
Page | 1

(Thesis)

Faster and efficient algorithm for
sequence alignment

Nusaiba Islam

09201032

nusaiba.islam046@gmail.com

Supporting body:

Abu Mohammad Hammad Ali (Supervisor)

Farzana Rashid (Co-supervisor)

Department of Computer Science & Engineering

BRAC University

Page | 2

DECLARATION

I hereby declare that this thesis is based on the results found by myself. Materials

of work found by other researcher are mentioned by reference. This thesis, neither

in whole nor in part, has been previously submitted for any degree.

Nusaiba Islam

Id: 09201032

Dept: CSE

Supervisor:

Abu Mohammad Hammad Ali

Lecturer – III

hammad@bracu.ac.bd

BRAC University, Dhaka

Co – supervisor:

Farzana Rashid

Lecturer – I

BRAC University, Dhaka

Page | 3

ACKNOWLEDGMENT

First of all, I would thank our almighty ALLAH for everything.

Next, I would like to thank my supervisor, Abu Mohammad Hammad Ali, and co –
supervisor, Farzana Rashid, for their guidance and full support throughout my
work.

Page | 4

Contents:

Acknowledgment 3
Abstract 5
Introduction 6
Literature overview 7
Type of sequence alignment 7
Methods and algorithm for pairwise sequence alignment 8
Major algorithms 11
System details 13
Working with global alignment 16
Working with local alignment 21
Results 24
Output feedback 28
FASTA algorithm 29
My future work 29
Conclusion 30
References 31

Page | 5

ABSTRACT

In bioinformatics, a sequence alignment is a way of arranging the
sequences of DNA, RNA, or protein to identify regions of similarity if
two sequences in an alignment share a common ancestor, mismatches
can be interpreted as point mutations and gaps as indels. The goal of this
paper is to explore the computational approaches to sequence alignment
in a faster and optimal way. Two techniques that have been studied are
global alignment and local alignment. In this paper, I have used the idea
of both the alignment techniques separately. Each technique follows an
algorithm (Needleman – Wunsch algorithm for global alignment and
Smith – Waterman algorithm for local alignment) which helps in
generating proper optimal alignment accordingly. Multiple DNA
sequences are read and according to alignment type, the sequences are
matched.

Page | 6

Introduction:

Life on Earth originated and then evolved from a universal common ancestor

approximately 3.8 billion years ago. Repeated speciation and the divergence of life

has occurred throughout this time due to shared sets of biochemical and

morphological traits, or by shared DNA sequences. These homologous traits and

sequences are more similar among species that share a more recent common

ancestor, and can be used to reconstruct evolutionary histories, using both existing

species and the fossil record. Existing patterns of biodiversity have been shaped

both by speciation and by extinction. These similarities were mostly done by the

help of sequence alignment [2].

In bioinformatics, sequence alignment deals with the comparison of two or more

DNA, RNA and protein sequences with each other. The comparison is done

to identify regions of similarity that may be a consequence of functional, structural,

or evolutionary relationships between the sequences. i.e. the similarity shows that

the sequences share a common ancestral sequence, as a result similar sequences

have similar functionality. Such sequences are said to be homologous [1].

Sequence alignment turns out to be helpful while detecting and identifying known

genes or unknown genes, all sorts of mutations (insertion, deletion) i.e. detect the

DNA nucleotides responsible for the changes. Comparison against other known

protein sequences will help to understand the changed functionality and structural

arrangement. Sequence alignment plays an important role in drug design, its help

in detecting any abnormal changes in protein sequences to which the drug is

subjected. As a result proper drug can be designed with reduced side effects [3].

http://en.wikipedia.org/wiki/Speciation
http://en.wikipedia.org/wiki/Homology_(biology)
http://en.wikipedia.org/wiki/Phylogenetics
http://en.wikipedia.org/wiki/Tree_of_life_(biology)
http://en.wikipedia.org/wiki/Fossil_record
http://en.wikipedia.org/wiki/Biodiversity
http://en.wikipedia.org/wiki/Speciation
http://en.wikipedia.org/wiki/Extinction
http://en.wikipedia.org/wiki/Structural_biology
http://en.wikipedia.org/wiki/Evolution

Page | 7

Literature overview:

Information in [1] [3] helped me to understand the importance of sequence

alignment. Information in [1] shows the type of alignment method were used and

being used. [7] I learned the basic strategies used for aligning and finding

similarity. [9] Helped by highlighting the major factors to concentrate on while

aligning. [7][9][12] Explained the workings of both local and global alignment

algorithm. [8][10][12][13] Helped me learn the heuristic method FASTA

algorithm. By the help of these papers I have learned and built this system.

