of 

negotiating the path. 

 

Figure 4.12.1 Types of Translation Paths 

 

 

Image Reference: 250; NASA-STD-3000 209 – 11, 12 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#250
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4.13 | MOBILITY AIDS AND RESTRAINTS ARCHITECTURAL INTEGRATION 

 

The following considerations should be observed when locating IVA mobility aids: 

a. Method of Use - Previous experience has shown that mobility aids such as hand rails 

are not used for hand over hand translation. Mobility aids are used primarily for 

control of body orientation, speed, and stability. After humans gain confidence in 

free-flight translation, contact with planned fixed mobility aids is primarily at free-flight 

terminal points or while changing direction. Padding or kick surfaces should be 

considered at these points. 

 

b. Package Transport and Mobility Aid Use - Consider the packages that the 

crewmembers might be carrying. One or two hands may be required to negotiate and 

guide the package. 

 

c. EVA Use in Emergency - IVA mobility aids may have to be used by space suited 

crewmembers under emergency conditions. The location should, therefore, account 

for bulky garments that reduce joint movement and clearance.  

 

d. Substitute Mobility Aids - Walls, ceilings, or any handy equipment item may be used 

as a mobility aid. Surfaces and equipment along translation paths should, therefore, 

be designed to accommodate this function. 

 

4.13.1 | CONSIDERATIONS FOR LOCATION OF IVA PERSONNEL RESTRAINTS 

The following considerations should be observed when locating IVA personnel restraints: 

a. Operator Stability - Locate restraints where it is critical that a workstation operator remain 

stable for task performance (i.e., view through an eyepiece, operation of a keyboard, 

repair a circuit, etc.). 

b. Counteracting Forces - Locate restraints where task performance causes the body to 

move in reaction to the forces being exerted. For instance, a crewmember using a 

wrench should be restrained from rotating in an opposite direction to the applied torque. 

c. Two Hand Task Performance - Some simple tasks can be easily performed with one 

hand while using the other hand for stability. More complex tasks, however, require 

coordination of both hands and somebody or foot restraint system may be required. 

d. Restriction of Drift Into Undesirable Area - Not all restraints are necessary for keeping a 

crewmember at a station. Sometimes a restraint is necessary to keep the crewmember 
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from drifting into another area. A relaxing or sleeping crewmember, for instance, should be 

restrained from drifting into a traffic, work, or hazardous area. 

e. Location According to Crewmember Size - The restraint should properly position a 

crewmember at a station. The proper position is dependent on the crewmember size. The 

restraint should be located so that the smallest and the largest of the defined crewmember 

population range can perform the task. Restraint adjustment or multiple positions may be 

necessary. 

f. Noninterference - The restraint should not interfere with other tasks. It may be necessary to 

use a portable restraint and remove it when a station is used for another purpose. 

g.  Typical Areas Requiring Restraints - Based on the above information, restraints should be 

considered for the following locations within the space module: 

1. Body waste management facility. 

2. Exercise area. 

3. Sleeping area. 

4. Clothes changing locations. 

5. Trash handling locations. 

6. Airlock. 

7. Space suit don/doff area. 

8. Housekeeping and cleanup centers. 

9. Maintenance areas. 

10. Galley and eating areas. 

11. Workstations. 

12. Space medical facility. 

 

4.13.2 | MOBILITY AIDS AND RESTRAINTS DESIGN REQUIREMENTS 

 

The following are requirements for integration of fixed IVA mobility aids into the space module 

architecture: 

a. Translation Path Locations - Mobility aids shall be located along translation paths as 

necessary for crewmembers to initiate translation movement, terminate translation 

movement, or change direction or speed. 

b. Orientation Requirements - The orientation and location of mobility aids shall be such 

that approximate body positions normally assumed to perform a task can be attained 

upon reaching the crew station. 

c. Noninterference - Mobility aids shall be located so as not to restrict or interfere with traffic 

flow or operations at crew stations. 

d. Contingency Space Suited Operations - IVA mobility aids shall be sized and located as 

necessary for contingency space suited operations (i.e., EVA rescue or recovery). 
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4.14 | HATCHES AND DOORS 

The following are considerations for the location and design of hatches and doors: 

a. Use of the Hatch or Door - The following is a list of the types of hatches and doors and 

some of their specific design considerations: 

 

1. Pressure Hatch - Although the pressure hatch must be able to withstand high-pressure 

loads, it must not be too massive or difficult to operate. Due to the criticality of the pressure 

hatch, operating procedures and hardware must minimize the chance of unsafe 

operations. Normally, the pressure hatch opening size and controls must be designed to 

be used by a space suited crewmember. Reliability is enhanced if hatches open toward the 

higher pressure volume, thus making them essentially self- sealing. 

 

2. Internal Doors - Internal doors may be necessary for visual privacy, reduction of light, 

reduction of noise, fire barriers, and restraint of loose equipment. The configuration will 

vary accordingly. 

 

3. Emergency Hatches - Emergency hatches are used primarily for escape or rescue. A 

dedicated emergency hatch should not interfere with normal activities. In an emergency, 

however, hatch operation should be simple and quick. Where pressure loss is a possibility, 

emergency hatch openings must be sized for space suits. 

 

b. Opening Size and Shape - The following considerations should be observed when 

selecting the hatch and door opening size and shape: 

 

1. Body Orientation - Frequently used hatches and doors should not require body 

reorientation to pass through. In microgravity conditions, this means that the opening 

should allow passage of a crewmember in the neutral body posture. 

 

2. User Size - The size of the hatch and door opening should accommodate the largest 

crewmember plus any equipment to be transported. 

 

3. Space Suited Crewmembers - Generally, internal doors need only be used by IVA 

crewmembers; in some cases, however, it may be necessary to provide opening room 

for passage for a space suited crewmember. 

c. User Strength - The operating forces of the door opening system must be within the 

strength range of the weakest of the defined crewmember population. 
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d. Traffic Considerations - Internal doors and hatches are points of potential traffic 

congestion. The following considerations should be made to ease the traffic flow: 

 

1. Do not place doors or hatches near a corner where a translation path junctures with 

another path and/or where a single path turns the corner. The doorway should be at 

least 1.5 m (5 ft) from the corner.  

 

2. Door and hatch covers should not open into congested translation paths. Rather, they 

should open into the compartment. 

 

3. Door and hatch openings should be sized for the traffic flow. To be efficient, a high use 

doorway may require an opening to accommodate more than one crewmember at the 

same time. 

 

Figure 4.14-1 Place Door Openings Away From Traffic Congestion 

 

         Image Reference: 111, p. 303; NASA-STD-3000 214 

 

4.15 | HATCH AND DOOR DESIGN REQUIREMENTS 

Hatches and doors shall meet the following location requirements: 

 

a. Internal Door Placement - Enclosed crew stations shall have entrances/exits to permit 

unrestricted flow for all anticipated traffic. They shall be located so personnel who are 

entering or leaving will not interfere with surrounding operations or traffic flow. 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#111
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b. Away From Hazards - In compartments with a single ingress/egress, the opening shall not 

be located near flammable, explosive, or otherwise hazardous substance such that the 

energy content, if released, will result in damage that prevents access through the entrance. 

c. Emergency Passage - Capability should be provided to allow emergency exit and rescue 

entry into a compartment. This may require two or more entrances into a compartment 

and/or a pressure hatch. 

4.15.1 | PRESSURE HATCH INDICATOR/VISUAL DISPLAY DESIGN REQUIREMENTS 

Pressure hatch covers shall have the following visual displays and indicators: 

a. Visual Inspection of Hatch Security - A means shall be provided on both sides of the 

pressure hatch for visual safety check to ensure that it has been secured properly. 

b. Remote Status Display - Pressure differentials and hatch operational status displays shall 

be provided as necessary for safety at appropriate space module command and control 

center(s). 

c. Pressure Difference Indicators - Pressure hatches shall have pressure difference 

indicators visible on both sides of the hatch. 

d. Windows - All airlock hatches shall have windows for visual observation of all 

decompression operations with a minimum of blind spots inside the airlock. 

e. Operating Instructions - All pressure hatches shall display operating procedures on both 

sides of the hatch. 

 

4.15.2 | OPENING AND CLOSING MECHANISMS DESIGN REQUIREMENTS 

The hatch and door opening and closing mechanisms shall meet the following design 

requirements: 

 

a. Emergency Operation - Latching mechanisms shall provide for emergency operation in 

case of a latching system failure. 

b. EVA Operation - All opening/closing mechanisms shall be operable by a pressure-suited 

crewmember. 

c. Operation From Both Sides - Hatches shall be capable of being operated, locked, and 

unlocked from either side. 

d. Interlock - Pressure hatches shall be prevented from unlatching prior to pressure 

equalization. 
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e. Single Crewmember Operation - Hatches shall be capable of being operated by one 

crewmember. 

f. Parts Tethering - All safety pins or other detachable parts required for the opening/closing 

shall be tethered and able to be stowed. 

g. Emergency Closing - Hatches and doors shall allow crewmembers to close covers with or 

against pressure differentials, for the worst case pressure differential anticipated. 

h. Rapid Closing - Hatches used to isolate interior areas of the space module shall be 

designed to allow rapid closing. 

 

4.16 | WINDOWS INTEGRATION 

The following are considerations that should be observed when locating windows within the 

space module: 

a. Functional Considerations - Figure 4.16.1-1 shows possible uses of the space module 

window and the effect of the use on the location of the window within the space module 

b. Traffic - The windows should be located so that use of windows will not interfere with 

required traffic flow. 

c. Light and Glare - The following are lighting and glare considerations for window location: 

1. Glare on window - Bright interior illumination could reflect from the window surface and 

degrade visibility. 

 

2. Dark adaptation for celestial viewing - Bright interior illumination may degrade dark 

adaptation required for celestial viewing. 

 

3. Light sensitive activities - Exterior light through windows could degrade light sensitive 

activities such as sleeping, use of CRT displays, or tasks requiring dark adaptation. 

 

4. Natural light and calcium loss - Calcium loss from bones in microgravity is a problem of 

major concern. Since vitamin D obtained from certain wavelengths of natural sunlight 

facilitates absorption of calcium by the gastrointestinal tract, it is postulated that 

provided by controlled crew exposure to appropriately designed and located windows. 

 

5. Destruction of bacteria with natural light - A window could be located so that the light 

could be used against the growth of pathogenic bacteria. 

 

6. Use of natural light for illumination - A properly designed and located window can use 

natural sunlight as a supplementary source of internal space module illumination. 

 

http://msis.jsc.nasa.gov/sections/section08.htm#Figure%208.11.2.1-1
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Figure 4.16-1 Functional Considerations for Location of Window Within a Module 

WINDOW FUNCTIONS  LOCATION CONSIDERATIONS  

PROXIMITY OPERATIONS  

 

Coordination of docking and berthing of other 

modules  

Near module workstations with communications, 

control displays, video backup, etc  

Monitor and support of EVA personnel  Location to provide a clear, stereoscopic view of 

EVA operations  

Tele-operation of EVA equipment   

 

EARTH/CELESTIAL OBSERVATIONS  

Discovery and documentation of unpredicted 

features and events.  

Near scientific workstations  

Scientific research and experimentation. Away from high traffic volume  

 

Support of crew morale  

Offset claustrophobic effects of tightly confined, 

long-term isolation.  

Near recreational, socialization areas.  

Provide recreational and awe-inspiring 

experiences.  

Near areas of boring, monotonous tasks (exercise, 

for instance).  

Enable photography Near private quarters 

Provide educational benefits Location to provide view of Earth (if possible) or 

other interesting celestial sight  

Provide a psychological link to the home planet.   

Afford natural illumination and day/night cycles.   

