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Abstract

Documenting clinical notes is a vital but time-consuming task in healthcare. Even
in this modern era medical doctors spend considerable time documenting clinical
notes from encounters with patients. While there have been significant advance-
ments in general text summarization, research in clinical conversation summariza-
tion remains sparse due to the scarcity of open-source datasets available to the
NLP community. Accurate summarization is paramount in clinical note generation,
given its implications for human health. Our research demonstrates the efficacy
of decoder-only models over traditional encoder-decoder models in generating more
precise clinical notes from doctor-patient conversations. The study also tackles key
challenges such as ensuring medical accuracy and complying with healthcare pri-
vacy standards. We utilized the MTS-DIALOG dataset [28], including 1, 700 such
dialogues and corresponding clinical notes. This dataset was featured in the 2023
MEDIQAChat challenge, where the leading team, WangLab achieved a state-of-
the-art (SOTA) Rouge-1 score of 0.4466 and BERTScore of 0.7307 [27]. Our study
surpasses these benchmarks by fine-tuning the ”metallama/Meta-Llama-3-8B”
model enhanced with Qlora 8-bit quantization. We assessed our models using Rouge
scores and BERT Scores to validate their superiority in performance. By evaluat-
ing the system on real-world clinical conversations, we show that the decoder-only
LLM-generated notes closely match human-written ones in terms of completeness
and clinical relevance. This research highlights the potential for decoder-only LLMs
to revolutionize clinical workflows, making medical documentation more efficient
while allowing doctors to focus more on patient care.

Keywords: ClinicalNLP; Dialouge2Note; Transformer; Decoder-Only; Mistral;
Llama; Summarization; Rouge Score; BERTScore;

v



Dedication

I would like to remember my wonderful parents, without whom I would be worthless,
with all of my sacrifices and academic endeavors.

vi



Acknowledgement

Firstly, all praise to the Great Allah for whom my thesis has been completed without
any major interruption.
Secondly, to my supervisor Dr. Farig Yousuf Sadeque sir for his kind support and
advice in my work. He helped and advised me whenever I needed help.
And finally to my parents without their support, it may not be possible. With their
kind support and prayer, I am now on the verge of completing my M.Sc.

vii



Table of Contents

Declaration i

Approval ii

Ethics Statement iv

Abstract v

Dedication vi

Acknowledgment vii

Table of Contents viii

List of Figures x

List of Tables xi

Nomenclature xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement And Challenges . . . . . . . . . . . . . . . . . . . 2
1.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 4
2.1 Several Text Summarization LLMs . . . . . . . . . . . . . . . . . . . 4

2.1.1 Vanilla Transformer Model Overview . . . . . . . . . . . . . . 4
2.1.2 Text-to-Text Transformer (T5) . . . . . . . . . . . . . . . . . 7
2.1.3 FLAN T5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 BART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Mistral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.6 Llama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 LLMs in healthcare industry . . . . . . . . . . . . . . . . . . . . . . . 18

3 Description of MTS-DIALOG Corpus 22
3.1 Main Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Section-header categories . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Comparison with Real Data . . . . . . . . . . . . . . . . . . . 25

viii



3.2 Augmented dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Fine-Tuning Techniques 27
4.1 PEFT with LoRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Singular Value Decomposition (SVD) . . . . . . . . . . . . . . 28
4.2 QLoRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 LoRA + int8 quantization . . . . . . . . . . . . . . . . . . . . 30

5 Research Methodology 31
5.1 Task description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 Removing Unnecessary Spaces . . . . . . . . . . . . . . . . . . 32
5.2.2 Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Fine-Tuning the Llama and Mistral variants . . . . . . . . . . . . . . 32
5.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5.1 ROUGE Evaluation Metric . . . . . . . . . . . . . . . . . . . 35
5.5.2 BERTScore . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Results 38

7 Limitations 43
7.1 Training and Inference time . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Hardware Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Gender Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Future Work 46
8.1 Development of new Medical Corpus . . . . . . . . . . . . . . . . . . 46
8.2 Development of Pre-trained Medical LLMs . . . . . . . . . . . . . . . 46
8.3 Cross-lingual Clinical Notes . . . . . . . . . . . . . . . . . . . . . . . 46
8.4 Speech-to-Note generator . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.5 Calculating Hallucination in LLM-Generated Notes . . . . . . . . . . 47
8.6 Gender Bias reduction during fine-tuning . . . . . . . . . . . . . . . . 47

9 Conclusion 48

Bibliography 52

ix



List of Figures

2.1 Illustration of the original transformer architecture proposed in At-
tention Is All You Need, 2017 [7] . . . . . . . . . . . . . . . . . . . . 5

2.2 T5 model text-to-text framework [19] . . . . . . . . . . . . . . . . . . 7
2.3 Matrices representing different attention mask patterns [19] . . . . . . 8
2.4 Fine-tuning of various language models [44] . . . . . . . . . . . . . . 8
2.5 BART model architecture . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Mistral 7 X 8B Architecture . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 The receptive field of each convolution layer with a 3×3 kernel [6] . . 11
2.8 Architectural details of sliding window attention [31] . . . . . . . . . 12
2.9 KV Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.10 Sparse Mixture of Experts (SMoE) . . . . . . . . . . . . . . . . . . . 13
2.11 Llama architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.12 Rotational Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.13 Overview of Multi-Head, Grouped Multi-Query and Multi-Query at-

tention [29] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Example of data point of MTS-DIALOG Dataset, Dialogue, and Notes 22
3.2 Section Header distribution of MTS-Dialog dataset . . . . . . . . . . 24
3.3 Section Header distribution of Augmented MTS-Dialog dataset . . . . 25

4.1 Architecture of transformer for adapter tuning [11] . . . . . . . . . . 27

5.1 Training and Inference diagram of the clinical note generation model. 31
5.2 Training-Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Validation-Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Annotation-Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

x



List of Tables

2.1 Text Summarization LLMs . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Section Headers in the Dataset. . . . . . . . . . . . . . . . . . . . . . 23
3.2 Statistics of the MTS-DIALOG Dataset. . . . . . . . . . . . . . . . . 24
3.3 Section Headers in the augmented Dataset. . . . . . . . . . . . . . . . 26

5.1 Hardware setup for training LLMs . . . . . . . . . . . . . . . . . . . . 32
5.2 LoRA Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 TrainingArguments Configuration . . . . . . . . . . . . . . . . . . . . 34

6.1 Results of the decoder-only llms . . . . . . . . . . . . . . . . . . . . . 38
6.2 Llama-3-8B model’s generated clinical notes sample . . . . . . . . . . 40
6.3 Mistral-7B model’s generated clinical notes sample . . . . . . . . . . 41
6.4 Llama-3-3B model’s generated clinical notes sample . . . . . . . . . . 42

7.1 Training time per epoch . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Time needed per note generation . . . . . . . . . . . . . . . . . . . . 43
7.3 Gender Bias in the fine-tuned models . . . . . . . . . . . . . . . . . . 45

xi



Chapter 1

Introduction

Creating clinical notes manually has always been a time-consuming and exhausting
job for healthcare providers. As healthcare systems grow more complex and larger
in scale, it’s become clear that there’s a greater need for faster, more accurate ways
to handle documentation. Since the invention of Transformer architecture, there
have been significant advancements in several NLP tasks, including text summa-
rization. Text summarization is an essential and common task in the field of NLP.
Most of the recent progress is highly motivated by transformer-based large language
models as well as the availability of large-scale datasets. The recent progress in
this text summarization can improve the healthcare system. To enhance health-
care documentation and streamline the healthcare process, an NLP-powered system
analyzes conversations, identifies relevant clinical facts, structures the information,
and generates coherent medical reports. This can be done by automatically gener-
ating clinical notes by summarizing the conversation between doctor and patient.
This ensures providing timely insights and support to medical professionals dur-
ing patient interactions. While making important decisions, real-time information
retrieval ensures that clinicians have access to relevant medical data and patient his-
tories. This immediate support can lead to more accurate diagnoses, personalized
treatment strategies, and improved patient outcomes. The ability to analyze data
extends beyond individual patient interactions, allowing medical facilities to make
data-driven decisions that enhance overall treatment quality, resource utilization,
and patient satisfaction.

1.1 Motivation

Manual note-taking can be time-consuming, diverting healthcare providers’ atten-
tion from patient care. On average medical doctors spend about 52 to 102 minutes
daily writing clinical notes from their conversations with patients [3]. Automatic
clinical note generation can be a solution to this problem. It can reduce the bur-
den of paperwork on healthcare providers, and improve the accuracy of the medical
records. This allows doctors to focus more on patient care rather than on paperwork.
Moreover, during the COVID-19 pandemic, when in-person medical visits were get-
ting limited, healthcare systems saw a greater than 100% increase in virtual urgent
care visits and greater than 4000% increase in virtual non-urgent care visits [18].
Automatic clinical note generation can help us to overcome this kind of situation.
Clinical notes can vary widely in terms of content, format, and quality. Automated
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systems can help to standardize documentation, improve data quality, and facili-
tate analysis. Nevertheless, Automated systems can extract valuable insights from
clinical notes, enabling data-driven decision-making and improving patient care.

1.2 Problem Statement And Challenges

Generating clinical notes by summarizing doctor-patient conversations has its unique
challenges. In this domain, accuracy is very important, as inaccuracies in critical
medical facts can be extremely costly and may even endanger human lives. Hal-
lucinations can also cause similar dire consequences. In this paper we addressed
these challenges by employing decoder-only models rather than sequence-to-sequence
models, thereby enhancing accuracy according to both ROUGE Score and BERT
Score evaluation metrics compared to state-of-the-art summarization models.

For this task, we have used MTS-DIALOG dataset [28] which contains 1700
doctor-patient conversations (18k sentences) and their summarized clinical notes
(6k sentences). (Abacha et al., 2023b) [28] studied several sequence-to-sequence
summarization models and created a benchmark for the dataset. This dataset was
also used in the 2023 MEDIQAChat challenge where the leading team surpassed
the benchmark Rouge Scores and got a new state-of-the-art(SOTA) [27]. They have
fine-tuned FLAN-T5-Large a Seq2Seq model, to get this performance.

