
A Bangla Phonetic Encoding for Better Spelling Suggestions
Naushad UzZaman

BRAC University
Dhaka, Bangladesh

naushad@bracuniversity.ac.bd

Dr. Mumit Khan
BRAC University

Dhaka, Bangladesh
mumit@bracuniversity.ac.bd

Abstract
We present a phonetic encoding for Bangla that can be
used by spelling checkers to provide better suggestions for
misspelled words. The encoding is based on the Soundex
algorithm, modified to match Bangla phonetics. We start
by analyzing Soundex encoding scheme when applied to
Bangla. Next we propose a new encoding that handles the
case of Bangla words, including those containing con-
juncts. We conclude with a demonstration of a prototype
spelling checker that uses this phonetic encoding to offer
suggestions for a set of misspelled Bangla words.

Keywords
Bangla phonetic encoding, Soundex, spelling suggestions.

INTRODUCTION
One of the more difficult tasks for a spelling checker is to
produce “good” suggestions for misspelled words. While
there have been significant research efforts in approximate
string matching algorithms for English and other Western
languages [1-4], similar work for Bangla has however just
begun [5, 6]. An analysis of Bangla misspelled words
shows that two of most common reasons for misspellings
are (i) phonetic similarity of Bangla characters, and (ii) the
difference between the grapheme representation and pho-
netic utterances [7]. This observation is the primary moti-
vation for creating a phonetic encoding for Bangla that can
be used to provide suggestions for misspelled words. While
this paper focuses on the spelling checking application, the
proposed encoding is equally applicable in a wide range of
text-processing applications, from searching for patient
records in a medical database to matching names in census
records.
The basic idea behind spelling suggestions using phonetic
encoding is quite simple:
1. Encode the input word using phonetic coding rules;
2. Look up a phonetically encoded lexicon for words with

the same code; and
3. Create an ordered list, i.e., suggestions, from the result

using some heuristic.
In this paper, we introduce a phonetic encoding for Bangla,
and then demonstrate how a spelling checker would use it
to produce suggestions for misspelled Bangla words. We
assume that the Bangla text is encoded using Unicode Nor-
malization Form C (NFC) [8], with its consistent logical

ordering of the consonants and the dependent vowels, as
well as of the large repertoire of the juktakkhors (com-
pound letters or conjuncts) in Bangla..

PHONETIC MATCHING TECHNIQUES
A major class of approximate string matching algorithms is
the various phonetic methods, from the eighty-year old
Soundex [9, 10], to the more recent Metaphone [11, 12]
and PHONIX [13]. The input to these phonetic encodings
or “sound-alike” algorithms is a word, and the result is an
encoded key, which should be the same for all words that
are pronounced similarly, allowing for a reasonable amount
of fuzziness. The basic principle behind these phonetic
matching schemes is to partition the consonants by pho-
netic similarity, and then use a single key to encode each of
these sets. Strings that sound similar compare equal in their
respective encoded form. For these particular algorithms,
only the first few consonant sounds are encoded, unless the
first letter is a vowel. Metaphone for example encodes
"Stephan", “Steven”, and “Stefan” as STFN, so all three
names compare equal when encoded.
Of these phonetic methods, Soundex method is by far the
oldest, first patented by Odell and Russel in 1918. Soundex
partitions the set of letters into seven disjoint sets, assum-
ing that the letters in the same set have similar sound. Each
of these sets is given an unique key, except for the set con-
taining the vowels and the letters h, w, and y, which is con-
sidered to be silent and is not considered during encoding.
The Soundex codes are shown in Table 1. The Soundex
algorithm itself, shown in Figure 1, transforms all but the
first letter of each string into the code, then truncates the
result to be at most four characters long. Zeros are added at
the end if necessary to produce a four-character code. For
example, Washington is coded W-252 (W, 2 for the S, 5
for the N, 2 for the G, remaining letters disregarded), and
Lee is coded L-000 (L, 000 added). A limitation of Soun-
dex is that it does not know the intricacies of complex
spelling rules for English, and because it works on a letter-
by-letter basis, it often does not produce the expected re-
sult. Another limitation is that truncating the words to four-
character code ignores differences in long strings, which
may not be appropriate when finding alternatives for mis-
spelled words. An advantage of Soundex is the small table
size and simplicity of the letter-by-letter algorithm, which
can provide significant speedup over the other phonetic
methods.

