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ABSTRACT 

 

The recent flood of data from genome sequences and functional genomics has given rise to a new 

field, bioinformatics, which combines elements of biology and computer science. In experimental 

molecular biology, bioinformatics techniques such as image and signal processing allow extraction 

of useful results from large amounts of raw data. In the field of genetics and genomics, it aids in 

sequencing and annotating genomes. Given a biological sequence, such as a Deoxyribonucleic 

acid (DNA) sequence, biologists would like to analyze what that sequence represents. A 

challenging and interesting problem in computational biology at the moment is finding genes in 

DNA sequences. With so many genomes being sequenced rapidly, it remains important to begin 

by identifying genes computationally. A DNA sequence consists of four nucleotide bases. There 

are two untranslated regions UTR5’ and UTR3’, which is not translated during the process of 

translation. The nucleotide base pair between UTR5’ and UTR3’ is known as the code section 

(CDS). Our goal is to find and develop a way to determine a likelihood value (using hidden Markov 

model), based on which the joining sections of these three regions can by identified in any given 

sequence. 

 

Index Terms: UTR5’, UTR3’, CDS splice sites, hidden Markov model, machine learning 
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CHAPTER 1 

 

1.1 Introduction 

 

Molecular biology is the branch of biology that deals with the molecular basis of biological 

activity. Unlike any other branch of pure science it has seen immense development. Molecular 

biology is predominantly focused to understand the interactions between the various systems of 

a cell, the smallest unit of the building blocks of every living being. However 

microbiologists admit the limitation of laboratory experiments; molecular biology alone could not 

have explored the wonders of modern life science without the cutting-edge technology in 

computation. This field overlaps with other areas of biology and chemistry, particularly 

genetics and biochemistry. Following the discovery of double helix structure of deoxyribonucleic 

acid (DNA) by Watson and Crick in 1953, genetic researches were carried out throughout the 

world. It triggered interest of scientists towards the physical and chemical structure of DNA, 

bioinformatics and genetic engineering. Years after the complicated chemical structure of the 

DNAs were entirely deciphered, micro biologists were able to map of the genome structure of 

organisms. The order of the nucleotide bases in a genome is determined by the DNA sequence. 

Now that the DNA sequence is known, computational science developed ways of collecting and 

analyzing complex biological data.  
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Our thesis research goal is to develop a methodology that would find out the splice sites of three 

specific sections of a DNA, namely untranslated region 5’ (UTR 5’), code section (CDS) and 

untranslated region 3’ (UTR 3’). We aim to provide a technique to identify the untranslated and 

code sections from a given DNA sequence with a considerable degree of accuracy. We used hidden 

Markov model (HMM) to determine these three regions on a strand of nucleotide sequence. Hidden 

Markov model is probably the most used approach to analyze biological data all over the globe. 

They are at the heart of a diverse range of programs, HMMs are the Legos of computational 

sequence analysis. This model is a formal foundation for making probabilistic models of linear 

sequence labeling problems. It provides a conceptual toolkit for building complex models just by 

drawing an intuitive picture [1]. Although HMM have been mostly developed for speech 

recognition since the early 1970s, it is a statistical model very well suited for many tasks in 

molecular biology. It is particularly well suited for problems with a simple grammatical structure, 

including gene finding, profile searches, multiple sequence alignment and regulatory site 

identification [2].  
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CHAPTER 2 

 

2.1  Bioinformatics 

 

Bioinformatics and computational biology are rooted in life sciences as well as computer sciences 

and technologies. Bioinformatics and computational biology each maintain close interactions with 

life sciences to realize their full potential. Computational biology uses mathematical and 

computational approaches to address theoretical and experimental questions in biology [3]. It is 

the field of study that involves the mathematical modeling and computational simulation 

techniques to the study of biological, behavioral, and social systems. On the other hand, 

bioinformatics applies principles of information sciences and technologies to make the vast, 

diverse, and complex life sciences data more understandable and useful [3]. It is the 

interdisciplinary research field focuses on areas including computer science, statistics, 

mathematics and engineering to process and analyze biological data. Biological data are collected 

from biological sources, which are stored and exchanged in a digital form in files or databases. In 

our research the biological data are the DNA base-pair sequences. Analyzing biological data 

involves algorithms in artificial intelligence, data mining, and image processing [4]. Although 

bioinformatics and computational biology are distinct, there is also significant overlap and activity 

at their interface. 
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We used hidden Markov model to train analyze the DNA base-pair sequences and detect the splice 

sites between the code sections and the untranslated regions. In genetics and molecular biology, 

splicing is the alteration of messenger ribonucleic acid (mRNA) by which the introns are removed 

and the exons are joined together in the transcript. To grasp the subject matter of our thesis, little 

biological background needed. Since much of the literature on molecular biology is a little hard to 

comprehend for many computer scientists, this paper attempts to give a brief introduction to 

different biological terms and biotic processes. 

