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ABSTRACT 

 

The nonlinear propagation of a terahertz laser pulse propagation in the resonant region of a negative 

index meta-material is investigated. The resonant frequency of a split ring resonator (SRR), 

comprosing the negative index metamaterial, is calculated to be in the order of terahertz. The 

analysis shows that the negative refractive index in SRR is maintained within a narrow band of the 

frequency, which is more narrowed down with the intensity of the laser radiation. From Maxwell’s 

system of equations, a system of coupled equations descring the nonlinear propagation of laser 

pulse in negative index metamaterials is obtained. The system of the coupled equations are solved 

analytically in the high frequency and in the low frequency responses. In the high frequency 

response, a nonlinear field dependent dispersion relation is obtained, and the corresponding group 

velocity is determined. In the low frequency response, introducing the Lorentz invariant stretched 

coordinates, a system of coupled nonlinear Schrödinger equations (NLSE) are obtained. 

Considering the equal intensities of electric and magnetic fields of the laser pulse, the coupled 

NLSE equations are solved , which shows that the laser radiation creates bright and dark optical 

solitons, respectively, before and after a critical frequency, within the narrow band, determined by 

the intensity of the laser radiation. The instability of the bright soliton is investigated while the dark 

soliton is modulationally stable.  

 

Key words: meta-material; negative refractive index; bright and dark solitons. 

 

 

I. INTRODUCTION 

 
I.1. History of Negative Index Metamaterials  

 

Vaselago [1], a Russian physicist in 1967 

hypothetically studied the optical properties of an 

isotropic medium with simultaneously negative 

electric permittivity ( ) and magnetic permeability 

( ), which he named a left- handed material 

(LHM). He showed LHMs display unique 

"reversed" electromagnetic (EM) properties having 

the triad k


 (wave vector), E


 (electric field), H


 

(magnetic field) left handed, hence exhibiting 

phase and energy velocities of opposite directions. 

A LHM is characterized by negative refractive 

index n , therefore, their alternative name, negative  

 

 

 

index materials (NIMs). Such materials 

demonstrate a number of peculiar properties: 

reversal of Snell’s law of refraction, reversal of the 

Doppler shift, counterdirected Cherenkov radiation 

cone, the refocusing of EM waves from a point 

source, etc.  

 

The remarkable property of a LHM is that it 

possees a negative refractive index due to which a 

thin negative index film will behave as a 

“superlens”, providing image detail with a 

resolution beyond the diffraction limit. 

Conventional positive index lenses require curved 

surface to bent the rays coming from an object to 

form an image but in the case of negative refractive 

index a planar slab can produce image within the 

slab and also outside the slab (Fig.1).  
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Fig.1. A negative n medium bends light to a negative 

angle relative to the surface normal. Light formerly 

diverging from a point source, converged back within the 

metamaterial as well as second time in the image plane 

outside. 

 
Pendry[2] carefully rexamined the plannar lense 

and found that it may recover the evanescent waves 

coming from an object. In a planar negative index 

lense, an evanesciting wave decaying away from an 

object grows exponentially in the lens and deacys 

agin until it reaches the image plane (Fig.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.2. A decaying wave grows exponentially within the 

metamaterial and then decays again utside. 

 
Vaselago’s idea remains hypothetical for a long 

time, untill a breakthrough was announced in 2000 

by Smith and co-workers [3] presented evidence 

for a composite material of conducting rings and 

wires – called split ring resonator (SRR)-displaying 

the negative value of   and  . The SRR structure 

has proven a remarkably efficient means of 

producing a magnetic response by scaling down the 

size thus upwards in frequency to produce 

metamaterials in the terahertz frequencies [4]. 

Negative refraction in photonic crystal is also 

feasible [5] in doped graphene metamaterials .  