Types of sequence alignment:

There are several sequence alignment practiced in bioinformatics. The alignments

dealing with sequence arrangement of DNA or protein (primary structure) are:

1. Pairwise sequence alignment

2. Multiple sequence alignment

Pairwise sequence alignment methods are used to find the best-matching piecewise

alignments of two query sequences. Pairwise alignments can only be used between

two sequences at a time, but they are efficient to calculate and are often used for

methods that do not require extreme precision (such as searching a database for

sequences with high similarity to a query).

The three primary methods of producing pairwise alignments are dot-matrix

methods, dynamic programming, and word methods.

Multiple sequence alignment is an extension of pairwise alignment to incorporate

more than two sequences at a time. Multiple alignment methods try to align all of

the sequences in a given query set.

Page | 8

Methods and algorithms for pairwise sequence alignment:

Dot-matrix method

Dot-matrix representation is efficient to give an overall picture of discrete and/or

repeated regions of similarity between sequences. The sequences are arranged in 2

dimensional matrix and a dot is placed in any region of similarity. This method is

appropriate for comparing large sequences over 1000 residues. Also, sequences of

unknown similarity can be presented. The dot-matrix approach is qualitative and

conceptually simple, though time-consuming to analyze on a large scale. In the

absence of noise, it can be easy to visually identify certain sequence features—

such as insertions, deletions, repeats, or inverted repeats—from a dot-matrix plot.

The dot plots of very closely related sequences will appear as a single line along

the matrix's main diagonal.

Problems with dot plots:

Dot matrix doesn’t function well due to problems like noise, lack of clarity, non-

intuitiveness, difficulty extracting match summary statistics and match positions on

the two sequences. There is also much wasted space where the match data is

inherently duplicated across the diagonal and most of the actual area of the plot is

taken up by either empty space or noise, and, finally, dot-plots are limited to two

sequences.

Page | 9

Dynamic programming

Dynamic programming techniques are used in Needleman-Wunsch algorithm

which produces results of global alignment, and in Smith-Waterman algorithm

which produces results for local alignment.

∑ Global alignments attempt to align every residue in every sequence, and are

most useful when the sequences in the query set are similar and of roughly

equal size.

∑ Local alignments are more useful for dissimilar sequences that are

suspected to contain regions of similarity or similar sequence segment

within their larger sequence context.

Protein alignments use a substitution matrix to assign scores to amino-acid

matches or mismatches, and a gap penalty for matching an amino acid in one

sequence to a gap in the other. DNA and RNA alignments may use a scoring

matrix, but in practice often simply assign a positive match score, a negative

mismatch score, and a negative gap penalty.

Dynamic programming is efficient in aligning nucleotides or protein sequences

that may also contain frame shift mutation (mainly insertion or deletion). Its

ability to evaluate frame shifts offset by an arbitrary number of nucleotides

makes the method useful for sequences containing large numbers of indels

(insertion or deletion), which can be very difficult to align with more efficient

heuristic methods. The dynamic programming method is guaranteed to find an

optimal alignment given a particular scoring function; however, identifying a

good scoring function is often an empirical rather than a theoretical matter.

Although dynamic programming is extensible to more than two sequences, but

Page | 10

its functionality is prohibitively slow for large numbers of or extremely long

sequences.

Word methods

Word methods, also known as k-tuple methods, are heuristic methods that are not

guaranteed to find an optimal alignment solution, but are significantly more

efficient than dynamic programming. These methods are especially useful in large-

scale database searches where it is understood that a large proportion of the

candidate sequences will have essentially no significant match with the query

sequence.