The majority of seq2seq frameworks in use today have the Encoder-Decoder archi-
tecture [4], [5], where an encoder is responsible for encoding the input data into a
hidden space, while a decoder is used to generate the target output text. In or-
der to handle the Seq2Seq tasks, many promising large language models (GPT [9],
GPT2 [13], GPT3 [17], InstructGPT/ChatGPT [25], Palm [30], Bloom [26],
Mistral [31], Llama [40], Llama2 [41], Llama3 [46]) have emerged that use a
language model that solely uses decoders. Despite the achievements of recent large
language models, it is still not clear whether applying decoder-only models in the
Seq2Seq task is a promising choice. According to (Liu et al., 2018) [8] the decoder-
only language models get some gains over the Encoder-Decoder structure in the
summarization task. In this paper, we mainly focused on the latest decoder-only
models like Mistral [31] and Llama [40] and their several variants to generate clin-
ical notes by summarizing the conversation between doctor and patient. We found
Llama3 as our best performer which outperformed the best teams’ performance at
the 2023 MEDIQAChat challenge.

1.3 Research Objective

The core objective of this research is to explore, develop, and evaluate several
decoder-only transformer models to generate summaries from doctor-patient con-
versations and use them as clinical notes. Our specific goals are:

• To identify a decoder-only transformer model suitable for clinical dialogue
summarization that offers a balance between computational efficiency and
high-quality summaries.
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• To fine-tune the chosen transformer model on the MTS-DIALOG dataset,
adapting its parameters to match the dataset’s specific characteristics.

• To develop a state-of-the-art model that outperforms the current leading sequence-
to-sequence model, Flan T5 Large, in generating clinical notes.

• To rigorously compare the ROUGE scores and BERT scores of the fine-tuned
model with the current leading sequence-to-sequence model, Flan-T5-Large,
to measure improvements in performance and summarization quality.
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Chapter 2

Literature Review

The author of this paper describes an elaborate process for creating extensive decoder-
only models to generate clinical notes from doctor-patient conversations. This task
is approached as an abstractive text summarization problem. here several decoder-
only models like the Llama and Mistral families were fine-tuned using parameter
efficient fine-tuning (PEFT) [11] with low-rank adaptation (LoRA) [22].

2.1 Several Text Summarization LLMs

Model Developed By Model Architecture
T5 Google Research Encoder-Decoder

FLAN-T5 Google Research Encoder-Decoder
BART FAIR Encoder-Decoder
Mistral Mistral AI Decoder-Only
Llama Meta AI Decoder-Only

Table 2.1: Text Summarization LLMs

Generative AI transformer models have upended the status quo in Natural Language
Processing and beyond. With their basis on the now-revolutionary Transformer
Architecture, these models can generate human-quality text, translate languages,
summarize texts, and write various creative content. In table 2.1 some popular
LLMs are shown that are used for text summarization tasks.

2.1.1 Vanilla Transformer Model Overview

Transformer architecture is the backbone of almost all state-of-the-art (SOTA)
LLMs. Transformers in NLP are a type of deep learning model that uses self-
attention mechanisms to analyze and process natural language data. The Trans-
former architecture was introduced by Google researchers in the paper titled “Atten-
tion is all you need” [7]. The Transformer model uses an encoder-decoder structure,
consisting solely of self-attention mechanisms and fully connected layers. A basic
architecture of the model is shown in Figure 2.1. The architecture consists of:

• Encoder: A stack of N identical layers
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Figure 2.1: Illustration of the original transformer architecture proposed in Atten-
tion Is All You Need, 2017 [7]

• Decoder: Another stack of N identical layers.

Each of these layers is made up of two primary sub-layers:

• Multi-Head Self-Attention

• Position-wise Fully Connected Feed-Forward Network.

Self-Attention and Multi-Head Attention

Self-attention, also known as scaled dot-product attention, is a crucial mechanism
in the transformer architecture that allows the model to weigh the importance of
different tokens in the input sequence relative to each other. The key breakthrough
of the Transformer model lies in its self-attention mechanism, which allows the
model to weigh the importance of different tokens in a sentence relative to each
other, regardless of their position. Self-Attention works as follows:

Input Representation:

For each word in the input sequence, the model constructs three vectors: Query
(Q), Key (K), and Value (V). These vectors are learned transformations of the
input embeddings through learned weight matrices WQ, WK , and WV .
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Scaled Dot-Product Attention:

Self-attention is calculated using the dot product between the Query and Key vectors
to determine the relevance of other words in the sequence. Mathematically, the
attention score is calculated as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

Where:

• QKT computes the similarity between each query and key.

• The result is scaled by
√
dk to avoid large values in the dot product, which

could push the softmax function into regions with very small gradients.

• The resulting weights are multiplied by the Value vectors, producing a weighted
sum that determines the final representation for each word in the sequence.

Multi-Head Attention

The multi-head attention mechanism performs multiple self-attention calculations
in parallel using different sets of Q, K, and V matrices, and then concatenates their
outputs. Mathematically:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W0 (2.2)

Where, headi = Attention(QWQi
, KWki , V WVi

)
The concatenated outputs are then projected through an output weight matrix W0.

Position-wise Feed-Forward Networks

Each encoder and decoder layer contains a fully connected feed-forward network that
operates independently on each position in the sequence. This network consists of
two linear transformations with a ReLU activation in between:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.3)

Positional Encoding

Since the Transformer has no inherent sense of word order, positional encodings are
added to the input embeddings to provide information about the relative positions
of words in the sequence. These encodings are added element-wise to the input em-
beddings and are generated using sine and cosine functions of different frequencies:

PE(pos, 2i) = sin(
pos

10000
2i

dmodel

) (2.4)

PE(pos, 2i+ 1) = cos(
pos

10000
2i

dmodel

) (2.5)
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Encoder-Decoder Interaction

The encoder processes the input sequence and produces a sequence of continuous
representations called context vectors. The decoder uses these context vectors along
with the previously generated output (shifted right) to generate the next token in
the output sequence. In the decoder, the multi-head attention mechanism is applied
twice. The first one is similar to the encoder’s self-attention but masked so that
the decoder cannot attend to future tokens. This is important for autoregressive
generation tasks. This kind of attention is known as Masked Multi-Head Attention.
For the second one, the queries come from the previous decoder layer, while the keys
and values come from the encoder’s output. This layer allows the decoder to focus
on relevant parts of the input sequence.

2.1.2 Text-to-Text Transformer (T5)

Figure 2.2: T5 model text-to-text framework [19]

Google Research developed the T5 model, which was proposed in the research pa-
per [19]. It is designed to handle various NLP tasks using a unified ”text-to-text”
framework. The T5 model encodes the various tasks as text directives in the in-
put stream, allowing it to handle a broad range of many-to-many and many-to-one
NLP jobs uniformly. This makes it possible to train and supervise a single model
for a broad range of natural language processing tasks, including summarization,
translation, classification, Q&A, and even regression. A Figure of the framework
is shown here 2.2. The T5 model is roughly equivalent to the original Transformer
except for removing the Layer Norm bias, placing the layer normalization outside
the residual path, and using a different position embedding scheme. T5 utilizes a
training method known as ”span corruption,” in which random portions of the input
text are hidden, and the model is tasked with generating the missing spans. This
technique shares similarities with BERT’s masked language model (MLM) training,
where individual tokens are masked and predicted. The matrix representation of dif-
ferent attention masks is shown in Figure 2.3. However, T5 takes a more generalized
approach by focusing on reconstructing longer sequences instead of single tokens,
providing a broader and more flexible prediction capability. T5 is a highly versatile
model that has become widely adopted due to its simple yet powerful text-to-text
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framework. Its encoder-decoder architecture and unified task formulation make it
suitable for a wide variety of NLP tasks.

Figure 2.3: Matrices representing different attention mask patterns [19]

2.1.3 FLAN T5

Figure 2.4: Fine-tuning of various language models [44]

FLAN-T5 preserves the core transformer-based encoder-decoder structure of T5.
The bidirectional encoder captures contextual information from both directions in
the input sequence, ensuring deep comprehension, while the autoregressive decoder
generates text sequentially, from left to right, ensuring coherent language produc-
tion. The model architecture was described in the paper [44]. The main aim was
to improve the performance and generalization of language models through instruc-
tion fine-tuning, scaling model size, and incorporating chain-of-thought (CoT) data.
The paper explores instruction fine-tuning with a particular focus on scaling the
number of tasks, scaling the model size, and fine-tuning chain-of-thought data. The
instruction fine-tuning is performed on a collection of data sources with a variety
of instruction template types. This fine-tuning procedure is called Flan (fine-tuning
language models) and a demonstration is shown in the figure 2.4. FLAN-T5’s pri-
mary innovation lies in its ability to excel in few-shot learning, where the model is
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trained to perform well with minimal labeled examples. This is achieved through
the integration of auxiliary networks, which provide additional context and guidance
during learning. These networks help the model adapt quickly and accurately to new
tasks, even when training data are scarce, significantly improving its generalization
capabilities. Like T5, FLAN-T5 operates within a text-to-text framework, convert-
ing every NLP task into a text generation problem. This unified framework allows
for easy fine-tuning, where the model can be adjusted using task-specific prompts.
During fine-tuning, FLAN-T5 leverages its few-shot learning capabilities, making it
highly efficient for tasks with limited datasets. This approach enhances its flexibility
across diverse domains, improving its adaptability to new challenges.

2.1.4 BART

Figure 2.5: BART model architecture

BART (Bidirectional and Auto-Regressive Transformers) is a versatile sequence-to-
sequence model developed by Facebook AI Research, optimized for a wide range
of natural language processing (NLP) tasks. BART is a powerful language model
introduced in 2019 in the paper [12]. It’s designed for a wide range of natural lan-
guage processing tasks, including text generation, summarization, and translation.
BART’s architecture is inspired by the Transformer model, which has proven to
be highly effective for sequence-to-sequence tasks. BART large uses 12 layers in
the encoder and decoder as shown in the figure 2.5. During training, BART uses
a denoising autoencoder approach. The model is trained on text that has been
corrupted by various noise functions (e.g., random deletions, permutations), and it
learns to reconstruct the original text from these corrupted versions. This training
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strategy helps the model become proficient at recovering missing or noisy parts of
the text and enhances its generative capabilities. In BART, the denoising autoen-
coder approach is applied to sequences of text. The training procedure involves two
key steps:

• Corrupting the Input Text (Noising)

• Reconstructing the Original Text (Denoising)

BART’s use of the denoising autoencoder approach allows it to be bidirectional, like
BERT, while also being auto-regressive, like GPT. This enables BART to be effec-
tive at both Understanding tasks and Generation tasks. BART’s encoder operates
similarly to BERT, processing the entire input sequence and leveraging bidirectional
attention to understand the relationships between tokens. The decoder functions
more like GPT, generating output sequences in an auto-regressive manner, meaning
it predicts each token one by one, conditioned on the tokens generated before it. By
combining these elements, BART’s training process effectively teaches the model to
reconstruct meaningful text from a corrupted input, giving it a strong performance
in both text understanding and generation.