 

I.2. Negative Refraction in Photonic Crystals  

 

Photonic crystals (PCs) are made only from 

dielectrics, thus smaller losses than metalic LHMs, 

especially at high frequencies. In PCs, to achieve 

negative refraction the size and periodicity of the 

“atoms” (the elimentary units) are of the order of 

the wave length. In PCs, no effective   and   

can be defined, although the phase and energy 

velocity can be opposite as in the case in normal 

LHMs. Both negative refraction and superlensing 

have observed in PCs [6]. An alternative approach 

for fabricating metamaterial is to use PCs 

composed of polartonic materials [7].  

 

I.3. Graphene Doped Metamaterials  

 

Graphene is a two-dimensional , one atom thick 

allotrope of carbon holds the promise for building 

advanced nano-electronic devices since its 

discovery in 2004 [8]. It exhibits very unique 

optical properties, especially in the terahertz (THz) 

frequency range. To date, novel photonic devices 

such as THz devices, optical modulators, 

photodetectors, and polarizers were successfully 

realised. The physics of graphene can be 

considered as a unifying bridge between low-

energy condensed matter physics and quantum 

field theory , as its two-dimensional quasi-electrons 

behaves like massless “relativistic” Dirac fermions, 

very similarly to electrically charged 

“neutrinos”[9]. 

 

Currently, the huge unexplored potential of 

graphene for nonlinear optics has been outlined. 

Strong nonlinear optical responses have 

investigated in papers [10,11]. Preliminary 

experimental include ultrafast saturable absorption 

and the observation of strong four wave mixing 

[12], which are the building blocks of nonlinear 

optics. This discoveries and the advancement in 

optical communications are the motivations to 

investigate the nonlinear propagation of intense 

terahertz laser pulse in meta-materials in the 

resonant region.  

 

In this paper, we have investigated the nonlinear 

propagation of terahertz laser pulse in the resonant 

region of a negative index meta-material. The laser 

pulse is considered as the circularly polarized 

electromagnetic (EM) wave. In section II, we have 
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studied the optical properties of negative index 

meta-materials under EM fields and analyzed the 

nonlinear resonant frequency of the SRR. In 

section III, following Maxwell system equations, 

coupled equations for the complex electric field E
~

 

and the complex magnetic field H
~

 are obtained, 

which are solved analytically in the high frequency 

as well as the low frequency responses. In the high 

frequency response, a nonlinear field dependent 

dispersion relation is obtained, which is analyzed 

with the increased field intensities. In the low 

frequency response, coupled nonlinear Schrödinger 

equations are obtained, the analysis of which shows 

that bright and dark optical solitons may propagate 

through NIMs within the frequency band, below 

and after some critical frequency, which is defined 

by the intensities of the wave fields. The bright 

soliton is modulationally unstable, its growth rate is 

calculated, while the dark soliton is modulationally 

stable. Results and discussions are given in section 

IV, while section V concludes the paper. 

 

II. OPTICAL PROPERTIES OF NEGATIVE-

INDEX MATERIALS UNDER 

ELECTROMAGNETIC FIELDS 

 

II.1. Drude-Lorentz Form for Linear Dielectric 

Permittivity and Magnetic Permeability  

 

The Drude-Lorentz forms for dielectric permittivity 

and magnetic permeability describe the EM 

response of materials over the high ranges of 

frequencies which are given by [13]: 

,1=
2

0

2

2

0 

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where, 0  and 0  are the vacuum permittivity 

and permeability, respectively, with 
2

00 1/= c ; 

pe  and pm  are the electron /magnetic plasma 

frequency, e0  and m0  are the electron / 

magnetic resonant frequency, e  and m  are the 

electron/ magnetic damping coefficient and   is 

the frequency of the EM wave. The free electron 

contribution in metals corresponds to 00 e . 

Meta materials based on strong artificial resonant 

elements can also be described efficiently with the 

Drude-Lorentz formulas. These structures are the 

metallic wire structure which provides a 

predominently free-elctron respone to EM fields 

and the SRR structure provides a predominently 

magnetic response to EM fields. 