Sequence alignment (Pairwise):

The basic idea behind aligning two sequences (which could be of different

length) is placing one sequence on top of the other and break them by inserting

spaces in one or the other sequences such that the identical subsequences are

aligned in one-to –one correspondence. The spaces are not inserted in the same

positions of the sequence at the same time. Eventually the sequences end up

with the same size. For example aligning sequence A = ACAAGACAGCGT

With sequence B = AGAACAAGGCGT.

A = A C A A G A C A G - C G T

| | | | | | | | |

B = A G A A C A - A G G C G T

The sequences are examined for all possible matches, there are total 9 matches,

mismatches occurs where the nucleotides don’t seem to match. In this example

the mismatches are marked green. The gaps are inserted so that the most

matching subsequences are in one-to-one correspondence.

http://en.wikipedia.org/wiki/Heuristic

Page | 11

Sequence A can be transformed to sequence B by following three steps:

1. Substitution: the mismatch in regarded as substitution.

2. Insertion: the gap in sequence A is the insertion of character from

sequence B.

3. Deletion: the gap in sequence B is the deletion of character from

sequence A.

Each of these steps is assigned with a score. After completing the alignment the

overall score is calculated. Matches are rewarded positively where as mismatch

and gaps are assigned with negative value. The similarity of the sequences can be

defined as the best score among all possible the alignment. In this example the

score would be 9.(1) + 2.(0) + 2.(-1) = 7.

DNA nucleotide matches are assigned with fixed score but scoring system is

different from protein. Each amino acid matches or mismatches are scored

differently. This scoring system is known as alphabet - weight scoring system and

is implemented by substitution matrix.

Major algorithms:

Needleman-Wunsch algorithm

The standard global alignment algorithm, referred to as Needleman-Wunsch after

its original authors. The algorithm computes the similarity between two sequences

A and B of lengths m and n, respectively, using a dynamic programming approach.

Dynamic programming is a strategy of building a solution gradually using simple

recursion. The key observation for the alignment problem is that the similarity

between sequences A [1..n] and B[1..m] can be computed by taking the maximum

of the three following values:

Page | 12

• The similarity of A[1..n −1] and B[1..m −1] plus the score of substituting A[n]

for B[m];

• The similarity of A[1..n −1] and B[1..m] plus the score of deleting aligning A[n];

i.e. adding a gap to A.

• The similarity of A[1..n] and B[1..m −1] plus the score of inserting B[m]. i.e.

adding a gap to B.

Smith-Waterman

Local alignment is defined as the problem of finding the best alignment between

substrings of both sequences. In 1981, T. F. Smith and M. S. Waterman showed

that a local alignment can be computed using essentially the same idea employed

by Needleman and Wunsch. The main difference is that M [i, j] contains the

similarity between suffixes of A[1..i] and B[1..j]. As a result, the recurrence

relation is slightly altered because an empty string is a suffix of any sequence and,

therefore, a score of zero is always possible. The formula for computing M [i, j]

becomes:

M [i, j] = max {0;

M [i −1, j −1] + sub (A[i], B[j]);

M [i −1, j] + del (A[i]);

M [i, j −1] + ins (B[j]) }

Another important distinction is that the score of the best local alignment is the

highest value found anywhere in the matrix. This position is the starting point for

retrieving an optimal alignment using the same procedure described for the global

alignment case. The path ends, however, as soon an entry with score zero is

reached. It is trivial to see that the Smith-Waterman algorithm has the same time

and space complexity as the Needleman-Wunsch.

Page | 13

System details:

This system is based on pairwise sequence alignment. The system will take

multiple inputs of sequences at once and align each combination of sequences. The

DNA sequences are recorded in a csv file. This file is read as inputs and the

outputs are generated accordingly.

The system depends on few major factors listed below:

1. Type of sequence: input sequences are DNA sequences only.

2. Alignment : the sequences will be matched in one –to-one manner such that

each character in a pair is associated with a single character or a gap

3. Alignment score: it’s a numerical value that will describe the overall

quality of an alignment. The alignment with highest score is the alignment

with highest similarity.

4. Match value: the homologous character in a pair is rewarded with match

value. In case of DNA sequence match value is set as 1.