Table 1: Soundex coding rules

Code Letters

0 (not coded) A, E, I, O, U, H, W, Y

1 B, F, P, V

2 C, G, J, K, Q, S, X, Z

3 D, T

4 L

5 M, N

6 R

1. Replace all but the first letter of s by its phonetic code.
2. Eliminate any consecutive repetition of codes.
3. Eliminate all occurrences of code 0 (i.e., eliminate

vowels, and the letters H, W and Y).
4. Return the first four characters of the resulting string.

Figure 1: The Soundex algorithm

PHONIX is similar to Soundex in that letters are mapped to
a set of codes. Prior to this mapping however, PHONIX
applies preliminary transformations to letter groups in or-
der to reduce strings to a canonical form. For example, gn,
ghn, and gne are mapped to n, the sequence tjV (where V is
any vowel) is mapped to chV if it occurs at the start of a
string, and x is transformed to ecs. PHONIX applies alto-
gether about 160 of these transformations. These transfor-
mations provide a certain degree of context for the phonetic
coding and allow, for example, c and s to be distinguished,
which is not possible under Soundex. The Phonix codes are
shown in Table 2.

Table 2: PHONIX coding rules

Code Letters

0 (not coded) A, E, H, I, O, U, W, Y

1 B, P

2 C, G, J, K, Q

3 D T

4 L

5 M, N

6 R

Code Letters

7 F, V

8 S, X

The Metaphone algorithm is also a system for transforming
words into codes based on phonetic properties. However,
unlike Soundex, which operates on a letter-by-letter
scheme, Metaphone analyzes both single consonants and
groups of letters called diphthongs, according to a set of
rules for grouping consonants, and then mapping groups to
Metaphone codes.
A drawback of these algorithms, as we pointed out earlier,
is that these are language-specific, and typically designed
for the English language. There have been attempts to mod-
ify these algorithms for other European languages, such as
Spanish, Polish and Portuguese, but not for Bangla to the
best of our knowledge. Using recent research on machine
learning methods for letter-to-phoneme conversion [14,
15], application of these techniques to Bangla should be
straightforward, provided that there is sufficient training
data. As the first step in defining a comprehensive phonetic
matching technique for Bangla, we describe an algorithm
based on the widely used Soundex algorithm, suitably
modified to reflect Bangla phonetics.

BANGLA PHONETICALLY SIMILAR ERROR COR-
RECTION
Bangla letters be partitioned according to phonetic similar-
ity (e.g., I:II, U:UU, NA:NNA, SA:SSA:SHA, etc), with
each set represented by a single code. This coding can then
be applied to Bangla dictionary to convert it to a non-
homophonous one, with each entry pointing to the set of
words that correspond to this code [5]. When checking the
spelling of a word, we first search for its encoded version
in the modified dictionary. If the entry exists, then either
the original exists in the list of words corresponding to this
code (in which case, the spelling is correct), or the word is
misspelled and the list is offered as the set of alternatives
for the original word. If the entry does not exist, then the
alternatives must be suggested using one of the edit-
distance algorithms (e.g., Levenshtein [15]). However, this
technique does not work if an extra error occurs in the
spelling, so this technique must be used with a edit-distance
algorithm to be effective in a spelling checker. See [2] for a
summary of the various commonly used edit-distance algo-
rithms. This technique works for Bangla conjuncts as well,
but only if we eliminate the hasant character from our en-
coded strings.

Soundex Algorithm for Bangla
The Soundex algorithm, unmodified, presents a set of diffi-
culties when used in a Bangla spelling checker. In this sec-
tion, we present some of the prominent issues.

