
BRAC UNIVERSITY

PARALLEL COMPUTING USING GPU FOR

EFFICIENT TRAFFIC SIMULATION

In partial fulfillment of the requirements of the Degree of BACHELOR OF

COMPUTER SCIENCE in BRAC UNIVERSITY

Student’s name: SADAT SAKIF AHMED (12241010)

Advisor: PROFESSOR MOHAMMAD ZAHIDUR RAHMAN, Ph.D

Dhaka, Bangladesh

2013

TABLE OF CONTENTS

LIST OF TABLES iii

LIST OF FIGURES iv

ABSTRACT v

ABBREVIATION vi

CHAPTER 1: INTRODUCTION 1

 1.1 Background of Research 1

 1.2 Purpose of Research 1

 1.3 Tools Utilized 2

CHAPTER 2: BACKGROUND 4

 2.1 GPU Programming 4

 2.2 Description of CUDA 5

 2.3 Issues with GPU Precision 6

CHAPTER 3: SIMULATION MODELING 7

 3.1 Vehicle Modeling 7

 3.2 Vehicle Learning Mechanism 9

 3.3 Road Network Modeling 9

CHAPTER 4: FINDINGS 12

 4.1 Implementation Platform 12

 4.2 Detailed Performance Analysis 14

CHAPTER 5: CONCLUSION AND FUTURE WORK 16

 5.1 Conclusion 16

 5.2 Future Work 16

REFERENCES 17

LIST OF TABLES

Table 1: Implementation Device Specification 12

LIST OF FIGURES

Figure 1: Processing Flow on CUDA 5

Figure 2: Comparison of frame update time against number of vehicles 13

Figure 3: Comparison of frame update time against number of nodes 14

ABSTRACT

Parallel Computing can be made possible using the multiple cores of the Graphics

Processing Unit (GPU) thanks to the modern programmable GPU models. This allows the use

of parallel computing techniques to improve upon the computation time of large scale traffic

simulations. This paper proposes the use of a multi-processor algorithm for creating efficient

traffic simulation software.

The method in consideration achieves this by separating the r oad network into regions which

are individually computed as a threaded block inside the GPU and merged together using the

Central Processing Unit to provide the final data of the simulation. A significant

improvement in the computation time is observed when the proposed parallelization

techniques are applied to the simulator.

ABBREVIATIONS

CUDA - Compute Unified Device Architecture

GPU – Graphics Processing Unit

CPU – Central Processing Unit

SRIPS – Short Range Interactive Particle System

PC – Personal Computer

CHAPTER 1

INTRODUCTION

This chapter introduces the brief description of the research’s background and rationale;

next, research problems are specified, next the purpose of the research is addressed followed

by the tools used and the reason behind the utilization of those tools over other similar tools.

1.1 Background of Research

Computerized traffic simulation is a very cost-effective solution to urban road traffic

planning. This is a very commonly adopted method of planning out road networks in any

urban settlement. Simulations such as these often deal with a massive amount of data which

requires the use of multi-core architecture as a backbone for real-time or accelerated

simulations. So far most of these simulators utilize distributed computing solutions in order to

achieve the desired results. The solution is effective but not cost efficient. This paper presents

a methodology to use the massively parallelization capabilities of modern programmable

GPU in order to achieve this effect without the need for a large computer network.

1.2 Purpose of Research

The purpose of this paper is to propose a process which enables scalable parallel

simulations to become possible without the need for massive numbers of units in a

distributing computing environment and as such, the process described in this paper is a

scalable mechanism which allows the performance to improve based on the number of cores

available. In essence, the performance boost is achieved by modeling the vehicles as particles

which have a certain degree of autonomy and assigning individual cores to the particles. This

effectively speeds up the execution time by a factor of the cores involved. This mechanism is

very similar to a domain-distributed computing, but is utilized with the cores available in the

Graphics Processing Unit (GPU). With the advent of the new GPU models, it is very

affordable to obtain a GPU with an average of 300-400 cores which is the equivalent of using

several hundred processors in a distributed computing network. On an advantageous side, the

GPU cores are specifically designed for efficient floating point calculation which aids in such

simulations.