 

II.2. Nonlinear Form of Dielectric Permittivity 

and Magnetic Permeability 

 

The dielectric and the magnetic nonlinear 

responses of NIMs under EM fields without losses 

are given by the dispersive (frequency dependent) 

and the nonlinear (field dependent) expressions as 

[14]:  

 ,||;)(= 2ENLL     (3) 

  ,||;)(= 2HNLL     (4) 

 where,  

 ,/1= 22

0  pL    (5) 

   ,/1= 2

0

22

0   FL .  (6) 

 

Under weak fields approximation: 

  

,/||= 22

0 cNL EE  (7) 

 ./||= 22

0 cNL EH   (8) 

 Here, p  is the plasma frequency, 1<<F  is the 

filling factor, 0  is the linear resonant frequency, 

cE  is the critical electric field, 1=  corresponds 

to a focusing dielectric and 1=   corresponds 

to a defocusing dielectric, 0>  is a fitting 

parameter.  

 

II.3. Analysis of the Linear Response 
 

The eigenfrequency of the system of SRRs in the 

linear limit is defined as [15]:  

 

,/)/(= 00 Dgs hdac    (9) 

where, gd  is the size of the SRR gap, h  is the 

width of the ring, sa  is the radius and c  is the 

speed of light. 0D  is the linear part of the 

dielectric. As per Ref. [15] for 12.8=0D , 

0.003=h  cm, 0.1=gd  cm, 0.003=sa  cm, 
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10103= c  cm s
1

, we find 
12

0 109.1=   s

1
 i.e the linear frequency 

12

00 101.45=/2= f  Hz 1.45=  THz. 

For simultaneous 0<L , 0<L , and 

00/=  LLn  , we find <<0  min

 Mp  , , which corresponds <<0 ff min

 Mp ff . . Here, 
2

0 1/= FM  . For 

0.4=F ; we find 1.87=Mf  THz; then, 1.45

THz 1.87<< f THz. Considering 

102= p  THz and 1.452=0   THz, 

we plot  ,  and n  as functions of frequency 

within the frequency band 1.45THz 1.87<< f

THz , which are shown in FIG.3-5, respectively. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 
Figure 3: The linear dielectric permittivity   as a 

function of frequency  , which remains negative in the 

frequency band p <<0  .  

  

 

   

 

 

 

 

 

 

 

 

 

 
Figure 4: The linear magnetic permeability  as a 

function of frequency  , which remains negative in the 

frequency band M <<0 . 

  

 

   

 

 

 

 

 

 

 

 

 
Figure 5: The linear refractive index n  as a function of 

frequency  , which remains negative in the frequency 

band M <<0 . 

  

II.4. Analysis of the Nonlinear Response 

 
Now, we consider the nonlinear response on the 

dielectric permittivity and magnetic permeability, and 

on the corresponding refractive index due to applied 

EM fields. In this case, for weak fields we have  

,
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Considering an average value of 0.5>=
||

<
2

2

cE

E  and 

0.5>=
||

<
2

2

cE

H , we plot  ,  and n  as functions of 

frequency within the frequency band, which are 

shown in FIG.6-8, respectively. The figures show 

that the frequency band for NIMs become more 

narrower with the applied EM fields.  

 

 

   

 

 

 

 

 

 

 

 

 
 

Figure 6: The nonlinear dielectric permittivity   as a function 

of frequency   under EM fields, which remains negative in the 

frequency band 
P <<0

. Solid line (– )line for 0= , 

broken line (- - -) for 1= (focusing case), dotted line (...) for 

1=  (defocusing case) . 
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Figure 7: The nonlinear magnetic permitivity   as a 

function of frequency   under EM fields, which 

remains negative in the frequency band 

M <<0 . Solid line (– )line for 0= ,broken 

line (- - -) for 1= . 

  

   

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8: The nonlinear refractive index n  as a function 

of frequency   under EM fields, which remains 

negative in the frequency band M <<0 . Solid 

line (– )line for 0= and 0= , broken line (- - -) 

and dotted line (….) for 1=   ; 1=  . 