Image Reference: 322, pp. 2,3; NASA-STD-3000 180 

4.16.1 | WINDOW CONFIGURATION DESIGN CONSIDERATIONS 

The following are considerations for the design of the window and the surrounding area: 

a. Anthropometrics and Neutral Body Posture - The window must be placed on the line of 

sight of the user. The size range of the users must be considered. In microgravity 

conditions the neutral body posture must be accommodated. 

b. Total Visual Field - The total visual field out the window must be compatible with the task 

of the viewer. Calculate the total visual field using the following dimensions: 

1. Window width. 

2. Bezel thickness. 

3. Distance of the viewer from the window. 

4. Lateral offset. 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#322
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These dimensions are illustrated in Figure 4.16.1-1 along with the factors that affect them. 

 

c. Window Shape - In proximity operations, cues to establish viewer or target orientation are 

important. A square or rectangular window with flat frame edges can provide the viewer 

with orientation cues. Round windows do not provide these cues. 

d. Restraints - Body restraints compatible with the viewing task must be provided for 

microgravity conditions. The restraints should allow the full size range of users to position 

themselves for viewing. 

 

e. Protection of the Window Surface - In a microgravity environment, crewmembers are able 

to use all exposed surfaces for stabilization and mobility. Care should be taken in 

designing and locating the window to ensure that it is not damaged by the crew during 

translation. 

f. Space Module Windows - Windows located in the habitation module should be used 

primarily for crew recreation and observation during off-duty periods. 

 

Figure 4.16.1-1 Calculation of Visual Angle From Window 

 

Calculation of Visual Angle From 

Window  

Dimension Factors affecting 

dimension 

Bezel 

thickness 

Window 

width 

Window hardware 

design 

Set-back 

distance 

Body dimensions of 

viewer 

Size of workstation 

console or other 

equipment around 

window 

Lateral 

offset 

Number of viewers 

Obstructions around 

window area 

Viewing requirements 

of task (i.e., target 

acquisition time) 

 

Image Reference: 323, p. 7; NASA-STD-3000 181 

 

 

http://msis.jsc.nasa.gov/sections/section08.htm#Figure%208.11.2.2-1
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4.17 | PSYCHOLOGICAL EFFECTS DESIGN CONSIDERATIONS  

 

There are several psychological effects of color and light that should be considered in space 

module habitat design. 

 

a. Compartment Spaciousness - Color can effect perceived spaciousness. The primary 

qualities of color that effect spaciousness are brightness (lightness) and saturation. 

There are small receding and advancing effects due to hues, but these effects are 

secondary to brightness and saturation. The following color scheme will help to maximize 

spaciousness: 

 

1. Keep boundary surfaces at high brightness and low saturation. 

2. Color interior partitions at medium brightness and medium saturation. 

3. Accent elements at either medium or low brightness and high saturation. 

4. Color protruding elements the same as the boundary surfaces. 

 

b. Perceived Temperature - Some investigators claim that perceived temperature can be 

influenced by color and texture. Hue is by far the most important dimension of the color 

for this effect. Perceived temperature can also be strongly enhanced by texture. The 

reported effects of color and texture on perceived temperature are listed below: 

1. Warmth - Warm colors (red, yellow, pink, brown, etc.) and highly textured surfaces. 

2. Coolness - Cool colors (green, violet, blue, etc.) and polished surfaces. 

 

c. Psychological Response to Light - The psychological response to light is a combined 

function of its amount, direction ability, and power spectrum, and their suitability for different 

types of activities. Good lighting design incorporates more than a simple concern for 

illumination of a visual task. 

d. Stress Reduction - Certain interior decor features such as pictures or panel coverings with 

natural/naturalistic themes may aid in stress reduction for occupants. 

4.18 | MATERIALS DESIGN CONSIDERATIONS 

 

Durability, nonflammability, and safety are all considerations for the selection of materials for 

interior decor. The materials should not impart chemical, mechanical (abrasive surfaces, 

sharp corners, edges, etc.), or any other hazard to the crew. 
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4.18.1 | SAFETY  

 

The use of hazardous materials shall be minimized; those used shall meet the applicable 

requirements specified in NHIB 8060.1B, Flammability, Odor and Offgassing Requirements 

and Test Procedures for Materials Used in Environments That Support Combustion 

(J8400003). Materials and components subject to insidious degradation in the space module 

ionizing environment shall not be used where that degradation can cause or contribute to 

any crew hazards. In the event of fire, the interior walls and secondary structures within 

space module shall be self-extinguishing. 

 

4.19 | LIGHTING 

 

Space module lighting systems should be designed to optimize viewing conditions for all 

mission activities. This will vary from very gross visual requirement (such as seeing to move 

about) to very critical visual tasks that require discrimination of color codes, seeing fine detail 

an instruments, or detection of dim objects or planetary detail at night. The key factors to 

consider are: 

4.19.1 | LIGHT SOURCE DESIGN CONSIDERATIONS  

White light sources should be used for most nominal work and living space areas because 

this makes people and things look natural and allows use of special surface color codes to 

be recognized. Designers should strive to utilize interior lighting that approximates the full 

spectral range of sunlight. 

Red lighting should be considered where it is necessary for a crewmember to remain dark 

adapted. An example would be when the crewmember has to look out of a window (at night), 

but also read instruments inside the space module. Light level or intensity should be 

sufficient to allow the crewmembers to perform their visual tasks efficiently, but not so high 

as to create glare sources. Generally, the more detailed or long duration the task, the higher 

the illumination should be. Each lighting system should be dimmable to allow crewmembers 

to optimize their viewing conditions. 

Light sources should be placed according to what they are intended to illuminate, i.e., 

surfaces, objects, people, instruments, documents or signs. They should not shine in 

crewmember's eyes, or cause serious reflections that could degrade visual task 

performance. Supplemental lighting should be provided for personnel performing specialized 

visual tasks in areas where fixed illumination is less than the minimum required. 
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As a general rule, illumination in work and living spaces should eliminate glare and shadows 

that interfere with prescribed tasks. The following are three important factors of light 

distribution and some of the exceptions to this general rule: 

a. Ambient Light - Ambient light for general, gross illumination should be distributed so as to 

enhance the appearance (e.g., spaciousness) and functional performance of an interior 

volume. 

b. Supplemental Light - Supplemental light may be required for local illumination of a special 

task. 

c. Self Illuminated Displays - Self-lit or luminous displays such as a CRT may require a 

reduction of illumination. 

 

The operator should be provided with a control over each type of light where practical. 

 

4.19.2 | CHARACTERISTICS OF TASK MATERIALS DESIGN CONSIDERATIONS 

Different material and surfaces react differently to various lighting techniques. Slick, glossy 

materials, instrument covers, windows and painted surfaces tend to create reflection and 

glare problems. Reduction of such problems requires consideration of the type and 

positioning of light sources, control of illumination level, and possible use of anti-reflection 

coatings. Whenever possible avoid glossy, highly-polished surfaces. Figure 4.19.2-1 gives 

typical reflectance values for various surfaces. Task/lighting conditions should be planned 

and executed to preclude or minimize the need for a crewmember to suddenly shift from a 

very bright to very dark environment, or vice-versa. 

Figure 4.19.2-1 Typical Work Surface Reflectance Values 

 

         Image Reference: 15, p. 3-23; NASA-STD-3000 223 

http://msis.jsc.nasa.gov/sections/section08.htm#Figure%208.13.2.5-1
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#15
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4.20 | WINDOWS 

 

Window transmissivity is a critical design parameter because some visual tasks require 

perception of very small, faint sources of light. Visual perception decreases with decreased 

window transmissivity. The window transmissivity must be constant across its entire surface 

to prevent distortion of viewed objects. The glass must be free of inclusions (e.g., air 

bubbles, foreign particles). These glass imperfections can 1) cause the viewer to focus 

improperly on objects and 2) cause glare which can also degrade visual perception. 

 

The line of sight (LOS) of the viewer looking through a window system of multiple glass 

surfaces, may be altered by a variety of factors; nonparallel multiple glass surfaces create a 

prism effect causing line of sight deviation wherein the visual judgment of target motion 

normal to the LOS may be in error. Each surface of a window panel must be flat and parallel 

so that it does not contain an astigmatic error in which the observer perceives out-of-focus 

images. Since the eye cannot focus at two distances at the same time, it well likely seek and 

intermediate focus. This results in blurring or distortion which causes visual fatigue. 

Reflections produced by internal or external light sources can interfere with visual 

identification and other judgments of luminous targets and cause eye fatigue. Anti-reflection 

coatings, polarizing filters, or glare screens can help reduce these reflections. 

 

In general, even though the optical qualities of windows should be dictated by the various 

uses to which they will be put, it is reasonable to design into them as high optical quality as 

is affordable in anticipation of future experimental and other mission requirements. 

 

4.20.1 | VISUAL PROTECTION DESIGN CONSIDERATIONS 

 

Internal and external shutters or shades have been employed on previous manned space 

vehicles to protect the crewmember from the high intensity sunlight, to reduce glare, and to 

reduce ambient lighting where low light levels were needed for operational tasks or for sleep 

periods. The external shutters also act as protection from micrometeorites and other 

potential external sources of damage or contamination, thus preserving the life and quality of 

the window.  

 

Filters and coatings are used to protect the observer's eyes and exposed skin surfaces from 

harmful infrared or ultraviolet radiation. Filters may be required to protect the eyes from laser 

light. Applicable laser light safety criteria should be adhered to so that inadvertent 

admittance of laser light through the windows is prohibited. 
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4.20.2 | PHYSICAL PROTECTION DESIGN CONSIDERATIONS  

 

There are many sources of natural and manmade external window surface contaminants. 

Natural sources of contamination include micrometeoroids, cosmic particles, and electrons. 

Manmade sources of contamination include propellants, ECLSS outgassing, sealant 

outgassing, fluid leaks, waste dumping, atmosphere leakage, and EVA glove and boot 

prints. 

 

Between-pane contamination may result from outgassing of gaskets or from moisture that is 

not removed during the window assembly process. Provision for early detection and removal 

of moisture from spaces between multiple window panes should be provided, particularly for 

long-duration missions. 

 

Window surface contamination sources inside the space module include breath 

condensation, finger prints, body oils, urine, skin, and bacteria. These window surface 

contaminants scatter sunlight into the observer's eyes and produce glare that reduces the 

crewmembers ability to detect faint visual targets. The space module design should prevent 

or minimize these sources of contamination whenever technically and economically feasible. 

Anti-fogging coatings, heated glass, sacrificial (i.e. removable) surfaces, and protective 

covers are some of the ways that contamination can be prevented. 

 

Window flaws and cracks can grow imperceptibly until they reach a catastrophic magnitude. 

A means should be provided for performing continuous window integrity inspections. 

 

4.20.3 | WINDOW MAINTENANCE DESIGN CONSIDERATIONS 

 

Due to the external and internal contaminants and accidental mechanical damage, 

contingency window maintenance must be provided. 

Window surface cleaning materials and processes must be designed to preserve the optical 

qualities of the window by not scratching or staining the surfaces. Polishing/buffing 

operations are not recommended since they are likely to do more damage than good. 

Removable, transparent window covers (i.e., sacrificial surfaces) should be considered as a 

means to expedite the window maintenance. These disposable covers would be designed to 

absorb most of the mechanical damage or staining that cannot otherwise be avoided. 

The possibility of replacing one or more window panes on-orbit should be considered for 

permanently orbiting space modules. Techniques for accomplishing this replacement 

operation should not entail depressurization of the module. 
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4.20.4 | WINDOW DESIGN REQUIREMENTS 

 

This section provides the design requirements for the optical characteristics, visual 

protection for the window user, physical protection of the window panes and window 

maintenance. 

 

The following optical characteristics requirements shall apply to window and viewport design 

in order that no visible distortions or optical defects shall be detectable by a person 

possessing 20/20 acuity within the normal viewing envelope under operational lighting 

conditions. 

