
Analyzing Software Quality and
Maintainability in Object-Oriented Systems

using Software Metrics

Submitted by

Faria Tasim
24341110

Farib Md. Ferdoush
24341120

Salequzzaman Khan
20101330

Mahdi Islam
20101326

Fatema Haque
20101415

A thesis submitted to the Department of Computer Science and
Engineering in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
October 2024

© 2024. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing a degree
at Brac University.

2. The thesis does not contain material previously published or written
by a third party, except where this is appropriately cited through full
and accurate referencing.

3. The thesis does not contain material which has been accepted, or sub-
mitted, for any other degree or diploma at a university or other insti-
tution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Faria Tasnim
24341110

Farib Md. Ferdoush
24341120

Salequzzaman Khan
20101330

Mahdi Islam
20101326

Fatema Haque
20101415

i

Approval

The thesis titled “Analyzing Software Quality and Maintainability in Object-
Oriented Systems using Software Metrics” submitted by

1. Faria Tasim ID: 24341110

2. Farib Md. Ferdoush ID: 24341120

3. Salequzzaman Khan ID: 20101330

4. Mahdi Islam ID: 20101326

5. Fatema Haque ID: 20101415

Summer, 2024 has been accepted as satisfactory in partial fulfillment of
the requirement for the degree of B.Sc. in Computer Science on October 17,
2024.

Examining Committee:
Supervisor:
(Member)

Mr. Md. Aquib Azmain
Lecturer

Department of Computer Science and Engineering
Brac University

Program Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Ethics

We formally announce the outcomes of our research to be in favor of this
concept. This study, on its whole, is devoid of plagiarism. The source ma-
terial includes citations for any additional information sources. To award a
degree, this thesis has not been submitted, in whole or in part, to any other
institution or organization.

iii

Abstract

Effective evaluation of software quality and maintainability is compulsory for
successful object-oriented system development, and the potential of software
metrics in achieving these goals are investigated in this research. To evaluate
the quality of software, this research employs software metrics to identify po-
tential errors and weaknesses in object-oriented systems. This analysis has
been conducted by us in the Python programming language. We have applied
machine learning techniques to different software metrics to analyze the issues
consistently, which has evaluated the effectiveness and long-term feasibility
of the system. Lastly, this study establishes a foundation for future advance-
ments in software quality assurance, demonstrating the significant benefits
of integrating machine learning with traditional quality measurements to en-
hance the predictability and reliability of object-oriented systems.

Keywords: LOC (Lines of Code), Comment Percentage, Cyclo-
matic Complexity (CC), Weighted Methods per Class (WMC),
Access to Foreign Data (ATFD), Response For a Class (RFC)

iv

Dedication

Every challenging endeavor demands our elders, especially the ones closest to
our hearts, to put forth personal effort and support. In addition to all of the
exceptional academics we encountered and learned from while pursuing our
bachelor’s degrees, and especially our cherished supervisor, Dr. Md. Aquib
Azmain, we dedicate our efforts to our loving parents, whose love, devotion,
motivation, and nightly prayers have made us deserving of this achievement
and honor.

v

Acknowledgement

Firstly, all praise to the Great Allah for whom our thesis have been completed
without any major interruption. Secondly, to our supervisor Md. Aquib Az-
main sir for his kind support and advice in our work. He helped us whenever
we needed help. Finally, to our parents without their continued support it
may not be possible. With their kind support and prayer we are now on the
verge of our graduation.

vi

Contents

Declaration i

Approval ii

Ethics iii

Abstract iv

Dedication v

Acknowledgement vi

Contents vii

List of Figures ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Objectives . 3

2 Literature Review 5
2.1 Application of machine learning algorithms for code smell pre-

diction using object-oriented software metrics 5
2.2 Survey on Impact of Software Metrics on Software Quality . . 6
2.3 Comparative Study of the Software Metrics for the Complexity

and Maintainability of Software Development 7
2.4 Effectiveness of software metrics for object-oriented system . 8
2.5 The Effects of Software Size on Development Effort and Soft-

ware Quality . 9
2.6 Maintainability of Object-Oriented Software Metrics with An-

alyzability . 10

vii

2.7 Study on Software Quality Factors and Metrics to Enhance
Software Quality Assurance 11

2.8 Predicting Code Smells and Analysis of Predictions: Using
Machine Learning Techniques and Software Metrics. 11

2.9 Object-Oriented Software Quality Metrics 12
2.10 Comparison of Related Studies 13

3 Detailed Description of the Developed Tool or Python Script 14
3.1 Libraries used . 14
3.2 Breaking down the script to achieve the desired outputs for

the research . 16
3.3 Script Execution Process . 22

4 Comparison of Our Custom Python Tool with Open source
Python libraries Online (Pylint and Radon) 24
4.1 Pylint . 24
4.2 Radon . 25
4.3 Our Custom Python Tool . 26
4.4 Comparative Analysis . 26

5 Description Of The Models 30

6 Description of the Data 31

7 Preliminary Analysis 33
7.1 Initial Data Analysis . 33

7.1.1 Relationships Between Number of Developers, Com-
ment Percentage, and Project Duration 33

7.1.2 Relationships Between Complexity Metrics and LOC . 35
7.2 Applications of Regression Models 38

8 Work Plan 42

9 Conclusion 44

Bibliography 45

viii

List of Figures

3.1 Download and unzip GitHub repository 17
3.2 Analyze and create Excel Function 18
3.3 Analyze Python files and create an excel function 19
3.4 Extract comments methods function 20
3.5 Calculate atfd function . 20
3.6 Calculate wmc function . 21
3.7 Calculate rfc function . 21

4.1 Pytint . 25
4.2 Radon . 26

6.1 Summary of the repositories 32
6.2 First few lines of the dataset 32

7.1 Pair Plot of Number of Developers, Comment Percentage, and
Project Duration . 34

7.2 Correlation Heatmap of Number of Developers,Project Dura-
tion, and Comment Percentage 35

7.3 Pair Plot of WMC, RFC, ATFD, and LOC 36
7.4 Correlation Heatmap of WMC, RFC, ATFD, and LOC 37
7.5 Comparison of Model Performance (MSE) 40
7.6 Comparison of Model Accuracies (R-squared) 40

ix

Chapter 1

Introduction

Evaluating software quality and maintainability is really important for object-
oriented systems to succeed in the long term. The implementation of struc-
tured object-oriented design and programming has becoming the most widely
used paradigm in today’s software systems [6]. As systems become more com-
plex, manual assessment becomes increasingly challenging. This highlights
the necessity for automated methods using software metrics to identify issues
that can undermine quality over time. One essential aspect of quality anal-
ysis involves detecting code smells, which are warning signs of deeper design
problems that can complicate code comprehension and maintenance. This
research focuses on utilizing metrics to automatically detect code smells in
Python programs.

We focus our study on object-oriented Python projects, as Python has
gained tremendous popularity in recent years. Numerous static and dynamic
metrics will be collected, including lines of code, weighted methods per class,
response for Class etc. Our current project focuses on making our analysis
more comprehensive by including metrics that consider dynamic aspects. We
aim to improve the detection of code smells by integrating these metrics with
machine-learning models. Enhanced automated analysis will help developers
keep code clean, understandable, and maintainable as complexity increases
over time.

1.1 Motivation

Software development aimed at quality, maintenance, and being standard is
what the developers are expected to pursue. By being able to peer into the
heartland of software metrics, it is there that we explore the comprehensive
framework of object-oriented systems, containing all the information that

1

we need to develop, build, and maintain software in a different way. By
identifying weaknesses, indicating places of viable growth, and at the same
time creating more comprehensive systems, critical analysis and evaluations
can be done. This process not only adds credibility and increases the per-
formance of our product but also changes us by generating solutions that
are scalable, long-lasting, and reliable. The trouble with the application of
software metrics in the assessment and sustainability of software quality and
maintenance is more than what we do; it is the experience that transforms
our living into a superior state provided by the information technology sector
within the field of software engineering.

Software technology everywhere covers infrastructure and end-user ap-
plications as well as many other fields of technological life with a continual
development pace. The quality of the software can be rather determined by
a customer satisfaction experience, reliability, and performance. First-class
software must be reliable, right, and secure, which means that operations
always be accurate and effective. Software quality analysis management of-
fers reduce on maintenance costs, performance improvement and identifying
(actual) problems at the early level of programming.