  

II.5. Analysis of Magnetic Frequency M  

 

At 
M = , the magnetic permeability 0=/ 0

, then from Eq. (11), we get  
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which yields  
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Introducing 

cE

H
H = , we have  

.
||1

||1
=

1/2

2
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For .4=F  and 1= , we plot M  as a function 

of magnetic field H , which is shown FIG.9. The 

figure shows that the magnetic frequency shifts 

towards the linear resonant frequency with the 

increase of field intensity. It indicates that the 

narrow frequency band is more narrowed down 

with the increased magnetic field.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Magnetic frequency M  as a function of 

magnetic field intensity 
2

2||

cE

H  . Here, 0 M  as 

1
||

2

2


cE

H . 

  

II.6. Analysis of the Nonlinear Resonant 

Frequency 
 

Following Ref. [15], the nonlinear magnetic 

permeability can be written as : 
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where, NL0  is the nonlinear resonant frequency 

and   is the loss coefficient. We also have the 
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expression for the nonlinear dielectric permittivity 

as  

  .
||

=||
2

2
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2
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DD
E
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E     (16) 

 

Here, 0D  is the linear dielectric. Then, the 

relation between the macroscopic magnetic field 

and the dimensionless nonlinear resonant 

frequency can be obtained as : 

 

   
,

1
=||

6

222222
22

X

XX
AH





   (17) 

 

where, 
222

0

3

0

2 /16= chA D  , 0/=  , 

00 /=  NLX , and 0/=   . 

 

Near the resonant region without loss, we consider 

1= , 0=  . 

 

Then, from Eq.(17), we find  
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which is shown graphically in FIG.8 and FIG. 9, 

for 1=  (focusing nonlinearity) and 1=   

(defocusing nonlinearity, respectively. From the 

available data, we find the value of the resonator 

parameter 2.78=2A . 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Nonlinear resonant frequency NL0  as a 

function of magnetic field intensity 
2|| H  for 1=  

(focusing nonlinearity).  

  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Nonlinear resonant frequency NL0  as a 

function of magnetic field intensity 
2|| H  for 1=   

(defocusing nonlinearity). 

 

These figures (Fig. 10 and Fig. 11) show that the 

nonlinear resonant frequency NL0  goes below the 

linear resonant frequency 0  in the case of 

focusing ( 1= ) nonlinearity and it goes up in the 

case of defocusing ( 1=  ) nonlinearity. 

 

III. COUPLED EVOLUTION EQUATIONS 

 

III.1. Maxwell’s Equations 

 

We start with the Maxwell equations 
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where, E


 and H


 are the electric and magnetic 

fields, respectively, D


 and B


 are the electric and 

magnetic flux densities which arise in response to 

the electric and magnetic fields inside the medium 

and are related to them through the constitutive 

relations given by ED NLL
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By using the Maxwell’s systems of equations, we 

have the following coupled wave equations  
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Substituting: 
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0 /||= cNL EE , 

22

0 /||= cNL EH  and taking zz  /ˆ , 

0== zz HE , the above coupled equations take 

the following forms:  
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Now, considering that the laser radiation is 

circularly polarized, i. e.  0,, yx EEE 


, 

 0,, yx HHH 


 and introducing the complex 

fields: yx iEEE 
~

, yx iHHH 
~

, from 

Eqns. (25) and (26), we find the following coupled 

equations for the complex fields: 
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which we study below for the high frequency and 

the low frequency responses to the fields.  

 

III.2. High Frequency Response and Nonlinear 

Dispersion Relation 
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the following field dependent nonlinear dispersion 
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Now, introducing the dimensionless parmeters: 
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the above dispersion relation (Eq.(29)) can also be 

written in the following form:  
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 The group velocity kvg  /=   is found to be  
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 We plot the group velocity gv  as a function of the 

frequency   in the frequency band 

M <<0  for both the linear and nonlinear 

cases, which are shown in FIG.12. The figure 

shows that the frequency band for the wave 

propagation is more narrowed down ( M  

decreases) in the nonlinear case with the increase 

of field intensities.  