5. Mismatch value: the pair of different characters in a homologous position is

stated as a mismatch and a mismatch value is added instead. In case of DNA

sequence mismatch value is set as 0.

6. Gap: absence of a homologous character in either sequence could be a

reason of deletion in the comparing sequence or an insertion in the sequence

to which it is compared to. In either case a gap is added and a value of -1 is

added to the score.

The alignment of the sequences are done by using two aligning method.

Page | 14

Global alignment

This method aligns the pair of sequences from end to end. The entire length of the

sequence is taken into account. An optimal score is calculated from the matrix

formed using the maximum similarity of each character using match, mismatch

and gap penalty values of the sequences. The optimal alignment is achieved by

trace back of the matrix.

Input sequences: ACAAACACG and AGAAAGGG (two sequence of DNA taken

from e.coli bacteria)

Global alignment output :

Fig.1

Page | 15

Local alignment

This method aligns only a subsequence of the given pair of sequences. The region

with highest match density is given priority than the rest of the sequences. The

alignment can start and end in any region of the sequence and only the best

matching portion is aligned. A matrix is filled using the maximum similarity score

for each pair of character. The resultant subsequences are generated by tracing

back of the matrix starting from the maximum score till it reaches zero.

The same sequences tested for global alignment is used for local alignment.

Input: seq1 = ACAAACACG

Seq2 = AGAAAGGG

Highest match density

Output:

Fig .2

Page | 16

Working with global alignment:

The global alignment is achieved by using dynamic programming algorithm

designed by Needleman – Wunsch.

The following recurrence is derived from the Needleman-Wunsch algorithm

description:

sim (A[1..i], B[1..j]) = max { sim (A[1..i −1], B[1..j −1]) + sub (A[i], B[j]);

sim (A[1..i −1], B[1..j]) + del (A[i]);

sim (A[1..i], B[1..j −1]) + ins (B[j]) }

∑ sim(A,B) : gives the similarity of sequence A and B.

∑ sub (A,B): gives the match or mismatch score.

∑ del (A,B): gives the score of adding a gap for a deleted character.

∑ ins (A,B): gives the score of a gap when a character is inserted.

This recurrence generates sets of values. To store this value and work with the

recursion, a matrix is created of size (m+1) * (n+1).

Both row and column length is incremented by 1 because of an extra gap (-)

character. Initially the matrix is filled with zeroes.

E.g. - A T C G

- 0 0 0 0 0

A 0 0 0 0 0

T 0 0 0 0 0

G 0 0 0 0 0

C 0 0 0 0 0

Page | 17

Then a scoring value is set for characters by comparing them with the gap index.

Gap = -1

The first row is filled with j*gap and the first column is filled with i*gap value.

Eg.

The gap score is added to the first row and column to show that there are

possibilities for the all the characters to be replaced by gaps. The gaps may appear

consecutively in either sequence and the scores represent the number of added

gaps.

The system reads multiple inputs and takes two sequences for comparison at a

time. Considering the following sequence of DNA taken from E.coli bacteria as

inputs:

Sequence 1 = ACAAACACG length=9

Sequence 2 =AGAAAGGG length = 8

The system creates a matrix of size (9 + 1) * (8 + 1). As shown above the matrix is

first filled with zeroes and then the first row and column is filled with gap scores.

- A T C G

- 0 -1 -2 -3 -4

A -1 0 0 0 0

T -2 0 0 0 0

C -3 0 0 0 0

G -4 0 0 0 0

Page | 18

The rest of the cells are filled by the following recurrence:

M [i.j] = max {M [i −1, j −1] + sub (seq1[i], seq2[j]),

M [i −1, j] + gap, **deletion from sequence 1

M [i, j −1] + gap} **insertion in sequence 2

Scoring matrix filled using the above recurrence.