Case 1: Soundex keeps the first letter of the string in the
encoding.
Problem:: This is in fact a general problem with Soundex.
If there is a spelling error in the first character of the word,
the correct suggestion cannot be produced using Soundex.
For example, if we write gম instead of ঘুম, Soundex will
not be able to suggest the correct alternative, as the incor-
rectly spelled word gম will begin with গ independent of the
character encoding used, Unicode or otherwise. at the be-
ginning. Since the phonetically encoded lexicon will have
the word ঘুম encoded as something that begins with ঘ, the
phonetic method will never produce ঘুম as a suggestion for
gম. Of course, other edit-distance algorithms (e.g., Leven-
shtein [15]) are able to produce the correct suggestion in
this particular case, so a spelling checker employing other
similarity measures will produce the expected result (See
[2] for a summary of the various edit-distance algorithms).
Case 2: Soundex excludes vowels when encoding strings.
Problem:: The a vowel is often used as a prefix to negate
the meaning of Bangla words, and excluding it will often
produce suggestions that are of the opposite meaning than
the intended one. This may be appropriate behavior for
some applications, but not for a spelling checker. For ex-
ample, the words সুখ and aসুখ will result in the same Soun-
dex code, even though we do not expect one as the sug-
gested alternative for the other, much like we would not
expect unwell as the suggested alternative for well .
Problem:: Another problem of excluding the vowels is that
words that are not phonetically similar and have a very
different meanings also produce the same code. বন and বািন,
aকাজ and কািজ. বন (forest) and বািন for example will pro-
duce the same code if we exclude vowels, even if these
words do not have same meaning, and in addition, are pho-
netically quite different. Similarly, in the case of aকাজ and
কািজ, the a from aকাজ and the ি◌ from কািজ will be ex-
cluded to produce the same code, another undesired result.
Case 3: In soundex, consecutive repetitions of the same
coded characters are eliminated.
Problem: Unicode specifies that the consonants that make
up Bangla juktakkhors are separated by hasant chraracter,
which is not coded in our algorithm (i.e., eliminated during
the phonetic encoding process). The side-effect of this de-
cision to eliminate hasant is that, at least for a set of juk-
takkhors, consecutive repetitions of the same consonants
will have the same code as the single instance of that con-
sonant. Using our algorithm, ণ্ন (ণ্ ন) for example will have
the same code as ন, since we exclude the hasant embedded
in the Unicode representation of the conjunct. This particu-
lar problem is not a general Soundex problem, but rather a
consequence of the way our algorithm handles Bangla con-
juncts.

Phonetic Matching Technique for Bangla
Table 3 shows the proposed Bangla phonetic codes with
Letter, Name (according to unicode found at [19]) and Uni-
code number (from [19]) & Figure 2 shows the modified
Soundex algorithm using this encoding, suitable for a
Bangla spelling checker.

Table 3: Bangla phonetic coding rules

Code Letter Name Unicode
0

(zero) ◌্ Virama/Hasant “09CD”
Not ে◌া Sign O “09CB”

Coded ◌ঁ Candrabindu “0981”
“a” আ AA “0986”

 ◌া Sign AA “09BE”
“i” i I “0987”
 ঈ II “0988”
 ি◌ Sign I “09BF”
 ◌ী Sign II “09C0”

“u” u U “0989”
 ঊ UU “098A”
 ◌ু Sign U “09C1”
 ◌ূ Sign UU “09C2”

“e” e E “098F”
 ে◌ Sign E “09C7”
 ঐ AI “0990”
 ৈ◌ Sign AI “09C8”

“o” a A “0985”
 o O “0993”
 ঔ AU “0994”
 ে◌ৗ Sign AU “09CC”

“k” ক KA “0995”
 খ KHA “0996”

“g” গ GA “0997”
 ঘ GHA “0998”

“m” ম MA “09AE”
 ঙ NGA “0999”
 ◌ং Anusvara “0982”

“c” চ CA “099A”
 ছ CHA “099B”

“j” য YA “09AF”
 জ JA “099C”
 ঝ JHA “099D”