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Group velocity gv  as a function of frequency 

  in the frequency band M <<0 . Solid line 

(—-) is the linear case, dash and dot lines(- - -) for 

nonlinear case for .5=
||

.5,=
||

1,=
2

2

2

2

cc EE

HE
  and 

1=  , respectively. 
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III.3. Low Frequency Response: Coupled NLS 

Equations 
 

Normalizing the field variables E  and H  by cE  

and introducing dimensionless space-time 

coordinates: pzZ /= , and pttT /= , where p  

is the pulse length, and pt  is the pulse time with 

pp ct , the coupled equations, Eqs. (27) and 

(28) in dimensionless forms are: 
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Now, we consider the following Lorentz invariant 

stretched coordinates [16]:  TvZ g =  and 

 ZvT g 2= , where   1/221


 gv , 

1< , cvv gg / , and we expand the quantities 

E
~

 and H
~

 as: 
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Here, 

...),,,( (3)2(2)(1)

00  AAAll HEHE  

are functions of stretched coordinates ),(  . 

Then in the order )0( , we find  /= k , and 

in the order )0( 2 , we find 1/=gv  approving 

the compatibility condition. Thus, following the 

standard technique [17] in the order )0( 3 , we 

arrive at the following coupled NLS equations:  
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where 
(1)

1Ea , 
(1)

1Hb  and P , aQ , bQ  are 

given by the expressions  
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Here, P  is the dispersion coefficient, aQ  and bQ  

are the nonlinear coefficients, the nature of which 

on the frequency   in the frequency band 

M <<0 , we study below.  

 

III.4. Analysis of P , aQ , and bQ  

 

Taking the parameters 0.4=F , 0.145=0 , 

0.5>=|<| 2a , 0.5>=|<| 2b , 1=  , and 

1= , the plots of P , aQ , bQ , and 

ba QQQ =  are depicted in FIGs. 13-17, 

respectively.  

 

   

 

 

 

 

 

 

 

 

 

 

 
Figure 13: Dispersion coefficient P  as a function of 

frequency   in the frequency band 
M <<0

. P  

changes its sign from negative to positive at a critical 

frequency 0.1742cr . 

  

 

 

 

 

 

  

 

 

 

 

 

Figure 14: The nonlinear coefficient 
aQ  as a function of 

frequency   in the frequency band 
M <<0

. 
aQ  

is always negative but changes its value abruptly at a 

critical frequency 0.1742cr  for 1=  (focusing 

nonlinearity) 

  

 

   

 

 

 

 

 

 

 

 

 

 

Figure 15: The nonlinear coefficient 
aQ  as a function of 

frequency   in the frequency band 
M <<0

. 
aQ  

is always negative but changes its value abruptly at a 

critical frequency 0.1742cr  for 1=   

(defocusing nonlinearity) 

  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 16: The nonlinear coefficient 
bQ  as a function of 

frequency   in the frequency band 
M <<0

. 
bQ  

is always negative but changes its value abruptly at a 

critical frequency 0.1742cr . 
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Figure 17: The nonlinear coefficient Q  as a function of 

frequency   in the frequency band M <<0 . 

Q  is always negative but changes its value abruptly at a 

critical frequency 0.1742cr . 

  

We see from the Figs. 13-17 that P  changes its 

sign from negative to positive , aQ  is negative for 

focusing ( 1= ) nonlinearity while it is positive 

for defocusing( 1=  ) nonlinearity , bQ  an Q  

are always negative but change their values 

abruptly at a certain critical frequency cr , which 

is defined by the condition at 1=/cvg , and it is 

determined from the Eq.(35) as 

 

,
ˆ2

ˆˆ2ˆˆ
=

2

a

cabb
cr


   (45) 

  

where,

,)(1=ˆ 2222 YXXFYFa    

,)()(1=ˆ 222222

0 YYXYXFb    

).(1=ˆ 22

0 Yc    (37) 

Here, 

cE
X

||
=

E
 and 

cE
Y

||
=

H
. 

For 

0.4=0.145,=0.5,=0.5,=1,= 0 FYX  , 

we find 0.174822=cr  for 1= , and 

0.174837=cr  for 1=  , respectively. 