 

4.20.5 | WINDOW SIZE 

 

a. Hatch windows shall be minimum of 20.3 cm (8 in.) diameter. 

b. General area windows shall be a minimum of 50.8 cm (20 in.) in height and width or 

diameter. 

 

4.20.6 | SURFACE REFLECTIONS 

 

a. Windows shall be designed such that specular reflectance from each air-glass interface 

shall not exceed 1.5 percent for light incident on the surface. 

b. When anti-reflection coating are applied to windows, they shall not cause resolution 

degradation exceeding .007 mr (1.5 arc seconds). 

 

4.20.7 | OPTICAL CHARACTERISTICS 

 

At completion of manufacture, the window panes, with all accepted coatings shall meet the 

following optical requirements within the clear viewing area. 

a. Deviation at any point on the window panes shall not exceed 1.45 mr (5 arc minutes). 

Tempered window panes shall not exceed 2.9 mr (10 arc minutes). 

b. Distortion of all types of window materials shall not exceed a plane slope of 1:24. 

c. Haze of the uncoated window pane for all thicknesses shall not be greater than 2%. 

d. Warp and Bow-All glass window panes shall not exhibit warp or bow greater than 0.030 

inch per linear foot of the glass. 

e. Surface Parallelism-The surface parallelism between multipanes of window systems shall 

not exceed 0.58 mr (2 arc minutes) from inner surface to outer surface of the complete 

assembly. 
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4.20.8 | OPTICAL DENSITY 

 

Each pane shall be manufactured so that when multi-panes for window group the following 

shall be met. 

 

a. Infrared-The optical density shall be greater than one for wavelengths between 850 and 

1000 nanometers (less than 10%). For wavelengths greater than 1000 nanometers, the 

transmittance shall be less than 8%. 

b. Ultraviolet-The optical density shall be greater than three for wavelengths between 320 

and 280 nanometers. The optical density shall be greater than four for wavelengths 

between 220 and 280 nanometers. 

c. Visible-In the region between 420 and 800 nanometers, the transmittance through a 

window composite shall not be less than 70%. The transmissivity shall not vary more than 

25% for incident angles between the window surface and LOSs ranging from 30 to 60 

degrees. 

 

4.20.9 | SURFACE QUALITY 

 

The surface of each window pane shall be such that digs shall not exceed 0.122 cm (0.050 

inches) diameter and scratches shall not exceed 0.0015 cm (0.0006 in.) deep. Chips shall 

not exceed 0.078 cm (0.032 inch.) in surface penetration and 0.04 cm (0.016 inch.) in 

thickness. 

 

4.20.10 | BUBBLES, SEEDS 

 

The maximum number of open seeds per surface shall not exceed three and shall not 

exceed 0.1225 cm (0.050 inch) in diameter or exceed a total number of 5 per cubic inch. 

a. Striae - Striae shall not exceed a diameter of 0.2 cm (0.080 inch) and are limited to no 

more than 2 square inch. 

b. Inclusions-Inclusions shall not exceed 0.37 cm (0.15 inch) in diameter and more than 1 

per cubic inch. 

 

 

 

 



142 | T H E O D O R E  H A L D E R   

 

4.20.11 | VISUAL PROTECTION DESIGN REQUIREMENTS 

 

The window design shall meet the following requirements: 

a. Sun Shields/Shades 

1. Sun Shields - All viewing windows shall be provided with crew-operated, opaque sun 

shields which are capable of restricting all sunlight from entering the habitable 

compartments. 

2. External Sun Shades - If external shades are provided there shall be a means to 

reposition by the window user. 

b. Heat Rejection - The sun shade, whether internal or external, shall be capable of rejecting 

radiant energy away form the window assembly. 

Window design shall be coordinated with other shielding protection design to achieve less 

than or equal to allowable radiation dosages given in these paragraphs. 

 

4.20.12 | PHYSICAL PROTECTION DESIGN REQUIREMENTS 

 

Window design shall meet the following surface contamination and breakage requirements 

which are imposed to ensure that the windows can be used for the intended observation 

functions and that the module pressure integrity is maintained: 

 

a. External Surface Contamination Protection - Window design shall take into account all 

sources of external contamination and shall provide a means for cleaning or replacing 

when degradation exceeds optical transmissivity requirements. 

 

b. Between-Pane Contamination Protection - Window design shall take into account all 

sources of contamination that can occur between the transparency panes and shall 

provide a means of preventing optical degradation due to these contaminants. 

 

c. Internal Surface Contamination Protection - Window design shall take into account all 

sources of internal surface contamination and provide a means for preventing or 

minimizing optical degradation due to these contaminants. 

1. Anti-fogging - All innermost panes shall be designed for anti-fog protection. 

2. Inner Pane Coatings - The innermost pane shall have no coatings except for anti-

reflective coatings. 

 

d. Impact Load Protection - The window assembly shall be capable of withstanding a blunt 

object impact load of 550 N (125 lb) from any angle of incidence. 
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e. Protection Covers - Removable or extractable protection covers shall be provided where 

the window assembly does not meet crew and equipment impact load criteria or the 

launch and reentry pressure profiles. 

 

f. Retractable External Protective Covers - If external protective covers are opaque, then IVA 

controls shall be provided with a backup EVA capability to override the IVA system. 

 

4.20.13 | WINDOW MAINTENANCE DESIGN REQUIREMENTS 

 

The following window maintenance requirements are imposed to minimize the crew 

workload and prevent degradation of the optical qualities of the windows: 

a. Window Servicing - Equipment and supplies shall be provided for efficient contingency 

window cleaning. 

b. Protective Covers - Where surface scratching, pitting, or staining cannot be prevented by 

other means, removable window protective surfaces shall be provided. 

c. Window Replacement - Window assemblies shall be designed to eliminate the need for 

depressurizing modules in order to replace window panes or the entire window assembly. 

 

4.20.14 | SCIENTIFIC WINDOW DESIGN REQUIREMENTS 

 

This section defines the requirements for a scientific window for special photographic and 

scientific investigation. 

a. Aperture Diameter-The window shall be a single pane or multipane system with a 

minimum aperture diameter of 55.9 cm (22 inches). 

b. View - The window shall be located to provide unobstructed viewing. 

 

4.20.15 | MATERIALS REQUIREMENTS 

 

a. Window Pane Material - the window panes (glass) shall be fabricated from optical quality 

fused silica or equivalent. 

b. Inclusions - The silica (glass) shall meet Inclusion Number (Class) 0 as defined in MIL-

STD-174B; i.e., seeds and bubbles, to the extent that the total bubble and seed cross 

section per 100 cubic cm (6.1 in3 ) volume as viewed normal to the surface shall be less 

than 0.03 mm2 (0.00005 in2). 

c. Homogeneity - The index of refraction as measured normal to its surface of the glazing 

shall not show a variation greater than 3 X 10-6 over the entire sensing unit viewing area. 
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d. Birefringence - Birefringence shall be kept to less than 6 nm/cm over the entire sensing 

unit viewing area. 

e. Veiling Glare - The complete single window glazing shall not contribute more than 2% 

veiling glare to the sensing systems. 

 

4.20.16 | OPTICAL REQUIREMENTS 

 

a. Wavefront Error - The RMS wavefront variation through each multipane window system 

shall not exceed 1/10 of a light wavelength of 632.8 nm (helium neon) over any 16.5 cm 

(6.5 in) diameter aperture within the clear viewing area, obtained after all necessary 

optical coatings have been applied. This specification shall apply when viewing through 

the window from normal through 30 degrees off normal to the viewing surface in any axis. 

b. Surface Finish - The surface finish shall be polished to meet or exceed the requirements 

of a scratch-dig standard of 60-40 as described in MIL_0-13830A. The surface roughness 

shall be no greater than 10 angstroms remote manipulating system before coating. The 

roughness shall be measured across two perpendicular diameters. 

c. Wedge - Deviation of the transmitted beam shall not exceed 3.5 arc-seconds in any 

direction through a single pane. 

d. Parallelism Between Panes - Adjacent panes of a multipane window shall be parallel 

between 0.1 degree to 3 degrees. The innermost and outermost panes of a window 

system shall not be more than 3 degrees form parallel; this requirement shall not be met 

by matching tilted panes. 

e. Grinding and Polishing Sequence - Each optical surface will be polished using a control 

grind schedule wherein the material is removed to a depth equal to 3 times the diameter 

of the previous grit size through the polish operation. See Figure 11.11.3.2.1.2-1 for 

example sequence. 

f. Edges and Chamfers - All edges and chamfers shall be polished to relieve stresses 

caused by grinding. As these are not optical surfaces, a minimum of orange peel is 

permissible and may be felt-polished. However no chips shall be allowed. 

g. Residual Stress - The manufacturing process shall be such that when polished, the 

window pane shall contain no residual stresses of flaws introduced during processing. 

 

http://msis.jsc.nasa.gov/sections/section11.htm#Figure%2011.11.3.2.1.2-1
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4.20.17 | REFLECTANCE 

 

The reflectance of the window shall be less than 2 percent from a wavelength of 450 

nanometers to 900 nanometers. If an electro-conductive coating is used, the reflectance 

shall be less than 2% for wavelengths of 400 nanometers to 700 nanometers and less than 

4% for wavelengths of 700 nanometers to 900 nanometers. These requirements shall apply 

for incidence angles from 0 degrees to and including 15 degrees from normal. 

4.20.18 | VISUAL PROTECTION DESIGN REQUIREMENTS 

The window design shall meet the following requirements: 

a. Sun Shields/Shades: 

1. Sun shields-All viewing windows shall be provided with crew-operated, opaque sun 

shields capable of restricting all sunlight from entering habitable compartments. 

2. External sun shades repositioning-If external shades are designed to cast a shadow 

over a window, they shall be provided with a means to be remotely repositioned by the 

window user. 

 

b. Radiation Protection: 

1. Infrared-The maximum transmissivity of infrared shall be no more than 10% (density = 

1) in the range of 800 to 1200 nm. 

2. Ultraviolet-The maximum transmissivity of ultraviolet shall be no more than 0.001% 

(density = 10E-5) in the range of 200 to 300 nm. 

3. Heat rejection sun shade, whether internal or external, shall be capable of rejecting 

radiant energy away from the window assembly. 

4. Window design shall be coordinated with other shielding protection design to achieve 

less than, or equal to, the allowable radiation dosages given in these paragraphs. 

 

c. Optical Filters-Optical filters shall be provided to meet visual protection requirements if 

operational functions require light transmissibility in excess of the requirements given in 

item b, above. 

 

4.20.19 | PHYSICAL PROTECTION DESIGN REQUIREMENTS 

Window design shall meet the following surface contamination and breakage requirements 

which are imposed to ensure that the windows can be used for the intended observation 

functions and that the module pressure integrity is maintained: 
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a. Physical Protection Design Requirements - Window design shall meet the following 

surface contamination and breakage requirements which are imposed to ensure that the 

windows can be used for the intended function. 

b. Surface Contamination Protection - Window design shall take into account all sources of 

external between pane, and internal contamination and shall provide a means for 

cleansing or replacing when degradation exceeds optical transmittance requirements. 

Scientific windows shall have an external cover that shall be closed except when these 

windows are in use, and shall have an internal transparent removable cover to protect the 

internal surface form scratches, smudges and protect the crewmembers' eyes form UV 

and IR transmittance. The removable cover shall be designed such that its removal is 

evident to all crewmembers within the module. 

c. Protective Cover - Removable or retractable protective covers shall be provided where the 

window assembly does not meet crew and equipment impact load criteria. 

d. Retractable External Protective Covers - If external protective covers are opaque, then 

IVA controls shall be provided with a backup EVA capability to override the IVA system. 

e. Impact Load Protection-The window assembly shall be capable of withstanding a blunt 

object impact load of 550 N (125 lb.) from any angle of incidence. 