The simulation allows for real-time adjustments in the constraints and implements a simple

machine learning mechanism in order to simulate human behavior among the vehicles. The

primary bottleneck in this simulation is the road linkage calculation as it is then that the GPU

cores need to wait on the CPU for cached data in order to compute the congestion in the road

network.

1.3 Tools Utilized

This simulation software utilizes Nvidia Compute Unified Device Architecture

(CUDA) GPU Computing Platform in order to achieve the communication with the graphics

device. The CUDA platform is a proprietary platform of Nvidia Corporations and is only

supported by Nvidia Graphics Processors. The other alternative to this platform is the

OpenCL (Open Computing Library) which is open-source and free to use and is supported by

most every graphics processors with programmable pipelines. However, the CUDA platform

provides some more benefits such as better support and more efficient communication

between supported devices compared to OpenCL as well as better documentation and more

efficient libraries.

The simulation program used for testing the proposed method has been coded entirely from

scratch using the CUDA platform and Microsoft Visual C++ and has been benchmarked

using CUDA Platform’s benchmarking software.

This method improves upon the time factor of the simulation significantly with respect to the

CPU only implementation and allows for distributed computing using multiple CPU as well

as multiple GPU giving this a very large scale implementation possibility.

The simulation takes in account the behavior of road traffic at specific time of the day and

also takes in the preference of the general populace to traverse any specific road at the

expense of increased congestion as well as traffic signal delays and allows the user to hold off

traffic at certain points of the road network in order to assess the impact of the blockage on

the rest of the network.

CHAPTER 2

BACKGROUND

This chapter provides some background information regarding the GPU and CUDA and how

the two are interlinked. This chapter begins with an idea of how GPU programming works

followed by some details on how CUDA works specifically and concludes with a mention of a

major issue in CUDA.

2.1 GPU Programming

 GPUs are massively parallel multithreaded devices capable of executing a large

number of active threads concurrently. A GPU consists of multiple streaming multiprocessors

each containing a multiple scalar processor core. For example, NVIDIA’s GeForce GT X 560

contains 336 CUDA Cores which can handle up to 36,000 active threads in parallel.

In addition, the GPU has several types of memory, most notably the main device memory

(global memory) and the on-chip memory shared between all threads in a block. The CUDA

language library facilitates the use of GPUs for general purpose programming by providing a

minimal set of extensions to the C programming language. From the perspective of the

CUDA programmer, the GPU is treated as a coprocessor to the main CPU. A function that

executes on the GPU, called a kernel, consists of multiple threads each executing the same

code, but on different data, in a manner referred to as “single instruction, multiple data”

(SIMD). Further, threads can be grouped into thread blocks, an abstraction that takes

advantage of the fact that threads executing on the same multiprocessor can share data via the

on-chip shared memory, allowing a limited degree of cooperation between threads in the

same block. Finally, since GPU architecture is inherently different from a traditional CPU,

code 5 optimization for the GPU involves different approaches. [4, 5]

2.2 Description of CUDA

Figure 1: Processing Flow on CUDA

The CUDA platform models the processes to run as thread blocks which together

form an emulation of a processor. These thread blocks can be as big as necessary to fit the

entire process in them and the number of process blocks available depends on the number of

cores available. This is a great advantage over single thread based parallelization modules

since this provides the GPU with a means of accommodating larger processes than a single

GPU core can handle. This mechanism requires all data for every instance of the process to

be copied to the GPU memory which is accessed via the process blocks for that particular

instance. [4, 5]

The above mentioned approach of CUDA to parallelization in GPU has one major

disadvantage which is the lack of inter-communication between the processes. In order to

provide inter-communication, the GPU processes need to upload the data into the main

memory which the CPU accesses and performs the necessary steps to merge them.