“T” ট TTA “099F”
 ঠ TTHA “09A0”

“D” ড DDA “09A1”
 ঢ DDHA “09A2”

“r” ঋ Vocalic R “098B”
 র RA “09B0”
 ড় RRA “09DC”
 ঢ় DDHA “09A2”

“n” ন NA “09A8”
 ণ NNA “09A3”

“ t” ত TA “09A4”
 থ THA “09A5”

“ d” দ DA “09A6”
 ধ DHA “09A7”

“p” প PA “09AA”
 ফ PHA “09AB”

“b” ব BA “09AC”
 ভ BHA “09AD”

“y” য় YYA “09DF”
“l” ল LA “09B2”
“s” শ SHA “09B6”

 স SA “09B8”
 ষ SSA “09B7”

“h” হ HA “09B9”
 ◌ঃ Visarga “0983”

1. Replace all of s by its phonetic code.
2. Eliminate all occurrences of code 0 (i.e., eliminate

hasant, candrabindu, sign O).
3. Return the resulting string.

Figure 2: The Soundex algorithm for Bangla

SUMMARY OF SOUNDEX FOR BANGLA
Transformations
0 (Not Coded): 3 (Hasant, Candrabindu, Sign O: ে◌া)
Vowels: 5 codes
Consonants: 17 codes

Encoding Reasoning for 0 (Not Coded) Characters
1.Name: Virama / Hasant; Unicode: 09CD; Character: ◌্

The absence of vowels between consonants can be repre-
sented by Virama / Hasant. This is used in the Jukhtak-
hor/Conjuncts.
In our encoding, we will give it 0 (zero) code. Because
hasant means it is used to connect two or more consonants
and we don't need to keep the information of connectors
(hasant) in our encoding. And more importantly this is used
to lower the sound of 1st consonant in a conjuncts. And
individually has No Sound in words.
This will also reduce one extra character error. For exam-
ple, if someone miss the ◌্ , then its basically all the same.
Mean he was trying to write some Conjuncts but missed the
connector ◌্ So, if we consider it as 0 (zero) code we can
reduce this error.
Example: দg = দ গ ◌্ ধ

We can see that we can easily reduce the ◌্ from our encod-
ing.
2.Name: Sign O; Unicode: 09CB; Character: ে◌া

 ে◌া (Sign O) is given 0 (zero) code, because in bangla
words, O in the middle or end of word is an inherent
vowel. For example, ভাল and ভােলা. Both sound same and
even if we don't have ে◌া in ভাল, it will pronounce as ভােলা.
Because there is an inherent vowel ে◌া in ভাল. Rather than
adding inherent vowels in encoding we give ে◌া 0 (zero)
code. So, now ভাল and ভােলা will have the same code.

3.Name: Candrabindu; Unicode: 0981; Character: ◌ঁ

We give ◌ঁ 0 (zero) code. ◌ঁ is used for nasal words. Our
main target is to encode the similar sounded characters in
to the same code. Similar sounded characters means which
sounds similar when we read it in our normal conversations
not according to actual grammar. In normal conversations,
we don't emphasize on nasal sounds and simply pronounce
it without ◌ঁ most of the cases. So, we can simply omit ◌ঁ
from our encoding.

Example of Error Correction Using Phonetic
Matching
Table 4 shows a set of misspelled words, their corre-
sponding encoded versions, and the suggested alter-
natives.

Table 4: Suggestions for misspelled words

Input Encoded Suggestion

খুমাড় kumar কুমার

পাসান pasan পাষাণ

দগধ dgd দg (দগ ◌্ ধ)

CONCLUSION
We present a preliminary effort at creating a phonetic
matching encoding for Bangla based on Soundex, and tai-
lored for a spelling checker. We describe a prototypical
phonetic coding rules and the associated algorithm that
produces “good” suggestions for misspelled Bangla words.
There are however many complex spelling rules from [17,
18] that are not yet addressed in this encoding, such as
1. The use of Folas (i.e., BA fola, MA fola, YA fola, RA

fola, LA fola).
2 . Conjuncts with unusual pronunciations. (i.e., k, h, etc.)