- A 1 G 2 A 3 A 4 A 5 G 6 G 7 G 8

- 0 -1 -2 -3 -4 -5 -6 -7 -8

A -1 1 0 -1 -2 -3 -4 -5 -6

C -2 0 1 0 -1 -2 -3 -4 -5

A -3 -1 0 2 1 0 -1 -2 -3

A -4 -2 -1 1 3 2 1 0 -1

A -5 -3 -2 0 2 4 3 2 1

C -6 -4 -3 -1 1 3 4 3 2

A -7 -5 -4 -2 0 2 3 4 3

C -8 -6 -5 -3 -1 1 2 3 4

G -9 -7 -5 -4 -2 0 2 3 4

The diagonal area of the matrix carries the optimal alignment result. Once the

matrix is formed, the trace back starts from the right most end corner, which is also

the maximum optimal alignment score.

The backward trace direction depends on:

∑ Score of the current cell i.e. M [i , j] where i and j are the lengths of the

sequences.

Page | 19

∑ Score of diagonal cell i.e. M [i-1 , j-1]. (match or mismatch)

∑ Score of up cell i.e. M[i-1, j] (deletion in sequence 1)

∑ Score of left cell i.e. M[i , j-1] (insertion in sequence 2)

As shown previously, each cell is filled by the maximum of the three conditions

i.e. substitution, deletion, insertion. Therefore, the current score is the maximum of

the three conditions. As a result:

1. If score is equal to diagonal cell plus substitution score of the current

characters, then the arrow moves diagonally.

2. If the score is equal to up cell plus a gap, the arrow moves up and a gap is

placed in sequence 2

3. If the score is equal to left cell plus a gap, the arrow moves to left and a gap

is added to sequence 1.

System output:

Fig.3

The sequences are read and a matrix is created. The scores are found using

the Needleman – Wunsch recurrence.

Page | 20

The matrix is traced starting from the maximum score.

Fig.4

The traced path shows the indices

of the matrix that is traced. Along

with the traced indices, gapping of

both the sequences is generated at

every traced cell.

Aligned sequences are generated with

appropriate gaps.

Fig.5

Finally the sequences are represented as shown below:

Fig .6

Page | 21

Working with Local Alignment:

Local alignment corresponds to find the best global alignment within subsequences

of the input sequences. Only the alignments with score zero and higher are

considered. Local alignment is achieved by using Smith – Waterman algorithm.

Similar to the global alignment, the matrix is filled by maximum score of

substitution, insertion, deletion and zero.

Smith – Waterman algorithm:

M [i , j] = max { 0,

M [i −1, j −1] + sub (seq1[i], seq2[j]),

M [i −1, j] + gap, **deletion from sequence 1

M [i, j −1] + gap} **insertion in sequence 2

The system takes in the sequences and creates a matrix just like global alignment.

Similarly, the matrix is first filled with zero. Since local alignment deals with

scores that is zero and higher, unlike global alignment the first Row and column is

not filled with gap value.

Input sequences:

Sequence 1 = ACAAACACG

Sequence 2 = AGAAAGGG

Once the matrix is filled, it is searched for the maximum score. The corresponding

indices of the maximum score are used for the trace back. A working matrix along

with the scores for the given sequences is shown below.

Page | 22

Matrix representation:

- A G A A A G G G

- 0 0 0 0 0 0 0 0 0

A 0 1 0 1 1 1 0 0 0

C 0 0 1 0 1 1 1 0 0

A 0 1 0 2 1 2 1 1 0

A 0 1 1 1 3 2 2 1 1

A 0 1 1 2 2 4 3 2 1

C 0 0 1 1 2 3 4 3 2

A 0 1 0 2 2 3 3 4 3

C 0 0 1 1 2 2 3 3 4

G 0 0 1 1 1 2 3 4 4

The matrix is searched till it reaches to last cell that carries the highest score. In

this case the max score is 4 and its indices are [5 , 5]. The trace back start from

the given indices and the best tracked path is calculated using the Smith –

Waterman recurrence, similar to Needleman – Wunsch.

Traced path is exactly diagonal, showing that the subsequences are matched and no

gaps are added. The system output will give a better explanation.

Page | 23

System output:

The system reads the sequences and generates a matrix using the Smith –

Waterman algorithm.

Fig .7

The trace back start from the given indices and the subsequences of highest match

density is generated.

Fig .8

Page | 24

Results:

The systems are tested by using multiple inputs of DNA sequences of E.coli

bacteria. The original alignment data of the sequences were collected using

NEOBIO. This original data helped me to compare the system outputs and check

the accuracy.