2.1.5 Mistral

Figure 2.6: Mistral 7 X 8B Architecture

The Mistral model’s architecture was introduced in the paper [31]. The Mistral
model is a state-of-the-art decoder-only large language model (LLM) that redefines
the landscape of natural language processing (NLP). Mistral does not use a tradi-
tional encoder-decoder structure but instead follows the structure of a decoder-only
model. This follows the pattern of modern language models like GPT, where text
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generation is the focus, and self-attention is applied across all tokens. The Mistral
model’s architecture is shown in figure 2.6. Another key feature of the Mistral model
is its parameter efficiency. Despite having fewer parameters than many large-scale
models, it achieves a high level of accuracy and deep contextual understanding. This
efficiency is a product of advanced optimization techniques, which allow Mistral to
deliver robust performance even in resource-constrained environments. This makes
the model highly suitable for deployment on edge devices or in settings where low
latency is crucial. The model is trained on vast datasets and requires substantial
computational power for fine-tuning. Through this process, Mistral can perform
exceptionally well across various NLP tasks, including text generation, machine
translation, and text comprehension. Its fine-tuning enhances the model’s ability to
generate coherent and contextually appropriate responses in a wide range of appli-
cations.

Sliding Window Attention

Figure 2.7: The receptive field of each convolution layer with a 3×3 kernel [6]

Sliding window attention is a technique used in models like Mistral to handle long
sequences more efficiently. In large Transformer models, standard self-attention has
quadratic complexity, which becomes computationally expensive when dealing with
long inputs. Sliding window attention reduces this overhead by limiting the atten-
tion computation to local neighborhoods of tokens rather than the entire sequence.
It reduces the number of dot-products to perform, and thus, performance during
training and inference. Sliding window attention may lead to degradation in the
performance of the model, as some “interactions” between tokens will not be cap-
tured. The model mostly focuses on the local context, which depending on the size
of the window, is enough for most cases. Sliding window attention can still allow one
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token to watch tokens outside the window, using reasoning similar to the receptive
field in convolutional neural networks shown in figure 2.7. Figure 2.8 illustrates the
architectural details of sliding window attention in mistral. From these figures, it is
also visible that the information flow is quite similar to the receptive field of a CNN.

Figure 2.8: Architectural details of sliding window attention [31]

KV cache

KV Cache (Key-Value Cache) is a type of data store that efficiently stores and re-
trieves small pieces of data, typically referred to as “key-value pairs”. It’s optimized
for high-speed access and is often used to improve the performance of applications
that require frequent lookups of frequently accessed data. In transformer models,
self-attention computes the relationship between each token (word) in a sequence.
For every token, it calculates the Query (Q), Key (K), and Value (V ) matrices,
which help determine how much focus each token should have on other tokens in
the sequence [7]. When generating sequences token by token, the same computa-
tions (K and V matrices) for past tokens are reused at each new step. Instead of
recalculating these matrices every time a new token is generated, the KV cache
stores them for all previously processed tokens. An illustration is shown in the fig-
ure 2.9 This prevents redundant calculations, making the generation process faster
and more efficient.

Figure 2.9: KV Cache
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Rolling Buffer Cache

The rolling buffer cache in Mistral is a memory-efficient mechanism used to handle
long-context sequence generation. It’s particularly useful when the model needs to
process large inputs or generate long outputs without running into memory con-
straints or significant computational slowdowns. In autoregressive text generation,
transformers typically require a full history of previous tokens to calculate attention
for the current token. The rolling buffer cache optimizes this by limiting how much
of the past sequence is retained in memory, while still allowing the model to gen-
erate text based on recent context. Transformer models have a maximum context
length, beyond which they cannot attend to tokens effectively. The rolling buffer
cache manages this by maintaining a fixed-size buffer, which stores the most recent
tokens. As the model generates new tokens, the buffer ”rolls” forward, discarding
the oldest tokens and retaining only the most recent ones. This sliding window
ensures that the model always has access to the most relevant recent context while
keeping memory usage efficient. The rolling buffer cache works alongside the KV
cache. Instead of keeping K and V matrices for all tokens ever processed, the rolling
buffer keeps these matrices only for the tokens within the current context window.
When the window moves forward, the older K and V matrices are dropped to save
memory and computation time.

Mixture of Experts (MoE)

Figure 2.10: Sparse Mixture of Experts (SMoE)

In Mistral, a Mixture of Experts (MoE) is indeed a sophisticated ensemble tech-
nique used to improve model efficiency and performance. It is designed to allocate
computational resources dynamically by activating only a subset of ”expert” neural
networks (or submodels) for any given input, rather than using the entire model all
the time. This makes the model more computationally efficient, especially when scal-
ing to larger architectures. The Mixture of Experts (MoE) is an ensemble technique
that combines several expert models, much like how the Random Forest algorithm
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brings together multiple decision tree models. While Random Forest consists of
decision trees, MoE is made up of feedforward neural networks (FFNs). In MoE,
each expert focuses on a specific aspect of the task or input data, allowing them to
specialize in handling particular problem segments. This specialization enables each
model to excel in its designated tasks, improving overall performance. In the case
of Mistral 8x7B, a Sparse Mixture of Experts (SMoE) is discussed [24]. In a Sparse
MoE, each token is only sent to the top k experts, rather than all the experts in
the MoE layer. This means that only a selected few experts are activated for each
token, rather than all of the experts. In the Mistral model, the router is responsible
for selecting the top 2 experts for each token. An illustration of SMoE is shown
in Figure 2.6 This approach reduces the computational cost and makes the model
more efficient, while still allowing the experts to specialize and learn effectively.

2.1.6 Llama

Figure 2.11: Llama architecture

Llama is a groundbreaking series of open-source large language models developed

14



by Meta. Llama 1 was initially introduced in four different versions, featuring pa-
rameter sizes of 6.7B, 13B, 32.5B, and 65.2B. Each version’s multi-head attention
system contains 32, 40, 52, and 64 heads, respectively, unlike the transformer model,
which had only 8 heads in its multi-head attention. It’s worth noting that Llama
employs a slightly adjusted form of multi-head attention, known as grouped multi-
query attention. In Llama, every token within the input embedding is represented
by vectors of various dimensions based on the model’s size. Specifically, the 6B pa-
rameter model uses a 4096-dimensional vector for each token, while the 13B model
increases the dimension to 5120. For the 32.5B model, the dimensionality grows to
6656, and for the 65.2B model, tokens are represented by 8192-dimensional vectors.
This contrasts with the original transformer model, where each token is represented
by a 512-dimensional vector. Additionally, the input embeddings in Llama models
are dynamic and are learned during the training process. Meta launched Llama
3, the latest in its Llama series of open-source AI models. Llama 3 comes in two
variants: one with 8 billion parameters and another with 70 billion parameters. The
key difference between the predecessor’s models is, the size of the pretraining corpus
increased by 650% LLaMA — 2 was trained on 2T tokens whereas LLaMA — 3
was trained on 15T tokens, doubled the context length of the model from 4K to 8K
on both 8B and 70B models, and adopted grouped-query attention for both 8B and
70B variant as compared to the previous generation (GQA) was only used in bigger
models 34B and 70B. LLaMA 3 imbibes its Architecture from its previous genera-
tion models [40], [41], [46]. The basic architecture of the Llama model is shown in
the figure 2.11.

RoPE (Rotary Positional Encoding)

One of the key differences between the Llama and the vanilla transformer model
is Llama uses Rotary Positional Encoding (RoPE). Absolute positional encodings
are predefined vectors added to a token’s embedding to indicate its exact posi-
tion within a sentence. This method processes each token individually. Relative
positional encodings, however, operate on pairs of tokens and are utilized during
attention calculations. Since the attention mechanism measures the degree of relat-
edness between two words, relative positional encodings provide information about
the distance between those two words to the attention mechanism. So a vector was
created of two given tokens that represent their distance. Relative positional encod-
ings were introduced in the paper [10].

Rotoary Positional Encoding can be considered as a midground between Absolute
Positional Embeddings and Relative Positional Embeddings as each token does have
a fixed or an absolute embedding value and is multiplied by an inner dot product
with its polar form which is relative to the rotation of the vectors on the 2D plane.
Rotoary Positional Encoding was introduced in the paper [47]. The dot product
used in the attention mechanism is a type of inner product, which can be thought
of as a generalization of the dot product. An inner product can be found over the
two vectors q (query) and k (key) used in the attention mechanism, which depends
only on the two vectors and the relative distance of the tokens they represent. In
the paper a function g like the following that only depends on the two embeddings
vector q and k and their relative distance was defined.
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fq(xm,m) = (Wqxm)e
imθ (2.6)

fk(xn, n) = (Wkxn)einθ (2.7)

g(xm, xn,m− n) = Re[(Wqxm)(Wkxn) ∗ ei(m−n)θ)] (2.8)

After using Euler’s formula, its matrix can be written as:
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In equation 2.9 a rotation matrix that is the rotation of some vector in the 2D space
and the rotation is dependent on m and θ where m is the absolute position of the
token and θ is the rotation angle. A visualization is shown in Figure 2.12.

Figure 2.12: Rotational Matrix

KV Cache

The KV cache in Llama is similar to that described in Mistral in section 2.1.5. At
every step of the inference, only the last token output by the model is of interest,
as the previous ones are already known. However, to determine the next token
to output, the model requires access to all the preceding tokens, which serve as
its context. It’s a way to make the model do less computation on the token it
has already seen during inference. It was made possible by using the KV Cache
technique.

Grouped Multi-Query Attention

Multi-head attention layers, used in the Transformer neural sequence model, offer
a powerful alternative to RNNs for transferring information within and across se-
quences [7]. Training these layers is typically fast and straightforward due to their

16



Figure 2.13: Overview of Multi-Head, Grouped Multi-Query and Multi-Query at-
tention [29]

ability to be parallelized across the sequence length. However, incremental infer-
ence, where such parallelism isn’t possible, tends to be slower because of the high
memory-bandwidth cost associated with repeatedly loading the large ”keys” and
”values” tensors. To address this, we introduce a variation called multi-query atten-
tion, where the keys and values are shared among all attention heads, significantly
reducing the tensor size and memory bandwidth needed for incremental decoding.
Experimental results confirm that this approach speeds up decoding and results in
only minimal quality loss compared to the original model. Multi-query attention is
a mechanism in transformer models that allows a single query to attend to multiple
key-value pairs simultaneously. This is different from the standard self-attention
mechanism, where each query attends to all key-value pairs in the sequence [14].