Another key factor is maintainability, which is also a standalone charac-
teristic of high-quality software. It implies that ongoing maintenance and
modification processes in software make it an easy and affordable task for
a software system administrator to correct flaws, add new features, or re-
ceive environmental change. Every frequency as software systems grow in
complexity, maintenance costs rise, too. Through utilization of understand-
ing and improvement on maintainability, companies would eventually realize
cost savings over the long-term period.

1.2 Problem Statement

The problem revolves around assessing software quality and maintainability
effectively in complex object-oriented systems, where manual evaluations are
impractical due to project complexity. Neglecting these factors can result in
a decrease in system dependability and an increase in technical debt. The
long-term health of the system depends on human assessors being able to
recognize code smells, which are subtle signs of possible issues. The major
problem is that assessing software quality and maintainability, along with
systematic code smell identification, requires automated methods. Due to
their complex class hierarchies and encapsulation, object-oriented systems
are particularly vulnerable to this issue. Lines of code and cyclomatic com-
plexity are two conventional metrics that could not offer a complete picture of

2

program quality. The study becomes more difficult when dynamic measure-
ments are included and runtime behavior is taken into account. To solve this,
we provide a methodical software metric-gathering approach that includes
both static and dynamic measurements.Static metrics, such as code complex-
ity, cohesion, coupling, and modularity, provide insights into the structure
and interdependencies within the code. Dynamic metrics consider runtime
behaviour and performance, offering a more comprehensive understanding
of how the software operates in real-world conditions. By using machine
learning,it ensures consistent detection and practical relevance. Comparing
performance to industry benchmarks makes it easier to assess performance,
pinpoint problem areas, and suggest best practices. Practical relevance is
ensured by real-world validation using metrics on existing object-oriented
systems. Last but not least, we want to incorporate new knowledge into how
software is developed, encouraging best practices and raising the standard of
software and its capacity to be maintained in object-oriented systems.

1.3 Research Objectives

Evaluate Software Quality using Metrics: The essential goal is to utilize
programming to evaluate and quantify software quality in object-oriented
systems. This includes examining metrics connected with code complexity,
cohesion, coupling, and other important markers to acquire bits of knowledge
about the nature of the product.

Assess Maintainability using Metrics: To assess the drawn-out maintain-
ability of article-based systems, different software maintainability will be uti-
lized. This evaluation incorporates analyzing metrics connected with code
modularity, reusability, readability, and maintainability to distinguish regions
for development.

Identify Correlations between Metrics and Quality Attributes: This in-
cludes laying out connections between software metrics and explicit qual-
ity attributes dependability, effectiveness). By relating metrics with noticed
quality attributes, we mean to comprehend what programming plan decisions
mean for software quality and maintainability.

Benchmarking and Comparative Analysis: Lead a benchmarking investi-
gation by looking at the metrics obtained from object-oriented systems with
established industry benchmarks. This takes into consideration a relative
analysis of the software’s quality and maintainability against industry stan-
dards, enabling a better understanding of its performance.

Recommendations for Improvement: In light of the analysis and findings,
propose recommendations and best practices for further developing software

3

quality and viability in object-oriented programming. These proposals will be
drawn from the recognized connections among metrics and quality attributes.

validation through Case Studies Approve the proposed metrics and anal-
ysis approach through real-world object-oriented systems. This objective en-
sures the relevance and adequacy of the distinguished metrics in real-world
scenarios.

Integrate Findings into Software Development Practices: Give rules on
how the insights obtained from the analysis can be into software development
processes into software development processes. This coordination intends to
further develop the improvement works, leading to better software quality
and maintainability.

4

Chapter 2

Literature Review

2.1 Application of machine learning algorithms

for code smell prediction using object-

oriented software metrics

Agnihotri et al. (2020) [1] identified the value of utilizing machine learning
to recognize code smells in Java systems. The initial purpose is to facil-
itate software quality improvements and to reduce the effort required for
software maintenance by detecting code smells, which are potential defects
in the code. The study employs an extensive range of software metrics and
machine-learning approaches to assist developers in comprehending source
code quality. One of the most important issues is the thorough description
of the particular code smell types including the detailed analysis and predic-
tion results and rules of the God Class and Feature Envy code smell types [1].
This comes in very handy to provide better clarity towards quality defects
in Java projects.

As far as both are related to the ongoing research there are several obvious
parallels. The two studies reaffirmed the criticality of software metrics in
determining software quality and its maintainability. They also align with
their belief that the more complex software systems are, it is necessary to
automate the detection of code smells since manual analysis fails to meet
the required standards. Moreover, both studies aim to use outcomes from
machine learning to facilitate code quality analysis.

Despite there are certain similarities between the two studies there are a
number of differences between them which should be mentioned. The result
of the previous research only provides information related to Java projects.
However, the current study is done on object-oriented Python projects that

5

make it easy for the developers to understand, as Python has gained pop-
ularity in the last few years. Furthermore, the above article has provided
an extensive prediction of each category of code smells in Java projects and
rules that can be applied to identify each one. However, our work adopts
a broader perspective in that we do not focus on specific code smell types
for Python development projects. Differences between these programming
languages discussed and differences between the quality of code analysis.

2.2 Survey on Impact of Software Metrics on

Software Quality

Software metrics are specifically important during the lifecycle of a software
project as a measurement for development and requirement documents, de-
signs, programs, and tests as Mrinal et al.(2012) [19] identified in their re-
search work. They assist in managing the quality of the software produced
and are logics that are easy to understand and are well defined and docu-
mented. Software metrics are classified into three types: operations manage-
ment (OM), operations strategy (OS), and operations performance. Process
metrics are concerned with the way how the software is developed whereas
project metrics deal with the development progress and the improvement
of the project charter. Product metrics are concerned with definitional pa-
rameters of the software product and facilitating the efficient running of
software projects. There is no such thing as a generally accepted definition
of the software quality paradigm; however, it can be described in terms of
the user, manufacturing, product, and value perspectives. It is necessary to
understand that it is subjective and the definition should be situation-based
therefore no generic definition of software quality can be provided. As goals
are time-bound, it becomes extremely important for them to be monitored
to guarantee that they are accomplished within the defined time and condi-
tions. The Boeing 777 project marked a significant leap in software quality
management, as engineers implemented the same practices throughout the
project and in regime reporting and monitoring of project progress and soft-
ware quality.

As far as the classification into three categories of software metrics is
concerned, however, the metrics for software quality and reliability can be
considered in terms of software quality metrics as well as measurement of the
outcome of specific software projects and there exists LOC(Lines of code) for
such metrics. LOC is a software metric that is calculated based on the
amount of source code to determine the size of a program. In particular,

6

LOC is easy to measure and has the aspect of automation counting. But,
it might have dead com code which is not useful. Metric problems arise
because the software industry does not have any standardization on how to
measure things. Source code metrics methodology, function point analysis
and other object-oriented modeling techniques provide the same functionality
of reusability and modifications but cannot be applied in other contexts and
lack conversion rules. But in our current study software metrics’ importance
is expected to exhibit a greater increase since the industry leaders will start
to increase the stringency of approaches for monitoring and enhancing the
systems. Other avenues for further research lie in enhancing existing metrics.

2.3 Comparative Study of the Software Met-

rics for the Complexity and Maintainabil-

ity of Software Development

Dr. Sonal Chawla and Gagandeep Kaur [4] (2013) explains that OO plays a
critical role in modern systems as it helps to maintain software and solve the
most common issues. It is noteworthy to mention that OO design includes
all characteristics or qualities of software which means that the system ob-
jects can afford the given properties. This classifying approach has many
positive aspects like reliability, whether you are developing a large system or
a complex application, or a separate component, or whether you are design-
ing a system or decomposing a substantial problem into separated objects.
Quality engineering metrics are a vital tool in the planning stage, process im-
provement, quality control, reliability estimation, and customer satisfaction
estimation. Software metrics are of two types namely static and object-
oriented- used to analyze the code statically without actually running the
software which provides a better insight into the security problem and de-
tects deficiencies within the software. Actual Code (AC) and SLOC are used
to measure program size, while CP and CC enhance comprehensibility and
maintainability. Halstead Metrics are applied on various parameters such
as operands and operators while Cyclomatic Metrics define a number of free
paths using source code [4]. Dynamic metrics are created based on the results
of objects during the execution, oriented towards object-oriented programs.
The CK metrics suite is designed for measuring object-oriented programs
and includes six metrics: Weighted Method Per Class (Wmc), Depth of In-
heritance Tree (DIT), Number of Children (NOC), Coupling Between Object
Class (CBC), Response of A Class (CA), etc. – Lack of Cohesion Of Methods
(LCOM) and Methods for Object-Oriented Design (MOOD) [Chawla 2013,

7

p. 445]. How quality is measured has become more challenging in the soft-
ware industry due to the transformation changes that the software industry
has undergone. Surveys and studies need to be conducted in order to best
choose the right metrics, how to ensure usefulness, how to use the metric and
published value thresholds. This drives several benefits for the software and
gives rise to high-quality software, higher reuse and reduction in the cost of
maintenance.