The input sequences are as follows:

Global alignment

Sequences System output Original data

ACAAACACG
AGAAAGGG
AGAAAGGC
AGAAAGGGA
AAAAATAATAAAA
ATAAACTTAATAATAAAA

Page | 25

Score: All the scores of aligned sequences done by the system are same as the
original aligned scores.

Match and mismatch: number of match and mismatches in tested outputs are
same as those of original data.

Number of gaps: Numbers of gaps added are also same to that of original data.

Page | 26

**Position of gaps: 10 out of 15 outputs acquired by the system show different

gap position, although the score and number of gaps are same as that of original

data.

The global alignment system outputs show different position of gaps in most of the

sequences. This could be due to trace back values. Since the gap addition depends

on tracing path and also on the score values, the score calculated may have differed

from that of the original data.

Local alignment
Sequences System output Original data

Page | 27

Scores: the generated scores of the system match all the scores of original data.

Subsequence: the length and characters of the subsequences generated by the
system is same as the original data.

Gap: similar to the original value. No gaps were added to the subsequences.

Match and mismatch: number mismatch and matches are same as the original
value.

The above data explains that this system gives the same output as given in original

data. We can say that the local alignment system is working correctly and is able to

generate outputs with 100% accuracy.

Page | 28

Output feedback:

The original data was generated by NEOBIO software which is designed by using

JAVA, but I have used PYTHON to work with these algorithms. Although in

performance, JAVA works faster than PYTHON, but it is much easier to develop

in PYTHON. My system showed no delay to generate the same output as that

through NEOBIO. It is successful in reading multiple lengths of DNA sequences

and generating optimal alignment efficiently.

Difficulties:

I have used the basic match values instead of substitution matrices mentioned in

several papers. I tried using BLOSUM62 substitution matrix which contains the

different match values for different nucleotide alignment as well as protein

alignment. My system was unable to read this matrix; if it would have worked then

the system could have taken protein sequences as inputs. I wanted to write the

outputs to a text file also, but every time the system was run it generated blank text

output, although the system was running correctly.

There was always an issue about choosing an efficient medium or optimal medium.

As both efficiency and optimality doesn’t work side by side, there is always a

choice to be made between these two factors when it comes to large sequence

query. After Needleman – Wunsch and Smith – Waterman algorithms, FASTA and

BLAST algorithms were introduced. These algorithms are intended to give a faster

result but it may lack in optimality.

Page | 29

FASTA algorithm:

Several studies and researches show that a large amount of sequences would

require more time to generate optimal output. This issue is handled by FASTA

algorithm.

In FASTA algorithm, a fixed k length of substrings of highest similarity is chosen.

Each query substrings are then matched with the substrings with highest similarity.

These substrings of highest similarity would give a diagonal match when

represented in a matrix. FASTA creates a hash table of k tuples and stores the

location of all k – tuples into the table. This helps in retrieving the location of the

matching substrings and marks its position in matrix. The algorithm then identifies

ten highest diagonal by the help of the marked position and calculate the diagonal

score by adding a positive value for each marked match. The rest of the sequences

are discarded. These highest scoring segments are scored again using a substitution

matrix or basic match techniques. The segments with score less than threshold are

discarded again.

Finally, these segments are placed in the matrix and local alignment algorithm is

run. The characters missing between the segments are replaced by gaps and gap

penalty is added. This results in a final optimally aligned sequence.

My future work:

I have worked with the techniques of Needleman – Wunsch and Smith – Waterman

algorithm which gives an optimal output for specific length of DNA sequences. In

future I will try to use heuristic method (FASTA) along with this algorithm which

would give optimal output for large amount of sequences efficiently.