 

2.2 Central Dogma 

 

The flow of genetic information within a biological system is referred as central dogma. In this 

process DNA under goes transcription to produce RNA, and by translation RNA is transformed 

into protein. In short and simple, according to the National Institutes of Health (NIH), DNA makes 

RNA, and then RNA makes protein; this general rule emphasized the order of events from 

transcription through translation. The central dogma is often expressed as the following: “DNA 

makes RNA, RNA makes proteins, and proteins make us.” [5]. Figure 2.2 below best describes the 

flow of genetic data through the process of central dogma. 

 

 

Fig. 2.1 Central Dogma 
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Every cell in a living organism has built-in programs which control its development and functions. 

This program or piece of information is stored in units called genes, which are organized in groups 

one after another in the chromosomes. In eukaryotic cells, a structure in the nucleus consisting of 

chromatin and carrying the genetic information for the cell, best describes what a chromosome is. 

For example, humans contain 46 chromosomes in its nucleus of every cell [6]. Chromosomes 

comprise of deoxyribonucleic acid (DNA). Each DNA strand consists of a linear sequence of four 

bases- guanine (G), cytosine (C), adenine (A) and thymine (T) – covalently linked by phosphate 

bonds. The sequence of one strand of double-stranded DNA determines the sequence of the 

opposite strand because the helix is held together by hydrogen bonds between adenine and thymine 

or guanine and cytosine [7]. In the case of a ribonucleic acid (RNA) thymine is replaced by the 

nucleotide base uracil (U). 

To comprehend our research work and understand the biological data that were used in our 

research, in this case the DNA sequences, one must have a clear idea about genome. According to 

Dorland’s Dictionary, genome is the entirety of the genetic information encoded by the nucleotides 

of an organism, cell, organelle or virus. The order of the nucleotide bases in a genome is 

determined by the DNA sequence. And a gene is a segment of a DNA molecule (RNA in certain 

viruses) that contains all the information required for synthesis of a product (polypeptide chain or 

RNA molecule). It is the biological unit of inheritance, self-reproducing, and has a specific position 

(locus) in the genome [8]. 
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2.3 Structure of DNA 

 

Deoxyribonucleic acid (DNA) is a huge double stranded helix molecule. The skeleton of formed 

up of a complex chemical structure of a repeated pattern of sugar (deoxyribose) and phosphate 

groups. There are four complicated organic bases adenine (A), thymine (T), guanine (G) and 

cytosine (C) attached to the sugars. Thus the unit formed is called a nucleotide. The nucleotides 

chain up together to from long DNA strands. In a DNA double helix, each type of nucleobase on 

one strand bonds with just one type of nucleobase on the other strand. This is called complementary 

base pairing. Hydrogen bond binds adenine with thymine and guanine with cytosine [9]. Two DNA 

strands that bind together in opposite directions, are said to be antiparallel. Scientists have named 

the end with the phosphate group as 5' (five prime) end, and the end with the sugar as 3' (three 

prime) end. Since the sides of the helix are antiparallel, the 3' end on one side of the ladder is 

opposite the 5' end on the other side [10] 

 

 

 

 

 

 

 

Fig. 2.2 Chemical Structure of DNA 
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A DNA sequence on average is two meters long when un-winded [11]. It is a store house of genetic 

codes formed by series of nucleotide base pairs (bp). By the process of central dogma the code 

sections (CDS) of a DNA transforms to protein; a molecule that performs chemical reactions 

necessary to sustain the life of an organism. Some segment of the RNA remains untranslated which 

are called untranslated region (UTR), while the rest of the code section (CDS) is translated to 

protein. However a significant portion of DNA (more than 98% for humans) is non-coding, 

meaning that these sections do not serve a function of encoding proteins. From a detailed structure 

of a DNA strand, we see it is divided into different segments. A typical strand runs from 5' end to 

a 3' end, starting with a polymer, followed by untranslated region 5' (UTR 5'). The alternating 

introns, and exons make up the most of a strand, ending with an untranslated region 3' (UTR 3'). 

An exon is a segment of a DNA or RNA molecule containing information coding for a protein or 

peptide sequence. On the other hand, intron is a segment that does not code for proteins and 

interrupt the sequence of genes. 

Fig. 2.3 Structure of a DNA strand 
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CHAPTER 3 

 

3.1 Research Goal 

 

We aim to detect the splice sites of the untranslated regions, specifically UTR 5’ and UTR 3’, and 

the code section (CDS) from an unlabeled string of DNA sequence. The motivation behind this is 

to contribute in the annotation of genomic data. We were inspired to approach this challenge by 

the Plant Biotechnology Lab, of the Department of Biochemistry and Molecular Biology, 

University of Dhaka. Biochemists of Plant Biotechnology Lab primarily focus on producing rice 

tolerant to saline stress, suitable for growth in the coastal areas of Bangladesh in collaboration with 

Bangladesh Rice Research Institute (BRRI). While BRRI has done the breeding, Plant 

Biotechnology Lab have identified suitable progenies having the salt tolerance loci over several 

generations, and thus helped speed up the breeding process using molecular technologies [12]. To 

create genetically modified plants, biochemists of Dhaka University have to know which part of a 

target DNA holds the essential code section. The first step is to separate the entire CDS from the 

DNA thread. They rely on the laboratory experiments which include determining the protein 

functionalities using different enzymes. Once the proteins are detected, UTRs can be cut off. Plant 

Biotechnology Lab has to depend on the international research works done on tagged UTRs and 

CDSs. 
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Our goal is to bring automation in this process. The long hours spent in the laboratory can be 

significantly reduced by applying principles of information science and modern technologies. 