Our paper has observed that Comment Percentage (CP) enhances multi-
dimensional software quality and maintainability of the program while SLOC
is a measure of the size of the program. The characteristics of the program
are calculated through the metrics as stated in Halstead where the numbers
of free paths are calculated using the methods in source code as in the cyclo-
matic complexity. Finally, for measuring Object Oriented program, we use
CK metrics including the following Wmc- Weighted Method Per Class, Rfc-
Response Of A Class and so on.

2.4 Effectiveness of software metrics for object-

oriented system

Yeresime Suresh, Jayadeep Pati and Santanu Ku Rath (2012) – Department
of Science and Humanities [23] focuses on the current research on the area
of software metrics and their influence on evaluating the quality of the soft-
ware systems, as well as the complexity and reliability of the O.O.S with the
help of both the conventional and O.O.S metrics. Metrics are regarded as
indispensable approaches employed at every step of the software engineering
process by the author. Software metrics enable the analyst, designer, coder,
tester, and manager by providing quantitative means to determine a specific
characteristic of the system, component, or process characteristics that have
been determined. This thorough investigation divides metrics into two ma-
jor categories: Functional metrics; logical metrics; structural/size metrics;
complexity metrics; design complexity metrics; conventional metrics; and;
object-oriented metrics. These three journal papers are similar in terms of
their focus on well-established metrics such as Cyclomatic Complexity, Size,
and Comment Percentage [23] while the latter is mainly concerned with the
Chidamber and Kemerer metrics suite, also used for evaluation of system
reliability. To help understand the complexity and reliability of the system,
the article used some of the above metrics to analyze a real and typical ATM
software application. Thus, one of the major contributions of the paper is
the interpretation of the collected metric values. This profound work pro-

8

vides a keen analysis of the consequences of elevating each metric value and
encourages feasible actions for enhancing software design. For example, high
Cyclomatic Complexity values indicate that there is a lot of potential flow
through the program and therefore a need for a large number of test cases.
The need to have to limit the depth of inheritance while developing is of-
ten indicated by a very high Depth of Inheritance Tree which may help in
understanding how a system operates. As such, object-oriented metrics like
coupling between objects (CBO), response for a class (RFC), and other mea-
sures on class quality and testing complexity are valuable. The research also
captures how helpful they are in predicting system stability and failure likeli-
hoods. It highlights the significance of determining fault proneness utilizing
measurements like LCOM, LOC, and WMC, which have proven successful
in spotting possible problems. In addition, it addresses how these measures
may be used, including automated test case development and the use of neu-
ral networks to forecast system reliability. In summary, this study makes
a substantial contribution to the body of knowledge by expanding on the
critical function of software metrics in software development. It emphasizes
how metrics can be used to improve software quality, gauge the complexity
of designs, and foretell system stability.The guidelines and insights provided
within this study empower software professionals with valuable tools to en-
sure the delivery of high-quality software products.

2.5 The Effects of Software Size on Develop-

ment Effort and Software Quality

Zhizhong Jiang, Peter Naudé, Binghua Jiang’s (2007) research article ‘The
Effects of Software Size on Development Effort and Software Quality’ [11]
carries out an in-depth exploration of this central area of software develop-
ment economics and quality. It sums up the key ideas of the concept and
stresses the strategic significance of the perspective, which revolves around
viewing software development through the prism of economic and quality fac-
tors. It shows that software development is a complex economic process of
production and the necessity to estimate software time and cost-effectively in
order to achieve the desired project management results. It is able to differ-
entiate the different effort estimation techniques and outlines their strengths
and weaknesses and making the case for simpler, yet more accurately based
models. It is evident that FP helps address concerns about size estima-
tion, although there are several criticisms associated with these ideas, and
the study is therefore crucial for addressing concerns about the quality of

9

software systems as they get bigger. Using the ISBSG repository this pa-
per discovers a major finding- that size and defects resonate positively and
sound a message for better debugging and testing.[11] To summarize, this
research provides a significant contribution to the software engineering field
– it presents the multi-factorial nature of software size-effort-quality mod-
els in detail, highlighting the impact on practitioners and academics in the
industry.

2.6 Maintainability of Object-Oriented Soft-

ware Metrics with Analyzability

Satya et al. (2015) discusses the role of software maintainability as one of the
factors in the development of excellent software.[18] The authors emphasize
that, based on the standard ISI-9126, maintainability accounts for a signifi-
cant percentage of software product quality. It stresses that properties such
as Understandability, Analyzability, Reusability, Modifiability, Complexity,
Durability, and Expandability can be used to measure maintainability. The
paper is primarily aimed at developing models for measuring maintainability
with special emphasis on Understandability, Modifiability and Analyzability.
These characteristics are considered to be crucial for software maintainability
in OOD. The authors note that critical choices for these parameters of main-
tainability are determined by design size and structural complexity metrics.

The authors of this research use 3 size metrics with 8 structural com-
plexity metrics to prove their relation to modifiability, understandability,
and analyzability. To better understand class diagrams they also introduce
levels Trivial and Consequential to the sample data for the Maintainability
factors. They fit Ln models for Understandability, Modifiability, Analyzabil-
ity, and Maintainability and use the two-tailed t-test to identify significant
metrics.[18] The significance of their suggested models is reiterated in the
conclusion section of the paper as well as the high correlations of their mod-
els with actual values. It also has recommendations for further research on
model enhancement, other factors and the evaluation of external quality at-
tributes of software to demonstrate its primary concern with enhancing the
maintainability and quality of software.

10

2.7 Study on Software Quality Factors and

Metrics to Enhance Software Quality As-

surance

Nigussu Bitew Kassie and Jagannath Singh (2020) discusses the use of SQA
in scientific and medical fields. [12] Current research aims at identifying and
mining the best metrics and parameters that contribute to software qual-
ity assurance. In order to determine these characteristics and metrics this
research is based on: literature reviews and examining a large number of
research works. The paper analyses the metrics for assessment and the es-
sential areas of quality: functionality, dependability, usability, portability,
maintainability, and efficiency. Some of these indicators are mean time to
failure, defect density, mean client problems, and client satisfaction. There
are also a number of Software Quality Models (SQM) that are also discussed
in the study like McCall’s Model, Boehm Model, Drome Model and the ISO
9126 Quality Model. It has a further discussion of goal question metrics
(GQM), process metrics, and product metrics. The final section thus ar-
ticulates the significance of SQA in different industries and calls for further
research towards improving the measurement of software quality and factors
to realize specific outcomes.

2.8 Predicting Code Smells and Analysis of

Predictions: Using Machine Learning Tech-

niques and Software Metrics.

Mhawish and co-authors (2020) suggests a machine learning and software
metric-based technique for code smell prediction. The authors create 4 bi-
nary label datasets for 4 code smells including Data Class, God Class, Long
Method, and Feature Envy as well as multi-label data containing multiple
smells [15]. They use 6 machine learning algorithms in their experiment to
examine the performance and they find that tree-based algorithms such as
Random Forest and Gradient Boosted Trees give the best accuracy. The
authors also use the improved feature selection method that employs genetic
algorithms to enhance the accuracy of the model. They explain the models’
predictions by using the LIME algorithm to find out the most important
software metrics supporting the prediction results. The main conclusions
are that predicting the occurrence of code smells has high potential with
machine learning algorithms and that the size, complexity, coupling, and en-

11

capsulation metrics are important predictors of code smells. In summary,
this paradigm proves to be effective in using machine learning for automated
code smell detection. This paper describes the prediction of code smells
using machine-learning algorithms and software metrics. The authors cre-
ate binary labeling datasets of 4 code smells (Data Class, God Class, Long
Method, Feature Envy) and multi-label datasets that include combinations
of the smells. They also applied 6 machine learning algorithms and discov-
ered that tree-based algorithms like Random Forest and Gradient Boosted
Trees are the most appropriate and accurate algorithms They also used fea-
ture selection using a genetic algorithm and it significantly increased the
performance of the models. The researchers employ the LIME algorithm to
explain what the models predict and what their top software metrics are
in supporting the predictions. The key findings for the paper are that ma-
chine learning has great potential for code smell prediction and adequately
explained factors – size, complexity, cohesiveness, coupling and encapsula-
tion. As a whole, this approach successfully incorporates machine learning
into automatic code smell identification. It should be noted that both the
research focuses on code smell prediction approach using machine learning.
Both of them employ sophisticated machine-learning techniques to arrive at
the best accuracy. There are also a few differences between the two studies.
The above project author used binary–based datasets for 4 code smells to
achieve accuracy and we used some metrics for quantification of a specific
project like SLOC(Source Lines Of Code), and CP(Comment Percentage).
Source Lines of Code (SLOC) is a measure used by computer programmers
to estimate the size or complexity of software development. It’s not directly
applied to differentiate code smells though it can assist with identifying po-
tential problems that may be associated with code smells in a codebase. We
have used Comment percentage Because: It will make sure that the algorithm
provides an accuracy of the algorithm.

