
Reverse Engineering Intel DRAM Addressing and Reproduction of
Blacksmith

by

Mahfuz Sobhan
20101270

Khandker Samia Rahman Pranti
21101103

Bashir Siddique
20101269

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
School of Data and Sciences

Brac University
October 2024

© 2024. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Mahfuz Sobhan
20101270

Khandker Samia Rahman Pranti
21101103

Bashir Siddique
20101269

i

Approval
The thesis/project titled “Reverse Engineering Intel DRAM Addressing and Repro-
ducing Blacksmith on Goldmont Plus microarchitecture” submitted by

1. Mahfuz Sobhan (20101270)

2. Khandker Samia Rahman Pranti (21101103)

3. Bashir Siddique (20101269)

4. Navid Hasan Rafi (20101585)

5. Rushayed Ali Faiaz (21301717)

As of Summer, 2024 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on October 17, 2024.

Examining Committee:

Supervisor:
(Member)

Mr. Rafeed Rahman
Lecturer

Department of Computer Science and Engineering
Brac University

Thesis Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

ii

Abstract
Rowhammer is a widely known computer hardware vulnerability in recent years
which breaks the fundamental limitations of DRAM technology by repeatedly ac-
cessing in order to cause bitflips in the adjacent rows. Understanding and analyzing
the effect of Rowhammer in various architectures is a primary need for enhancing
system security and mitigating potential risks against RowHammer. This paper
presents the development of a novel library for reverse engineering DRAM address
functions, enabling efficient mapping and analysis of physical memory addresses
across diverse DRAM architectures. The library accelerates the much-needed ex-
traction of address-mapping functions, which is a pivotal part for the determination
of the Rowhammer vulnerability in diverse architectures. We integrate the extracted
address mappings with the Blacksmith fuzzer, a state-of-the-art Rowhammer testing
tool, and deploy it on our targeted machines with three distinct architectures. Our
experiments analyze and compare the Rowhammer effects across these platforms,
evaluating metrics such as activation interval, refresh rates, bit flip distribution,
and the potential for reliable exploitation. The results reveal architecture-specific
characteristics of Rowhammer susceptibility and highlight the effectiveness of the
proposed library in automating and streamlining DRAM address function extrac-
tion. Our findings offer interesting insights into the variations in Rowhammer sus-
ceptibility across architectures which contributes to the ongoing efforts of designing
resilient systems and develop standardized testing methodologies for hardware vul-
nerabilities.

Keywords: Rowhammer, Bitflips, Blacksmith, DRAM, Address Mapping

iii

Acknowledgement
First and foremost, all praise to Allah Subhanahu Wa Ta’ala under whose blessings
our thesis has been successfully concluded without any major disruptions. Second
of all, we are deeply grateful to our supervisor Mr. Rafeed Rahman for this oppor-
tunity. This thesis would have not been completed without his support and freedom
he gave us throughout our journey.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures 1

1 Introduction 2

2 Literature Review 4

3 Background 7
3.1 Dynamic Random Access Memory (DRAM) 7
3.2 RowHammer . 11
3.3 Blacksmith . 11

4 Research Methodology 13
4.1 Reverse Engineering the DRAM Address function 13
4.2 Testing Process and Analysis . 17
4.3 Analysis of Architectural Differences in DRAM Address Mapping . . 18
4.4 Insights and Implications . 18

5 Our Analysis and Findings 19
5.1 Reproduction of Blacksmith Fuzzer 19
5.2 Aggressor Row Vs Refresh Interval: 20
5.3 Aggressor Row Vs Activation Interval: 21
5.4 Bitflips and our Observations: . 21

6 Conclusion 23

Bibliography

v

24

List of Figures

3.1 A DRAM rank is segmented into multiple banks. 7
3.2 A DRAM Bank contains multiple rows and columns consisting of cells. 8
3.3 Dual in-line memory module with ranks 8
3.4 A single DRAM cell consists of a MOSFET and a capacitor. Two

cells share an active region in the silicon. 10
3.5 DRAM address mapping from physical memory 10
3.6 Overview of Blacksmith Fuzzer . 12