2.3 Issues with GPU Precision

As noted in the CUDA Programming Guide [4, 5], CUDA implements single precision

floating-point operations e.g., division and square root operations, in ways that are not IEEE-

compliant. Their error, in ULP(Units in the Last Place) is nonzero. While addition and

multiplication are IEEE-compliant, combinations of multiplication and addition are treated in

a nonstandard way that leads to incorrect rounding and truncation.

CHAPTER 3

SIMULATION MODELING

This chapter describes how the objects in the simulation have been modeled for efficient

parallelization; beginning with the description of how the vehicle has been modeled and

following through with the basic machine learning implemented in the vehicle. Finally, the

model of the road network is described.

3.1 Vehicle Modeling

The vehicle is modeled as a particle moving through a rectangular tube which only

allows multiple particles to move side-by-side. This approach has been influenced by a

method proposed by Knowles, P for GPU based particle simulation using spatial Short Range

Interacting Particle System (SRIPS).[2]

for i = 0 to N − 1 do

 move(particle[i]);

 for all j in neighbor(particle[i]) do

 check collision between particle i and j;

 end for

end for

Algorithm 1: SRIPS using a spatial data structure

The spatial SRIPS algorithm is an Θ(n) algorithm since the inner loop is always fixed to a

constant number of other particles. In the case of this simulation this value is at most 4 as

there is no possibility of any other particles on any other side. The particles are clumped

together based on their position and the surrounding particles are detected from a list of

neighboring particles which may or may not change on every road intersection. The vehicle

shows general commute tendency depending on the time of day and attempts to show the

traffic movement on a macro scale. The collision is maintained through the use of a list of

vehicles in the vicinity of every vehicle and the data of the surrounding vehicles is passed in

to the thread block along with the data of each vehicle. This leads to the data of the

surrounding vehicles to be computed multiple times which is then merged using a Gaussian

distribution in the CPU for averaging out the positional data in order to provide an

approximation of the resulting position of the particle. This method does not provide an very

accurate result for the position of the vehicles, but the margin of error in the position is rather

minimal and does not affect the result in such a level as to create a large error. The error is

calculated thus

for i = 0 to N − 1 do

 c = count(instances[i])

 for all pos in instances[i] do

 difference += maxPos(instances[i]) – minPos(instances[i]);

 end for

 difference /= c;

end for

Algorithm 2: Calculating margin of error in position recalculation

Using this mechanism is the most effective measure of obtaining parallelization of the

algorithm and provides a workable margin of error which ranges from 15% – 25% in the

overall simulation.

3.2 Vehicle Learning Mechanism

The vehicle model concept makes use of the modern computing capabilities in order to

provide an intelligent, human-like behavior among the vehicles and attempts to make the

simulation more accurate. In order to achieve this, the model implements a basic set of rules

to define a fuzzy logic which defines the behavior of the driver. In this case the driver’s

behavior is simulated based on a set of values which define the perception and decision of the

driver. The behavior simulation is applied to nearby vehicles with a diffusion gradient in

order to simulate crowd mentality and reduce the computational pressure instead of having to

compute the crowd mentality by simulating through each and every vehicle.[1]

3.3 Road Network Modeling

The road network is modeled as a simple n-ary graph with the nodes being the

crossroads and the edges the routes. Each individual edge contains data regarding the current

density of vehicles in the route and maintains the general driving preference of the population

through that route. The driving preference is utilized in order to simulate the behavior of

general population as we see in nature that even though there are multiple routes which lead

to the same destination, the preference of the routes depends on the general perception of the

road being the quicker path to the destination as decided through the greedy nature of

humans. This behavior is the primary reason for uneven traffic congestion in roads. This

behavior is modified in the simulation depending on the amount of congestion that drivers

find in the given road compared to other roads which share the same destination.