2.9 Object-Oriented Software Quality Met-

rics

In the research, the authors made a critical review of conventional software
metrics with a focus on the weaknesses of the metrics in the evaluation of the
complexity of the object-oriented design, including the need for new measures
directly dedicated to this field [10]. Despite their importance, traditional
metrics, like Cyclomatic Complexity and Source Lines of Code are based on
procedural characteristics and do not reflect object-orientation artifacts like

12

inheritance and polymorphism. In an effort to address these shortcomings,
this paper evaluates subject-object metrics, particularly the CK set of met-
rics, and examines metrics such as Weighted Methods per Class and Depth of
Inheritance Tree in order to gain greater programme quality control. The au-
thors suggest the need of additional metrics, Total Function Calls and Reuse
Ratios, as a means to assess OO software with a particular overview of in-
herited methods and attributes. Experimental use of these new metrics to
evaluate important quality characteristics such as understandability, main-
tainability and reusability of object-oriented systems has shown that they are
a reliable measure of these essential quality criteria. As a result, the use of
OOQ not only focuses on the object-oriented characteristics of a system but
also utilizes some conventional metrics to develop a comprehensive method
for quality evaluation.

2.10 Comparison of Related Studies

Metrics: Both static metrics (cyclomatic complexity, LOC) and object-
oriented metrics (ATFD, WMC, RFC) are widely used to assess software
quality and maintainability. However, metrics like LOC are mostly insuffi-
cient for identifying deeper issues in complex systems [19, 4]. On the other
hand, object-oriented metrics offer better insights into modularity and class-
level dependencies [1, 23].
Methodologies: Studies progressively implementing machine learning mod-
els (Random Forest, Gradient Boosting) for maintainability predictions [15,
1]. Although the ML techniques enhance predictive accuracy, most models
are trained on Java datasets, limiting their universality to other languages.
Programming Languages: Most of the research focuses on Java-based
projects while few studies are focused on other popular languages like Python
[1]. This leaves a gap in understanding how object-oriented metrics apply to
Python’s growing ecosystem.
Limitations: It is widely observed that majority researches depends heav-
ily on static metrics that fail to observe dynamic behaviors of software at
runtime[23]. Furthermore, ML models trained on only one language datasets
risk limited cross-platform applicability [11].

13

Chapter 3

Detailed Description of the
Developed Tool or Python
Script

It is a further developed script that helps in the downloading and analysis
of the required GitHub repositories; extracting information and data from
them, and generating excell-based reports with all the relevant and essential
metrics etc. The script itself is depicted in detail in the figure below and
the name and functions of all libraries used and a detail of each section are
provided.

3.1 Libraries used

Python libraries help to ease many crucial operations including data analysis
and data visualization, web scraping, image detecting or processing, machine
learning model creation, textual information processing, etc. [9]. Python
libraries are an array of fundamental sets of necessary skills that make it
easier for the user not to write new codes [13].

1. Requests: The requests library is a human-friendly tool for making
HTTP requests in Python. It makes it possible that a Python shell send an
HTTP/1. Two requests using both GET and POST operations. This library
enables us to make HTTP requests of any kind – and all while dealing with
the responses in a natural and intuitive manner since it hides the complexity
of HTTP request handling behind a simple yet powerful API. Furthermore,
it supports SSL, performs cookies and sessions, implements data verification,
etc., which makes it a crucial utility for working with web services and API.
This is used in our research in order to download the GitHub repository when

14

an HTTP request is made to the GitHub API.
2. OS: The OS module in Python gives a way for making communication

between the OS and the program. Through the os module, it remains very
simple to manipulate or operate on the operating system and this also makes
the code portable [5]. Entry and exit of the file system and managing the
processes are taken care of by the module; os through operating system-
dependent facilities like handling of paths and reading from or writing to
the file system. It has a few mechanisms to interact with the underlying
operating system such as renaming file paths or getting the OS environment
variables or creating removing or moving directories. This module is required
for hosting platform-independent system-level jobs pertaining to the use of
the file system and OS-related operations.

3. Zipfile: The zip file module can be used for creating, reading, writing
and extracting zip file archives. It provides an algorithm to support compres-
sion and decompression of files and can be utilized to support ZIP archives
in Python. Large volumes of files and archives can be read or written as ZIP
files if the ZIP64 feature is supported by the module you are using. It is also
very useful for creating archives that contain files that will be distributed or
stored efficiently in a group of files.

4. Openpyxl: openpyxl is a Python library for reading and writing Ex-
cel xlsx/xlsm/xltx/xltm based on xml standards. You can employ it for
data manipulation that involves the creation, editing, and removing of data
on an Excel file. With respect to the creation of compound spreadsheets,
the library provides methods and data types appropriately dealing with for-
matting, charts and graphs as well as calculating formulas. The ability to
automate Excel files is well-suited for jobs in data analysis or report genera-
tion.

5. Re: Regular expressions are a technique or tool for conducting text
processing [2]. Regular expressions used with the Python programming lan-
guage are the re-module. It is an easy-to-learn and use tool that has ap-
plications for searching by using regex patterns, matching of regex patterns,
and manipulating strings with the regex patterns. The regular expressions
are very useful for matching text patterns and the re-module can be used for
complex pattern definitions such as character classes and quantifiers and so
on. This module is relevant for text processing tasks, where string splitting,
pattern matching, and substitution are performed.

6. Ast: Tools for working with Python abstract syntax trees are included
in the module ast. This tool facilitates the programmatic parsing, processing,
and modification of Python code by transforming source code structuration
enabling an attacker to transform rce code to a tree-like structure for the
code’s syntax. This module is useful for the expression of the structure of

15

Python code in the form of an abstract syntax tree (AST), code generation,
static code analysis, and many other tasks. It provides the tools to explore
and to modify the tree, allowing for complex code navigation and code change
operations.

7. Collections with counter: Hasable objects are counted using the class
dict subclassed to Counter. It represents a simple method of determining the
number of item appearances and is a subset of the collections module. This
class is very useful when adding elements in a collection or iterating through
an iterable and the number of each element needs to be counted or the number
of elements that match some element in a given array needs to be found out.
It gives arithmetics for the counters, frequency mode for specifying the most
frequent elements, and increment mode for adding counts.

8. Pandas: It is the most used and the most common set of tools used
for data computations in the data science field and matplotlib in Python.
It contains approximately over 17 thousand comments on GitHub and has
an engaged community of about 1200 members, It is widely used for data
analysis and data cleaning tasks [20]. Pandas is an open-source library for
Python programming tool which is highly powerful and flexible and easy to
learn. When it comes to managing structured data it has data structures
like a dataframe and series. Pandas – data analysis tool which was intended
for practical use in real world. This is based on another Python library
called Numpy. It is an important asset and it acts to deliver tools for data
cleaning, joining, transforming, and visualization of data to data scientists
and analysts.

3.2 Breaking down the script to achieve the

desired outputs for the research

These functions have been used to make the tool and analyze the results of
the research.

1. Download and unzip GitHub repository Function: It is this function
that is left with the role of downloading and unzipping a GitHub repository.
To download the repository as a ZIP file, it first decodes the repository name
and username from the given URL of the repository on the GitHub website
to form the GitHub API URL. The ZIP file is retrieved by the requests
library, downloaded to the user’s local folder and compressed using the zip
file module. The first one, analyze and create excel and analyze Python files
and create excel after extracting the repository, is to analyze and generate
Excel files for analysis results. Further, the function ensures error handling

16

by checking that the HTTP response has a status of 200 implying a successful
operation, and displays the appropriate messages accordingly.