Grouped-query attention (GQA) was introduced in the paper [29]. Grouped-query
attention (GQA) combines elements of multi-query and multi-head attention, de-
livering quality comparable to multi-head attention while offering speeds similar to
multi-query attention. In autoregressive decoding, it’s common to cache the keys
and values of prior tokens in a sequence to expedite attention computation. How-
ever, as the context window or batch size grows, the memory cost of storing the
key-value cache (kv cache) in multi-head attention (MHA) models increases signifi-
cantly. Multi-query attention (MQA) addresses this by using a single key-value head
for multiple queries, reducing memory use and speeding up decoder inference. An
overview of Multi-Head, Grouped Multi-query, and Multi-Query attention illustra-
tion is shown in figure 2.13. Llama employs GQA to mitigate memory bandwidth
limitations during the autoregressive decoding of Transformer models. The main
challenge arises from the GPU performing computations faster than it can trans-
fer data into memory, compounded by the large memory required to load decoder
weights and attention keys at each step.

Root Mean Squared Normalization

Root Mean Square Normalization (RMSNorm) is a relatively novel normalization
technique introduced by Biao Zhang and Rico Sennrich in 2019 [15]. Unlike Batch
Normalization and Layer Normalization, Root Mean Squared Normalization nor-
malizes activations based on the root mean square of the activations themselves,
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rather than using mini-batch or layer statistics. This approach ensures that the
activations are consistently scaled regardless of the mini-batch size or the number
of features. Additionally, RMSNorm introduces learnable scale parameters, offering
similar adaptability to Batch Normalization. RMSNorm only focuses on re-scaling
invariance and regularizes the summed inputs simply according to the root mean
square (RMS) statistic:

āi =
ai

RMS(a)
gi, where RMS(a) =

√√√√ 1

n

n∑
i=1

a2i (2.10)

SwiGLU Activation Function

SwiGLU is an activation function used in deep neural networks that is a variant of
GLU (Gated Linear Unit) and was introduced in the paper [20]. SwiGLU is used
to compute the output of a neuron in a neural network by taking the weighted sum
of the inputs and applying a non-linear function to it. Mathematically, SwiGLU in-
volves the Swish function and tensor multiplication. As a variant of GLU, SwiGLU
is built on the same fundamental mathematical principles. However, it differs by em-
ploying the Swish function as its non-linear component. The Swish function, a newer
activation function, has been shown to outperform other activation functions in cer-
tain use cases. SwiGLU offers several advantages, making it an effective activation
function for neural networks. First, it builds on the GLU concept, demonstrating
strong performance across various applications. Second, SwiGLU utilizes the Swish
function, which has been found to outperform other activation functions, especially
when used alongside residual connections. Lastly, it supports efficient computation
due to its reliance on element-wise multiplication. Mathematical expression of the
function is:

FFNSWiGLU(x,W, V,W2) = (Swish1(xW )⊗ (xV ))W2 (2.11)

The GLU family of layers has been extended and proposed for use in Transformer.
In a transfer-learning setup, the new variants appear to generate better perplexities
for the de-noising objective employed in pre-training, as well as improved results
on numerous downstream language-understanding tasks. These architectures are
straightforward to implement and exhibit no discernible computational disadvan-
tages. No explanation is provided for the effectiveness of these architectures; their
success, like everything else, is attributed to divine benevolence.

2.2 LLMs in healthcare industry

In ”An Empirical Study of Clinical Note Generation from Doctor-Patient Encoun-
ters,” [28] Asma Ben Abacha and colleagues present the MTS-DIALOG dataset, a
substantial compilation of simulated doctor-patient dialogues linked to correspond-
ing clinical notes. The primary aim of the study was to assess the viability of
automatically generating clinical notes through advanced transformer models, such
as BART and Pegasus. The researchers evaluated these models using both auto-
mated metrics—such as ROUGE, Fact Scores, and BLEURT and manual assess-
ments conducted by experts. The findings indicate that BART, particularly when
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pre-finetuned and applied with guided summarization techniques, delivered the high-
est accuracy in generating clinical notes. Nonetheless, persistent challenges, includ-
ing hallucinations and the omission of key facts, remain. This study not only offers
a foundational dataset and key performance benchmarks but also underscores the
potential for reducing the documentation workload in healthcare. At the same time,
it highlights the need for ongoing improvements, especially in enhancing factual ac-
curacy and better capturing the nuances of real-world clinical conversations.

The authors of this paper [34] investigate the application of large language models
(LLMs) for summarizing and classifying medical dialogues. As part of the MEDIQA-
Chat 2023 competition, the researchers sought to generate section summaries and
headers from conversations between patients and doctors. They experimented with
several models, including T5-Small, T5-Base, and Clinical-T5 for summarization,
and Roberta-base for classification tasks.
Using the MIMIC datasets, the team fine-tuned these models and applied data aug-
mentation techniques to boost performance. Their highest accuracy, 72.3%, was
achieved with the Clinical-T5-Sci model for summarization and Roberta-base for
header classification. Despite these successes, they encountered challenges related
to limited hardware and dataset size. The study highlights the promise of LLMs
in automating medical document generation, though future research should explore
more advanced models and improved pre- and post-processing techniques for even
better outcomes.

In this paper [36], authors present their approach for the MEDIQA-Chat 2023 com-
petition, focusing on the use of large language models (LLMs) to generate, aug-
ment, and summarize patient-doctor conversations. They employed BART-large,
fine-tuning it on datasets such as SAMSum and MIMIC-IV-Note. To address the
challenge of summarizing lengthy medical dialogues, they introduced a novel N-
pass strategy, where conversation blocks are processed sequentially alongside partial
summaries. Data augmentation played a crucial role in improving performance,
particularly through the use of synthetic dialogues derived from MIMIC-IV-Note.
Despite achieving strong results, the models faced challenges such as hallucinations
and the omission of critical medical concepts. Future directions include incorporat-
ing external medical knowledge and enhancing dialogue-generation techniques. This
research contributes to advancing clinical natural language processing (NLP) tasks
and automating medical documentation processes.

The authors of this paper [42] investigated the use of large language models (LLMs)
to generate synthetic doctor-patient dialogues for the MEDIQA-Chat 2023 compe-
tition. They introduced a novel doctor-patient loop system that utilized ChatGPT
and BioMedLM to create clinically relevant conversations. The team applied their
approach to tasks such as clinical note summarization and dialogue generation,
achieving notable success. BioMedLM performed well in classifying note sections,
while ChatGPT excelled in generating realistic dialogue content. Their findings
demonstrate that when fine-tuned and properly segmented, LLMs can effectively
simulate doctor-patient interactions. However, challenges remained, such as gaps
in medical knowledge and difficulties in handling lengthy conversations. Future
research will focus on incorporating more specialized medical knowledge and im-
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proving dialogue segmentation.

Authors of this paper [38] conducted a comprehensive evaluation of various Transformer-
based models, including BioBart, Flan-T5, DialogLED, and OpenAI’s GPT-3, in the
context of the MEDIQA-Chat 2023 challenge, which focused on summarizing clin-
ical dialogues. Their aim was to automate the process of generating clinical note
sections from doctor-patient conversations. The study employed a variety of tech-
niques, such as fine-tuning, ensemble learning, and GPT-3’s in-context learning, to
create accurate summaries. Among these, DialogLED-Large demonstrated supe-
rior performance, especially in handling lengthy conversations, surpassing GPT-3,
which showed vulnerabilities to generating hallucinations. Notably, the research il-
lustrated that well-tuned models could match the efficiency of GPT-3 while offering
a more cost-effective and secure solution for healthcare applications. However, a
major constraint was the limited training data, which hindered overall performance.
To enhance model reliability and adaptability for real-world clinical use, the authors
suggest future exploration of data augmentation methods and strategies to mitigate
hallucinations.

Authors of this paper [39] took part in the MEDIQA-Chat 2023 challenge, aiming
to generate clinical notes from doctor-patient interactions. They fine-tuned models
like BART, RoBERTa, and CONFIT, while also leveraging GPT-4 for in-context
learning to enhance clinical note generation. Their approach yielded competitive
outcomes, with the CONFIT model using a dynamic max-length strategy and GPT-
4 excelling in full note generation. Although automated metrics like ROUGE and
BERTScore were employed for evaluation, human experts favored GPT-4’s outputs
due to their superior accuracy and more natural, human-like quality. However, con-
cerns were raised about patient privacy when using external APIs for medical data
processing. The authors emphasized the need for more robust automated evaluation
methods and underscored the effectiveness of large language models in handling the
complexities of clinical dialogues. These findings demonstrate the promising role
that advanced models like GPT-4 could play in streamlining healthcare documen-
tation.

In this paper [37] authors investigated transformer-based ensembling techniques to
enhance clinical conversation summarization as part of the MEDIQA-Chat 2023
challenge. His research evaluated three distinct methods using the LSG BART
model: a single model (both with and without fine-tuning on PubMed data), a
section-wise ensemble model, and a multi-layer summarization approach. The most
promising results emerged from the section-wise ensemble models, where specialized
models were assigned to summarize different sections of chart notes, yielding greater
accuracy compared to single-model approaches. On the other hand, multi-layer
techniques failed to improve performance, and fine-tuning on PubMed data—more
focused on medical literature rather than dialogue—actually decreased accuracy.
The findings indicate that model specialization for distinct sections of clinical re-
ports holds significant potential, though further exploration is necessary to refine
multi-layer models and identify more suitable data sources for fine-tuning.

Authors of this paper [33] explored advanced techniques for improving clinical note
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generation as part of the MEDIQA-Chat 2023 shared task. They fine-tuned two
T5-based models, FLAN-T5 and LongT5, using datasets of doctor-patient conver-
sations, focusing on multi-task learning to enhance the quality of medical summaries
while minimizing hallucinations. Their methodology centered on text-to-text mod-
eling, with experiments involving different text generation strategies such as beam
search and contrastive search. The results demonstrated that multi-task fine-tuning
significantly enhanced performance, particularly by reducing factual inaccuracies.
However, incorporating clinical named entity recognition (NER) tags as part of data
augmentation unexpectedly worsened the quality of the generated summaries. These
findings suggest that while multi-task learning is a promising avenue for improving
medical note generation, further optimization of NER-based data augmentation is
needed to avoid negatively impacting summarization outcomes.

In this paper [43], the authors introduced an innovative hybrid approach for medical
dialogue summarization during the MEDIQA-Chat 2023 challenge. Their method
integrated a Support Vector Machine (SVM) for dialogue classification with GPT-3
models for summarization. They executed two runs: one using GPT-3.5 with one-
shot prompts and the other utilizing a fine-tuned GPT-3 Curie model. The results
showed that the GPT-3.5 model outperformed the GPT-3 Curie variant, achieving
superior metrics across ROUGE-1, BERTScore, and BLEURT evaluations. Addi-
tionally, the SVM classifier achieved a 70% accuracy rate, exceeding the average
performance of other participants. This research underscores the potential of com-
bining traditional machine learning techniques with state-of-the-art language models
to enhance medical dialogue summarization. However, further refinement of both
the classification accuracy and summarization prompts is needed. Overall, the study
contributes valuable insights, showcasing the promise of hybrid models in assisting
healthcare professionals in managing extensive clinical information.