Computing the road congestion is the biggest performance hit as the calculation is dependent

on the number of particles entering and leaving the edge. This essentially requires the data in

the GPU to be downloaded into the main memory and then accessed through the CPU in

order to calculate the number of vehicles in the respective edge. This is performed using a

spatial sorting algorithm which works as follows

for e = 0 to E − 1 do

 for all particle in edge[e] do

 removeFrom(currentEdge, particle);

 addTo(destEdge, particle);

 end for

end for

Algorithm 3: Restructuring Edge Lists

Maintaining multiple lists for individual edges allows the calculation in a different edge to

continue in the GPU while rearrangement is being performed in an edge. This is essential to

maintaining the parallelization of the traffic congestion algorithm. This approach also enables

scalability as multiple instances of the simulation can work on simulating different regions of

the road network on different CPU and GPU without being dependent on the entire data.

There is one difficulty which requires a more elaborate approach to solve and that is when a

vehicle is moving from one edge in one instance of the program into another edge in a

different instance of the simulation. This problem has been solved by maintaining a global

list of edges and the instance id of the respective instance of the simulation where the edge

lies. This requires a bit more memory, but that is a small price to pay when compared with

the alternative of having to copy entire data from all instances and searching through all of

the data in order to reach the desired edge and then having to recopy the modified data into

all instances for updating. With the previous approach all that is necessary is to look through

the list of edges and update the necessary edge in the associated instance of the simulation in

order to maintain the road network. This approach saves valuable time as each lookup is only

Θ(n) whereas the alternative would have been Θ(n*i*e + n^2). The tendency of any given

vehicle to traverse any specific edge in the road network depends on the threshold of the

preference which is adjusted based on the number of times the vehicle traversed the route

over its congestion threshold. The congestion threshold is a measure of how much congestion

is tolerable by the vehicle before its preference for that particular road starts to drop. This

shows a general tendency for traffic to become distributed evenly over time.

There is inherently no complete path finding algorithm used in this simulation as the

mechanism of path finding algorithms does not allow for parallelization. However, this

problem has been approximated rather splendidly using greedy path following mechanisms

which tweak the preference threshold in order to make the vehicle traverse the required path.

CHAPTER 4

FINDINGS

This chapter describes the findings of the implementation of the research and provides

reasoning behind the findings. Firstly, a brief description of the implementation platform

followed by a detailed performance analysis.

4.1 Implementation Platform

Computer Parts Specifications

GPU Nvidia GeForce GTX 560

Dedicated Graphics Memory 1024 MB GDDR5

GPU Memory Interface 256-bit

CUDA Cores 336

GPU Processor Clock 1620MHz

GPU Memory Data Rate 4008 MHz

CPU Intel Core 2 Duo 2.50GHz

RAM 4.00 GB

Operating System Windows 8 (X64)

Table 1: Implementation Device Specification

 The above table shows the specification of the implementation device for the

simulation software. The software was run in this one single PC with a maximum road

network of 5000 nodes and 1,000,000 vehicles without any noticeable delay when utilizing

the parallel computing capabilities of the GPU. When run without using the GPU the

maximum node count remained unchanged, however the number of vehicles had to be

reduced to 100,000 to observe the same level of delay in the computation. Below is a graph

of Frame Update Time in sec vs. number of vehicles with and without using the GPU.

Figure 2: Comparison of frame update time against number of vehicles

Note that the computation time increase is rather irregular in the simulation using the GPU as

well while the CPU only simulation is following a rather standard Θ curve pattern. This

is because the computation time increase in GPU is only observed when all 336 cores are

overwhelmed with the number of threads entering and requires multiple iterations to compute

all threads. This increase is rather sudden as it only occurs when the number of iterations

increases as opposed to the Θ of the CPU.