Figure 3.1: Download and unzip GitHub repository

2. Analyze and create excel Function: This process produces an Excel file
with the repository content that the script analyzed based on the information
it downloaded from the GitHub repository. New packs for Excel workbook
and sheets are then created using openpyxl. The actual data is then extracted
from Git Hub by using the API and passing the access token and specifying
the repository URL. The function obtains data from the GitHub API is a
number of commits per some committer, commit dates, commit messages,
data on some repository, etc. Headers are created and new rows are inserted
for each piece of information on an Excel spreadsheet. The function then
proceeds to save the compiled data into an excel file called repository anal-
ysis. xlsx. A complete analysis of contributors and the changes made to the
repository by each contributor of the repository is provided by this function.

17

Figure 3.2: Analyze and create Excel Function

3. Analyze Python files and create an excel function: This function
produces an Excel file in an aggregated form once it has finished analyzing the
Python files in the downloaded repository. It starts by using the os and this
is done by trying to obtain the output from the os. system function. module
then uses the ‘walk’ function to find every Python file in the repository.
Then it imports the openpyxl package and uses the workbook and sheet
functions to create a new Excel workbook and sheet. The function calculates
the number of various metrics, including ATFD (Access To Foreign Data),

18

WMC (Weighted Methods per Class), and RFC (Response For a Class) for
every Python file that contains extracted comments, methods, and classes.
In order to determine these metrics, functions such as extract comments
method, calculate atfd, calculate wmc, and calculate rfc are applied. The
function places the headers and rows for each of the metrics as it summarizes
together the analysis into the excel sheet. Finally, all the data is stored
in a file named python file analysis in Excel. xlsx. This function explains
the structure and coherency of the code on the use of Python code in the
repository.

Figure 3.3: Analyze Python files and create an excel function

4. Extract comments methods function: This function takes any Python
file input data and returns comments, methods, classes, and the percentage
of comments associated with each one. It scans through the file content using
regular expressions to grep comments, extract method definitions, or extract
class definitions from it. This function uses the regular expression pattern
to parse through each line of the file content and extract comments before
coerced into a list. It also employs a different regular expression pattern to
locate class declarations and method definitions. It tells the function how
many lines the file has overall and the number of comments in there and
provides a drop of how much of the file is made out of comments. With a
comprehensive analysis of the file structure and documentation, it produces
the extracted comments, comment lines, methods, class names, comment
percentages, and total lines.

19

Figure 3.4: Extract comments methods function

5. Calculate atfd function: The ATFD metric is a direct implementation
of this formula, which measures the number of attributes in other classes
directly accessed. Using the ast.parse function which parses the content of
the file into an abstract syntax tree (AST). Next the function has to look
for attribute accesses in the AST of methods in which the attributes are
components of other classes. Quantifies these counts after putting all of
these foreign attributes into a set. This is the number of different attribute
clones used in the file and is the final ATFD score. It helps in establishing
the coherence of classes in the code.

Figure 3.5: Calculate atfd function

6. Calculate wmc function:WMC is added into the suite as it previously

20

showed good performance in accurately predicting maintenance and testing
efforts. This function determines WMC (Weighted Methods per Class), that
is, the weight of a class is to a certain extent dependent on the number of
methods it includes. Using the ast. tokenize function whereby treats the
content of the file as a token stream and from this performs a translation to
the abstract syntax tree. This means that the content of the file is converted
into the abstract syntax tree and then the tree is traversed to count the
number of method definitions. The function does this by finding the nodes
that are objects that represent method definitions such as ‘ast. FunctionDef’
that can be found in every node in the AST using ast. walk. The overall
total of method definitions in the file is the last WMC count. This metric
measures an idea of the complexity of a class and it’s maintainability.

Figure 3.6: Calculate wmc function

7. Calculate rfc function: This function uses the RFC Calculator class to
calculate the RFC Response For a Class (RFC) metric. Using the ast. The
content of the file is run through the parse function the first time the content
is parsed into an abstract syntax tree (AST). Then the function creates an
instance of the RFC Calculator class and passes it to the AST nodes. The
RFC metric for every class is calculated by the RFC Calculator metric which
begins by walking through every node in the AST to get information about
the methods encoded within each class as well as the method calls that exist
within these classes. RFC index for the file is calculated by summing the
RFC values for each class. This metric helps in understanding the possible
complexity of a class interface and its relationship to other techniques.

Figure 3.7: Calculate rfc function

21

3.3 Script Execution Process

The following query is started by asking the script to ask the user to enter
GitHub repository URL and the GitHub access token. It is important that
this step is interactive so that the script is able to access and download the
target repository and to ensure that the script is not missing the required
data it needs to run. The access token ensures the script is authenticated and
helps the script bypass access restrictions or limits set by GitHub. Repository
name is identified by the particular URL.

After having entered the information required by the script the download
and unzip GitHub file executes the function download and unzip GitHub
repository. In this function, the needed API endpoint is created and the
repository is downloaded as a ZIP file by processing the URL to obtain the
right username and repository name. Next, it uses the requests library to
perform an HTTP GET request to the endpoint and add the access token
in the headers. This function reads from the ZIP archive and writes it to
the local file system and then extracts the ZIP using the zipfile module if the
status code it is 200 indicating a successful response. The terminal commands
and file and directory structure of the repository are replicated on the local
machine to perform further analysis.

When the repository is extracted the function calls to analyze and create
excel performs two important analysis procedures and the analyze Python
and create excel to start the two analysis procedures. This function is re-
sponsible for analyzing the information in the repository metadata such as
commit history and contributor details, and creates it as an excel report.
Some of the key features include using the openpyxl library to collect the
commit information in an excel based workbook after retrieving the commit
data from the GitHub API and manipulating the information collected to
obtain the author names, their emails, dates, and messages of the last 10
commits. This analysis can also be used to identify the total commits and
contributors in each repository, as well as to provide information about how
many commits and from whom the commits came from the repository. The
functionality of this is achieved from saving the report in an excel file called
repository analysis. xlsx.

Excel involves creating spreadsheets for the repository files and analyzing
the given Python files at the same time. It used OS to interact with the
directory structure. subprocess. walk function to locate all files with .py ex-
tensions. It scans the content of each file and parses the regular expressions
to obtain the comments, the method definitions, and the class definitions.
Moreover, it analyses the code after translating the files into an abstract
syntax tree (AST) and using the information about the code structure to

22

calculate the WMC (Weighted Methods per Class), RFC (Response For a
Class), and ATFD (Access To Foreign Data). These metrics provide mean-
ingful information about the level of complexity, maintenance, and quality
of the code. The outputs are stored as a Python file called as analysis. One
is to save the file in xlsx and combine it with another Excel file.

Two things that the script is designed to do that would benefit the user
and give feedback on the process; one is to attempt to check and make sure
that the script detects and fixes any errors in the process and another is, that
the script should be able to tell the user what part of the processes is currently
being performed. For example, it displays messages like downloading the
repository successful and unsuccessful download of the repository and the
HTTP status code on responses. It might also catch some exceptions that
may arise when this script is in the process of reading from or writing to files
so that the process may proceed in a kind of civilized way.

To summarize, the execution of the script consists of several interrelated
steps: the compilation of all the feedback from the user, the download and
extraction of the repository, the processing of the contents and metadata
of the file, and the preparation and generation of a comprehensive report.
The process is entirely automated using libraries for accurate identification
in addition to repetitive tests of the GitHub repository using methodical
approach. The result of this includes two excel docs that not only provide
a summary of info for the activity and quality of the code in the repository
but also provide more detailed description of the respective subject.

23

Chapter 4

Comparison of Our Custom
Python Tool with Open source
Python libraries Online (Pylint
and Radon)

In this chapter, we present a comparison between our custom designed Python
tool and two open-source Python-based code analysis tools: Pylint and
Radon that have risen to great popularity. While Pylint and Radon are rec-
ognized in the field as tools designed to help developers in maintaining proper
standards of code quality and in performing maintenance, which encompasses
a range of tools geared at error detection, code complexity analysis, and code
improvement suggestions, our tool is restricted to a particular scope of re-
search. This tool is somewhat similar to these two but also has additional
features. In this chapter, we wish to present the points of development and
variation of the three solutions in question.

4.1 Pylint

Pylint is a code analysis tool that aims to assist programmers and help
them conform to coding standards of the Python language, as well as to
find and fix bugs, and enhance the overall quality of the written code[7].The
detailed study of implementation suggests that by making the code quality
checks automatic, maintaining uniform standards, and providing feedback
instantly, Pylint can contain the developers’ context-gathering and code re-
views to a minimum extent[24]. It is more of a tool which enforces PEP 8
coding standard compliance and suggests how the code can be restructured.