Considering the same intensities of electric and 

magnetic fields: 
22 = YX , we plot the graph of 

cr  as a function of field YX = , which is 

shown in FIG.18. The figure shows that the critical 

frequency cr  goes to the linear resonant 

frequency 0  with the increase of intensities of the 

wave fields. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: cr  as a function of applied field YX = . 

Note that 0 cr  as 1X .  

  

III.5. Solution of the NLSE 

 

From the symmetric nature of Eqs. (40) and (41) 

and considering the same intensities of the electric 

and magnetic fields of the wave, we can take 
22 |=||| ba  [18]. In this situation, we obtain from 

either of Eq. (40) or Eq. (41)  

0,=|| 2

2

2

aaQ
a

P
a

i 










  (46) 

where, ba QQQ = . In the present situation, it is 

seen that, P  can be positive as well as negative for 

different range of the values of the frequency  , 

whereas Q  is always negative. Thus, for obtaining 

solution of the above Eq. (46), we may have two 

cases: Case I: cr <<0 ; where 0<P , 

0<Q , and 0>PQ  and Case II: 

Mcr  << ; where 0>P , 0<Q , and 

0<PQ . For the case I, we take a new variable   

such that  V=  and assume 

)]([exp)(=),(  Kiua , where V  is 

a constant, then from Eq. (46) we find:  
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0,=)(2
d

du
VPK    (47) 

  0,=32

2

2

QuuPK
d

ud
P 


  (48) 

 

which gives PVK /2=  and yields an integral of 

motion  

.=
2

)( 42
2

2 constu
P

Q
u

P

PK

d

du








 



  (49) 

 

For a localized solution, we consider 

0/, duu  as  , and so, we put 

0=.const . At the maximum value of 0= uu  , 

0=/ ddu , which defines 

PVQu /4/2= 22

0  . 

 

Thus, we arrive at the following solution of Eq.(49)  
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=)( 00 





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






P

Q
asechau   (50) 

where 0a  is a constant. Going back to the ),(   

coordinates, we have the solution of Eq. (46) as  
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P

V
i

e   (51) 

  

which is a bump type solution, known as the bright 

soliton, and the wave amplitude may be 

modulationally unstable. Similarly, the solution for 

Case II ( 0<PQ ) is [19]:  
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P

V
DVPDQuDi

e   (52) 

Here, Va ,0  and D  are arbitrary constants. They 

define gray solitons . For PDV 2= , it is a kink 

type dark soliton. Below, we investigate the 

modulational instabilities of these solitons. 

 

III.6. Modulations instabilities of optical solitons 
 

Coherent dispersion: Hasegawa Formalism 
 

In order to investigate the modulational instability 

of optical solitons, we follow Hasegwawa 

formalism [20,21]. Considering the modulation of a 

constant amplitude coherent phase dispersion, we 

introduce a phase shift )||( 2

0 aiQaExpa  , 

where 0a  is the constant equilibrium amplitude of 

the field. Then, Eq.(46) can be written as: 

 

0.=)|||(| 2

0

2

2

2

aaaQ
a

P
a

i 










 (53) 

  

In a polar representation, we write 

)(=  iExpa , where ),(=   and

),(=  .This means that |=| a  with an 

equilibrium value |=| 00 a . Equation(53) has the 

obvious solution 0=,= 0  . 

 

Let 10=   , where 01 |<<|   and 

1= . Then by linearizing Eq.(53) from the 

imaginary and real parts , we obtain 
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  (55) 

which yield  

0.=2 1

2
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1

4
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2

1

2









QPP 









  (56) 

Considering, )(= 11  iKExp ,we 

readily obtain from Eq.56), the nonlinear 

dispersion relation 

)
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We see from Eq.(57) that if 0>/PQ , 
2  

becomes negative for values of K  below 

||
2

= 0
P

Q
Kcr

, so that there is a purely growing 

mode and the wave is modulationally unstable. The 

growth rate )(= Im  attains a maximum 

2

0 ||=  Qmax  for ||= 0
P

Q
K . Therefore, in 

dimensionless variables:
max /= , 

crKKK /= :  

.1)(21= 22  K  (58) 

  

FIG.19 shows the variation of the growth rate   

as a function of the wave number K . On the other 

hand, for 0</PQ , the wave is modulationally 

stable. 