Page | 30

Conclusion:

In this thesis, the methods of aligning DNA sequences optimally and relatively

efficiently are studied. It shows that, by the help of dynamic programming and its

techniques several DNA sequences with defects or vague identity could be

recognized by aligning with existing genetic data. In bioinformatics, sequence

alignment of such type is greatly required for generating correct outputs. As I have

mentioned, aligning plays an important role in drug design, forensics, DNA defects

etc. The demand for faster and optimizing algorithm would also be at high peak for

bioinformatics due to increasing need of better drugs and treatment. This proposed

system is built using the algorithms proposed in early 80’s and many software are

using these algorithm for alignment. It takes in several sequences of DNA and runs

an alignment test, gives the output along with the matrices and traced path. For

both global and local alignment the output score matches and number of gaps are

correct as the original data, only few sequences show different gap positions. In

totality, this system successfully generated properly aligned sequences efficiently.

Page | 31

References:

1. http://en.wikipedia.org/wiki/Sequence_alignment#Structural_alignment

2. http://en.wikipedia.org/wiki/Evolution

3. http://en.wikipedia.org/wiki/Bioinformatics

4. http://ksvi.mff.cuni.cz/~mraz/bioinf/BioAlg10-8.pdf

5. http://www.cs.helsinki.fi/bioinformatiikka/mbi/courses/07-

08/itb/slides/itb0708_slides_83-116.pdf

6. http://intl-bib.oxfordjournals.org/content/11/5/473.full.pdf

7. http://iic.arizona.edu/static/resources/2010/07/02/SequenceAlignment.pdf

8. http://bioinformatics.oxfordjournals.org/content/14/1/25.abstract

9. http://www.people.usi.ch/baludam/projects/ALiBio/Thesis_Baluda_Mauro.p

df

10.http://www.cmb.usc.edu/papers/msw_papers/msw-053.pdf

11.http://neobio.sourceforge.net/

12.http://biochem218.stanford.edu/Projects%202004/Chan.pdf

13.http://www.cs.tau.ac.il/~rshamir/algmb/98/scribe/pdf/lec03.pdf

14.http://www.itu.dk/people/sestoft/bsa.html

15.http://blogs.infoecho.net/echo/2011/04/10/how-to-implement-the-

needleman%E2%80%93wunsch-alignment-algorithm-without-using-a-

single-loop-in-python/

16.http://www.codesofmylife.com/2011/04/10/needleman-wunsch-algorithm-

for-global-sequence-alignment-in-python/

17.http://code.google.com/p/gal2009/source/browse/trunk/app/GalServer/src/m

ain/java/gal/needleman/wunsch/NeedlemanWunsch.java?r=22

18.http://www.seas.gwu.edu/~rhyspj/fall09cs144/lab3/lab34.html

19.http://www.ibm.com/developerworks/java/library/j-seqalign/index.html

http://en.wikipedia.org/wiki/Sequence_alignment#Structural_alignment
http://en.wikipedia.org/wiki/Evolution
http://en.wikipedia.org/wiki/Bioinformatics
http://ksvi.mff.cuni.cz/~mraz/bioinf/BioAlg10-8.pdf
http://www.cs.helsinki.fi/bioinformatiikka/mbi/courses/07-08/itb/slides/itb0708_slides_83-116.pdf
http://www.cs.helsinki.fi/bioinformatiikka/mbi/courses/07-08/itb/slides/itb0708_slides_83-116.pdf
http://intl-bib.oxfordjournals.org/content/11/5/473.full.pdf
http://bioinformatics.oxfordjournals.org/content/14/1/25.abstract
http://www.people.usi.ch/baludam/projects/ALiBio/Thesis_Baluda_Mauro.pdf
http://www.people.usi.ch/baludam/projects/ALiBio/Thesis_Baluda_Mauro.pdf
http://www.cmb.usc.edu/papers/msw_papers/msw-053.pdf
http://neobio.sourceforge.net/
http://biochem218.stanford.edu/Projects%202004/Chan.pdf
http://www.cs.tau.ac.il/~rshamir/algmb/98/scribe/pdf/lec03.pdf
http://www.itu.dk/people/sestoft/bsa.html
http://blogs.infoecho.net/echo/2011/04/10/how-to-implement-the-needleman%E2%80%93wunsch-alignment-algorithm-without-using-a-single-loop-in-python/
http://blogs.infoecho.net/echo/2011/04/10/how-to-implement-the-needleman%E2%80%93wunsch-alignment-algorithm-without-using-a-single-loop-in-python/
http://blogs.infoecho.net/echo/2011/04/10/how-to-implement-the-needleman%E2%80%93wunsch-alignment-algorithm-without-using-a-single-loop-in-python/
http://www.codesofmylife.com/2011/04/10/needleman-wunsch-algorithm-for-global-sequence-alignment-in-python/
http://www.codesofmylife.com/2011/04/10/needleman-wunsch-algorithm-for-global-sequence-alignment-in-python/
http://code.google.com/p/gal2009/source/browse/trunk/app/GalServer/src/main/java/gal/needleman/wunsch/NeedlemanWunsch.java?r=22
http://code.google.com/p/gal2009/source/browse/trunk/app/GalServer/src/main/java/gal/needleman/wunsch/NeedlemanWunsch.java?r=22
http://www.seas.gwu.edu/~rhyspj/fall09cs144/lab3/lab34.html
http://www.ibm.com/developerworks/java/library/j-seqalign/index.html