Applying statistical analysis, mathematics and engineering to process the DNA base-pair 

sequences by the algorithms of the hidden Markov model, some patterns can be determined. These 

patterns help identify the splice sites of UTR 5’, CDS and UTR 3’. We propose a solution which 

will help to detect and cut off the UTRs from a given sequence with a significant accuracy. 

Removing the UTRs will help researchers to look for proteins and their functions in the code 

section. Department of Biochemistry and Molecular Biology of University of Dhaka have agreed 

to test our suggested solution in their lab to verify the outcome of our research work. 

 

3.2 Base Composition in Splice Sites 

 

A typical DNA strand is formed by alternating coding and noncoding regions, mostly noncoding 

introns. Proteins are translated from a copy of the gene where introns have been removed and 

exons are joined together, a process called splicing. The exons are always adjacent to the UTRs. 

The objective is to find out the joining sites where the exons meet the UTRs. Guigo and Fickett 

argues that the non-coding regions are adenine (A) and thymine (T) rich, while the coding regions 

are rich in guanine (G) and cytosine (C) content [13]. Likewise the concentration of bases A and 

T are more likely to be present in introns [14]. Thus we can infer, that the splice sites of the UTRs 

and CDS (combined with exons and introns) can be identified by observing the rapid variation of 

A, T with the C G concentration along a DNA strand. As described earlier the illustration in figure 

3.1 shows the splice sites, inter and intragenic regions in a strand. The introns are spliced off and 

exons join to form protein in the last stages of the central dogma, which is not the focus of this 

research. 
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Fig. 3.1 Splice Sites in a DNA Strand 

 

 

3.3 Prior Research 

 

The determination of useful information from the vast pool of the biological data, annotating 

genomes, gaining insight into the mechanisms involved in life science has been one of the most 

widely studied of all pattern recognition problems in molecular biology. Pattern recognition has 

been widely applied in characterizing generic DNA. Our findings show numerous studies done in 

the similar if not same research area. Many scholars were confined within statistical and 

mathematical approaches [15], others used the pattern recognition algorithms, support vector 

machine (SVM) [16] and bioinformatics tools. Classical techniques have been used to address the 

problem of identifying specific regions such as filtering methods [17], frequency domain analysis, 

time domain analysis [18], and hidden Markov model (HMM) [19] [20]. Soft computing 

techniques resemble biological processes more closely than traditional techniques. Soft computing 

like fuzzy logic, neural network, statistical inference, rule induction, genetic algorithms are applied 

in many cases. There are works done on ideas about probability including Bayesian network and 

chaos theory [21]. We came upon some bioinformatics software tools like FANTOM (Functional 
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Annotation of the Mouse) and BLAST (Basic Local Alignment Search Tool). BLAST is used to 

compare primary biological sequence information, such as the amino-acid sequences of 

different proteins or the nucleotides of DNA sequences. In our paper, we will show how HMMs 

can be effective in solving this problem.  

3.4 Solution Approaches 

 

Initially we tried out several approaches to come up with a solution to this problem. The failed 

approaches are discussed here since we believe those unsuccessful endings are also the outcome 

of this research. Moreover anyone with the similar field of interest can see the whole picture and 

if necessary avoid or specially work on the methods that failed.  

Average Length: A simple way to find the splice sites in the string of nucleotide bases is to take 

the average length of the UTR and CDS from the sample data set, and test the result for success. 

Naive Bayes Classifier: It was another simple probabilistic classifier based on the application of 

Bayes’ theorem. However, all the features in a Bayes network are to be known to find out the 

required output, which we did not know. 

Regular Expression: The use of regular expression was ruled out due to the arbitrary presence of 

the bases A, T, C and G in the DNA sequence string. The degree of random is so high, that defining 

a grammar in regular expression was futile. 

ASCII Values of the Bases: The bases are represented in strings as A, C, G and T. The 

corresponding ASCII values (65, 67, 71 and 84 respectively) were used to find out a numeric value 

for UTR 5’, CDS and UTR 3’. The summation of the ASCII values of A, C, G and T present in 

three sections were divided by the number of alphabets in each section. However the results were 
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not conclusive since three values were very close to each other, thus not being unique. The range 

in average for UTR 5’, CDS and UTR 3’ was from 102 to 107. 

Machine Learning: Biology libraries are available in different platforms in many languages. 