 

It is to be noted that for a fixed amplitude 
0 , the 

critical frequency 
crK  is a function of frequencies 

  in the frequency band, which is shown in FIG. 

20. 

 

 

   

 

 

 

 

 

 

 

 

Figure 19: The growth rate   as a function of K  .  

  

 

 

   

 

 

 

 

 

 

 

 

 

Figure 20: 
crK  as a function frequency   in the 

frequency band for 1=0 .  

A. Fast Mode: Bright Soliton 
 

We see from above, the fast mode has 0>PQ , 

and thus modulationally unstable. Possible final 

state can lead to the formation of bright soliton, i.e. 

a localized envelope modulating a carrier wave in 

the form )(=  iExpa , where 

 

.
21

= 
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
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 

L

V
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Q

P
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and  
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1
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V
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 (60) 

 

where, V  is the envelope speed, L  is the pulse 

spatial width at 0=  and 0  is an arbitrary 

phase. The maximum amplitude 0  is inversely 

proportional to the width L , i.e. QPL /2=0 . 

We do an analysis of pulse width L  on the 

frequencies within the band, which is shown in Fig. 

21. It shows that the width is narrower at the 

resonant frequency while it becomes wider at 

higher frequencies. 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

Figure 21: Pulse width L  as a function frequency   

within the frequency band for 1=0 .  

  

At a fixed time 0= , we have shown 

modulational envelopes of the carrieer wave and 

the corresponding bright solitons at different fixed 

frequencies within the frequency band in FIGs. 22-

23 for .5=L  and FIGs. 24-25 for 2=L , 

respectively.  
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Figure 22: Modulational envelope of fast mode for 

.5=L  corresponding to .155=/ p , 30=/2PV  at 

0= . 

  

 

 

 

  

 

 

 

 

 

 

 

 
Figure 23: Bright soliton for .5=L  corresponding to 

.155=/ p , at 0= . 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 24: Modulational envelope of fast mode for 

2=L , corresponding to .17=/ p , 30=/2PV  at

0= .  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Bright soliton for 2=L  corresponding to 

.17=/ p , at 0= .  

  

B. The slow mode: Dark Soliton 
 

The slow mode is modulationally stable since 

0<PQ . It produces dark and gray solitons[22]. 

The dark has  
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 while the gray has 
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Here, the parameter d, lying in the range 

1<<0 d , regulates the modulation depth, 

1= s , and 
2

0 1)/(2= dLdPsVV  . Note 

that for 1=d , one recovers the dark soliton. The 

finite equilibrium amplitude 0  is now inversely 

proportional to both the width L  and the 

parameter d , i.e. |/|2=0 QPLd . The 

minimum amplitude is given by 

2

0 1= dmin  , which is zero in the dark 

case. FIGs 26-29 show the modulational envelopes 

of the carrieer wave and the corresponding dark 

solitons at different frequencies within the 

frequency band at a fixed time 0=  for .5=L  

and 2=L , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 26: Modulational envelope of slow mode for 

.5=L  corresponding .155=/ p , 30=/2PV  

at 0= .  

 

   

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 27: Dark soliton for .5=L  corresponding to 

.155=/ p , at 0= .  

   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 28: Modulational envelope for slow mode 

2=L , corresponding to .17=/ p , 

30=/2PV  at 0= .  

  

 

 

 

 

 

 

 

  

 

 

 

 

Figure 29: Dark soliton for 2=L  corresponding to 

.17=/ p , at 0= .  