0

0.5

1

1.5

2

2.5

3

Fr
am

e
 U

p
d

at
e

 T
im

e
 (

se
c)

No. of Vehicles

With GPU

Without GPU

Figure 3: Comparison of frame update time against number of Nodes

In this performance analysis, the number of vehicles were left at a constant of 5,000 while the

number of nodes were increased, the change in performance of both the simulations were

observed to be approximately O(n) since the computation at the nodes are bounded by the

number of CPU as there is no scope of parallelization in this context. So it is clearly evident

that unless parallelism is observed the performance gain from utilizing the GPU is minimal.

4.2 Detailed Performance Analysis

 The performance of the simulation depends on two major factors. The number of vehicles

and the number of road network nodes. The number of vehicles places stress on the GPU and

even though the vehicle movement and collision algorithm is Θ(n/k) where k is the number of

cores involved, the number of nodes has no impact on the GPU instead the number of nodes

will place the load entirely on the CPU and the algorithm for finding out the road density is

0

0.02

0.04

0.06

0.08

0.1

0.12

100 200 500

Fr
am

e
 U

p
d

at
e

 T
im

e
 (

se
c)

No. of Nodes

With GPU

Without GPU

Θ(n*m) where m is the number of nodes involved. This creates a bottleneck when the number

of nodes is increased in a single CPU. Since the approach specified in this paper enables

distributed computing, it is necessary to increase the number of CPU in the network in order

to improve the performance in the scenario of a large number of nodes. However, since the

number of vehicles does not place any load on the CPU and as it has been observed from

Figure 1, the increase in delay in case of GPU aided computing is much lower than that of the

standard CPU based computing, it has been observed that utilizing the parallelization

capability of the GPU does indeed improve the performance of the entire simulation process

without the need of too many computers in the distributed network.

CHAPTER 5

CONCLUSION AND FUTURE WORK

This chapter reflects upon the findings of the research and provides an insight on what can

be done to improve upon this research in the future.

5.1 Conclusion

 In this thesis it has been shown that using parallelization with the aid of GPU is in

fact a very practical solution in battling the need for high performance computing with lower

cost solutions, to this end, it has been shown in the performance analysis that only increasing

the number of cores in a GPU improves the computation time of distinct set of elements

while doing nothing for the performance of elements which are dependent on other data for

continuing the process. This shows that even though computation time can be improved with

the use of GPU we still cannot eliminate the need for distributed computing when

parallelization is of the utmost importance.

This thesis also shows how a traffic simulator can be made to work in a distributed

computing environment while also utilizing the parallelization capabilities of the GPU.

5.2 Future Work

 The simulator used in this research is more of a make-shift benchmarking tool than

an actual simulator. Since the purpose of this paper was to prove that using the parallelization

capabilities of the GPU enhances performance of processing large distinct instances of data, it

was beyond the scope of this thesis to create a fully functional traffic simulator. The

framework developed during this thesis can be further enhanced with added modules in order

to develop this simple benchmarking tool into a practical traffic simulation tool which has the

potential to be used as a tool for urban development planning. So, in light of such possibility

of improvement of the current software, future work involves improving the current simulator

with more functionality and more parameters in order to enable it to perform much more

functionalities. The simulator used in this thesis is also prone to error thanks to the number of

approximation algorithms used, it is also necessary to improve upon the margin of error and

provide more accurate results, so future work includes the development of the simulator as

well as optimizing the approximation algorithms used in order to come up with a fully

functional road traffic simulator.

REFERENCES

[1] Talal Al-Shihabi and Ronald R. Mourant. (2001). A framework for modeling

human-like driving behaviors for autonomous vehicles in driving simulators.

In Proceedings of the fifth international conference on Autonomous agents (AGENTS

'01). 286-291.

[2] Knowles, P. (2009). GPGPU based particle system simulation. School of

Computer Science and Information Technology RMIT University Melbourne,

Australia, 12(04), 55-58.

[3] Wikipedia. (2012). CUDA. Retrieved from http://en.wikipedia.org/wiki/CUDA

[4] H. Nguyen. GPU Gems 3. 2008.

[5] NVIDIA. NVIDIA CUDA - Programming Language. 2008.