4.1 DRAM address mapping from physical memory 14
4.2 DRAM Address Mapping Library Process Flow 16

5.1 Aggressor rows per Refresh Intervals 20
5.2 Aggressor rows per Activation Intervals 21
5.3 Bitflips per Aggressor rows . 22

1

Chapter 1

Introduction

DRAM - Dynamic Random Access Memory, is the major technology behind the
main memory in modern computing systems because of its advantageous cost per
capacity. It depicts an important role in the overall performance and reliability of
the system. In order to increase the capacity of DRAM, vendors has to scale down
the technology node size which results in the increment of DRAM cell density that
undermines the DRAM reliability. One of the main challenges behind RowHammer
effect is related to interference which appears as a result of technology scaling.
RowHammer is a serious security vulnerability that occurs by repeated activation
of a single DRAM row which eventually causes disturbance in its neighboring rows.
This disturbance phenomenon results to bit flips in the physically adjacent rows.
The attacker can exploit the bug by accessing a single memory address to change
data in another address despite being co-located physically only. Since DRAM is a
critical bug across modern systems, many sophisticated RowHammer attacks had
been performed in recent studies [16], [23], [27], [33], [29].
RowHammer introduces a major challenge for system designers as it is based on
the fundamental DRAM circuit behavior which is hard to modify. This make the
RowHammer a possible threat over various generations and designs of DRAM. Re-
search done by Kim et al. [7] shows that RowHammer appears as the DRAM
technology scales down [5], [7], [22], which means, with the increment of DRAM
storage density, chips may become prone to this effect. The susceptibility of a par-
ticular DRAM chip to RowHammer is expressed in terms of the number of times
a particular row has been activated (single-sided RowHammer) to produce the first
flipping of the first bit. Recently, a study by Yang et al. [30] supported the the-
ory by recognizing a specific circuit-level charge leakage mechanism that could be
responsible for RowHammer. This leakage impacts adjacent circuit components,
which means that as manufacturers intensify scaling techniques to enhance storage
density [1]–[3], the threat posed by RowHammer is likely to intensify.
To overcome the RowHammer problem, several works suggest methods designed to
shield the system from RowHammer-induced bit flips. A significant drawback while
designing a RowHammer mitigation is thinking is presuming that the attackers will
perform in the same manner once the defense is deployed. This is especially true

2

for in-DRAM Target Row Refresh (TRR) which is a protection strategy directed
towards the mitigation of an increasing RowHammer phenomena in DRAM sub-
strates. At present, proprietary and undisclosed in-DRAM TRR is the only existing
protection mechanism that shield systems against RowHammer attacks in browsers,
mobile gadgets, and indeed, in the cloud and over the network [10], [14], [16]. De-
spite of this flaw, TRR is showing its effect in the newer microarchitectures. In this
paper, we demonstrated how the variations in the conventional RowHammer access
patterns allow one to flip bits on our tested DDR4 DIMMs and also how the latest
microarchitectures acts against this.
Target Row Refresh (TRR) is a hardware-based mitigation that is designed to ad-
dress the Rowhammer vulnerability with recent variants functioning fully within the
DRAM chips [33]. However, TRR seeks to sense rows that are frequently accessed
(hammered) and re-write the data on the neighboring rows before the charges leak
and cause data to be written inappropriately. The challenge behind TRR is to iden-
tify the frequent items that are being accessed in the DRAM efficiently. Since the
frequent item count technique is pretty expensive in hardware, some TRR mecha-
nisms struggle to track the all of them which may lead to data corruption[36]. Yet,
around 70% of TRR implementations are effective in detecting all the aggressors
rows if they are hammered frequently enough.
In this paper we analyzed the reproducibility of RowHammer fuzzing in three differ-
ent machines from the same vendor manufactured in three different times showing
that even though bitflip exists, the manufacturers are going hard against it. We
focused on bitflips vs refresh interval and how the clock cycle differs in all three
different machines. Our research is basically finding answer to the question, are the
vendor getting harder against RowHammer bitflips over time?
For our experiment, we reproduced Blacksmith, a scalable RowHammer fuzzer in
the frequency domain [41]. Blackmsith is initially built and tested on Coffee Lake
architecture. In order to run it on a different architecture, we developed a library
to call from the Blacksmith fuzzer that will reverse engineer the the DRAM address
functions for out tested machines. The contributions of this papers are:

1. Building a library to revere engineer the DRAM address function for our tested
INTEL architectures.

2. Reproducing the results of Jattke et al. [41] on three different machines with
completely different architectures. The architectures are listed below:

• Intel(R) Celeron(R) N4000 CPU - Goldmount Plus Architecture

• Intel(R) Core(TM) i5-10500 CPU - Commet Lake Architecture

• Intel Core i9-13900K - Raptor Lake Architecture

3. Studying how the vendors are reorganizing their architecture against the RowHam-
mer.

3

Chapter 2

Literature Review

The RowHammer vulnerability is first introduced in 2014 by Kim et al. [7], high-
lighting a critical flaw in DRAM which creates memory disturbance errors. They
did their experiment in an FPGA based DRAM and presented a mitigation named
Probabilistic Adjacent Row Activation (PARA) which enables probabilistic refreshes
to susceptible rows. PARA mitigation is cost effective with minimal performance
impact which requires sensitive address mapping data that vendors keep private.
Their paper also showed that how a RowHammer attack can violate memory pro-
tection by reading row in DRAM. Following the year, in 2015, Seaborn and Dillien
[11] introduced the first RowHammer attack, utilizing it for kernel privilege escala-
tion from user land. The attack was based on Page Table Entry (PTE) manipulation
which enables attacker an unauthorized access to over the memory. Their work ex-
posed several risk residing in the commodity DRAM chips. After that, Rowhammer
researches expanded with significant progress in exploitation techniques. Dedup Est
Machina: Memory Deduplication as an Advanced Exploitation Vector [14], intro-
duced the first JavaScript-based RowHammer attack. The paper showed that the
attackers can remotely exploit RowHammer by executing codes in Microsoft Edge.
This attack utilized the memory deduplication which enhances attack reliability.
Soon after the paper was published, a group of researches from Graz University
of Technology came up with a paper, Rowhammer.js: A Remote Software-Induced
Fault Attack in JavaScript [10] that demontrated a similar kind of attack which
uses cache eviction to remove accessed rows from the cache. Their work imple-
mented RowHammer in both JavaScript and Native code using cache manipulation
techniques to utilize software faults.
Within the same time Flip Feng Shui: Hammering a Needle in the Software Stack
[19] came up with a new attack vector that allows precise control over bit-flipping.
The method includes randomly flipping and the option to map from physical to
virtual memory address spaces and thus breaking the Virtual Machine memory iso-
lation. Another version of this approach is called Drammer [20], a development
where Rowhammer got adapted to Android smartphones, and further from ordi-
nary applications that were unprivileged. Drammer used brute force approach by
rapid hammering to place victim data in vulnurable regions which targets contigous