24

Major characteristics include bug detection, code quality rating,controllable
through config files and creates Pylint plugins. The same reasons bring pop-
ularity when it comes to Pylint’s use in combined development environments
and continuous integration / continuous deployment (CI/CD) processes.

In the pylint 2.4.4 version, pylint generates a report as shown below.
Messages might change depending on the version[8].

Figure 4.1: Pytint

4.2 Radon

The opposite of this, is that Radon is a complexity measurement tool writ-
ten in Python[3]. It provides several metrics calculated for the maintainer’s
convenience to spot development code that is complicated enough so as to
be unmaintainable or full of bugs.Radon is a popular utility for the Python
programming language that examines and evaluates systems of codes with
the intention of gaining several code metrics such as: raw ones, Cyclomatic
complexity, Halstead measures, maintanence measurements, etc[21]. Among
Radon’s functions are computations of cyclomatic complexity and Halstead’s
metrics, as well as the Maintainability index, and also basic counts like lines of
code and comments. It is flexible with regard to the types of outputs offered
including JSON and XML among others and also serves as a command-line
tool and a library.

25

Here is a sample output of radon for a Python file[16]:

Figure 4.2: Radon

4.3 Our Custom Python Tool

The offered solution stands out as a GitHub repository analysis tool capable
of doing much more than Pylint or Radon. It lets you download and analyze
the contents of Python files located in GitHub repositories and carries out
the extraction of certain parameters in the form of a report in Excel sheets.
In these regards, it estimates such indexes as ATFD, WMC, RFC, which is
the most informative when it comes to the analysis of the structure of Python
files, especially the methods, classes, comments, etc.

4.4 Comparative Analysis

This section highlights the similarities and differences of the solutions.

Similarities

1. Code Analysis: Our tool, Pylint and Radon are capable of performing
the static code analysis of Python files. The common aim of all the tools is
facilitations of high-quality code by finding problems and giving suggestions
on how to overcome the problems concerning complexities maintainability or
standards.

2. Metrics Calculation: The tool, Pylint and Radon used in the study
measures a range of metrics for code quality assessment. Although the met-

26

rics are different, the purpose is still to offer metrics that will assist users to
write better code.

3. Extensibility: All of the tools can be used as a part of a bigger work-
flow, whether it is a CI or a research project, hence they can be employed in
different coding contexts and for different purposes.

4. Python specific: The tools in question are meant for analyzing code
written with the Python programming language thus presenting tailored tools
for Python developers.

Differences

1. Scope:

• Our tool: The main aim is conducting the analysis of GitHub reposi-
tories. This includes the option to grab the repositories and pull out
more particulars related to the study, especially from the files written
in Python.

• Pylint: The major concern of Pylint is detection of bugs, formatting
the code, and following the rules of PEP 8.

• Radon: Radon is concerned with the application of eight Halstead met-
rics and cyclomatic complexity among other complexity metrics which
makes it suitable for finding the coded areas of high complexity.

2. Formats of Output:

• Our Tool: Produces Excel reports that are easier to use for the stake-
holders who may not be used to using code analysis tools.

• Pylint: By design, handles its results mainly by writing them to console
or text files suitable for CI pipelines.

• Radon: Provides support for different output options such as JSON
and XML which allows for some level of use in analysis or combining
with other tools.

3. Specific Metrics:

• Our Tool: Provides advanced object oriented measures like ATFD,
WMC and RFC, which are not included in Pylint or Radon.

27

• Pylint: Offers more arguments related to coding practices and bug find-
ing than those aimed at complexity calculations.There are restrictions
on some higher-level issues as well: for instance, the maximum num-
ber of lines in a function or maximum number of methods a class can
have[25].

• Radon: Has its main function computing cyclomatic complexities, Hal-
stead metrics, and Maintainability Index that seek to evaluate the
maintainability of the code and sections of it which pose problem areas.

4. GitHub Integration:

• Our Tool: Has the capability to download and examine repositories
from Github internally.

• Pylint and Radon: No direct integration with coded repositories id
provided. These softwares perform local code analysis but can be in-
corporated with the github ecosystem with extra configuration.

5. Comment Analysis:

• Our Tool: Supports comment extraction and analysis from code files
in Python which is useful in many research situations where one seeks
to comprehend the purpose of coding or the explanations within the
codes themselves.

• Pylint: Provides the ability to align comments with styles defined in
PEP 8 but does not provide any in-depth analysis.

• Radon: Offers only counts of comments present in the analyzed block of
text without analyzing the intelligibility or structure of the comments.

6. Customization

• Our Tool: Is an intermediate level tool that is meant more for specific
research interests, especially those aimed at analyzing GitHub reposi-
tories and extracting precise measures.

• Pylint: Provides extensive adjustment of the tool using external con-
figuration files to facilitate adoption of varying coding practices.

• Radon: Offers some of the customizations, up to altering the metric and
its configuration.The primary benefit of using Pylint is its flexibility in
terms of configuration and customization. the config file and one can
go ahead to create complex configurations that ensures the tenets are
followed all over the codebase[17].

28

Other Observations

1. Specialization: Our tool seems to be more of a research tool as it
focuses on features such as pull and analysis of GitHub repositories, reporting
on their contents and metrics. Pylint and Radon are very similar but these
tools are more for performing code quality checks.

2. Integration: This tool being a one-stop shop for repository analysis
and report generation is an advantage. However combining the tools Pylint
and Radon can also be effective owing to the high trust they have gained in
the Python domain.

3. Unique Features: The inclusion of the ability to pull and examine
entire GitHub repositories, which is one of the useful features of our tool
and could help researchers and developers working on massive projects in
the long run.

4. Reporting: The reporting functionality of our tool based in Excel
could be made more user-friendly to non-technical users since it demonstrates
results of code analysis in an orderly form. On the other hand, Pylint and
Radon are command line tools, which are more technical.

5. Maintenance: Owing to the fact that our tool is a bespoke one, it
always needs maintenance and upgrades. However, Pylint and Radon are
supported by users who regularly upgrade and fix the software and ensure
that it works with any new releases of Python.

In conclusion, it can be seen that although these three instruments have
a code analysis function, their scope and purposes are quite different from
each other. Our custom built Python tool has superior capabilities in ana-
lyzing and reporting on GitHub repositories than Pylint and Radon which
are more generic tools focused at assessing code quality. However, for certain
research activities that entail extensive analysis of code repositories, our tool
is useful. However, due to their vast customization possibilities and commu-
nity support, Pylint and Radon are priceless in wider Python development
contexts.

29

Chapter 5

Description Of The Models

The Python tool developed for this study is a comprehensive tool for an-
alyzing object-oriented programming (OOP) based Python repositories on
GitHub. It extracts valuable information from Python files in the repository,
such as:

1. Number of commits 2. Developer information 3. Percentage of com-
ments 4. Various code metrics: - Lines of Code (LOC) - Access to Foreign
Data (ATFD) - Weighted Methods per Class (WMC) - Response for a Class
(RFC)

The tool utilizes the abstract syntax tree (AST) module to parse Python
code and employs regular expressions for extracting relevant information. It
creates Excel sheets that summarize the distribution and database developer
information, as well as an analysis of individual Python files. The analysis
includes metrics like content percentage, ATFD, WMC, and RFC.

After creating the dataset from the Excel sheets, the researchers used
regression models to predict indicators like ”LOC” based on features like
”ATFD”, ”WMC”, and ”RFC”. The regression models employed include:

1. RandomForestRegressor 2. DecisionTreeRegressor 3. KNeighborsRe-
gressor 4. GradientBoostingRegressor

The integration of these machine learning models enriches the analysis
by providing a predictive dimension to understanding how various metrics
interact in a Python database. This approach allows researchers to gain
insights into the relationships between different code metrics and their impact
on the overall project.

By leveraging the Python tool and machine learning techniques, the study
aims to provide a comprehensive understanding of OOP-based Python repos-
itories on GitHub. The extracted information and predictive models can help
developers and researchers analyze code quality, identify potential issues, and
make informed decisions during the development process.

30

Chapter 6

Description of the Data

Firstly, we have created a summary file with all repository information such
as total developer number, number of classes and methods, averages and
totals of comment percentage and software metrics like RFC, WMC, ATFD,
and LOC of 20 projects.