4.21 | BODY WASTE MANAGEMENT FACILITIES 

This section discusses the human factors design considerations and requirements for the 

collection and disposal of wastes generated by the human body. The body waste 

management facilities handle feces, urine, vomitus, diarrhea, menses, and other wastes. 

Transfer, storage, and processing of waste products are not covered in this section; only 

facilities that directly interface with the crew are covered. 

The following considerations should be made in the design of the waste management 

system: 

a. Reliability and Maintainability - System servicing and repair tasks are neither pleasant 

nor mission productive. Therefore, the system should be as reliable as possible and 

require a minimum of repair time. Scheduled maintenance and servicing times, including 

unloading and refurbishment, should be kept to a minimum. 

b. Ease of Use - The system should be simple and quick to use. The system should readily 

be available for emergencies such as vomiting or diarrhea. As a design goal, the facilities 
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should be used like and require approximately the same amount of time for use as 

equivalent Earth facilities. 

c. Acceptance - The body waste management systems must be both psychologically and 

physiologically acceptable to the crewmembers. An unacceptable system can result in 

deliberate restriction or modification of the diet by the crew and possible nutritional 

deficiencies. 

d. Microgravity Considerations - Gravity plays an important role in the removal of feces from 

the body during defecation in a 1-G environment. A substitute must be provided in a 

microgravity environment. Air flow has been used successfully in the past for the 

entrainment of both feces and urine in microgravity.  

 

e. Post Defecation Cleansing - In microgravity, many more tissues are needed for 

cleansing the anal areas after defecation, because gravitational forces are not present to 

aid in separation of the feces from the body. Also, since settling does not occur, the 

uncompacted wipes occupy 1 1/2 to 3 times the volume that would be used in a 1-G 

environment. 

f. Volume and Mass of Body Waste Products - The volume and mass of human body 

wastes along with additional information is given below: 

1. The normal feces bolus of a healthy adult varies in size from 100 to 200 mm (4 to 8 in) long by 15 

to 40 mm (0.5 to 1.5 in) in diameter and weighs 100 to 200 grams (3.5 to 7 oz). 

2. Urination time and rate of flow ranges are shown in Figure 3.4.21-1. Urine volumes tend to be 

larger in microgravity. 

3. The maximum volume of expelled vomitus can be 1 liter (61 in
3
) of solids and fluids. This is with a 

fully distended stomach. The average volume of vomitus is more likely to be 200 to 500 ml (12 to 

31 in
3
). 

g. Anatomical Considerations - Dimensions of the body that should be considered for design 

of waste management facilities. The body protuberances of the pelvis, ishial tuberoscities, 

support the seated body in 1-G conditions. In reduced gravity conditions, seat contours 

and restraints can help the crewmember to locate the ishial tuberoscities and thereby 

properly position the anus and urethra in relation to the collection devices. If air flow is 

used for collection and entrainment of feces and urine, it may be necessary to minimize 

the opening size for sealing. It has been found in both 1-G and microgravity conditions 

that it is possible to defecate through a 10 cm (4 in) diameter opening, although significant 

problems have been noted with this small an opening. 

http://msis.jsc.nasa.gov/sections/section10.htm#Figure%2010.3.2-2
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h. Body Posture - The following are considerations for determining the body posture during 

body waste management functions: 

1. Urination - There is no evidence to suggest that posture has any effect on facilitating 

the act of urination. 

2. Defecation - The act of defecation involves the use of the stomach muscles. The body 

should be positioned so that these muscles are supported and not strained.  

Figure 4.21-1 Volume and Mass of Human Body Wastes 

WASTE PRODUCTS MASS (gm/person/day) VOLUME (ml/person/day) 

Hair growth 0.03 (0.3 to 0.5 mm per day) 
 

Desquamated epithelium 3 2 

Hair - depilation loss 0.03 0.03 

Hair - facial - shaving loss 0.3 0.28 

Nails 0.01 0.01 

Solids in sweat 3 3 

Sebaceous excretion - residue 4 4.2 

Solids in saliva 0.01 0.01 

Mucus 0.4 0.4 

Mensus (see note 1) 113.4 113.4 

Flatus as gas - 2000 

Solids in feces 20 19 

Water in feces 100 100 

Solid in urine 70 66 

Water in urine (note 2) 1630 1630 

Notes: 

1. Approximately once every 26 to 34 days and lasts 4 to 6 days, approximately 80% released during first 3 days. 

2. Based on Skylab data 

Reference: 19, Section DNK3, pp. 2, 229; 278, Sec. C-2-3, p. C-26, NASA-STD-3000 215 

Figure 4.21-2 Overall Layout of the STS Waste Management Station 

 

Image Reference: 312, Page 882; NASA-STD-3000-218 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#19
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#278
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#312
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4.22 | RESTRAINTS 

 

4.22.1 | PERSONNEL RESTRAINTS DESIGN CONSIDERATIONS  

 

Personnel restraints are required at liftoff, during major thrusting maneuvers, 

microgravity/partial-gravity operations, and during return-to-earth operations. This section 

includes seat belts, shoulder harnesses, fixed and portable foot restraints, and body 

restraints. Donning/ doffing, loads, materials, color, temperature limits, and dimensional 

requirements are included for each type of personnel restraint.  

 

Openings, holes, ductwork, and protrusions in and around equipment have been used by 

crewmembers as informal microgravity body restraints. Equipment designers must take this 

into account when designing equipment. These informal restraints are acceptable for short-

duration tasks. They should not be the only method of restraint for long-duration operations 

where IVA foot restraints or fixed body restraints should be considered. 

 

Foot restraints (and/or body restraints) may be required for tasks requiring precision. Unique 

foot restraint designs should be minimized and standardized design should be maximized. 

Any portion of the restraint worn on the foot shall be as low in mass as possible. In order to 

aid foot restraint ingress and egress, handholds that are located between the waist and 

shoulder should be available at all workstations. Commonalty requirements for foot restraint 

attachment, finish, durability, and color should be incorporated into the design. Foot 

restraints can be built into the equipment or into the crewmember's shoes. 

4.22.2 | RESTRAINT DESIGN REQUIREMENTS 

 

Figure 3.4.22.1 -1, 2, 3 Example Foot Restraints, Example Lower Leg Restraint 

   

http://msis.jsc.nasa.gov/sections/section11.htm#end%2011.7.2.2%20references
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Note: Dimensions of lower leg restraint: 

A (length) = 432 mm (17.0 in),  

B (distance from mounting structure) = 127 mm 

(5.0 in),  

C (height), 76 mm (3 in). 

Reference: 1, Figure 4.2-3; NASA-STD-3000  19 

Reference: 155, Page 3-47 - 3-49; NASA-STD-3000 101 

 

Figure 4.22.2 -2 Standard Sleep Restraint 

 

Reference: 150, p. 3.18-26; NASA-STD-3000 20 

 

4.23 | MICROGRAVITY COUNTERMEASURE FACILITY 

 

This section discusses the facilities used in a microgravity environment to combat the 

harmful effects of microgravity on the human body. The requirement for a microgravity 

countermeasure facility assumes that the mission duration will be 10 days or longer. A 

summary of the effects of microgravity on the human body, possible countermeasures, and 

considerations for the design of facilities to support these countermeasures is shown in 

Figure 4.23 -1. 

 

 

 

 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#1
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#155
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#150
http://msis.jsc.nasa.gov/sections/section10.htm#Figure%2010.8.2-1
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Figure 4.23 -1 Micro-Gravity Countermeasures Facility Design Considerations 

Zero gravity effect Possible countermeasures Facility and equipment Notes 

Cardiovascular 
deconditioning 

Low resistance, high frequent exercise 
of large muscle groups (aerobic 
exercise) 

Exercise device (aerobic 
ergometer)   
  

Need volume for storage 
and use   

Heart rate and metabolic 
monitoring system 

Heart rate and metabolic 
monitoring systems could 
be part of Space Medical 
Facility (see Para. 10.9). 
Heart rate monitoring 
should be routine; 
metabolic monitoring could 
be periodic (weekly). 

Adequate ventilation, cooling    

Timer    

Diversion from boredom    

Post exercise body wash  

Athletic games   

Game equipment    

Adequate ventilation, cooling    

Post game body wash  

Fluid loss Fluid loading prior to 1-G entry Storage area for fluids and 
fluid administration supplies 

Could be part of Galley  

Pharmaceuticals Storage area  Would be part of Space 
Medical Facility  

Inventory system    

Bone mineral loss Skeletal loading through low 
frequency, high resistance exercise 
(anaerobic exercise) 

Exercise equipment  Need volume for storage 
and use  

Centrifuge Considerable impact on 
vibration, dynamics, 
volume, and cost 

Pharmaceuticals Storage area Inventory 
system 

Would be part of Space 
Medical Facility  

Disorientation; space 
adaptation syndrome; 
neuromuscular 
patterning not adapted 
to micro gravity; loss of 
one gravity neuro-
muscular patterning. 
  
Loss of muscle mass, 
strength and endurance  

Psycho-motor exercise Padded surfaces  Could be part of 
Recreational Facility  

Mobility aids and restraints 
for practicing body 
movements and placement 

   

Visual orientation cues    

Pharmaceuticals Storage area  Could be done in Health 
Facility  

Inventory system    

Exercise of specific muscle groups; 
1. Low frequency, high resistance 
anaerobic exercise. 
2. High frequency, low resistance 
aerobic exercise (primary exercise) 

Exercise devices (both 
isotonic and isokinetic 
devices) 

Need volume for storage 
and use 

Reference: 208, pages 265-280 NASA-STD-3000183, Rev. A 

 

a. MISSION DURATION - This section assumes a mission duration of at least 10 days. For 

missions less than 10 days, an exercise facility is desirable for crew morale and well-being. 

The anticipated physiological decrements of a short mission can be countered by 

compensatory conditioning programs prior to the mission. 

 

b. MULTI FACILITY FUNCTION - The effects of microgravity can be counteracted in a 

number of different facilities in the space module, if such are equipped with appropriate 

countermeasures exercise equipment. The primary function of the microgravity 

http://msis.jsc.nasa.gov/sections/section10.htm#_10.9_SPACE_MEDICAL
http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#208
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countermeasure facility would be to serve as an area for exercise specific to 

countermeasure capability and for storage of this equipment. 

c. SCHEDULING CAPABILITY - The microgravity countermeasure facility should have 

means to control the type and quantity of countermeasures administered to each 

crewmember. This would include a means to track the effects of the countermeasure and 

provisions for revising the countermeasure protocol and/or schedule.  

d. BOREDOM AND CREW PRODUCTIVITY - Microgravity countermeasures such as 

exercise may be boring because of a lack of mental stimulation. Recreational facilities, social 

interaction, workstation facilities, mobile facilities etc can act as mental refreshment. 

e. FACILITY LOCATION - The following considerations should be made when locating a 

fixed facility within the space module: 

1. Vibration and noise - Some exercise equipment is noisy and causes vibration. This 

equipment should be isolated from sensitive areas such as crew quarters or sensitive 

workstations. 

2. Personal hygiene area - Post exercise whole or part body washing facilities should be 

close to the countermeasure facility. 

3. Galley or potable water dispenser - Liquids should be available for crewmembers during 

strenuous exercise. 

 

f. MICROGRAVITY CONSIDERATIONS - The design of the countermeasure facilities should 

account for the effects of microgravity. Some of these considerations are listed below: 

1. DRYING OF PERSPIRATION - Perspiration will not drip from the body but will pool on 

the body and then float into the atmosphere. Methods of eliminating perspiration before it 

has a chance to contaminate the module, such as absorptive clothing or a high flow level 

or dry air, should be investigated. 