4

physical memory It was the first RowHammer attack on android system.
Some studies started showing that RowHammer can also be exploited on virtual
environments. Through a virtual machine, an atatcker can gain read and right
access on memory with double sided RowHammer techniques [21].
A paper by Qiao and Seaborn [18] introduced a different kind of RowHammer vari-
ant that bypass the CLFLUSH instruction, expanding potential remote RowHam-
mer attack avenues. Their study revealed that how the widely used function like
memset and memcpy can trigger RowHammer and break application layer defenses.
Additional researches like Curious case of Rowhammer: Flipping Secret Exponent
Bits using Timing Analysis [13] and DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks [17] used cache eviction techniques to exploit RowHammer.
These studies emphasized the threat of RowHammer over various environments.
Tatar et al.’s work, Defeating Software Mitigations against Rowhammer: a Surgical
Precision Hammer [24], demonstrated how to circumvent some of the more recent
Rowhammer defenses such as ANVIL [12] and CATT [15], the authors claimed con-
siderable efficacy by accurately aiming at the DRAM address space. In another
study, GuardION: In Practical mitgation of DMA-Based Rowhammer Attacks on
ARM [25], the authors introduced RAMpage, a series of Rowhammer attacks on
android. RAMpage was capable of launching app-to-app attacks or even exploit at
the root level notwithstanding all the methods of mitigation.
In 2019, researchers tested ECC memory’s effectiveness against Rowhammer in Ex-
ploiting Correcting Codes: A study on the performance of ECC Memory Against
Rowhammer Attacks [26]. They reproduced ECC implementations through memory
error patterns and developed ECCploit which is a Rowhammer attack composite
of ECC vulnerabilities. TeleHammer: Another work A Stealthy Cross-Boundary
Rowhammer Technique [31] proposed a technique called TeleHammer for using in-
direct row access through third party processes and showed PThammer as a cross-
boundary Rowhammer methodology.
In 2020, Are We Susceptible to Rowhammer? An End-to-End Methodology for
Cloud Providers [32] introduced a testing methodology for Rowhammer in DRAM
in cloud environments, tackles the often discussed problem of identifying the useful
CPU instruction sequences for row activation and revealing physical memory maps
which is often kept secret by manufacturers. Its success was called into doubt since
the researchers demonstrated real and potent Rowhammer attacks on the sort of
hardware found in the TRR-DRAMs. Lastly, RAMBleed: The Rowhammer effect
was originally used in Reading Bits in Memory Without Accessing Them [35] with
the aim of affecting DRAM confidentiality instead of its integrity and enabled bit-
reading without requiring permissions to access the memory. The authors obtained
the secret keys from OpenSSH server and explained that Rowhammer could lead to
catastrophic information leakage.
In Revisiting RowHammer: The Effects of Row Operation and mechanisms to ad-
dress it: An Experimental Analysis on Modern DRAM Devices [34], the study

5

analyzed over 1500 DRAM chips across DRAM generations and from different man-
ufacturers and concluded that Rowhammer threats have evolved with time. They
noted that, newer DRAM devices get attacked relatively fewer times from aggressor
rows, signifying that exploitation is easier, and asking for stronger remediation. In
GhostKnight: Originally starting from attacking data integrity through speculative
execution known as DataAquarius [38], GhostKnight that utilizes both Spectre and
Rowhammer was introduced.
In 2021, SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript
[40] extended many-sided Rowhammer approach of TRRespass [33] and the lat-
ter was performed on DRAMs with Target Row Refresh (TRR) protections. In
SMASH, a variety of issues was reported in terms of memory allocation, generation
of more access patterns and timing but was achieved remarkable attacks ignoring
cache flushes. Another study, Half-Double: New hammering technique for DRAM
Rowhammer bug [39] operates at second-level neighbor rows, which affect the victim
row from a farther distance.
In 2022, the Blacksmith fuzzer from BLACKSMITH: Scalable Rowhammering in the
Frequency Domain [41] was developed to induce bit flips in DRAM using various,
non-uniform access patterns. SpecHammer: Combining Spectre and Rowhammer
for New Speculative Attacks [42] merged Rowhammer with speculative execution
attack by improving bit-flip rates which later uncovered thousands of Spectre gadgets
in the Linux kernel. SpecHammer enabled attacks such as buffer overflow canary
discovery and arbitrary memory reading, showing the heightened risk Rowhammer
poses when paired with Spectre for speculative attacks.

6

Chapter 3

Background

This chapter contains the background knowledge of DRAM, RowHammer and the
Blacksmith fuzzer. The first section covers an overview of DRAM, a computer’s main
memory, and the target of the Rowhammer attack. This part explains the anatomy
of DRAM, the inner functionalities of a single cell, and the cooperation between
CPU and DRAM. The following section provides explanation on Rowhammer and
its connection with DRAM. The last section gives an highlevel overview of the
Blacksmith [43] fuzzer which we are using to test our targeted machines and how it
attacks the DRAM to exploit RowHammer.

3.1 Dynamic Random Access Memory (DRAM)
DRAM, the main memory of a computer system which is also known as a computer’s
physical memory contains all the current running programs and their data, including
the perating system itself. The primary reason behind its widespread usage is its
lower size and cheaper price. The effort behind the reduction of production cost has
increased the DRAM cell density significantly without implementing any adequate
memory isolation technique.

Figure 3.1: A DRAM rank is segmented into multiple banks.

7

Figure 3.2: A DRAM Bank contains multiple rows and columns consisting of cells.