Page | 32

tools

20.http://bioinformatics.igc.gulbenkian.pt/resources/tools/sequenceanalysis/

21.http://hari.hyderabadatoz.com/Bioinf_tools_soft.html

22.http://dna.engr.uconn.edu/?page_id=110

23.http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/

24.http://www.mybiosoftware.com/alignment/2732

python

25.http://www.ibm.com/developerworks/java/library/j-seqalign/index.html

26.http://docs.python.org/2/tutorial/appetite.html

27.http://www.google.com/search?client=opera&q=waterman+smith+algorithm

+for+local+alignment+in+python&sourceid=opera&ie=utf-8&oe=utf-

8&channel=suggest

28.http://docs.python.org/2/library/index.html#library-index

29.http://stackoverflow.com/questions/12666494/how-do-i-decide-which-way-

to-backtrack-in-the-smithwaterman-algorithm

30.http://www.codesofmylife.com/2011/05/13/smith-waterman-algorithm-for-

local-alignment-in-python/

31.http://en.wikipedia.org/wiki/Hidden_Markov_model

32.http://en.wikipedia.org/wiki/Gap_penalty

33.http://home.wlu.edu/~lambertk/pythontojava/

34.http://docs.python.org/2/reference/index.html#reference-index

35.https://github.com/kevinakwok/bioinfo/blob/master/Smith-Waterman/smith-

waterman.py

http://bioinformatics.igc.gulbenkian.pt/resources/tools/sequenceanalysis/
http://hari.hyderabadatoz.com/Bioinf_tools_soft.html
http://dna.engr.uconn.edu/?page_id=110
http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
http://www.mybiosoftware.com/alignment/2732
http://www.ibm.com/developerworks/java/library/j-seqalign/index.html
http://docs.python.org/2/tutorial/appetite.html
http://www.google.com/search?client=opera&q=waterman+smith+algorithm+for+local+alignment+in+python&sourceid=opera&ie=utf-8&oe=utf-8&channel=suggest
http://www.google.com/search?client=opera&q=waterman+smith+algorithm+for+local+alignment+in+python&sourceid=opera&ie=utf-8&oe=utf-8&channel=suggest
http://www.google.com/search?client=opera&q=waterman+smith+algorithm+for+local+alignment+in+python&sourceid=opera&ie=utf-8&oe=utf-8&channel=suggest
http://docs.python.org/2/library/index.html#library-index
http://stackoverflow.com/questions/12666494/how-do-i-decide-which-way-to-backtrack-in-the-smithwaterman-algorithm
http://stackoverflow.com/questions/12666494/how-do-i-decide-which-way-to-backtrack-in-the-smithwaterman-algorithm
http://www.codesofmylife.com/2011/05/13/smith-waterman-algorithm-for-local-alignment-in-python/
http://www.codesofmylife.com/2011/05/13/smith-waterman-algorithm-for-local-alignment-in-python/
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/Gap_penalty
http://home.wlu.edu/~lambertk/pythontojava/
http://docs.python.org/2/reference/index.html#reference-index
https://github.com/kevinakwok/bioinfo/blob/master/Smith-Waterman/smith-waterman.py
https://github.com/kevinakwok/bioinfo/blob/master/Smith-Waterman/smith-waterman.py