2. CONVECTION COOLING - In 1-G, warm air around the body will rise providing cooling. 

In microgravity this will not occur. Ventilation for cooling must be provided through forced 

air. 

3. DEBRIS CONTAINMENT - Debris, such as hair and lint, will not fall to the floor where it 

can be swept up. There must be a means, such as a vacuum system, to collect such 

material. 
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4.23.1 | EXAMPLE MICROGRAVITY COUNTERMEASURES DESIGN SOLUTION 

The following are example design solutions to the microgravity exercise requirements. 

 

a. STRENGTH EXERCISES - Several devices that utilize an electromagnetic brake or 

hydraulic mechanism to impose resistance equivalent to those of a 1-G environment have 

been developed. With a cable/pulley system and proper positioning, all major muscle groups 

of the body could be exercised. The exercises include leg extensions, military press, bench 

press, sit-ups and back extensions, plus leg curls, and arm curls; these exercises constitute 

a workout for the major muscle groups of the body and should maintain the strength of the 

arm extensors and leg flexors (which the programs during Skylab 4 failed to do) as well as 

the arm flexors and leg extensors which were adequately maintained during Skylab 4. The 

abdominals and back extensors are included because of their importance as antigravity 

muscle groups for maintaining an erect posture in a 1-G environment. These are not 

adequately stressed by the natural body position assumed during microgravity exposure. 

b. AEROBIC EXERCISE EQUIPMENT - A bicycle ergometer similar to that used in the 

Skylab series will provide aerobic exercise. It could be modified to include a video display 

terminal and computer programs (both commercially available) to simulate bicycle touring in 

Earth environments (e.g., through Yellowstone Park, coast-to-coast, hilly terrain, etc.). Data 

storage, allowing each crewmember to keep performance and status records, should be 

included. These modifications, while not essential to the physiological performance, will 

greatly enhance the motivation to exercise and adherence to prescribed regimens. 

c. SKELETAL LOADING EXERCISES - A treadmill similar to that used on Skylab 4 and the 

Shuttle could be provided as an adjunct to the other exercise equipment. Its principal 

attribute is as an impact device to potentially counter mineral loss in the long bones of the 

leg. Some crewmembers may prefer it over the bicycle ergometer for aerobic exercise.  

4.24 | SPACE MEDICAL FACILITY 

This section deals with the design of a Space Medical Facility (SMF). An SMF is any area 

that is set aside primarily for medical treatment of crew members. The requirement for an 

SMF assumes that the mission duration will be long term (in excess of 2 weeks) and that 

medical treatment outside the module is not immediately available. The information in this 

section applies to any gravitational environment, although some areas emphasize 

microgravity conditions and will so state. This section addresses both the environmental and 

physical requirements of the SMF. Prior to the design of the Space Medical Facility (SMF) 

the following information must be determined: 
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a. Duration of the Mission. 

b. Crew Statistics - The health status, age, and number of crewmembers. 

c. Mission Activities - The nature of the activities required during the missions. 

d. Medical Support - The availability of medical support outside the module. 

 

This information, together with historical data on the nature and frequency of illness and 

injuries, will determine the size of the SMF and the specific types of equipment required. 

Once these decisions are made, the detail design process can begin. The SMF must provide 

the equipment and supplies to perform the following functions: 

 

Figure 4.24-1 Function and Equipment Related to the Space Facility 

 

Reference: 229, p. 11; NASA-STD-3000 184 

 

4.25 | TRASH MANAGEMENT FACILITY 

 

The following are considerations for the design of the space module trash management 

facilities. 

 

a. Quantity and Nature of Trash - The amount and nature of the trash will depend on the 

nature of the mission and the design of the space module. All wrappings, etc., should be 

minimized and disposables chosen for maximum efficiency and minimum residual. Some 

of the variables are listed below: 

 

http://msis.jsc.nasa.gov/volume2/Appx_a_Bibli.htm#229
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1. Number of crewmembers. 

2. Disposable versus reusable items (clothing, utensils, etc.). 

3. Mission duration. 

4. Type of work performed (experimentation, processing, manufacturing, etc.). 

 

b. Separation - The system may require separation of biologically active and inert trash in 

order to facilitate stowage and disposal. The crew may have to participate in this function. 

 

c. Location of Trash Receptacles - The selection of trash receptacle types and locations 

must consider crew productivity. Several small throughout the module may initially save crew 

time but will cost time if the crew must gather the trash from the receptacles and transport it 

to a central receptacle. 

 

d. Productivity - Trash management is not a productive crew function. Every effort should be 

made to automate trash management, reduce volume by compaction, and reduce manual 

manipulation. 

 

e. Human Interface - The following considerations should be made when designing the trash 

collection devices and receptacles: 

1. All equipment should be operable by the full range of crewmember size and strength. 

2. Appropriate restraints should be available in microgravity conditions. 

3. All trash handling supplies (wipes, bags, wrapping tape, labels, etc.) should be located 

so that they are easily accessible. 

4. Noise generation equipment (e.g., compactors) should be insulated or isolated from 

noise sensitive areas. 

 

4.25.1 | TRASH MANAGEMENT FACILITY DESIGN REQUIREMENTS 

 

The following are the design requirements for trash management from the source to the 

disposal area: 

 

a. Trash Sorting - Where it is necessary to sort trash before depositing in a receptacle, the 

following requirements shall be met: 

1. Receptacle labeling - Each of the receptacles shall be appropriately labeled defining 

acceptable and non-acceptable trash. 



156 | T H E O D O R E  H A L D E R   

 

2. Transfer package labeling - If trash must be transferred from one receptacle to 

another, there shall be a method of identifying the trash so that it is placed in the 

proper receptacle. 

3. Human error - The system shall be capable of recovery in the event that trash is 

inappropriately placed in a receptacle. 

b. Trash Receptacles: 

1.  Identification of receptacles - All trash receptacles shall be clearly identifiable. 

2. Receptacle location - The location of trash receptacles shall meet the following 

requirements: 

a) The location shall effectively reduce trash in the crew stations. 

b) The location shall minimize crew trash handling time. 

c) The location shall not interfere with crew movement. 

c. Odor and Contamination Control - The following requirements apply to control of odor and 

contamination: 

1. Trash handling equipment shall be designed to preclude module contamination during 

introduction of trash. 

2. Trash storage areas shall preclude contamination of the living environment by harmful 

microorganisms or odor. 

3. The trash management equipment area shall be capable of being cleaned and 

sanitized. 

4. There shall be a safe means for disposal of any harmful chemical or radioactive 

wastes. 

d. Operation - All trash collection, handling, and disposal equipment shall be capable of 

being operated by the full size and strength range of the defined crewmember population. 

 

e. Receptacle Capacity - Crewmembers shall be capable of easily determining the level of 

trash (in relationship to capacity) in each of the trash receptacles. 
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Image comment: International Space Station 

Image credits: https://internationalspacestation.zeef.com/  

 

 

Image comment: A Constellation of Components 

Image source: http://www.nature.com/scientificamerican/journal/v297/n4/images/scientificamerican1007-62-I3.jpg 
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CHAPTER | 5 

IDEAS AND HYPOTHESIS 

 

5.1 | CURRENT THOUGHTS ABOUT THE MOON 

―Three things cannot be long hidden: the Sun, the Moon, and the Truth.‖ 

- BUDDHA     

The Moon has always been silent. It stares down at us from a 

distant. From children fairy tales to rocket science, the moon has 

been a propeller of progress. Since the dawn of human 

civilization on Earth, we have developed cultures, provoked by 

multiple metaphors shaped via our distant companion. Our idea 

of the origin of existences, evolution of policies and politics - 

unity amongst nations, leaders, and spiritual firmness may have 

evolved from the revelation from the moon. The concept of time 

itself origins when man first started calculating the moon cycles.  

 

The space age, the Apollo program established a dream among 

people of all nations, "folks around the world have been thinking 

about returning to the Moon, and what they would like to do 

there," says Jeff Volosin, strategy development lead for NASA's 

Exploration Systems Mission Directorate. Now, NASA is going 

back; the agency plans to send astronauts to the Moon no later 

than 2020. "So we consulted more than 1,000 people from 

businesses, academia and 13 international space agencies to 

come up with a master list of 181 potential lunar objectives." 

For instance, the moon could be a good location for radio 

astronomy. A radio telescope on the far side of the Moon would 

be shielded from Earth's copious radio noise, and would be able 

to observe low radio frequencies blocked by Earth's atmosphere. 

Observations at these frequencies have never been made 

before and opening up a window into this low frequency universe 

will likely lead many exciting new discoveries. 

Image comment: Lunar Telescope 

Image source: 
carlkop.home.xs4all.nl/ livmoon.html 

http://www.brainyquote.com/quotes/quotes/b/buddha133884.html
http://www.brainyquote.com/quotes/authors/b/buddha.html
http://www.nasa.gov/pdf/163560main_LunarExplorationObjectives.pdf
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The Moon would also be an excellent place to study the high-energy particles of the solar 

wind, as well as cosmic rays from deep space. Earth's magnetic field and atmosphere 

deflect many of these particles, so even satellites in low-Earth orbit can't observe them all. 

The moon has virtually no atmosphere, and it spends most of its 28-day orbit outside of 

Earth's magnetosphere. Detectors placed on the moon could get a complete profile of solar 

particles, which reveal processes going on inside the sun, as well as galactic cosmic 

radiation from distant black holes and supernovas.  

 

These particles are trapped by lunar regolith, the layer of crushed rock and dust covering the 

moon's surface. This means that lunar regolith contains a historical record of solar output: 

core samples could tell us about changes in solar output over billions of years. "We believe 

that the moon's preservation of this solar record is unique and can provide us with insights 

on how past fluctuations in the solar output have affected, for example, the history of life on 

Earth," says Volosin. In particular, it could shed light on the extent to which solar variability 

and galactic cosmic radiation influence climate change.  

The Moon itself is a scientific gold mine, a nearby example of planetary formation largely 

unaltered by the passage of time. Some scientists call it "a fossil world." The moon is a 

small, non-dynamic planetary body and its interior state is largely preserved since the early 

days of solar system history. Studying its interior would tell scientists a lot about how a 

planet's internal layers separate and solidify during planetary formation. But the moon would 

be far more than just a platform for scientific instruments gazing into space. 

Even something as simple as establishing the dates when various craters on the moon were 

formed can provide us with a unique picture of how the flux of meteoroids in the vicinity of 

Earth has changed over time. This impact history is lost on Earth by the constant renewal of 

the crust but on the moon it is intact, rich with clues to periods in the past when an increase 

in bombardment may have affected the climatic history of Earth and even the evolution of 

life. 

Science accounts for only about a third of the 181 objectives, however. More than half of the 

list deals with the many challenges of learning to live on an alien world: everything from 

keeping astronauts safe from radiation and micro-meteors to setting up power and 

communications systems to growing food in the airless, arid lunar environment. 

"We want to learn how to live off the land and not depend so much on supplies from Earth," 

says Tony Lavoie, leader of NASA's Lunar Architecture Team (Phase 1) at the Marshall 

Space Flight Center.  
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Image comment: Two astronauts go prospecting with a robotic sidekick. 

Image source: www.nasa.gov/exploration/multimedia/jfa18842.html 

Astronauts would face the same problems on a manned mission to Mars, so much of the 

experience gained on the moon would carry over when NASA eventually sends people to 

the Red Planet. 

The Moon could also provide some Creative Commercial opportunities: Lunar Power from 

Solar Cells, Protected Data archives, Mining of Lunar Metals, and Research under 

conditions of Low Gravity and High Vacuum. In fact, mining the Moon may eventually 

yield rocket propellant that could be sold to commercial satellite operators to access and 

service their satellite assets in Earth orbit. Beyond charging Space Tourists for a chance to 

visit the moon, lunar entrepreneurs might host Special Television Events from the moon to 

boost publicity, or place a remote-controlled rover on the moon. People back on Earth could 

pay to take turns controlling the rover from their Internet-connected computers, letting them 

take a virtual drive across the moon's crater-pocked surface. In short, let your imagination be 

the guide. 