In the paper titled ”SummQA at MEDIQA-Chat 2023: In-Context Learning with
GPT-4 for Medical Summarization,” [32] authors introduce a novel system for sum-
marizing medical dialogues. Their methodology leverages GPT-4’s capabilities with
in-context examples to generate clinical summaries from doctor-patient interactions.
For section-specific summaries, the team selected dialogues with semantic similar-
ity, while full-note summarization relied on a single example due to constraints on
input length. The system performed exceptionally well, securing top rankings in
the MEDIQA 2023 Shared Task. Despite GPT-4’s ability to generate concise, ab-
stractive summaries, the authors identified challenges, including the tendency to
produce overly brief summaries and the risks of privacy concerns when handling
real patient data. This work represents a significant step forward in applying large
language models to medical summarization, particularly in addressing data scarcity
in critical healthcare contexts.
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Chapter 3

Description of MTS-DIALOG
Corpus

3.1 Main Dataset

Figure 3.1: Example of data point of MTS-DIALOG Dataset, Dialogue, and Notes

The MTS-Dialog dataset is a new collection of 1.7k short doctor-patient conversa-
tions and corresponding summaries (section headers and contents) [28].

• The training set consists of 1,201 pairs of conversations and associated sum-
maries.

• The validation set consists of 100 pairs of conversations and their summaries.
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• MTS-Dialog includes 2 test sets; each test set consists of 200 conversations
and associated section headers and contents:

– MTS-Dialog-TestSet-1-MEDIQA-Chat-2023.csv: Official test set used in
the MEDIQA-Chat 2023 challenge (Task A)

– MTS-Dialog-TestSet-2-MEDIQA-Sum-2023.csv: Official test set used in
the MEDIQA-Sum 2023 challenge (Task A & Task B)

A sample data point is shown in the figure 3.1

3.1.1 Section-header categories

The MTS-Dialog dataset is divided into 20 categories of section headers. The dis-
tribution of section headers is shown in figure 3.2 and the statistics of the dataset
shared in the paper [28] can be found in the table 3.2. The full list of normalized
section headers and their counts are shown in the table 3.1

Section Headers Counts
FAM/SOCHX [FAMILY HISTORY/SOCIAL HISTORY] 465
GENHX [HISTORY of PRESENT ILLNESS] 392
PASTMEDICALHX [PAST MEDICAL HISTORY] 168
CC [CHIEF COMPLAINT] 105
PASTSURGICAL [PAST SURGICAL HISTORY] 86
ALLERGY 84
ROS [REVIEW OF SYSTEMS] 98
MEDICATIONS 80
ASSESSMENT 59
EXAM 34
DIAGNOSIS 23
DISPOSITION 22
PLAN 22
EDCOURSE [EMERGENCY DEPARTMENT COURSE] 16
IMMUNIZATIONS 11
IMAGING 10
GYNHX [GYNECOLOGIC HISTORY] 8
PROCEDURES 6
OTHER HISTORY 7
LABS 5

Table 3.1: Section Headers in the Dataset.
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Figure 3.2: Section Header distribution of MTS-Dialog dataset

Dialogue Summary

Turns Sentences Words Sentences Words

count 15,969 18,406 241,685 5,870 81,299
mean 9 11 142 3 48
max 103 136 1,951 57 1,182
25-perc 4 4 48 1 6
50-perc 6 7 88 2 18
75-perc 12 14 176 4 55

Table 3.2: Statistics of the MTS-DIALOG Dataset.

3.1.2 Data Quality

The MTS-DIALOG dataset undergoes a thorough three-step process to ensure its
quality. First, only those with medical backgrounds, such as former medical scribes,
were selected to serve as annotators. Second, during the early stages of their work,
each annotator received one-on-one feedback from an experienced trainer to help
refine their skills. Lastly, after the dataset was completed, an independent validation
process took place. This separate review used a grading rubric to assess how well the
annotated conversations followed the guidelines and how relevant the content was
to the original clinical notes. Minor corrections, like fixing typos or filling in missing
information, were made during this stage to make sure the final dataset was even
more accurate than the initial version [27]. Even though there was one annotation
error in the dataset that was shown in the figure 6.1.
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3.1.3 Comparison with Real Data

The MTS-DIALOG dataset includes both real medical notes and simulated con-
versations that mirror doctor-patient interactions, helping to avoid any breaches
of confidentiality. To understand the impact of relying heavily on synthetic data,
a blind review was conducted to compare the MTS-DIALOG data with real con-
versations. Distinguishing between the simulated and real data in the dataset is
a challenging task. While statistical analysis shows that the simulated conversa-
tions have fewer speech errors and pauses, medical experts noted that the dialogues
generally feel authentic. In some cases, the clarity, directness, and ease of under-
standing—even with sudden shifts in topics—led to synthetic data being mistaken
for real interactions. On the other hand, actual data, known for its honesty and
minimal speech flaws, was often confused for simulated content due to its polished
nature. This difficulty highlights the dataset’s value as a foundation for training
and evaluating models in practical, real-world settings.

3.2 Augmented dataset

Figure 3.3: Section Header distribution of Augmented MTS-Dialog dataset

Back-translation augmentation stands out as a valuable method. It involves trans-
lating the original text into a different language and then re-translating it back into
the original language. This process introduces natural linguistic variations while
preserving the core meaning, thus expanding the training dataset and helping mod-
els generalize better to unseen data. To reduce translation errors, d French and
Spanish were selected for their lexical proximity with English, and high-performing
translation models [21]. It was implemented using the following three steps:
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• Translation: The original text is translated from its source language (En-
glish) to a target language (French and Spanish) using a machine translation
model.

• Back-translation: The translated text is then translated back to the original
language (English) using another machine translation model.

• Augmentation: The back-translated text is added to the original training
dataset, creating a larger and more diverse corpus.

The augmented dataset consists of 3.6k pairs of medical conversations and associated
summaries created from the original 1.2k training pairs via back-translation using
two languages French and Spanish, as described in the paper [28]. The distribution
of section headers of augmented data is shown in figure 3.3. Back-translation can
significantly increase the size of a training dataset. theoretically, it can improve
the performance of the summarization model. By exposing models to different
linguistic variations, back-translation can help them generalize unseen data better.
Nevertheless, by increasing the diversity of training data, back-translation helps
prevent overfitting, which is a common problem in NLP. The full list of normalized
section headers and their counts in the augmented dataset are shown in table 3.3

Section Headers Counts
FAM/SOCHX [FAMILY HISTORY/SOCIAL HISTORY] 1192
GENHX [HISTORY of PRESENT ILLNESS] 973
PASTMEDICALHX [PAST MEDICAL HISTORY] 432
CC [CHIEF COMPLAINT] 268
PASTSURGICAL [PAST SURGICAL HISTORY] 212
ALLERGY 208
ROS [REVIEW OF SYSTEMS] 217
MEDICATIONS 190
ASSESSMENT 133
EXAM 84
DIAGNOSIS 62
DISPOSITION 54
PLAN 48
EDCOURSE [EMERGENCY DEPARTMENT COURSE] 30
IMMUNIZATIONS 27
IMAGING 23
GYNHX [GYNECOLOGIC HISTORY] 18
PROCEDURES 12
OTHER HISTORY 11
LABS 9

Table 3.3: Section Headers in the augmented Dataset.
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Chapter 4

Fine-Tuning Techniques

4.1 PEFT with LoRA

In most cases, GPU hardly has enough memory to fine-tune any decoder-only LLM.
To overcome this problem according to the research paper [11], we need to use
Parameter Efficient Fine-tuning (PEFT).
Fine-tuning involves copying the weights from a pre-trained network and tuning
them on the downstream task. This means there is a new set of weights for each
task. Multi-task learning requires simultaneous access to all tasks and this is quite
memory extensive. Adapters yield parameter-efficient tuning for NLP. It permits
training on tasks sequentially. Tuning with adapter modules involves adding a small
number of new parameters to a model, which are trained on the downstream tasks.
In adapter-tuning, the parameters of the original network are frozen and therefore
may be shared by many tasks. The basic architecture of this procedure is shown in
Figure 4.1.

Figure 4.1: Architecture of transformer for adapter tuning [11]

One popular method of PEFT is Low-Rank Adaptation (LoRA). This technique
freezes the pre-trained model weights and injects trainable rank decomposition ma-
trices into each layer of the transformer architecture. The model is first initial-
ized during full fine-tuning using pre-trained weights Φ. It is then iteratively up-
dated to Φ + ∆Φ by following the gradient to maximize the conditional language
modeling objective. One of the primary drawbacks of full fine-tuning is that each
downstream task requires learning a different set of parameters ∆Φ. LoRA adopts
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a more parameter-efficient approach, where the task-specific parameter increment
∆Φ = ∆Φ(Θ) is further encoded by a much smaller-sized set of parameters Θ. LoRA
proposes to use a Low-Rank representation to encode ∆Φ. LoRA uses a singular
value decomposition technique (SVD) to break any matrix A down [22].

4.1.1 Singular Value Decomposition (SVD)

This paper [1] introduced the concept of Singular Value Decomposition (SVD) in
terms of approximating matrices using the best lower-rank approximations. Singu-
lar Value Decomposition (SVD) is a powerful mathematical technique to factorize a
matrix into three simpler matrices. It is widely applied in various fields, including
signal processing, data compression, and machine learning, particularly in dimen-
sionality reduction. Given a real or complex matrix A of size m × n, the Singular
Value Decomposition of A is a factorization of the form:

A = UΣV T (4.1)

Where:

• U is an m × m orthogonal matrix (if A is real) or unitary matrix (if A is
complex)

• Σ is an m×n diagonal matrix, with non-negative real numbers on the diagonal
called singular values.

• V T (or V H for complex matrices) is the transpose (or conjugate transpose) of
n× n orthogonal matrix (if A is real) or unitary matrix (if A is complex).

The singular values in Σ represent the “strength” of each corresponding dimension
of the matrix. The number of non-zero singular values indicates the rank of the
matrix.

Key Components of SVD:

1. Left Singular Vectors (Columns of U): These vectors span the space
corresponding to the rows of A. They represent the directions in which the
data associated with the rows of A has the most variance.

2. Singular Values (Diagonal Elements of Σ): These values measure the
magnitude of the variance in the corresponding directions defined by the sin-
gular vectors. Larger singular values represent more significant dimensions in
the data.