Secondly, we have created our main dataset by merging 20 Python file
analysis sheets which we generated from the tool into a single dataset with
21,563 entries, offering insights into software projects. It focuses on individual
Python files of each repository, providing insights into code metrics like total
lines of code, ATFD, WMC, RFC, LOC, and comment percentages.

RFC (Response For a Class): An indicator of the number of methods
that can be called in response to a message sent to an object of that class.
This encompasses all the operations that are available in the class, including
operators that are in the subclasses as well as the superclass. They defined
that if the RFC value is high, the class would be more complex and may take
more effort to comprehend and test.

WMC (Weighted Methods per Class): Sums up the value of the complex-
ity of all the methods contained within a particular class. Complexity can
also be measured based on the number of decision points within a method.
A higher WMC implies that the class has more functionality but it could
also be complex in maintenance and relatively harder to understand.

ATFD (Access to Foreign Data): Calculates the count of distinct at-
tributes from other classes which are referenced directly or by the help of
“getters” and “setters”. It measures how many foreign attributes are em-
ployed by the class [14], indicating the extent of dependency on external
data. High ATFD levels could indicate a greater interaction and a lack of
encapsulation between the classes, and this hinders the modularity and might
lead to the generation of more bugs during the maintenance phase.

LOC (Lines of Code): The simplest and most direct measure is to quantify

31

only the number of lines of the actual code of the program. This metric is
used to measure the extent of a software project or, to some extent the size
of the project. As the complexity of the codebase increases, it becomes even
more difficult to manage and as such may contain many more defects.

Figure 6.1: Summary of the repositories

Figure 6.2: First few lines of the dataset

32

Chapter 7

Preliminary Analysis

7.1 Initial Data Analysis

7.1.1 Relationships Between Number of Developers,
Comment Percentage, and Project Duration

In this section, we aim at establishing correlation between Number of Devel-
opers, Comment Percentage and Project Duration. These metrics helps us
understand relative size of teams and efforts towards documentation and the
period that projects were completed.

33

Figure 7.1: Pair Plot of Number of Developers, Comment Percentage, and
Project Duration

The pair plot presents the relationships among Number of Developers,
Comment Percentage, and the Project Duration. The correlation between
Number of Developers and Comment Percentage is visible which suggests
that larger teams tend to produce more detailed documentation. However,
there is weak relationship between Project Duration and Number of Devel-
opers which indicates that larger teams do not necessarily lead to shorter or
longer timelines of project.

34

Figure 7.2: Correlation Heatmap of Number of Developers,Project Duration,
and Comment Percentage

The correlation heatmap also shows the relationships between the Num-
ber of Developers, Comment Percentage, and the Project Duration. A strong
positive correlation between Number of Developers and Comment Percentage
highlights the impact of team size on documentation quality. However, the
relationship between Project Duration and Number of Developers is weak,
reinforcing that project length is not significantly influenced by the number
of developers involved.

Discussion: Both visualizations show that team size has a notable effect
on documentation quality but it does not significantly affect the length of
the project.

7.1.2 Relationships Between Complexity Metrics and
LOC

This section explores the relationships between the key complexity metrics:
WMC (Weighted Methods per Class), RFC (Response for a Class), and
ATFD (Access to Foreign Data) and LOC (Lines of Code). It focusing on
their interactions and how they affect code size and complexity.

35

Figure 7.3: Pair Plot of WMC, RFC, ATFD, and LOC

The pair plot provides a detailed view of the pairwise relationships be-
tween WMC, RFC, ATFD, and LOC. Positive correlations are observed be-
tween WMC and RFC which indicates that if class complexity increases,
method coupling also tends to increase. Also, the relationships between
LOC and the complexity metrics (WMC and RFC) show that larger code-
bases tend to indicate higher complexity, which can make the system more
challenging to maintain.

36

Figure 7.4: Correlation Heatmap of WMC, RFC, ATFD, and LOC

The correlation heatmap numerically presents the relationships between
the four metrics using correlation coefficients. Strong correlations (near 0.99)
are observed between WMC, RFC, ATFD, and LOC, confirming that these
metrics are tightly coupled. As complexity increases, the codebase size (LOC)
grows proportionally which highlights the importance of managing complex-
ity early in the development process to maintain project scalability and pre-
vent risks.

Discussion:The pair plot and correlation heatmap both show that the
increasing class complexity and method coupling has a strong correlation
with the size of codebase. It indicates that as projects grow, the internal
complexity also grows, which could complicate future maintenance. The
findings from these visualizations will be further explored in the next section
through regression analysis to determine how well these complexity metrics

37

predict project growth and scalability.

7.2 Applications of Regression Models

The second analysis is to find relations between metrics. We tried to find
some correlations between the software metrics. But in this case, we used
the big dataset and found a positive result here.

We applied regression models such as RandomForestRegressor, Decision-
TreeRegressor, KNeighborsRegressor, and GradientBoostingRegressorto our
dataset in order to predict ”total lines of code” based on ATFD, WMC and
RFC.

RandomForestRegressor

RandomForestRegressor is one of the complex machine learning algorithm
that performs decision trees and at the time of training, it produces several
trees and finally outputs the average prediction of all the trees. It is one of
the most commonly used methods that are applied for regression by using an
ensemble approach [22]. This approach is useful for making the model more
accurate and avoiding over-fitting to maximize accuracy and robustness for
complex datasets where the relationship between features is not linear. The
strength of the model is that it is able to handle data with a large number
of features. It can explain non-linear patterns that are not obvious by a
simple linear relationship. RandomForestRegressor is also one of the best
methods for determining the contribution of each feature to the prediction
and hence allows one to understand which metrics have the most influence
on the total LOC. The model has an R-squared of 0. 92 indicates that it can
explain about 92 percent of the total LOC in the projects. The high level of
performance shows that it is efficient in detecting the patterns and outliers
in the data.

GradientBoostingRegressor

Gradient Boosting constructs an additive model in a forward stage-wise fash-
ion; it allows for the optimization of arbitrary differentiable loss functions.
In each stage, n classes regression trees are fit on the negative gradient of the
binomial or multinomial deviance loss function. This model is particularly
suited for complex datasets where both bias and variance are concerns. It im-
proves predictions iteratively by focusing on mistakes of previous iterations,

38

which enhances its ability to adapt to diverse data patterns effectively. It is
especially powerful in scenarios where data might exhibit varying scales of
importance across features, allowing it to dynamically adjust to the most pre-
dictive features. With an R-squared of 0.83, this model demonstrates robust
performance, effectively adapting to the dataset’s complexity and providing
strong predictive power despite the potential for data irregularities.

DecisionTreeRegressor

Decision Tree Regressor constructs a model that uses learned decision rules
based on data features to predict the value of the target variable. It is easy
to interpret and visually display, and therefore, it is a good first choice to
visualize the relationship between features and the response variable. They
are especially useful for decision support due to their simplicity and inter-
pretability. Each node in the tree corresponds to a feature in the data whose
value has the greatest effect on the response and thus how the decisions are
arrived at. But they are prone to overfitting if not properly tuned or if the
tree is being allowed to grow too deep. It gives an R-squared of 0. 86 which
is a nice level of simplicity and predictive accuracy. This makes it a good
candidate for beginner analysts who need to understand the workings of a
model as much as the accuracy of the predictions.

KNeighborsRegressor

The KNeighborsRegressor algorithm is based on feature similarity. This non-
parametric method is particularly applicable in the scenario where there is a
need to capture local variations in the pattern that might not be captured by
the global smoothness assumed by the model. It forecasts the value of a new
data instance by using the ‘k’ closest points in the feature space which means
it is relying significantly on the local structure of the data. This approach is
especially useful when data is not spread equally and relations between data
points are irregular. Another critical hyperparameter of the model is ‘k’ –
the number of considered neighbors; it is necessary to find the optimal ‘k’
to strike a balance between bias and variance. : How to get R-squared of 0.
89, the KNeighborsRegressor successfully presents its ability to replicate the
relationship in data. It performs where dynamic and rapid changes in the
dataset require prediction to follow.

39

Figure 7.5: Comparison of Model Performance (MSE)

Figure 7.6: Comparison of Model Accuracies (R-squared)

In the analysis of regression models for software quality prediction, the

40

Random Forest model performed better than the rest of them with a high R-
squared of 0. 92 suggesting that 92 percent of the variance has been explained
and the lowest Mean Squared Error (MSE) 7251.16. Using the Gradient
Boosting methodology we found R-squared of 0. 83 and an MSE of 15939.
50. The Decision Tree model provided a good balance between accuracy (R-
squared of 0.86) and understandability of results from the model and MSE of
13189. 69. In K-Nearest Neighbors we found with an R-squared of 0. 89 and
an MSE of 10131. 26. In terms of the trade-off between accuracy and model
complexity the Random Forest is the best justified as it has the lowest value
of MSE and the highest of R-squared value. So, it appears to be the most
suitable candidate for software quality prediction. In summary, the choice
of the best model for software quality prediction depends on the specific
requirements of the problem, with the Random Forest model standing out
for its high accuracy and explained variance.