Lets consider k.

k = ক+◌্ +ষ ; kত, sounds as খত. Should be encoded as kt.
But in our encoding it will be encoded as kst.
3 . Different pronunciation on different context. Lets con-

sider again k.

At the beginning: Sounds as খ. So it should be encoded to
k. (kত->খত->kt) .

At the middle / end: Sounds as ক্খ. So it should be encoded
to kk. (দk->দকখ->dkk).

 The approaches used by PHONIX and Metaphone variants
do provide some context, and our future work in this area
will concentrate on creating transformation maps to reduce
strings to canonical forms before the table-driven encoding
step.

ACKNOWLEDGMENT
This work has been partially supported through PAN Lo-
calization Project (www.PANL10n.net) grant from the In-
ternational Development Research Center, Ottawa, Canada,
administered through Center for Research in Urdu Lan-
guage Processing, National University of Computer and
Emerging Sciences, Pakistan.

REFERENCES
1. K. Kukich, “Techniques for automatically correcting

words in text”, Computing Surveys, 24, (4), 377–440,
(1992).

2. J. Zobel and P. Dart, “Finding Approximate Matches in
Large Lexicons”, Software - Practice and Experience,
25(3), pp. 331-345, March, 1995.

3. F. Damerau, “A technique for computer detection and
correction of spelling errors”, Communication of the
ACM, 7(3), pp. 171-176, 1964.

4. V. Hodge and J. Austin, “A Novel Binary Spell
Checker”, Proc. International Conference on Artificial
Neural Networks, Vienna, August, 2001.

5. B. B. Chaudhuri, “Reversed word dictionary and pho-
netically similar word grouping based spell-checker to
Bangla text”, Proc. LESAL Workshop, Mumbai, 2001.

6. Arif Billah Al-Mahmud Abdullah and Ashfaq Rahman,
“A Different Approach in Spell Checking for South
Asian Languages”, Proc. 2nd International Conference
on Information Technology for Applications (ICITA),
China, 2004.

7. P. Kundu and B.B. Chaudhuri, “Error Pattern in Bangla
Text", International Journal of Dravidian Linguistics,
28(2), 1999.

8. The Unicode Consortium, The Unicode Standard, Ver-
sion 4.0, Addison-Wesley, 2003. Also available online
at http://www.unicode.org/versions/Unicode4.0.1.

9. D. E. Knuth, The Art of Computer Programming, Vol.
3, Addison-Wesley Publishing Company, Reading,
Massachusetts, 2nd edition, 1982.

10. The Soundex Algorithm, available online at
http://www.archives.gov/research_room/genealogy/cen
sus/soundex.html.

11. Lawrence Phillips, “Hanging on the Metaphone”, Com-
puter Language, 7(12), 1990.

12. Lawrence Phillips, “The Double Metaphone Search
Algorithm”, C/C++ Users Journal, 18(6), June, 2000.
Also available online at
http://www.cuj.com/documents/s=8038/cuj0006philips/
.

13. T. N. Gadd, “PHONIX: The Algorithm”, Program,
24(4), pp. 363-366, 1990.

14. W. M. Fisher, “A statistical text-to-phone function us-
ing n-grams and rules”, Proc. ICASSP-99, the 1999
IEEE International Conference on Acoustics, Speech
and Signal Processing, volume 2, pages 649-652,
March 1999.

15. K. Toutanova and R. C. Moore, “Pronunciation model-
ing for improved spelling correction”, July 2002.

16. V. L. Levenshtein, “Binary codes capable of correcting
deletions, insertions, and reversals”, Soviet Physics
Doklady, 10, 1966.

17. Bangla Uccharon Obidhan, Bangla Academy, Dhaka,
Bangladesh.

18. Bangla Banan Obidhan, Bangla Academy, Dhaka
Bangladesh.

19. Bangla Unicode Chart, available online at
 http://www.unicode.org/charts/PDF/U0980.pdf