Statistical model HMM are available in Biopython library written in Python [22], Hmm.java APIs 

are available in Java [23]. Another useful tool kit in Java is Weka, with its HMMWeka library 

[24]. We looked into these libraries, but none of them completely satisfied our research outcome. 

MATLAB (matrix laboratory) is a numerical computing environment and fourth-generation 

programming language. MATLAB allows matrix manipulations, plotting of functions and data, 

implementation of algorithms, creation of user interfaces, and interfacing. It has Toolboxes for 

Bioinformatics, Neural Network, and Statistics. Kevin Murphy used these toolboxes to build up 

his HMM Toolbox for Matlab [25]. We observed this tool closely, however we were not succeed 

since we could not train the biological data in MATLAB. The mode of input and output in 

MATLAB is solely numeric, the states, transition and emissions of the HMM must converted in 

matrix form with the features and grammar included in them. Moreover MATLAB cannot 

accommodate variable-length sequence.  

HMM in Accord.NET Framework is framework for scientific computing in .NET César Roberto 

de Souza developed this framework which is built upon AForge.NET, another popular framework 

for image processing, supplying new tools and libraries. Those libraries encompass a wide range 

of scientific computing applications, such as statistical data processing, machine learning, pattern 

recognition, including but not limited to, computer vision and computer audition. The framework 

offers a large number of probability distributions, hypothesis tests, kernel functions and support 

for most popular performance measurements techniques [26]. This article, along with any 
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associated source code and files, is licensed under The Code Project Open License (CPOL). We 

acknowledge the use of Accord.NET Framework in our thesis work to reach the productive 

outcome.  
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CHAPTER 4 

 

4.1    Hidden Markov Model  

 

This report includes a technique to detect the UTR and CDS from an unknown DNA nucleotide 

string with the help of Hidden Markov Model (HMM). HMM is a powerful statistical model used 

in computational biology. Although HMMs was first developed in 1970s for pattern recognition 

in speech handwriting, gesture recognition, and part-of-speech tagging. From the late 1980s, 

HMMs began to be applied to the analysis of biological sequences, in particular DNA. Since then, 

they have become ubiquitous in the field of bioinformatics. One must have an overview of HMMs 

to grasp the functionalities. Here we have quoted the basics of HMMs from following two sources 

[2] [20]. 

Dynamical systems of discrete nature assumed to be governed by a Markov chain emits a sequence 

of observable outputs. Under the Markov assumption, it is also assumed that the latest output 

depends only on the current state of the system. Such states are often not known from the observer 

when only the output values are observable. Hidden Markov Models attempt to model such 

systems and allow, among other things,  

(1) Infer the most likely sequence of states that produced a given output sequence 

(2) Infer which will be the most likely next state (and thus predicting the next output) 
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(3) Calculate the probability that a given sequence of outputs originated from the system (allowing 

the use of hidden Markov models for sequence classification). 

 

Fig. 4.1 States of Hidden Markov Model 

 

The “hidden” in Hidden Markov Models comes from the fact that the observer does not know in 

which state the system may be in, but has only a probabilistic insight on where it should be. HMMs 

can be seem as finite state machines where for each sequence unit observation there is a state 

transition and, for each state, there is a output symbol emission. Traditionally, HMMs have been 

defined by the following quintuple: 

λ = (N, M, A, B, π) 

 N is the number of states for the model 

 M is the number of distinct observations symbols per state, i.e. the discrete alphabet size. 

 A is the NxN state transition probability distribution given as a matrix A = {aij} 

 B is the NxM observation symbol probability distribution given as a matrix B = {bj (k)} 

 π is the initial state distribution vector π = {πi} 

http://lh5.ggpht.com/_qIDcOEX659I/S6aYAyUnAII/AAAAAAAAA1s/XrXwL8dAGds/s1600-h/hmm[7].png
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4.2   Canonical Problems Associated with HMMs 

 

Given the parameters of the model, compute the probability of a particular output sequence. This 

requires summation over all possible state sequences, but can be done efficiently using 

the Forward algorithm, which is a form of dynamic programming. 

Given the parameters of the model and a particular output sequence, find the state sequence that is 

most likely to have generated that output sequence. This requires finding a maximum over all 

possible state sequences, but can similarly be solved efficiently by the Viterbi algorithm. 

Given an output sequence or a set of such sequences, find the most likely set of state transition and 

output probabilities. In other words, derive the maximum likelihood estimate of the parameters of 

the HMM given a dataset of output sequences. No tractable algorithm is known for solving this 

problem exactly, but a local maximum likelihood can be derived efficiently using the Baum-Welch 

algorithm or the Baldi-Chauvin algorithm. The Baum-Welch algorithm is an example of a forward-

backward algorithm, and is a special case of the Expectation-maximization algorithm. 

The solutions for those problems are exactly what make Hidden Markov Models useful. The ability 

to learn from the data (using the solution of problem 3) and then become able to make predictions 

(solution to problem 2) and able to classify sequences (solution of problem 2) is nothing but applied 

machine learning. From this perspective, HMMs can just be seem as supervised sequence 

classifiers and sequence predictors with some other useful interesting properties. 