Not all of the ideas on the list will necessarily happen. From the master list of 181, NASA 

currently is selecting a smaller number of high priority goals for its initial return to the moon. 

Other goals could be considered by other space agencies or private entrepreneurs who have 

an interest in exploring the moon. NASA continues to receive input from scientists at space 

agencies and universities around the world; the list itself is still evolving and expanding.  
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Complete list of objectives can be found in the link below.  

http://www.nasa.gov/pdf/163560main_LunarExplorationObjectives.pdf 

 

Image comment: Lunar Flight Plan 

Image source: http://1.bp.blogspot.com/-

Gdm3NS5VJAE/T6GMeKX5kLI/AAAAAAAADpw/1q2mHwgKImU/s640/125171main_flight_plan_graphic.jpg  

 

 

 

 

 

 

 

 

 

http://1.bp.blogspot.com/-Gdm3NS5VJAE/T6GMeKX5kLI/AAAAAAAADpw/1q2mHwgKImU/s640/125171main_flight_plan_graphic.jpg
http://1.bp.blogspot.com/-Gdm3NS5VJAE/T6GMeKX5kLI/AAAAAAAADpw/1q2mHwgKImU/s640/125171main_flight_plan_graphic.jpg
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5.2 | THE MOON 

 

Image comment: Grail moon 

Image source: http://www.wired.com/images_blogs/wiredscience/2012/12/713769main_pia16494-43_800-600.jpg 

The Moon (Latin: Luna) is Earth's only natural satellite and the fifth largest natural satellite in 

the Solar System. The average centre-to-centre distance from the Earth to the Moon is 

384,403 km, about thirty times the diameter of the Earth. The Moon's diameter is 3,474 km, 

a little more than a quarter that of the Earth. This means that the Moon's volume is about 2 

percent that of Earth and the pull of gravity at its surface about 17 percent that of the Earth. 

The Moon makes a complete orbit around the Earth every 27.3 days (the orbital period), and 

the periodic variations in the geometry of the Earth–Moon–Sun system are responsible for 

the lunar phases that repeat every 29.5 days (the synodic period). 

 

The Moon is the only celestial body to which humans have travelled and upon which humans 

have landed. The first artificial object to escape Earth's gravity and pass near the Moon was 

the Soviet Union's Luna 1, the first artificial object to impact the lunar surface was Luna 2, 

and the first photographs of the normally occluded far side of the Moon were made by Luna 

3, all in 1959. The first spacecraft to perform a successful lunar soft landing was Luna 9, and 

the first unmanned vehicle to orbit the Moon was Luna 10, both in 1966. The United States 
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Apollo program achieved the only manned missions to date, resulting in six landings 

between 1969 and 1972. Human exploration of the Moon ceased with the conclusion of the 

Apollo program, although several countries have announced plans to send people or robotic 

spacecraft to the Moon. 

 

5.2.1| LUNAR SURFACE 

 

 

Image comment: Phases of the Moon 

Image source: ringofbrodgar.com/wiki/Fishing:Phases_of_the_Moon 

 

The Moon is in synchronous rotation, meaning that it keeps nearly the same face turned 

towards the Earth at all times. Early in the Moon's history, its rotation slowed and became 

locked in this configuration as a result of frictional effects associated with tidal deformations 

caused by the Earth. Before the Moon spun much faster, its tidal bulge preceded the Earth-

Moon line because it could not "snap back" its bulges quickly enough to keep its bulges in 

line with Earth. The rotation swept the bulge beyond the Earth-Moon line. This out-of-line 

bulge caused a torque, slowing the Moon spin, like a wrench tightening a nut. When the 

Moon's spin slowed enough to match its orbital rate, then the bulge always faced Earth, the 

bulge was in line with Earth, and the torque disappeared. That is why the Moon rotates at 

the same rate as it orbits and we always see the same side of the Moon. 
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Image comment: Two Sides of the Moon (left: Earthside, right: Farside) 

Image source: http://www.spudislunarresources.com/Images_Maps.htm 

 

Image comment: Map of topography of Moon 

Image source: http://www.spudislunarresources.com/Images_Maps.htm 



T H E O D O R E  H A L D E R  | 165 

 

 

Image comment: Map of geology of Moon 

Image source: http://www.spudislunarresources.com/Images_Maps.htm 

 

Image comment:   Map of thorium content of Moon 

Image source: http://www.spudislunarresources.com/Images_Maps.htm 

http://www.spudislunarresources.com/Images_Maps.htm
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Image comment: Map of iron deposits on the Moon 

Image credits: http://www.spudislunarresources.com/Images_Maps.htm 

 

Image comment:   Petrologic (rock type) map of Moon 

(http://www.spudislunarresources.com/Images_Maps/Global%20petrologic%20map.pdf for explanatory paper) 

Image source: http://www.spudislunarresources.com/Images_Maps.htm 

 

 

http://www.spudislunarresources.com/Images_Maps.htm
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Image comment: Chemical Composition of Mare and Highland Soils 

Image source: http://www.spudislunarresources.com/Images_Maps.htm 
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Image comment: Lunar Earthside Chart 

Image source: http://www.spudislunarresources.com/Images_Maps.htm 
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Image comment: Lunar Farside Chart 

Image source: http://www.spudislunarresources.com/Images_Maps.htm  
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Image comment: Lunar Polar Chart 

Image source: http://www.spudislunarresources.com/Images_Maps.htm 
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5.2.2 | LUNAR ARCHITECTURE  

 

Writers, Painters, Architects, Scientists and Space agencies from all over the globe are 

currently working ground breaking research on the lunar expansion. The Moon holds the 

potential for human intervention. Various proposals are being devised to make moon 

hospitable for human civilization to prosper.  

 

The Earth and the Moon are complete opposites, one taking 24 hour rotation on its axis, and 

the other revolving around earth, unchanged, gazing from afar. One divided into multiple 

nations, brew with complex forms of life, diversity and culture, and the other empty with 

shades of grey. The two sides of Moon - the near earth side, and the farside, holds much 

possiblities. But when designing on the Moon, we must take into account that the decisions 

we make about selection of site, which will not adversely affect the cultural and natural 

forces of Earth. Building something on the near-earth side may result in cultural and religious 

clashes, tidal interferences, animal and marine life disturbances. When building a settlement 

on the moon the farside seems to be the more plausable solution.  

 

Researchers are working on the Cislunar Tether Transport System, which is to use a rotating 

tether in Earth orbit to pick payloads up from LEO orbits and toss them to the Moon, where a 

rotating tether in lunar orbit, called a ―Lunavator™‖, could catch them and deliver them to the 

lunar surface. As the Lunavator™ delivers payloads to the Moon‘s surface, it can also pick 

up return payloads, such as water or aluminum processed from lunar resources, and send 

them down to LEO. By balancing the flow of mass to and from the Moon, the orbital 

momentum and energy of the system can be conserved, eliminating the need to expend 

large quantities of repellant to move the payloads back and forth.  

(more information at http://www.tethers.com/papers/cislunaraiaapaper.pdf) 

http://www.tethers.com/papers/cislunaraiaapaper.pdf
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Image comment: Tether Transport System 

Image source: www.tethers.com/papers/cislunaraiaapaper.pdf 

 

Image comment:  Contour Crafting on Lunar Surface 

Image credits: http://www.33rdsquare.com/2012/08/behokh-khoshnevis-wants-to-3d-print.html 
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Another team of London "Space Architects" has developed a proposal for a lunar base that 

would be 3D printed by spider robots using microwaves, solar energy and lunar dust. Tomas 

Rousek, Katarina Eriksson and Dr. Ondrej Doule are collaborating with NASA's Jet 

Propulsion Laboratory on plans for a modular architectural structure at the lunar South Pole. 

Each module would be printed using a NASA robotic system, which would produce a 

ceramic-like material by microwave-sintering lunar soil, also known as regolith. There would 

be no need for glue, as the particles would naturally bond themselves together when heated 

to the right temperature by the robots.  

 

5.3 | FUTURE EARTH ASSUMPTIONS 2013 + 

 

Where do we see ourselves in about one hundred years? With rising population, increasing 

use of fossil fuel and depletion of natural resources, we are counting our own dooms day. 

For over a century, writers and architects have imagined Earth booming with cities of the 

future as giant structures that contain entire metropolises. To some, these buildings present 

the best means for cities to exist in harmony with nature, while others foresee grotesque 

monstrosities destructive to the human spirit. In the mid-20th century, engineer and futurist 

R. Buckminster Fuller imagined city-enclosing plastic domes and enormous housing projects 

resembling nuclear cooling towers. These ideas are impractical but they explore the limits of 

conventional architectural thinking.  

  

Science fiction writers and artists often imagine future architecture that oppresses the human 

spirit. Mega structures such as the pyramid-like Tyrell Buildings of ―Blade Runner‖ dominate 

a decrepit skyline. The decaying old city is simply covered with layers of newer, larger 

buildings in a process of ―retrofitting.‖ Architect Paolo Soleri envisioned a more humane 

approach. The word ―Arcology‖ is a combination of ―architecture‖ and ―ecology.‖ The goal is 

to build mega-structures that would house a population of a million or more people, but in a 

self-contained environment with its own economy and agriculture.  

  

―In the three-dimensional city, man defines a human ecology. In it he is a country dweller 

and metropolitan man in one. By it the inner and the outer are at ‗skin‘ distance. He has 

made the city in his own image. Arcology: the city in the image of man.‖ (Paolo Soleri) In 

1996, a group of 75 Japanese corporations commissioned Soleri to design the one-

kilometer-tall Hyper Building, a vertical city for 100,000 people. Existing in harmony with 

nature, the Hyper Building was designed to recycle waste, produce food in greenhouses, 

and use the sun‘s light and heat for power and climate control.  The structure was designed 

for passive heating and cooling without the need for machinery. An economic recession put 

http://www.jpl.nasa.gov/
http://www.jpl.nasa.gov/
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the brakes on the project and it was never built. To be built in the desert near Abu Dhabi, 

Masdar is a 2.3-square-mile (6 sq km) planned city of 40,000 residents. Buildings are 

designed to reduce reliance on artificial lighting and air conditioning, and the city will run 

entirely on solar power and renewable energy. Begun in 2006, the project is planned for 

completion around 2020-2025. 

 

5.4 | Case Studies of Architecture on the Moon 

 

Image Comment: Super Adobe Structure: Nader Khalili. 

 

Image Comment: Double Skies, Lunar Holy Land 
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Image Comment: Lunar SEED Project 

 

Image Comment: Foster + Partners – Building on the moon 
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CHAPTER 6 | HUMANS IN 1/6th THE GRAVITY OF EARTH 

 

6.1 | ARCHITECTURE IN ARTIFICIAL GRAVITY 

 

Image Comment: Gravity Analysis Diagram 

To think rationally human being behaves quite differently in artificial gravity. Be it in outer 

space, the moon or other planetary systems, limitations and implications of artificial gravity in 

the design of orbital habitats. Long-term exposure to weightlessness leads to a chain-

reaction of undesirable physiological adaptations. There are both theoretical and 

experimental evidence that artificial gravity can substitute for natural gravity to maintain 

health in orbit. Aerospace medical scientists have conducted many studies during the past 

forty years to determine the comfort boundaries for artificial gravity. They express comfort in 

terms of centripetal acceleration, head-to-foot gravity gradient, angular velocity, tangential 

velocity, cross-coupled head rotations and the Coriolis effects of relative motion in rotating 

environments. A review of the literature reveals the uncertainty in these boundaries and 

suggests that "comfort" in artificial gravity depends as well on other aspects of environmental 

design, beyond the basic rotational parameters. Artificial gravity is distinct from both Earth-

normal gravity and weightlessness. The goal of architectural design for artificial gravity is not 

to mimic Earth but rather to help the inhabitants adapt to the realities of their rotating 

environment.  
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6.2 | COMPONENTS OF ARTIFICIAL GRAVITY  

Acceleration by any force other than gravity provides a body with weight. Gravity acting 

alone leaves a body in weightless free-fall. Earth weight results not from the downward pull 

of gravity but from the equal and opposite upward push of the ground.  