3. Right Singular Vectors (Columns of V ): These vectors span the space
corresponding to the columns of A. They represent the directions in which
the data associated with the columns of A varies.
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Working mechanism of SVD

• Dimensionality Reduction: In many practical applications, the singular
values tend to decrease rapidly, meaning that after the first few singular val-
ues, the remaining ones become very small. This allows one to approximate
the original matrix A by keeping only the largest singular values and the cor-
responding singular vectors, thereby reducing the dimensionality of the data
while retaining most of the important information.

A ≈ UkΣkV
T
k (4.2)

Where Uk, Σk, V
T
k contain only the first k singular values and their corre-

sponding singular vectors. This is especially useful in applications like image
compression, where we can represent an image with fewer dimensions while
preserving its essential structure.

• Data Compression: SV D is used in image and data compression because it
provides an efficient way to approximate a matrix with fewer parameters. In an
image, for example, the matrix representing pixel values can be decomposed,
and only the most significant singular values and vectors are kept, reducing
the size of the data.

4.2 QLoRA

QLoRA was first proposed in the research paper [45].QLoRA stands for Quantization
and Low-Rank Adapters. In this method, the original pre-trained weights of the
model are quantized to 4-bit and kept fixed during fine-tuning. Then, a small
number of trainable parameters in the form of lor-rank adapters are introduced
during fine-tuning. These adapters are trained to adapt the pre-trained model to
the specific task it is being fine-tuned for, in 32-bit floating point format. Regarding
computations (like forward and backward passes during training, or inference), the
4-bit quantized weights are dequantized back to 32-bit floating-point numbers. After
the fine-tuning process, the model consists of the original weights in 4-bit form, and
the additional low-rank adapters in their higher precision format. The additional
low-rank adapters in the QLoRA method are in a higher precision format, typically
32-bit floating-point for a few reasons:

• Higher precision allows the model to capture more subtle patterns in the data.
This is particularly important for the low-rank adapters, as they are responsi-
ble for adapting the pre-trained model to the specific task it is being fine-tuned
for.

• Training neural networks involves a lot of incremental updates to the weights.
Weights in a higher precision format ensure that updates are accurately cap-
tured.

While quantizing all weights can save memory, the computational efficiency might
not always improve. GPUs are optimized for 32-bit or bfloat16 operations. Com-
putations in 32-bit floating-point can be faster than with lower precision. QLoRA
backpropagates gradients through a frozen, 4-bit quantized pre-trained language
model into Low-Rank Adapters (LoRA).
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4.2.1 LoRA + int8 quantization

It is possible to combine low-rank adaptation with int8 quantization to further opti-
mize memory usage and speed up inference on hardware with specialized instructions
for int8 operations, such as modern CPUs and AI accelerators. By reducing the pre-
cision of weights and activations to 8-bit integers, it is possible to further reduce
the memory footprint and increase the efficiency of operations while maintaining
high accuracy on many tasks. It is quite useful for deploying LLMs to edge devices.
Quantization can affect the accuracy of the model, as reducing the precision of the
weights and activations can lead to loss of information.
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Chapter 5

Research Methodology

5.1 Task description

This research introduces a new task in text generation. To solve this, a text-
generation model must be created to generate clinical notes from the conversation
between doctor and patient. A training-inference diagram of this text generation
model is shown in figure 5.1.

Figure 5.1: Training and Inference diagram of the clinical note generation model.

5.1.1 Training Procedure

• In Given Dataset: C, N :

– Where C = {C0, C1, ...Ci} set of doctor-patient conversations

– AND N = {N0, N1, ...Ni} set of clinical Notes

• Here, A text generative model F (Cj) was proposed to develop that can gener-
ate a valid Nj which is not generated from C0, C1, ...Ci and not in N0, N1, ...Ni
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• Characteristics of a valid generated Note Nk:

– Nk must follow the syntax of a target language.

– Nk must maintain clinical integrity

– Nk must follow the semantics of a target language.

– Nk must not be a hallucination

5.1.2 Inference

• Input: Cj = Conversation between doctor and patient

• Output: Nj = Clinical Notes for Cj

5.2 Data Pre-processing

5.2.1 Removing Unnecessary Spaces

Some unnecessary tags in the dataset were removed by empty string. Certain spaces
and line gaps were eliminated for text processing and analysis to streamline the
training.

5.2.2 Tokenization

Tokenization is one of the most vital steps in this research. In this particular re-
search, mostly HuggingFace models were used. For this reason, HuggingFace’s Au-
toTokenizer class is used for Tokenization.

5.3 Training Setup

We used the online platform Kaggle to fine-tune our dataset, the hardware config-
uration is shown in the table 5.1.

Component Kaggle’s Provided setup
CPU Intel(R) Xeon(R) CPU @ 2.00GHz
GPU Tesla P100-PCIE-16GB

CUDA Version 12.4
VRAM 16 GB

Available RAM 29 GB

Table 5.1: Hardware setup for training LLMs

5.4 Fine-Tuning the Llama and Mistral variants

At first, the author of this paper tried different sequence-to-sequence models with
data augmentation techniques to beat the current SOTA model but the result was
not satisfactory. Next, several state-of-the-art decoder-only models, such as variants
of Mistral and Llama, were evaluated. The “Meta-Llama-3-8B” model, an updated
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version of the Llama family with 8B parameters, outperformed the state-of-the-art
Flan-T5-large model in the Rouge and BERT metrics while the “Mistral-7B-v0.3”
outperformed in the BERT metric only. A smaller variant of the Llama family
“Llama-3.2-3B” was also fine-tuned. Due to low hardware resources full model fine-
tuning was not feasible. The decoder-only models were fine-tuned using parameter-
efficient fine-tuning (PEFT) [11] with the low-rank adaptation (LoRA) [22] method.
Both 8-bit and 4-bit quantization were used while loading the models. This method
is known as QLORA which stands for Quantization and Low-Rank-Adapters [45].
In this method, the original pre-trained weights of the model are quantized to 8-bit
or 4-bit and kept fixed during fine-tuning. Then, a few trainable parameters in the
form of low-rank adapters are introduced during fine-tuning [22]. These adapters
are trained to adapt the pre-trained model to the specific task it is being fine-tuned
for, in the 32-bit floating-point format. Regarding computations (like forward and
backward passes during training, or inference), the 8-bit or 4-bit quantized weights
are dequantized back to 32-bit floating-point numbers. After the fine-tuning process,
the model consists of the original weights in 8-bit or 4-bit form, and the additional
low-rank adapters in their higher precision format.

A significant percentage of this research and analysis is devoted to fine-tuning. For
this procedure, the MTS-DIALOG dataset was used. A variant of the Llama
model, “Meta-Llama-3-8B” and “Llama-3.2-3B” was used for fine-tuning with
the following hyper-parameters. For Mistral, the variant was “Mistral-7B-v0.3”.
The model was loaded with 8-bit quantization for Llama and 4-bit quantization for
Mistral and the following LoRA configurations were maintained and described in
the table 5.2.

LoRA Configuration Value
lora alpha 16

lora dropout 0.1
LoRA attention dimension (rank), r 64

target modules
q proj, k proj, v proj,

o proj, gate proj, up proj,
down proj, lm head

bias none
task type CASUAL LM

Table 5.2: LoRA Configuration

The prompt that was used as a prefix to summarize the doctor-patient dialogue
to generate clinical notes was: ”Summarize the following patient-doctor dialogue.
Include all medically relevant information, including family history, diagnosis, past
medical (and surgical) history, immunizations, lab results, and known allergies.” A
sample training and validation prompt is shown in the Figure 5.2 and Figure 5.3
respectively.
While training, the following “TrainingArguments” class’s configuration was used
and it is shown in the table 5.3.
It is important to keep in mind that to improve performance, several experiments
and parameter sweeps were conducted before selecting these hyperparameters.
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Hyper-parameter Value
per device train batch size 1

logging steps 100
warmup steps 0.03
save strategy epoch

group by length True
lr scheduler type constant
max seq length 512

Table 5.3: TrainingArguments Configuration

Figure 5.2: Training-Prompt

Figure 5.3: Validation-Prompt
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Pytorch “generate()” method is used for generating clinical notes from the finetuned
LLMs. The hyper-parameters used for generating clinical notes are:

• max new tokens = 512

• do sample = True

• temperature=0.8

• pad token id = tokenizer.eos token id

5.5 Evaluation Metrics

In this research ROUGE and BERTScore evaluation metrics are used to evaluate
the model’s generated clinical notes.

5.5.1 ROUGE Evaluation Metric

Chin-Yew Lin introduced ROUGE in 2004 [2]. ROUGE (Recall-Oriented Under-
study for Gisting Evaluation) is a set of metrics used for evaluating automatic
text summarization and machine translation by comparing the overlap between the
machine-generated text (candidate summary) and a human reference summary. The
ROUGE family includes several variations, such as ROUGE-N, ROUGE-L, and
ROUGE-W. Each measures different types of overlap.

ROUGE-N (N-gram overlap)

ROUGE-N measures the overlap of N-grams between the candidate summary and
the reference summary. An N-gram is a contiguous sequence of N items from a given
text. Common values of N include 1 (unigrams) and 2 (bigrams). Mathematical
Expression for ROUGE-N:

ROUGE-N =

∑
n-gram∈reference min(Countref(n-gram),Countcand(n-gram))∑

n-gram∈reference Countref(n-gram)
(5.1)

Where:

• Countref (n−gram) is the number of times the n-gram appears in the reference
summary.

• Countcand(n − gram) is the number of times the n-gram appears in the can-
didate summary.

• The numerator is the count of overlapping n-grams, while the denominator is
the total number of n-grams in the reference summary.

For example, ROUGE-1 measures the overlap of unigrams, while ROUGE-2 mea-
sures the overlap of bigrams.
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ROUGE-L (Longest Common Subsequence)

ROUGE-L evaluates the longest common subsequence (LCS) between the candidate
and reference summaries. LCS is a measure of the longest-ordered sequence of words
that appear in both summaries, though they may not be consecutive. Mathematical
Expression for ROUGE-L:

ROUGE-L = Fβ =
(1 + β2) · Precision ·Recall

β2 · Precision+Recall
(5.2)

Where:

• Precision = LCS(C,R)
|C|

• Recall = LCS(C,R)
|R|

• LCS(C,R) is the length of the longest common subsequence between the can-
didate summary C and reference summary R.

• |C| and |R| are the lengths of the candidate and reference summaries, respec-
tively.

• β is usually set to 1 to equally balance precision and recall.