Choosing the structure for a hidden Markov model is not always obvious. The number of states 

depends on the application and to what interpretation one is willing to give to the hidden states. 

Some domain knowledge is required to build a suitable model and also to choose the initial 

parameters that an HMM can take. There is also some trial and error involved, and there are 



17 
 

sometimes complex tradeoffs that have to be made between model complexity and difficulty of 

learning, just as is the case with most machine learning techniques. 

 

4.3    Algorithm 

 

The solutions to the three canonical problems are the algorithms that make HMMs useful. Each of 

the three problems is described in the three subsections below. 

Evaluation: The first canonical problem is the evaluation of the probability of a particular output 

sequence. It can be efficiently computed using either the Viterbi-forward or the Forward 

algorithms, both of which are forms of dynamic programming. 

The Viterbi algorithm originally computes the most likely sequence of states which has originated 

a sequence of observations. In doing so, it is also able to return the probability of traversing this 

particular sequence of states. So to obtain Viterbi probabilities, please refer to the Decoding 

problem referred below. 

The Forward algorithm, unlike the Viterbi algorithm, does not find a particular sequence of states; 

instead it computes the probability that any sequence of states has produced the sequence of 

observations. In both algorithms, a matrix is used to store computations about the possible state 

sequence paths that the model can assume. The forward algorithm also plays a key role in the 

Learning problem, and is thus implemented as a separate method. 

Decoding: The second canonical problem is the discovery of the most likely sequence of states 

that generated a given output sequence. This can be computed efficiently using the Viterbi 
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algorithm. A trackback is used to detect the maximum probability path travelled by the algorithm. 

The probability of travelling such sequence is also computed in the process. 

Learning: The third and last problem is the problem of learning the most likely parameters that 

best models a system given a set of sequences originated from this system. Most implementations 

I've seem did not consider the problem of learning from a set of sequences, but only from a single 

sequence at a time. The algorithm below, however, is fully suitable to learn from a set of sequences 

and also uses scaling, which is another thing I have not seem in other implementations. 

 

4.4    HMMs for Biological Sequences 

 

HMMs are widely used for biological sequence analysis because of their ability to incorporate 

biological information in their structure. An automatic means of optimizing the structure of HMMs 

would be highly desirable. However, this raises two important issues; first, the new HMMs should 

be biologically interpretable, and second, we need to control the complexity of the HMM so that 

it has good generalization performance on unseen sequences. Imagine a DNA motif like this: 

A   C   A   -    -    -    A   T   G 

T   C   A   A   C   T   A   T   C 

A   C   A   C   -    -    A   G   C 

A   G   A   -    -    -    A   T   C 

A   C   C   G   -    -    A   T   C 

A regular expression for this is- 

[AT] [CG] [AC] [ACGT]* A [TG] [GC] 



19 
 

This means that the first position is A or T, the second C or G, and so forth. The term ‘[ACGT]*’ 

means that any of the four letters can occur any number of times. The problem with the above 

regular expression is that it does not in any way distinguish between the highly implausible 

sequences 

T   G   C   T   -    -    A   G   G 

which has the exceptional character in each position, and the consensus sequence with the most 

plausible character in each position (the dashes are just for aligning these sequences with the 

previous ones). 

A   C   A   C   -    -    A   T   C 

 

Fig. 4.2 A hidden Markov model derived from the alignment discussed in the text. The transitions 

are shown with arrows whose thickness indicates their probability. In each state the histogram 

shows the probabilities of the four nucleotides. 

What is meant by a ‘plausible’ sequence can of course be debated, although most would probably 

agree that the first sequence is not likely to be the same motif as the 5 sequences above. It is 
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possible to make the regular expression more discriminative by splitting it into several different 

ones, but it easily becomes messy. The alternative is to score sequences by how well they fit the 

alignment. To score a sequence, we say that there is a probability of 4/5 = 0.8 for an A in the first 

position and 1/5 = 0.2 for a T, because we observe that out of 5 letters 4 are As and one is a T. 

Similarly in the second position the probability of C is 4/5 and of G 1/5, and so forth. After the 

third position in the alignment, 3 out of 5 sequences have ‘insertions’ of varying lengths, so we 

say the probability of making an insertion is 3/5 � /and thus 2/5 for not making one. To keep track 

of these numbers a diagram can be drawn with probabilities as in Figure 4.2. 

This is a hidden Markov model. A box in the drawing is called a state, and there is a state for each 

term in the regular expression. All the probabilities are found simply by counting in the multiple 

alignment how many times each event occur, just as described above. The only part that might 

seem tricky is the ‘insertion,’ which is represented by the state above the other states. The 

probability of each letter is found by counting all occurrences of the four nucleotides in this region 

of the alignment. The total counts are one A, two Cs, one G, and one T, yielding probabilities 1/5, 

2/5, 1/5, and 1/5 respectively. After sequences 2, 3 and 5 have made one insertion each, there are 

two more insertions (from sequence 2) and the total number of transitions back to the main line of 

states is 3 (all three sequences with insertions have to finish). Therefore there are 5 transitions in 

total from the insert state, and the probability of making a transition to itself is 2/5 and the 

probability of making one to the next state is 3/5. 