 

 

Image Comment: Artificial Gravity Structure 

Assuming that the environment is un-propelled and that its rotation is constant, artificial 
gravity depends on the following quantities.  

 is the angular velocity of the environment in inertial space, in radians per second. 

r is the radial position of an object in the environment, measured from the center of rotation, 
in meters. 

v is the velocity of the object relative to the environment, in meters per second. 

a is the acceleration of the object relative to the environment, in meters per second-squared. 
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The total apparent artificial gravity derives from the total inertial acceleration. This is the 

vector sum of three components:  

1. Global Centripetal Acceleration: This is the "design gravity". It is the only 

component that is independent of the relative motion of objects within the 

environment. It depends only on the angular velocity of the environment and the 

radial position of the object. The acceleration is radial, directed inward toward the 

axis.  

Acent =   (   r )  (1) 

2. Coriolis acceleration: This is proportional to the vector product of the environment's 

angular velocity and the object's relative velocity. It is perpendicular to both. When 

the relative velocity is parallel to the axis of rotation, the Coriolis acceleration is zero.  

ACor = 2   v  (2) 

3. Relative acceleration: This is generally independent of the environment and may 

assume any value.  

a =  =  (3) 

The total apparent artificial gravity is the vector sum of these three components. The 

apparent "up" direction is aligned with the acceleration:  

A = Acent + ACor + a  (4) 

In the special case of relative motion around the circumference of the environment, in the 

plane of rotation at constant speed and radius, the three components are parallel. Another 

expression is convenient for the magnitude of the total gravity. Define two additional 

quantities:  

 

Vt  is the magnitude of the environment's tangential velocity (rim speed) in inertial space. 

vt  is the magnitude of the object's tangential velocity relative to the environment. 

In this case, the magnitude of the total apparent artificial gravity derives from the following:  

Vt  = r  (5) 

vt  = v  (6) 

 

=Vt / r  (7) 

Acent  = Vt² / r  (8) 

ACor  =  2 Vt vt / r  (9) 

a  = vt² / r  (10) 

A  = Acent + ACor + a  (11) 

 
= (Vt x vt)² / r (12) 

choosing "+" for prograde and "-" for retrograde motion. The acceleration is radial, directed 

toward the center of rotation.  
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Only the global centripetal acceleration represents "design gravity". The other components 

are gravitational distortions that arise from motion within the environment. They affect the 

magnitude and direction of the total acceleration, causing changes in the apparent weight of 

objects and the apparent slope of surfaces. Taking Earth as the norm, one's experience of 

gravity should be independent of one's motion. Hence, the goal is to design the environment 

such that the global centripetal acceleration yields some preferred level of artificial gravity 

while simultaneously minimizing the other components. The equations suggest that the 

angular velocity should be kept low and that the radius should be large.  

In a rotating system, one must also consider the non-intuitive effects of angular momentum. 

To turn an object about some local axis, in an environment that is rotating about some other 

global axis, requires a moment about a third axis perpendicular to the other two. The 

moment is proportional to the vector product of the environment's angular velocity and the 

object's angular momentum. The non-aligned rotations about the global and local axes are 

said to be "cross-coupled".  

For example, consider a person standing in a rotating orbital habitat, facing prograde. The 

habitat may resemble a giant bicycle wheel. Artificial gravity aligns his apparent vertical axis 

along a radius or "spoke" that rotates with the habitat. The habitat's rotation axis is over 

head, horizontal in his frame of reference, directed left-to-right. As long as he remains 

motionless relative to the habitat, he rotates with it effortlessly. When he turns to his left, he 

adds vertical components to his angular velocity and momentum. His angular momentum is 

no longer aligned with the habitat's angular velocity. To sustain this leftward turn about his 

vertical axis (while that axis rotates with the habitat) requires a left-leaning moment about his 

front-to-back axis. Moreover, this leftward turn about his vertical axis induces effects on his 

vestibular organs as if he was rotating about his front-to-back axis.  

Experiments with human subjects in centrifuges and rotating rooms have confirmed this. 

When subjects turn their heads about any axis that is not aligned with the rotation of the 

environment, they experience vestibular illusions of rotation about a perpendicular axis. The 

illusions are approximately proportional in magnitude and direction to the vector product of 

the angular velocities of the environment and the head. The resulting mismatch between the 

vestibular and visual senses of motion are believed to be a major cause of motion sickness. 

To minimize these illusions while permitting the normal range of human motion, the angular 

velocity of the environment should be kept low.  

Unfortunately, when the radius is limited, reducing the angular velocity may increase other 

aspects of gravitational distortion. One measure of this distortion is the ratio of the 
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magnitudes of the Coriolis and global centripetal accelerations. To emulate a natural 

gravitational environment, this ratio should be minimized without constraining the relative 

motion of people or objects within the environment. Define the following symbols:  

vp  is the magnitude of an object's relative velocity in the plane of rotation (including radial 

and tangential velocity but not axial velocity). 

Vt  is the magnitude of the environment's tangential velocity (rim speed) in inertial space. 

ACor is the magnitude of the Coriolis acceleration: 

ACor = |2 v| = 2  vp  
(13) 

Acent   is the magnitude of the global centripetal acceleration: 

Acent = | ( r)| = 2r  (14) 

If decreasing angular velocity is compensated by increasing radius, so that centripetal 

acceleration remains constant, then decreasing angular velocity decreases this ratio:  

ACor / Acent  = 2  vp / Acent  (15) 

However, once the maximum feasible radius is reached, further reduction of angular velocity 

decreases both the Coriolis and centripetal accelerations and increases the ratio of 

Coriolis to centripetal:  

ACor / Acent  = 2  vp / 
2r  = 2vp / r  = 2vp / Vt                         (16) 

Thus for any given radius, while reducing ameliorates problems associated with rotational 

cross-coupling (such as dizziness, ataxia, and nausea), it exacerbates gravitational 

distortion.  

  

6.2.1 | COMFORT CRITERIA IN ARTIFICIAL GRAVITY  

The physical theory behind artificial gravity is as old as Isaac Newton's Principles. 

Nevertheless, there was no significant research into the human factors of artificial gravity 

until Sputnik inaugurated the "space race". As experience with weightless space flight 

accumulated, artificial gravity assumed a lower priority. The NASA Langley simulator was 

dismantled in the early 1970s. Since the beginning of the Salyut and Skylab missions, 

access to a micro-gravity environment has been one of the main motivations for space flight. 

Ironically, while extended stays in weightlessness have revealed its dangers, they have also 

shown that it is survivable. Artificial gravity is now discussed primarily in the context of 

interplanetary missions, in which long periods of weightless coasting through empty space 

are an annoyance, not an objective.  

http://www.nasa.gov/
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Hence, much of the research into the human factors of rotating habitats is twenty or thirty 

years old. Over the past four decades, several authors have published guidelines for comfort 

in artificial gravity, including graphs of the hypothetical "comfort zone" bounded by values of 

acceleration, head-to-foot acceleration gradient, rotation rate and tangential velocity. 

Individually, these graphs depict the comfort boundaries as precise mathematical functions. 

Only when studied collectively do they reveal the uncertainties.  

1. Apparent Gravity: This is stated in multiples of Earth gravity: 1 g = 9.81 m/s2  

Most authors apply these limits solely to the global centripetal acceleration (the nominal 

"design gravity"):     A = 2r = Vt
2 / r  

Stone applies them to the total acceleration, including the Coriolis and relative 

components, when walking prograde or retrograde at 1 meter per second:  

A = 2r ± 2  + 1 / r = (Vt ± 1)2 / r  

a. Minimum Apparent Gravity: This parameter usually aims to provide adequate floor 

traction for mobility. In the case of Hill and Schnitzer, it appears to be an arbitrary lower 

bound on a logarithmic scale. The minimum required to preserve health remains 

unknown.  

b. Maximum Apparent Gravity: For reasons of both comfort and cost, this generally should 

not exceed 1 g. Gilruth gives no explanation for his specification of 0.9 g. Similar to 

Stone, he may be allowing for some inevitable increase from the extra accelerations 

while walking prograde.  

2. Maximum Apparent Gravity Gradient per Meter: This is a decrease in apparent gravity 

over a radial distance of 1 meter, divided by some reference value.  

a. relative gradient: When the gradient is given as a percentage, the reference value is the 

apparent gravity at the floor:  

A / Aref = (Afloor - Afloor-1) / Afloor  

When this is applied only to centripetal acceleration, it directly determines the floor 

radius. For example, a 25% gradient per meter in centripetal acceleration implies a floor 

radius of 4 meters.  

b. absolute gradient: When the gradient is given as a definite "g" value, the reference is 

Earth gravity:  

A / Aref = (Afloor - Afloor-1) / 9.81  

Most authors specify a percentage gradient over a "head-to-foot" distance of 2 meters or 

6 feet. Cramer specifies an absolute gradient, so the percentage depends on the 

selected value for the apparent gravity at the floor.  
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3. Maximum Angular Velocity of Habitat: This is stated in rotations per minute:  

1 rpm = (2  / 60) radians per second = (  / 30) s-1  

The limit aims to avoid motion sickness caused by the cross-coupling of normal head 

rotations with the habitat rotation. The value depends largely on the susceptibility of the 

inhabitants and the time permitted for their adaptation. Lower values accommodate a 

broader sample of the general population. Gilruth specifies 6 rotations per minute for 

"comfort" but only 2 for "optimum comfort". In this context, "comfort" does not imply 

luxury but merely mitigation of symptoms.  

4. Minimum Tangential Velocity of Habitat: This should be large compared to the relative 

velocity of objects within the habitat. The goal is to keep the Coriolis acceleration small in 

proportion to the global centripetal acceleration. (For relative motion in the plane of 

rotation, the ratio of Coriolis to global centripetal acceleration is twice the ratio of relative 

velocity to habitat tangential velocity. See equation 16 above.) Hill and Schnitzer specify 

a tangential velocity of at least 6 meters per second (20 feet per second) so that walking 

prograde or retrograde will not change one's apparent weight by more than 15%. Even 

so, a person would have to walk very slowly - less than 0.5 meters per second - to stay 

within the 15% limit. Stone proposes that an object's apparent weight should not change 

by more than 25% when carried at 1.2 meters per second. This implies a minimum 

habitat tangential velocity of about 10 meters per second.  

TABLE 6.2.1.1: Comfort Boundaries in Artificial Gravity.  

Author Year of 
Publicatio
n 

Min. 
Apparen
t Gravity 

Max. 
Apparen
t Gravity 

Max. Apparent 
Gravity 
Gradient per 
Meter 

Max. 
Angular 
Velocity of 
Habitat 

Min. 
Tangential 
Velocity of 
Habitat 

  A / 
9.81 

A / 
9.81 

A /Aref /(2  / 60) Vt = r 

 

Clark & Hardy [23]  1960  -  -  -          0.1 rpm  -          

Hill & Schnitzer [25]  1962  0.035 g  1 g  -          4 rpm  6 m/s          

Gilruth [26]  1969  0.3 g  0.9 g  8 %          6 rpm  -          

    "optimum"              2 rpm   

Gordon & Gervais [2
7] 

1969  0.2 g  1 g  8 %          6 rpm  7 m/s          

Stone [28]  1973  0.1 g  1 g  25 %          6 rpm  10 m/s       
   

Cramer [29]  1985  0.1 g  1 g  0.03 g          3 rpm  7 m/s          
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6.2.2 | ENVISIONING ARTIFICIAL GRAVITY  

The comfort criteria described above are succinct summaries of abstract mathematical 

relationships, but they do nothing to convey the look and feel of artificial gravity. 