 

IV. RESULTS AND DISCUSSIONS 

  

Thus, we analyze the optical properties of the 

negative index materials (NIMs) under external 

electromagnetic (EM) fields of intense laser 

radiation, their linear and nonlinear resonant 

frequencies, and the propagation of EM fields 

through NIMs near the resonant region. With the 

data available, the linear resonant frequency 

(eigenfrequency) of SSR is found to be 1.45 THz 

and the magnetic frequency to be 1.87 THz. The 

resonant frequency and the magnetic frequency 

creates the frequency band within which the 

dielectric permittivity and the magnetic 

permeability simultaneously are negative, which is 

the main criteria of NIMs. Thus, the founded 

frequency band is a narrow band. Analyzing 

Eq.(10) and Eq.(11), it is found that the frequency 

band becomes more narrower with the increasing 

intensities of the EM fields of the propagating 
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wave. Eq.(14) shows that that the magnetic 

frequency shifts towards the linear resonant 

frequency with the increase of field intensity. We 

solve Eq.(17) to find the relation between the 

nonlinear resonant frequency with the intensity of 

the wave’s magnetic field. With the increasing 

magnetic field intensity, Eq.(18) shows that the 

nonlinear resonant frequency goes below the linear 

resonant frequency in the case of focusing 

nonlinearity, while it goes up in the case of 

defocusing nonlinearity . A system of coupled 

equations [ Eq.(25) and Eq.(26)] describes the EM 

fields propagation through NIMS. From these 

equations, in the high frequency response, we find 

the the nonlinear field dependent dispersion 

relation defined by the Eq. (34). The group velocity 

of the corresponding wave is defined by the Eq. 

(35) which shows that the frequency band for wave 

propagation is more narrowed down with the 

increase of the field intensities. 

 

In the low frequency response, using the reductive 

pertubation method, we obtain a coupled [(Eq.(40) 

and Eq.(41)] nonlinear Schrödinger (NLS) 

equations . The dispersion coefficient and the 

nonlinear coefficients of the NLS equations are 

investigated within the frequency band of NIMs. 

Considering the same intensities of electric and 

magnetic fields of the wave, the coupled system is 

solved, which predicts the propagation of bright 

and dark solitons through NIMs before and after 

some critical frequency within the band. Eq.(45) 

defines the critical frequency, the analysis of which 

shows that it goes to the linear resonant frequency 

with the increase of field intensities. The bright 

soliton is a fast mode which is modulationally 

unstable. The growth rate of the instability is 

calculated and it is shown by Eq.(58). Solitons 

pulse widths are also investigated within the 

frequency band, which shows that they are more 

narrower at the resonant frequency and they 

become wider away from the resonant region. The 

dark soliton is a slow mode which is 

modulationally stable. 

 

V. CONCLUSION 

 

To summarize, we have investigated the nonlinear 

propagation of a terahertz laser radiation in the 

resonant region of a negative index meta-materials. 

It is found that the negative refractive index of the 

meta-material is maintained within a narrow band 

of frequencies, which is more narrowed down with 

the increase of field intensities of the propagating 

wave. The nonlinear resonant frequency of the split 

ring resonator depends on the intensity of the wave, 

and it goes below the linear resonant frequency in 

the case of focusing nonlinearity, while it goes up 

in the case of defocusing nonlinearity. The 

nonlinear field dependent dispersion relation and 

the corresponding group velocity determined in the 

high frequency response, show that the frequency 

band of the wave propagation is more narrowed 

down with the increase of field intensities. The 

coupled nonlinear Schrödinger equations 

describing the propagation of the wave in the slow 

response, predicts the propagation of bright 

solitons and dark solitons before and after a critical 

frequency determined by the field intensities within 

the frequency band. The bright soliton is a fast 

mode and it is modulationally unstable. The growth 

rate of the instability is calculated. The dark soliton 

is a slow mode and it is modulationally stable. 

Solitons pulse widths are more narrower at the 

resonant frequency and they become more wider 

away from the resonant region. Results obtained in 

this investigation may have some applications in 

meta-materials using SRR with the negative 

refractive index in the terahertz spectrum and in 

photonic crystals, which are to be investigated in 

near future. 
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