 

 

 



21 
 

Table 4.1 Probabilities and log-odds scores for the 5 sequences in the alignment and for the 

consensus sequence and the ‘exceptional’ sequence. 

 Sequence Probability × 100 Log Odds 

Consensus A C A C  -  -  A T C 4.7 6.7 

 

Original Sequences 

A C A  -  -  -  A T G 

T C A A C T A T C 

A C A C  -  -  A G C 

A G A  -  -  -  A T C 

A C C G  -  -  A T C 

3.3 

0.0075 

1.2 

3.3 

0.59 

4.9 

3.0 

5.3 

4.9 

4.6 

Exceptional T G C T  -  -  A G G 0.0023 -0.97 

 

 

It is now easy to score the consensus sequence A C A C A T C. The probability of the first A is 

4/5. This is multiplied by the probability of the transition from the first state to the second, which 

is 1. Continuing this, the total probability of the consensus is 

P (A C A C A T C) = 0.8 × 1 × 0.8 × 1 × 0.8 × 0.6 × 0.4 × 0.6 × 1 × 1 × 0.8 × 1 × 0.8 

                                          = 4.7 × 10-2 

Making the same calculation for the exceptional sequence yields only 0.0023 × 10-2, which is 

roughly 2000 times smaller than for the consensus. This way we achieved the goal of getting a 

score for each sequence, a measure of how well a sequence fits the motif. 
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CHAPTER 5 

 

5.1  Data Set and Source 

 

The only biological data needed for the research work are the DNA sequences. We took 70 

complete nucleotide sequence from the National Center for Biotechnology Information (NCBI) 

official website [27]. NCBI is under the National Institutes of Health (NIH). The NCBI has one of 

the world’s biggest collection of databases relevant to biotechnology and biomedicine. Major 

databases include FASTA and GenBank for DNA sequences.  

A typical data file of Malus zumi NHX1 is shown in Figure 5.1. It is a complete CDS sequence. 

Our test data set was of 70 sequences of different species. These 70 sequences are trained in the 

system to find out the probable likelihood. The HMM itself learns the grammars and features from 

the data. We primarily focused on nucleotide NHX1, which is a Saccharomyces cerevisiae Na+/H+ 

and K+/H+ exchanger, required for intracellular sequestration of Na+ and K+; located in the 

vacuole and late endosome compartments; required for osmotolerance to acute hypertonic shock 

and for vacuolar fusion. Other nucleotides included in the training data set were NHX2, NHA2, 

VPL27, and VPS44. The length of the DNA sequences for this research varies from 1000 to 6000 

base pairs (bp). 
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5.2  Creating Data Files 

 

Sequences available at the NCBI gene bank were downloaded in FASTA format.  FASTA format is 

a text-based format for representing either nucleotide sequences or peptide sequences, in which 

nucleotides or amino acids are represented using single-letter codes. Text files were generated 

following the standard alignment and sequence-oriented data format. Each data sequence is 

annotated by NCBI. As seen in Figure 5.1, the green, blue and black color marked alphabets are 

UTR 5’, CDS and UTR 3’ respectively. Care must be taken while preparing the data files. The 

gene sequences chosen must be complete CDS. If a partial sequence is taken in account, the 

training process will be imperfect, resulting to wrong outcome. 

Fig. 5.1 Data File with Annotated Sections 
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The bar graph below shows average length of the UTR 5’, CDS and UTR 3’. We collected the 

sequences from NCBI. This bar graph is based upon the average length of the test sequences 

whose total length is <3000.  

 

Fig: 5.2 Bar Diagram showing average Length of UTR 5' CDS & UTR 3’ (bp <3000) 

This bar graph below is based upon the average length of the test sequences whose total length is 

<3000. 

 

Fig: 5.3 Bar Diagram showing average Length of UTR 5' CDS & UTR 3' (bp >3000) 
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CHAPTER 6 

 

6.1  Methodology to find Code Section 

 

The first step to determine the code sections (CDS) in a DNA sequence we need to extract features. 

A triplet of bases (3 bases) forms a codon. Each codon codes for a particular amino acid (protein). 

The universal feature for any CDS is that it starts with a start codon and ends with a stop codon. 

What remains before the start codon is untranslated region (UTR) 5’ and the portion after the stop 

codons is UTR 3’. The only start codon in DNA is ATG (AUG in RNA), and the stop codons are 

TAA, TAG and TGA (in RNA UAA, UAG and UGA respectively). As discussed elaborately in 

section 3.2, another well-established feature of a DNA sequence is the concentration of the bases 

in the introns and exons. Exons are rich with AT base pair, and introns are rich with CG base pair. 