5.5.2 BERTScore

BERTScore is an advanced metric for evaluating text generation tasks (such as ma-
chine translation, summarization, and paraphrasing). It leverages deep contextual
embeddings from pre-trained models like BERT (Bidirectional Encoder Represen-
tations from Transformers) to assess the semantic similarity between a candidate
text and a reference text. The method was introduced in this paper [16]. Unlike
traditional n-gram-based metrics (such as BLEU, and ROUGE), BERTScore cap-
tures nuanced contextual meaning by comparing the embeddings of tokens (words)
in the candidate and reference sentences. BERTScore computes three core compo-
nents: Precision, Recall, and F1-score. It computes these values by comparing the
similarity of token embeddings between the candidate and reference texts.

Embedding-based Token Similarity

If C = [c1, c2, . . . , cn] and R = [r1, r2, . . . , rm] are the candidate and reference tok-
enized sequences, respectively. Each token ci and rj is embedded into a dense vector
using a pre-trained model such as BERT. Let ci and rj represent the correspond-
ing embeddings of the tokens ci and rj. For each token in the candidate sentence,
BERTScore computes its similarity to each token in the reference sentence using a
cosine similarity function.

Sim(ci, rj) =
ci · rj

∥ci∥∥rj∥
(5.3)

Where:

• ci · rj is the dot product of the token embeddings.

• ∥ci∥ and ∥rj∥ are the magnitudes of the embeddings.
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Precision

Precision in BERTScore measures how much of the candidate text is semantically
similar to the reference text. For each token in the candidate text C, we find the
most similar token in the reference text R, based on cosine similarity shown in
equation 5.3.

Precision =
1

n

n∑
i=1

max
j

Sim(ci, rj) (5.4)

Where:

• maxj Sim(ci, rj) finds the maximum similarity between the candidate token ci
and all reference tokens rj

Recall

Recall measures how much of the reference text is captured by the candidate text.
For each token in the reference text R, the most similar token in the candidate text
C can be found, based on cosine similarity.

Recall =
1

m

m∑
j=1

max
i

Sim(rj, ci) (5.5)

Where:

• maxi Sim(rj, ci) finds the maximum similarity between the reference token rj
and all candidate tokens ci.

F1-score

BERTScore computes an F1-score as the harmonic mean of Precision and Recall,
giving a balanced evaluation of both:

F1 = 2 · Precision ·Recall

Precision+Recall
(5.6)

Final BERTScore Calculation

To produce the final BERTScore for a candidate-reference pair, Precision, Recall,
and F1-score are calculated based on the cosine similarities of the token embeddings.
Typically, the F1 score is used as the primary metric to balance the trade-off between
precision and recall.
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Chapter 6

Results

Method Rouge1 Rouge2 RougeL BERTScore F1
Llama-3.2-3B 0.3686 0.1517 0.2895 0.8901
Llama-3-8B 0.4574 0.2079 0.3636 0.9060

Llama-3-8B + Data Augmentation 0.4131 0.1888 0.3410 0.8956
Mistral-7B 0.4211 0.1622 0.3218 0.8985

Mistral-7B + Data Augmentation 0.3571 0.1599 0.2969 0.8869

Table 6.1: Results of the decoder-only llms

The results are shown after fine-tuning the Llama3-8B and Mistral-7B models in Ta-
ble 6.1. Rouge and BERTScore were used as evaluation metrics. The Performances
with and without data augmentation are displayed in the table. The fine-tuned
Llama-3-8B model achieved the highest performance in the Rouge1 score in the
summarization task. It achieved Rouge1 score of 0.4574, Rouge2 score of 0.2079,
RougeL score of 0.3636 and BERTScore F1 of 0.9060. For some reason, Llama-3-8B
with Data Augmentation performs lower than this. With data augmentation, we
get a Rouge1 score of 0.4131, a Rouge2 score of 0.1888, a RougeL score of 0.3410,
and BERTScore F1 score of 0.8956. A smaller version of Llama model, “Llama-
22̇-3B” is also fine-tuned but the performance was not good enough. The model
gave Rouge1 score of 0.3686 and BERTScore F1 of 0.8901. The Finetuned Mistral
model was also giving SOTA BERTScore F1, 0.8985. But in the case of Rouge
scores, it is lagging behind Llama3. With data augmentation, the performance of
the Mistral-7B model decreased significantly. The mistral-7 B model was fine-tuned
with 4bit quantization whereas the variants Llama model were fine-tuned with 8bit
quantization. This could be a reason that the mistral-7B is not performing as well
as Llama-3-8B. Data augmentation did not improve the performance of either of the
models. Both Mistral and Llama model variants are performing better without data
augmentation. A similar type of situation is explained in the research paper [23].

There was an annotation error in the validation dataset shown in Figure 6.1. The
results indicate that the model’s generated summary aligns with the context of
the dialogue, whereas the annotated summary contradicts it. This demonstrates
the model’s ability to handle critical situations effectively. Here the Llama model-
generated output is more aligned with the core concept of the dialogue than the
Mistral model.
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Figure 6.1: Annotation-Error

Besides these evaluation metrics, Our fine-tuned Mistral and Llama models did not
show any hallucination while generating new Clinical Notes from the doctor-patient
conversation. Some samples of different model-generated notes and the reference
notes are shown in the following tables 6.2, 6.3, and 6.4.
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Generated Note Reference Note
The patient is a 57-year-old female who
has a history of bilateral bunionectomy
performed approximately 13 years ago
and is now with severe bilateral bunion
deformities, worse on the right than the
left. She has also noted some pain in
the right second metatarsophalangeal
joint as well as the right second toe
deformity. She has some bilateral sec-
ond and third toe deformities consis-
tent with arthritis. The patient works
in a hospital where she is on her feet all
day long. She does use orthotics, but
still has significant bunion pain.

The patient is a 57-year-old female be-
ing seen today for evaluation of pain
and symptoms related to a recurrent
bunion deformity in bilateral feet, right
greater than left. The patient states
she is having increasing symptoms of
pain and discomfort associated with re-
currence of bunion deformity on the
right foot and pain localized to the sec-
ond toe and MTP joint of the right
foot as well. The patient had prior
surgery performed approximately 13
years ago. She states that since the
time of the original surgery the de-
formity has slowly recurred, and she
has noticed progressive deformity in the
lesser toes at the second and third toes
of the left foot and involving the sec-
ond toe of the right foot. The patient is
employed on her feet as a hospital em-
ployee and states that she does wear a
functional orthotic which does provide
some relief of forefoot pain although
not complete.

The patient is on methadone main-
tenance treatment (MMT), inhalation
drugs IV drug abuse. He lives with a
room-mate. He is being followed for de-
pression issues.

The patient has a history of inhala-
tion on intravenous drug abuse. She is
currently on methadone maintenance.
She is being followed in Psychiatry for
depression and substance abuse issues.
She lives with a room-mate.

Back pain after a fall. Back pain after a fall.
He is a nonsmoker. He works as a data
entry operator for an information tech-
nology company.

He denies tobacco or alcohol. He has
what sounds like a data entry computer
job.

Table 6.2: Llama-3-8B model’s generated clinical notes sample
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Generated Note Reference Note
This 57-year-old female is status post
bunionectomy 13 years ago for the re-
moval of bunions. She is here today to
discuss the fact that she is developing
bunions on her feet again, she has dis-
comfort over the dorsal aspect of her
feet, and she has also developed arthri-
tis in the second and third toes on the
left side. She states that she works at
the hospital and she is on her feet all
day. She does wear orthotics for shoe
gear. She states that the orthotics do
provide her with some relief, but she is
still having significant pain. She desires
treatment at this time.

The patient is a 57-year-old female be-
ing seen today for evaluation of pain
and symptoms related to a recurrent
bunion deformity in bilateral feet, right
greater than left. The patient states
she is having increasing symptoms of
pain and discomfort associated with re-
currence of bunion deformity on the
right foot and pain localized to the sec-
ond toe and MTP joint of the right
foot as well. The patient had prior
surgery performed approximately 13
years ago. She states that since the
time of the original surgery the de-
formity has slowly recurred, and she
has noticed progressive deformity in the
lesser toes at the second and third toes
of the left foot and involving the sec-
ond toe of the right foot. The patient is
employed on her feet as a hospital em-
ployee and states that she does wear a
functional orthotic which does provide
some relief of forefoot pain although
not complete.

The patient is currently following up
with Dr. ABC for depression issues and
is on methadone maintenance. The pa-
tient has a room-mate.

The patient has a history of inhala-
tion on intravenous drug abuse. She is
currently on methadone maintenance.
She is being followed in Psychiatry for
depression and substance abuse issues.
She lives with a room-mate.

Back pain after a fall. Back pain after a fall.
Operates data for an IT company. De-
nies ETOH/Tobacco/Illicit drug use.

He denies tobacco or alcohol. He has
what sounds like a data entry computer
job.

Table 6.3: Mistral-7B model’s generated clinical notes sample
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Generated Note Reference Note
The patient is a 57-year-old female who
has had multiple procedures on her feet
to remove bunions, but unfortunately,
the procedure appears to have been un-
successful. She states that the feet have
been mostly normal for about 13 years,
but within the last few months she has
noted some redness and swelling of her
feet. She states that she has been
wearing some orthotics as well as some
foot gear to help her feet, but she still
has significant amount of redness and
swelling and some pain. She states that
the redness and swelling is much worse
on her right foot versus her left foot.
When I asked her if the pain was get-
ting worse, she states that it is and she
is quite uncomfortable. When I exam-
ined her feet, I noted some significant
deformity of the second toe and MTP
joint as well as some very apparent red-
ness and swelling. I also noted some
mild amount of arthritis in the second
and third toes of her left foot. I ques-
tioned her further as to the diagnosis
of erythema nodosum, which she states
she is not familiar with, but she does
note some redness and swelling in her
feet. I also questioned her further as to
what profession she is in and she states
that she works as a janitor in a hospi-
tal, meaning she is on her feet all day
long. She states that the foot gear and
orthotics she is currently wearing gives
her some relief, but she is still in signif-
icant amount of pain.

The patient is a 57-year-old female be-
ing seen today for evaluation of pain
and symptoms related to a recurrent
bunion deformity in bilateral feet, right
greater than left. The patient states
she is having increasing symptoms of
pain and discomfort associated with re-
currence of bunion deformity on the
right foot and pain localized to the sec-
ond toe and MTP joint of the right
foot as well. The patient had prior
surgery performed approximately 13
years ago. She states that since the
time of the original surgery the de-
formity has slowly recurred, and she
has noticed progressive deformity in the
lesser toes at the second and third toes
of the left foot and involving the sec-
ond toe of the right foot. The patient is
employed on her feet as a hospital em-
ployee and states that she does wear a
functional orthotic which does provide
some relief of forefoot pain although
not complete.