41

Chapter 8

Work Plan

42

The working plan for our thesis, ”Analyzing Software Quality and Maintain-
ability in Object-Oriented Systems Using Software Metrics,” takes into ac-
count both our past successes and our long-term research goals. In our early
phases, we have carefully studied key software metrics in existing object-
oriented systems, including lines of code (LOC), comment percentage, cy-
clomatic complexity (CC), weighted methods per class (WMC), access to
foreign data (ATFD), and response for a class (RFC). We have carried out a
thorough literature analysis, identifying important research gaps and laying
the groundwork for our study. In the subsequent stages of our working plan,
we examined how the previously described software metrics interact with and
affect one another in object-oriented systems. We also investigated the corre-
lation between these metrics and real-world software issues, such as defects,
code smells, and maintenance challenges. To ensure the generalizability of
our findings, we gathered and examine data from numerous software projects
that span a wide range of disciplines and scales. We used rigorous statistical
and machine learning techniques to find patterns and trends in the data in
order to increase the validity of our findings. In order to improve system
quality and maintainability, we also created predictive models that can help
software developers and maintainers make wise decisions. By carefully ex-
ecuting this strategy, we want to significantly advance the field of software
engineering and, in the long run, aid in the development of higher-quality,
more dependable object-oriented systems.

43

Chapter 9

Conclusion

When it comes to software development software testing is therefore crucial
because it acts as a guarantee for the quality of the final product. Before the
advent of software metrics, manual testing was the main method used by soft-
ware developers to determine the measurements associated with their work,
although manual testing for most software developers is generally considered
costly and time-consuming. This research has examined and attempted to
present the evaluation of software metrics used to measure the quality of
software at both development stages and end products.

Some of the aspects that have been considered in this assessment include
correctness, product quality, potential for extension, performance, and bug
tolerance. Organizations are advised to make use of popular software metric
tools since the quality standards are not synchronized in various entities.
The implementation of these tools allow for a great deal of consistency and
quality in the end products; it also increases the chances of re-using certain
software and decrease the costs of developing and maintaining the software
over time.

In the future, the researcher will assist with the application of each of the
software measures and provide more information on how to improve software
application quality for future work initiatives. It is possible to achieve such
success if an organization applies the recommended changes and aligns the
use of software metrics with a valuable impact on the improvement of the
software development process itself and consequently on the quality of the
product provided for maintenance.

44

Bibliography

[1] Mansi Agnihotri and Anuradha Chug. Application of machine learning
algorithms for code smell prediction using object-oriented software met-
rics. Journal of Statistics and Management Systems, 23(7):1159–1171,
2020.

[2] Alexander Bart, Lisa Francis, Suresh Kumar, and Vandana Debroy. Ex-
ploring regular expression usage and context in python. ResearchGate,
2016.

[3] Canonical. Ubuntu manpage: Radon - python tool to compute code
metrics. Accessed: 2023-10-16.

[4] Sonal Chawla and Gagandeep Kaur. Comparative study of the software
metrics for the complexity and maintainability of software development.
International Journal of Advanced Computer Science and Applications,
4(9), 2013.

[5] Xiaojie Chen. Introduction and analysis of python software. Frontiers
in Computing and Intelligent Systems, 5(2):41–43, 2023.

[6] Melis Dagpinar and Jens H. Jahnke. Predicting maintainability with
object-oriented metrics: An empirical comparison. In 10th Working
Conference on Reverse Engineering (WCRE’03), pages 155–164. IEEE,
2003.

[7] DataScientest. Pylint: How to boost productivity through code analysis,
2023. Accessed: 2023-06-30.

[8] GeeksforGeeks. Pylint module in python, 2022. Accessed: 2022-04-18.

[9] Samira Gholizadeh. Top popular python libraries in research. Journal
of Robotics and Automation Research, 3(2):142–145, 2022.

[10] D. M. Rasanjalee Himali and S. R. Kodithuwakku. Object-oriented
software quality metrics. Journal of Software Quality, 12(1):45–60, 2023.

45

[11] Zhizhong Jiang, Peter Naudé, and Binghua Jiang. The effects of software
size on development effort and software quality. International Journal
of Computer and Information Science and Engineering, 1(4):230–234,
2007.

[12] Nigussu Bitew Kassie and Jagannath Singh. A study on software quality
factors and metrics to enhance software quality assurance. International
Journal of Productivity and Quality Management, 29(1):24–44, 2020.

[13] Anand Khandare, Nipun Agarwal, Amruta Bodhankar, Ankur Kulkarni,
and Ishaan Mane. Analysis of python libraries for artificial intelligence.
Journal Name, 2023.

[14] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Prac-
tice: Using Software Metrics to Characterize, Evaluate, and Improve the
Design of Object-Oriented Systems. Springer Science & Business Media,
illustrated edition, 2007.

[15] Mohammad Y. Mhawish and Manjari Gupta. Predicting code smells and
analysis of predictions: Using machine learning techniques and software
metrics. Journal of Computer Science and Technology, 35:1428–1445,
2020.

[16] Mike. Learning about code metrics in python with radon, 2023. Ac-
cessed: 2023-09-18.

[17] Oliyadk. How to get started with pylint, 2023. Accessed: 2023-02-23.

[18] Satya Prasad Raavi and N. V. Syma Kumar Dasari. Maintainability of
object-oriented software metrics with analyzability. International Jour-
nal of Computer Science Issues, 12(3):127, 2015.

[19] Mrinal Singh Rawat, Arpita Mittal, and Sanjay Kumar Dubey. Survey
on the impact of software metrics on software quality. International
Journal of Advanced Computer Science and Applications, 3(1), 2012.

[20] A.L. Sayeth Saabith, T. Vinothraj, and MMM. Fareez. Popular python
libraries and their application domains. International Journal of Ad-
vance Engineering and Research Development, 7(11):18–21, 2020.

[21] Rana Sandouka and Hamoud Aljamaan. Python code smells detection
using conventional machine learning models. 9:e1370.

46

[22] G. Shanmugasundar, M. Vanitha, R. Čep, V. Kumar, K. Kalita, and
M. Ramachandran. A comparative study of linear, random forest, and
adaboost regressions for modeling non-traditional machining. Processes,
9(11):2015, 2021.

[23] Yeresime Suresh, Jayadeep Pati, and Santanu Ku Rath. Effectiveness
of software metrics for object-oriented systems. Procedia Technology,
6:420–427, 2012.

[24] Unknown. Mastering pylint for python code quality, 2024. Accessed:
2024-10-01.

[25] Moshe Zadka. Pylint: Making your python code consistent, 2023. Ac-
cessed: 2023.

47

	Declaration
	Approval
	Ethics
	Abstract
	Dedication
	Acknowledgement
	Contents
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Research Objectives

	Literature Review
	Application of machine learning algorithms for code smell prediction using object-oriented software metrics
	Survey on Impact of Software Metrics on Software Quality
	Comparative Study of the Software Metrics for the Complexity and Maintainability of Software Development
	Effectiveness of software metrics for object-oriented system
	The Effects of Software Size on Development Effort and Software Quality
	Maintainability of Object-Oriented Software Metrics with Analyzability
	Study on Software Quality Factors and Metrics to Enhance Software Quality Assurance
	Predicting Code Smells and Analysis of Predictions: Using Machine Learning Techniques and Software Metrics.
	Object-Oriented Software Quality Metrics
	Comparison of Related Studies

	Detailed Description of the Developed Tool or Python Script
	Libraries used
	Breaking down the script to achieve the desired outputs for the research
	Script Execution Process

	Comparison of Our Custom Python Tool with Open source Python libraries Online (Pylint and Radon)
	Pylint
	Radon
	Our Custom Python Tool
	Comparative Analysis

	Description Of The Models
	Description of the Data
	Preliminary Analysis
	Initial Data Analysis
	Relationships Between Number of Developers, Comment Percentage, and Project Duration
	Relationships Between Complexity Metrics and LOC

	Applications of Regression Models

	Work Plan
	Conclusion
	Bibliography