Moreover the entire CDSs are formed by the repetition of alternating exons and introns. The CDSs 

always starts and ends with an exon. These features extracted will be taken into account to find an 

accepted outcome, which are discussed in the following section. 

 

6.2  System Initiation  

 

Data files taken from NCBI are in FASTA format. The nucleotide bases A, T, G and C are 

converted to 0, 1, 2 and 3 respectively, with a simple Java code. Figure 5.1 shows that the data file 
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is annotated with UTR 5’, CDS and UTR 3’. In total seventy of these sequences are fed to the 

hidden Markov model (HMM) built with Accord.NET Framework. Each of the seventy sequences 

are classified and tagged with a likelihood value by the HMM. Those likelihood values are very 

small, and expressed in exponential form. To convert this extreme small likelihood value to an 

understandable figure the Math.log( ) function (a 10 base log system) was called upon each value. 

Consequently, the system is initiated. The rest of the steps of the system are discussed in the 

following sections. Figure 6.1 below shows the excel file containing the data sequences of 

nucleotide base pairs.  

 

 

Fig. 6.1 Microsoft Excel file containing the DNA sequences used to train the system 
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6.3  Machine Learning  

 

HMM is a statistical tool that used in machine learning. Seventy data sets are taken into account. 

These nucleotide strands are base pair sequences of different species, mostly plants. These seventy 

DNA sequences are used to train the model. The likelihood value of each sequence is stored. The  

HMM learn and classify the information itself by going through the features of the DNA strands. 

If we use more data for training, the possibility of better learning is amplified. Better the training 

for machine leaning, better the classification and accurate is the outcome. The system 

automatically starts to trains itself and generate the likelihood values when the path to this excel 

file is shown. The series of screen shots below, shows the steps of supervised machine learning, 

and the process for classifying the biological data. 

 

Fig. 6.2 Importing biological data for training the HMM 

 

Here in the figure 6.3 below, the data from excel files are imported in the system. Clicking on the 

‘Create’ button will create a classifier and start to classify the data. 
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Fig. 6.3 Creating Classifier 

  

This screen shot shows the creation of the classifiers. We have used four states for classifying and 

analyzing the data. One can increase the number of states in order to maximize the degree of 

accuracy in classifying the data. The next step is to click the ‘Start’ button. 

 

 
Fig. 6.4 Training Data 
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Once the start button is pressed the classification will commence, and then in the classification 

training tab, clicking on ‘Evaluate’ the likelihood values of each CDS sequence will be generated. 

Fig. 6.5 Finding likelihood for each CDS sequence 

The screen image below shows the likelihood values of the CDS regions saved in a Microsoft 

Excel file. This file will be needed for further analysis. 

Fig. 6.6 Likelihood values generated 
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6.4  CDS Windowing Process 

 

Now the challenge is to detect the CDS regions in an untagged DNA sequence. We know from the 

characteristics of a DNA sequence that the CDS lies between a start and a stop codon. In order to 

find out the probable CDS in an unknown DNA strand, we have to clamp out all the substrings in 

that start with ATG and ends with TAA, TAG or TGA. We have termed the process of grouping 

the substrings of credible CDSs as ‘windowing’. Our work is limited to the length of DNA 

sequences with range of 1000 bp to 6000 bp. Within this range there are thousands of substrings 

which are likely to be the actual CDS. In order to reduce the number of substrings (windows) our 

research came up with a logic. When a string is less than 3000 bp in length we accept the start 

codon within the length range of 1-600. And the corresponding stop codons are looked up within 

the range 1600-2000. Similarly, when a string is more than 3000 bp in length we accept the start 

codon within the length range of 1-1600, and the corresponding stop codons are acceptable within 

the range 3300-5700. These ranges were determined by carrying out trial and error tests 

procedures. This range is fixed after the output produce is satisfactory.  

 

Fig 6.7 The range of windows found (length from start to stop codon) 
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Table 6.1: Start and Stop codon 

 

 

 

6.5  Testing the System 

 

It was found that following this logic the number of CDS windows was decreased in a significant 

manner. The process of efficient windowing is applied on the unknown DNA string randomly 

chosen form NCBI database. On an average 63 CDS windows are generated. We developed a Java 

program to do the windowing. Each of these windows is classified with HMM to find out and store 

the likelihood value. All the likelihood values are compared with the prior knowledge database 

from the training. The top ten sequences that match with the probability of the CDS from the 

trained data sets are marked and shown in a web browser. 

Total Sequence Length Start Codon Stop Codon 

Less than 3000 0 – 600 1600 – 2200 

3000 < Length < 6000 0 – 2100 3000 - 5700 
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Fig. 6.8 Windowed fragments of probable CDS of an unknown sequence 

 

Now that the top probabilities of the CDS substrings are known, we can easily mark the UTR 5’ 

and UTR 3’ portions from the unknown DNA sequence. The success rate of determining the UTRs 

and CDSs from any random DNA sequence is observed in the test environment. Figure 6.7 is 

displaying the CDS windows generated form and unknown DNA sequence, used to test the 

constancy of the system. The separate sub sequences of probable CDS sections after windowing 

are shown in the console panel of the programming IDE.  
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Each of these substrings generates a likelihood value. Those are listed in an excel file. A screen 

shot in figure 6.8 below shows the strings and their corresponding likelihood value.  