The patient lives with a roommate and
is on methadone maintenance treat-
ment for heroin addiction and depres-
sion issues.

The patient has a history of inhala-
tion on intravenous drug abuse. She is
currently on methadone maintenance.
She is being followed in Psychiatry for
depression and substance abuse issues.
She lives with a room-mate.

Back pain. Back pain after a fall.
He is a nonsmoker and nondrinker and
he works as a data operator for an IT
company.

He denies tobacco or alcohol. He has
what sounds like a data entry computer
job.

Table 6.4: Llama-3-3B model’s generated clinical notes sample
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Chapter 7

Limitations

7.1 Training and Inference time

From table 7.1 it is visible that the inference time for Mistral-7B is better than
Llama-3-8B. However, for real-world applications, it needs to be improved more.
Training time for both the models is quite long also 7.1. In case of emergency, this
lengthiness could cause harm to the patient.

Model Training Time (sec/epoch)
Llama-3-3B 1406.6
Llama-3-8B 2588.9

Llama3-8B + Data Augmentation 6732.2
Mistral-7B 2856.4

Mistral-7B + Data Augmentation 7374.7

Table 7.1: Training time per epoch

Model Average Inference Time (per note generation)
Llama-3-3B 12.49 (On Tesla T4 GPU)
Llama-3-8B 13.41 (On Tesla T4 GPU)
Mistral-7B 8.30 (On Tesla T4 GPU)

Table 7.2: Time needed per note generation

7.2 Hardware Limitation

Hardware limitation is one of the fundamental problems in this work. For this
research, P100 GPU is used on the online platform Kaggle. But it has only 16GB of
VRAM which is not sufficient to train other variants of the Llama and mistral models
like Llama3-70B. It is clear from the results table 6.1 that the larger variants of the
decoder-only LLMs are giving better results than the smaller variants. However, due
to Hardware limitations, it is not feasible to fine-tune those models on the Kaggle
platform. For this reason, the author in this research has not tried larger variants
of Llama and Mistral. Since 16GB VRAM was not sufficient, the hyper-parameter
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“per device train batch size” was kept to a minimum throughout the training. For
this reason, it took too much time to train any model 7.1.

7.3 Gender Bias

All the fine-tuned models had some gender biases. Since the “MTS-DIALOG”
dataset is a short doctor-patient conversation dataset, sometimes it is quite diffi-
cult to understand the patient’s gender from the conversation. In these situations,
all of the fine-tuned models mostly assume the patient’s gender as male. In a few
cases, the model predicts the gender as female while in the annotation the patient
is identified as a male. In some cases in the dataset, the gender pronoun is used
incorrectly. The author of this paper assumes that most of the model’s pre-training
dataset could be biased, which is causing this type of problem. In some cases in the
dataset, the gender pronoun is used incorrectly also. From table 7.3 we can get a
more clear idea about it. In the first example, the model treated the patient as male
because in the conversation the Doctor addressed the patient as male. However,
in the Reference clinical note, the patient is addressed as female, which is wrong.
So here the model predicted the gender correctly. The second example in the ta-
ble shows that it is quite impossible to predict the gender of the patient from the
conversation. However, in the reference note, the patient is labeled as male. In the
generated note, the patient is addressed as Female by the model. The researcher of
this paper hypothesizes that the patient’s non-smoking and non-drinking status in-
fluenced the model’s classification of the patient as female. Another similar example
is the third row in the table. In the fourth example of the table, it is not possible
to get a clear idea about the patient’s gender from the conversation but the model
addressed the patient as male in this case. To overcome this issue the prompt is
updated for inferencing. The prompt that was used as a prefix to generate clinical
notes and identify the patient’s gender properly is:

“Summarize the following patient-doctor dialogue. To ensure a comprehensive sum-
mary, follow these steps:

1. Gender Identification: Identify the patient’s gender based on the context and
use appropriate pronouns throughout the summary.

2. Medical History: Summarize the patient’s family history, past medical and
surgical history, and known allergies. Ensure each detail is clearly categorized.

3. Current Visit: Identify the main concerns discussed, including symptoms, lab
results, and diagnosis.

4. Immunizations: List any relevant immunization history.

5. Plan and Recommendations: Note any treatment plan, medications prescribed,
or follow-up actions recommended by the doctor. Ensure your summary flows
logically, preserving the order of the conversation, while focusing on medically
relevant details.”

However, even after using this prompt, there was still no significant improvement
happened.
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No. Conversation Generated Note Reference Note
1 Doctor: When are you plan-

ning to quit your I V and in-
halation drugs Mister X Y
Z? Patient: I am on treat-
ment now. They are fol-
lowing me up for depression
issues too. Doctor: Okay
yes, you are on methadone
maintenance. Patient: Yes.
Doctor: Who lives with
you? Patient: I have a
roommate.

He is on methadone mainte-
nance treatment and is be-
ing followed by psychiatry
for depression issues. He
lives with a room-mate.

The patient has a history
of inhalation on intravenous
drug abuse. She is currently
on methadone maintenance.
She is being followed in Psy-
chiatry for depression and
substance abuse issues. She
lives with a room-mate.

2 Doctor: So, where do you
work? Patient: Oh, I am
a data operator for an I T
company. Doctor: Okay.
Doctor: Do you smoke or
drink? Patient: No, I don’t!

She is a nonsmoker and non-
drinker. She works as a data
operator for an IT company.

He denies tobacco or alco-
hol. He has what sounds
like a data entry computer
job.

3 Doctor: Do you smoke? Pa-
tient: No, I do not. Doc-
tor: How about alcohol. Pa-
tient: No, I don’t drink al-
cohol as well. Doctor: Okay
let me ask you, do you have
any children or are you mar-
ried? Patient: No, I am sin-
gle, thus no kids. Doctor:
Okay, where do you work?
Patient: I work as a payroll
representative. I used to do
a lot of work in jewelry busi-
ness, with chemical. Doc-
tor: interesting. Patient:
Yeah.

No smoking or drinking.
She is single with no chil-
dren. She works as a pay-
roll representative. She
has a history of working
with chemicals in the jew-
elry business.

He is a non-cigarette smoker
and non-ETOH user. He is
single and he has no chil-
dren. He works as a pay-
roll representative and pre-
viously did lot of work in
jewelry business, working he
states with chemical.

4 Doctor: Do you drink
or smoke? Or take any
other kind of drugs? Pa-
tient: I used to smoke and
drink, but I quit years ago.
Maybe it was like in ninety
two. Doctor: How many
cigarettes were you smok-
ing then? Patient: You
see that is a tough one
to remember. It was any-
where around thirty packs
per year.

He has a thirty pack year
smoking history, but quit in
1992. He has a history of
alcohol abuse, but quit in
1992 as well. He denies any
current drug use.

ETOH abuse (quit ’92),
30pk-yr Cigarettes (quit
’92)

Table 7.3: Gender Bias in the fine-tuned models
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Chapter 8

Future Work

8.1 Development of new Medical Corpus

The amount of data in the medical domain is very limited. It is also very hard to
get access to this type of data because of the Physician-patient privilege. Most of
the patients are not comfortable sharing their private data. It is essential to develop
more data which will make it easier to create an automatic clinical note generation
system. The dataset used in this research is short conversations between doctors and
patients. More and longer real-world doctor-patient conversation corpus is needed
in the future to improve the quality of clinical note generation.

8.2 Development of Pre-trained Medical LLMs

Domain-specific pre-trained decoder-only LLMs have improved the domain-specific
task a lot in recent years. A pre-trained model like Code Llama is one example in
the coding domain [35]. Developing a decoder-only model that is pre-trained on a
large medical corpus might help to create clinical note-generation tasks.

8.3 Cross-lingual Clinical Notes

In diverse healthcare settings, doctors and patients may converse in different lan-
guages. A cross-lingual summary can help bridge this language gap by automatically
summarizing conversations in one language and translating the summary into an-
other, making it accessible to a wider range of healthcare providers. Creating a
cross-lingual clinical note generator could greatly impact this domain.

8.4 Speech-to-Note generator

In this research, text data from doctor-patient conversations is used. Generating
clinical notes directly from the spoken interactions between doctors and patients
could provide a more accurate and practical solution.
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8.5 Calculating Hallucination in LLM-Generated

Notes

In large language models (LLMs), “hallucination” refers to generating text that is
factually incorrect or unsupported by the input data. Managing hallucination is
especially critical in clinical note generation, where accuracy is paramount. Vari-
ous methods can assess hallucination in LLM-generated clinical notes, with manual
evaluation being the most precise. In this approach, human experts compare the
generated notes against the source text to pinpoint factual inconsistencies. This pro-
cess helps to identify and address hallucinations, thereby enhancing the reliability
of LLM-generated clinical notes.

8.6 Gender Bias reduction during fine-tuning

The gender bias problem was discussed in 7.3. It is also shown that just updating
the prompt while inferencing is not a solution to this problem. The hypothesis of
the author of this paper suggests these steps to overcome the problem. The wrongly
addressed gender in the dataset should be corrected manually in the reference note
and the patient’s gender information should be included in the conversation. After
that, the prompt should be updated by including the information to detect the
correct gender of the patient and use this prompt to fine-tune the model. By doing
all these tasks it may be possible to solve the problem.
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Chapter 9

Conclusion

This research involved experimenting with various decoder-only transformer archi-
tectures to fine-tune models for generating clinical notes by summarizing conver-
sations between doctors and patients. The results demonstrate that decoder-only
models like Llama3 and Mistral outperform classical encoder-decoder models like
Flan-T5 and Pegasus in summarizing medical discussions. Larger models give bet-
ter results than smaller ones. A state-of-the-art (SOTA) Rouge1 score was achieved
by fine-tuning the Llama-3-8B model. State-of-the-art (SOTA) BERTScore F1 is
achieved by both the Llama-3-8B and Mistral-7B models. The Flan T5 Large model
by the WnagLab team (2023 MEDIQA-Chat challenge) [27] Rouge scores of 0.4466
for Rouge1, 0.2282 for Rouge2, 0.3837 for RougeL, 0.7307 for BERTScore. How-
ever significant improvements were observed when we used the pre-trained decoder
only Llama-3-8B model for fine-tuning. The Llama3-8B model achieved a Rouge1
score of 0.4574, reflecting a 2.42% improvement. Additionally, the BERTScore F1
reached 90.60, demonstrating superior performance in both metrics. These improve-
ments indicate that there is a substantial enhancement in capturing more complex
sentence structures and content relationships. It was also demonstrated that the
model performs correctly even when data annotations are incorrect. These results
indicate that state-of-the-art performance was achieved on the MTS-DIALOG cor-
pus.
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