Consequently, there has been a tendency in many design concepts to treat any point 

within the hypothetical comfort zone as "essentially terrestrial", although that has not 

been the criterion for defining the zone. The defining criterion has been "mitigation of 

symptoms" and authors differ as to the boundary values that satisfy it. This suggests 

that the comfort boundaries are fuzzier than the individual studies imply. Comfort may 

be influenced by task requirements and environmental design considerations beyond 

the basic rotational parameters.  

Perhaps a more intuitive way to compare artificial-gravity environments with each other 

as well as with Earth is to observe the behavior of a free-falling object when dropped 

from a certain height or launched from the floor with a certain velocity. Fig. 1 shows, for 

Earth-normal gravity, the effect of hopping vertically off the floor with an initial velocity 

of 2 meters per second and of dropping a ball from an initial height of 2 meters. The 

"hop" and the "drop" each trace vertical trajectories. The "hop" reaches a maximum 

height of 0.204 meters, indicated by a short horizontal line. The "drop" is marked by 

dots at 0.1-second intervals. Fig. 6.2.3.2 shows a typical comfort chart for artificial 

gravity, after that of Hill and Schnitzer, surrounded by five similar "hop and drop" 

diagrams - one for each boundary point of the comfort zone. When compared with the 

Earth-normal standard of fig. 6.2.3.1, these diagrams reveal certain features of the 

comfort boundaries: 

 

Image Comment: Standards for comfort boundaries in Artificial Gravity. 
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Image Comment: Artificial Gravity and the Comfort Zone.  

1. Large radius (points 5 and 1): Artificial gravity becomes increasingly "normal" as the 

radius of rotation approaches infinity. The trajectory of a dropped object depends only 

on the radius of rotation and the initial height of the object. Thus, the drops at points 5 

and 1 follow congruent paths, although the drop at 5 is much slower due to the low 

gravity. (The dots are spaced at 0.1-second intervals.) The trajectory of a thrown 

object is influenced by the ratio of its initial relative velocity to the habitat's tangential 

velocity. Thus the hop at point 5, besides being much higher (due to the low gravity), 

is also more distorted than at point 1 due to the lower tangential velocity. Point 1 is 

the most "Earth-normal" point on the chart. Point 5 approaches "normal" for a 

planetesimal or asteroid.  

2. Earth Gravity (points 1 and 2): Earth-magnitude does not imply Earth-normal. 

Although both points represent 1-g environments, both the hop and the drop are 

more distorted at point 2, due to the smaller radius and lower tangential velocity.  

3. High Angular Velocity (points 2 and 3): The upper limit of angular velocity is 

determined by the onset of motion sickness due to cross-coupled rotations. At this 

boundary, reducing the radius reduces the centripetal acceleration and tangential 

velocity as well. As judged by the "twisting" of the apparent gravity, point 3 is the least 

normal point in the comfort zone.  

4. Low Tangential Velocity (points 3 and 4): For a given relative motion, the ratio of 

Coriolis to centripetal acceleration increases as tangential velocity decreases. 

Between points 3 and 4 it is constant. Hence, the hops at these points have similar 

shapes, though the hop at point 4 is larger due to the lower acceleration. The drop at 

point 4 is straighter due to the larger radius.  
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5. Low Gravity (points 4 and 5): Although the centripetal acceleration at these points is 

equal, the gravity is less distorted at point 5 due to the larger radius and higher 

tangential velocity.  

Evidently, the comfort zone encompasses a wide range of environments, many of them 

substantially non-terrestrial. Conformance to the comfort zone does not guarantee an Earth-

normal gravity environment, nor does it sanction "essentially terrestrial" design.  

6.3 | ARCHITECTURE FOR ARTIFICIAL GRAVITY  

In the twenty years since the Skylab workshop, micro-gravitational habitat design has 

progressed from an almost anti-terrestrial disregard for Earth-normalcy to a realization that 

some Earth norms can serve a useful coordinating function. One now sees designs for 

orbital habitats that provide distinct "Earthy" floor, wall, and ceiling references and consistent 

cues for vertical orientation, without denying either the possibility of ceiling-mounted utilities 

or the necessity of foot restraints.  

Exactly the opposite sort of progression is needed in artificial-gravity design. Most concepts 

published to date have implied complete Earth-normalcy with regard to perceived gravity, 

stability, and orientation. A more appropriate approach calls for preserving those Earthly 

elements that serve a positive function while incorporating modifications that accommodate 

the peculiarities of rotating environments.  

An important organizing theme in architectural design theory is the notion of principal 

directions, which imbue space with an inherent structure. The identification of these 

directions is powerfully influenced by gravity.  

In terrestrial architecture, six directions on three axes are innately perceptible: up-down 

(height), left-right (breadth), and front-back (depth). The up-down axis is normally tied to the 

force of gravity. The other axes are free to rotate around it. The up-down axis is called 

"vertical", while all possible left-right and front-back axes are called "horizontal". The 

anisotropic character of this space is judged by the effort required to move in any given 

direction: up and down are distinct irreversible poles. Left, right, front and back are inter-

changeable simply by turning around. Thus, gravitationally, there are three principal 

directions - up, down, and horizontal - and three basic architectural elements - ceiling (or 

roof), floor, and wall. The walls, which bound the horizontal dimensions, are not inherently 

distinct.  
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The design of an orbital habitat for artificial gravity depends on much more than physics. A 

few simple formulae relate the habitat's size and rotation to the apparent gravity. 

Unfortunately, the formulae are powerless to predict the satisfaction of the inhabitants. Many 

empirical studies have attempted to identify the comfort boundaries for artificial gravity, to 

constrain the values of the variables. Nevertheless, they have arrived at substantially 

different conclusions. The disagreement may be due in part to different assumptions 

regarding the mission, selection, motivation and adaptability of the target population. To 

support a large clientele, it may be safe to stay within the common ground of all of the 

empirical studies, choosing the most restrictive bounding value for each variable.  

Ultimately, an inhabitant's ability to adapt to artificial gravity will depend on how well the 

habitat itself is adapted. As a matter of principle, it is probably not possible to design for 

artificial gravity without having lived in it. Nevertheless, in designing the first such habitats, 

one must make the effort.  

Based on current knowledge, we can imagine an zero-gravity enclosure with maximum 

mobility parameters. Depending on the number of habitant, the cell modules can have single 

or multiple internal partitions. The following diagrams will help understandstand architectural 

synthesis in lower gravity.  

 

 

Image Comment: Design of a zero Gravity Enclousure. 
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Image Comment:  Design of Multiple Cells 

 

Image Comment:  Plan view 

 

Image Comment:  Interior Spaces 
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Image Comment: Sectional view 
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6.3.1| HABITAT DESIGN IN ARTIFICIAL GRAVITY 

The basic functional requirement for human survival in artificial environment is varied by the 

number of inhabitants, the time allocation for stay in space station, and the space 

requirements for fulfillments of all basic necessicities. Understanding group behaviour and 

individual activities may help us allocate space in artificial environment. Note that 

engineering details, and use of mechanical hardwares has not been included in the studies. 

 

Various Group level activities, such as Agriculture and Food Harvesting, Waste Recycling, 

Power generation and Distribution, Medical Services, Ventilation and Air Purification, Water 

Synthesis and Purification can be mechanized and requires only administrative support for 

control and maintence. Other public activties can be generalized in the following diagram. 

 

Diagram: Private vs. Public / Group vs. Individual Function Allocation. 



190 | T H E O D O R E  H A L D E R   

 

The diagram below has the basic volumetric analysis of public functions. 

 

Diagram: Volumetric Analysis of Space Allocation. 

 

6.3.2 | SINGLE PERSON HABITAT DESIGN 

 

The basic requirement for a single individual to survive in artificial gravity, consists of the 

following activities, considering the necessities for survival, such as, air, water, light, heat, 

gas, food, waste management etc. are provided for. 

 

1. Leisure, Sleeping, Relaxation 

2. Living, Social, Recreational 

3. Cleaning and Defication 

4. Maintence and Control 

5. Dining and Utility and Services 

6. Duty Fulfillment and Group Activities. 

 

When designing an enclosure, we can control the space allocated by these following 

functions, such that external activities can be invited alongside the basic necessicities. 

Imagine the six basic functions are allocated within a cube of 7‘-0‖ x 7‘-0‖ x 7‘-0‖, including a 

framework for support and structure. The design solution hence can be incorporated within 

this parameter, leaving the external space for extracurricular activities. 
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Diagram: Individual cell module in Second Dimension 
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Figure: Individual Cell Module in Third Dimension 
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6.4 | FORM ANALYSIS AND SYNTHESIS 

 

Provided the basic module is fixed, the form, partition, and shape of the dwelling unit can be 

contained within any shape or form 

 

 

 

Image Comment: Internal Structure Development, in fourth dimension of space-time. 
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The following is a conceptual form analysis, which can have multiple probabilities, depending 

on Architect and Designers‘ creativity on transformation of form, space and function. 

 

Image Comment: Axis Partitions 

 

Phase         01                 02                            03                                        04 

 

Phase          05                                            06                                                   07 

 

Image Comment: Shell Transformation  
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CHAPTER 7 | SYNTHESIS  

 

7.1 | IDEA SKETCHES 

 

 

Images Comment: Conceptual  Diagram an Individual 
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Images Comment: Conceptual Sketches for Community Facility 
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7.2 | CONCEPTUAL COLLAGE  

 

 

 

 

Image Comment: Conceptual Photomontages. 
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Image Comment: Plan and Section 
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7.3 | VISIONS 

 

 

 

 

 

...CONTINUED… 
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CHAPTER 8 | REFLECTION AND CONCLUSION 

 

8.1 | REFLECTION OF THESIS 

 

We are at the dawn of an era, with information system at our fingertips, and future advances 

in technology knocking on our door, we have started to create pockets of extra dimensional 

possibilities. That which once listed as magic is now a reality. Our truth is subject to change, 

with discoveries of the known and the unknown, who knows what the future holds for us. 

Maybe someday travelling to other worlds will be a taxi ride away, and we will meet stranger 

like ourselves in distant galaxies.  

 

8.2 | PERSONAL ANALYSIS AND DISCOVERIES 

 

Throughout the thesis period, I have tried to stay positive and clear in my intentions and will. 

My curiosity and passion for Human Nature, Space Exploration, Fantasy Novels and 

Architectural Intervention has led me to believe - ‗Yes We Can‘ - realize our true potential 

and start living our dreams. But one cannot dream alone. It takes collaboration from multiple 

disciplines, team work and guidance. I would like to thank my senior instructors, and my 

parents to have the patience and spirit to let me grow and acknowledge me for who I am. My 

pondering into space exploration has led me to believe, yes I am not alone in this quest, 

there are others like me, wonderers on a mission to answer the question, are we alone in 

this universe.  

 

8.3 | FUTURE DEVELOPMENT 

 

This research thesis is partially complete, and requires further scholarly revisions in other 

disciplines. I would like to continue the research on my own on my spare time and pursue 

abroad for development in the research, and I would encourage others like me to never stop 

believing. Please take aid from the research, and use the references provided for further 

understanding on the exploration into the unknown. I would encourage the Department of 

Architecture of BRAC University to investigate further on the possibilities of spatial 

dimensions on artificial gravity. Please use the research and guide future students to unlock 

their hidden potentials, design alternatives and learn to respect the Moon in the sky. May it 

always shine in the darkness and help us make our dreams come true. 
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