 

 

Fig. 6.9 Likelihood values of various CDS window frames 
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CHAPTER 7 

 

7.1  Result and Findings 

 

In total 70 DNA nucleotide sequences were used to train the HMM model, and 12 random DNA 

were used to test the system. The results were appreciable, with a percentage 83.33% success in 

determining the splice sites of an unknown DNA. Out of the 12 sequences we tested, CDS and 

UTR splice sites of 10 sequences were determined successfully. We must consider the facts that 

the DNA sequences used were complete sequences, with a range of 1000 to 6000 bp length. One 

of the critical finding was that the accuracy of determining the splice site is directly related to the 

efficiency of marking the window of the code sections. However more precise results can be 

achieved if the tags are mentioned in the HMM. That detects the patterns in the biological 

sequences.   

Table 7.1: The table below shows a tabular form of the success rate of our research outcome. 

No. of Test 

Sequences 
Succeeded Failed 

Success Rate 

(%) 

Failure Rate 

(%) 

12 10 2 83.33% 16.67% 
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If we put the success rate in a pie diagram, we can see the rate of success is 83.33%. 

 

Fig 7.1 Success Fail Ratio in a Pie Diagram 

 

7.2  Contribution 

 

The key to find the CDS regions accurately largely depend on the efficient windowing in the 

unknown DNA string. It was our contribution of reduce the number of windows from over 

thousands to around sixty. The motivation of this research work was to make the life of the 

biochemists of the Plant Biotechnology Lab of Dhaka University. They were looking for a way to 

reduce their work load by finding the probable splice sites. We have been successful to reduce the 

sample space for them. Now biochemists can perform chemical experiments on the range of splice 

sites that our research points to. 

 

83.33%

16.67%

Chart Title

Success Rate (%) Failure Rate (%)
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7.3   Discussion and Suggestions 

 

The biological data used for this experiment were chosen randomly. The aim is to develop a tool 

for the biochemistry lab that works with rice, tomato and peanut. We could have reached a better 

conclusion if the data used for training the system were limited to sequences of different type of 

rice, tomato and peanuts. However the diversity among the living organisms is so vast that in 

computational biology we cannot point out an exact position number of the splice site. Nor can we 

guarantee the success of our approach. However we can state the facts based on the statistical 

findings of our research. There is no such thing as absolute in the field of molecular biology. Till 

now the tests were carried out were done in experimentally. Microbiologist of the Plant 

Biotechnology Lab will soon take our research and test it with real data from their laboratory. We 

are eagerly waiting to test the efficiency and robustness of our system in the real field. 
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CHAPTER 8 

 

8.1  Conclusion 

 

The aim of this project is to design a system that would determine the splice sites of untranslated 

and code sections of the DNA. We became successful to achieve our aim and a comprehensive 

approach has been presented in the report. The key features of our research are the specific use of 

the hidden Markov model and the effective windowing process to deduce probable coding sections 

in an unknown nucleotide sequence. The highlights of the major outcomes are, it was found that 

the hidden Markov model an excellent model which is able to determine the likelihood value from 

the known biological data, which can be used to find the coding regions in other unknown 

sequences. 

 

8.2  Future Work 

 

This research work can be further extended to finding out the splice sites of the introns and exons 

which are the coding and noncoding regions within a CDS. When the DNA transforms to a protein, 

the introns are chipped off and the exons join together. The task of finding out the protein 

functionalities and even drug design can be related to this work.  
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Although we were able to find out and reduces the probable CDS windows down to around sixty 

three from thousands, further research is encouraged for finding even better windowing 

approaches. This can be done by using pattern recognition algorithms, mathematics and biological 

features. 

The research can be implemented as a complete software system. That tool would help the 

scientists of Dhaka University to test data easily without having vast programming knowledge or 

expertise. The segments of our research can be pieced together in a software that would take the 

unknown sequence as input and show the probable CDS to the person using the software. 

Currently the system is limited to determining splice sites in smaller nucleotide sequences with 

maximum length of 6000 base pairs. Efforts can be given to find out ways to reach the outcome 

with longer sequences over an expand diversity.  
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APPENDIX  

 

If anyone is interested to carry on the research further or require and assistance regarding this thesis 

the contact information of the researchers and author are given below.  

Dipankar Chaki 

Email: joy.dcj@gmail.com 

 

Tanvir Roushan 

Email: tanvir.roushan@gmail.com 

 

Md. Syeed Chowdhury 

Email: grnsyeed@gmail.com 

 

The source codes used in this thesis are open source. Please go through the references to find the 

citations. The source codes, data files and results of our thesis can be found upon request. Please 

contact the authors if required. 
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