A DRAM consists of innumerable memory cells. To efficiently identify the read
and write addresses of DRAM, it is divided into separate sections. The uppermost
level of the DRAM hierarchy is the Dual Inline Memory Module (DIMM), and the
bottommost level of that hierarchy is a single cell that contains a bit. Modern
computers contain several DIMMs which are connected to the motherboard. Each
physical side of these memory modules is known as a rank. A rank is later divided
into several banks, as shown in Figure 3.1. In a DDR4 memory, the banks are sepa-
rated into two or four bank units where the timing delay is reduced while activating
or accessing different rows from the same bank, as these separate groups of banks
can operate freely. The previous versions of DDR (e.g DDR2 or DDR3), took more
time to switch between row buffers. It is also visible in the figure that the banks are
divided into eight parts of a non error code correction memory.

Figure 3.3: Dual in-line memory module with ranks

8

Cells inside a bank are arranged among rows and columns in a grid-like structure.
Cells connecting side to side inside a bank are known as word lines, and the cells
connecting up and down are known as bit lines. The bit lines are vertically connected
with the sense amplifiers of the row buffer. The structure is shown in Figure 3.2.
Mapping functions allow converting physical address of certain memory location to
the corresponding channel, rank, bank and row. Some of these functions are CPU
architecture dependent and in most cases are not publicly divulged. In order to read
a particular address, the word line corresponding to the particular row is enabled
these connect all the cell capacitors in the row to the sense amplifiers in the row
buffer. This action is named opening a row which makes the row in the buffer the
active row. The coupling capacitors being smaller than 10 fF, get discharged when
they are sensed of the amplifiers, which results in a destructive read of the row
information. Subsequent accesses from this row are accessed from the row buffer to
improve performance. Nevertheless, if data from another row is required, then, the
currently active row must be closed and the data written back from the buffer before
a new row can be activated and put in the buffer. Therefore, reading from different
rows within the same bank also results in triggering of writes to those rows.
In most CPUs, after the selection of a row, that particular row remains open and
active until another row is chosen, in order to allow many more accesses to go in the
active row. This strategy is effective when several accesses are made near by memory
locations, this is a typical case of large numbers of desktop computers having few
cores. However, if the next accesses go to different rows, an additional time is
required to close the previous row, which will negatively affect performance. The
content of rows which does not access frequently can be more efficiently protected
by closing the row right after the access. This method called the closed-row policy
is different from the open-row policy and is implemented mainly in those CPUs that
have more cores.
In order to understand the Rowhammer vulnerability in a better way, it is necessary
to consider silicon structure in detail. The latter is stored in a cell having a MOSFET
and a capacitor [12]. Ongoing enhancements in these cells have resulted in a design
where two cells use the same active region in the silicon. The structure of this shared
active region is illustrated in a schematic in Figure 2.4 left, and the corresponding
silicon structure in Figure 2.4 right. The orange area (1) is the two cell capacitors
although their height here is not to scale. The blue areas (2) represent the drain
and source of the two transistors of the circuit. The bit line in the purple (3) is
selected and connected to both transistors as the two word lines in the dark blue
(4) are implemented in the gates in the gray (5).

9

Figure 3.4: A single DRAM cell consists of a MOSFET and a capacitor. Two cells
share an active region in the silicon.

The structures of this design have an elongated oval gate shape, which makes it
possible to have a longer channel length than a wide structure, unlike the planar
MOSFET structure. Capacitor discharge by very short channel MOSFETs increases
subthreshold current that is detrimental to DRAM memory [6]. Even so, due to the
very small capacitors, the stored charge can be easily affected by a small leakage
current, which is not optimised in the channel structure: the channel structure is
optimised for the smallest possible leakage currents in this world, below 10 fF. There-
fore, capacitor’s voltage in DRAM cells should be constantly refreshed to maintain
the capacitor’s voltage higher than the digital “1” threshold [17]. This requirement
for constant updates is the reason why DRAM is called dynamic random access
memory, as opposed to static RAM (SRAM), which affords no such updating. In
most of today DRAM modules, there is a refresh rate of 64 ms where every cell is
refreshed. Each row is refreshed in a sequential manner and every few microseconds
a row is refreshed.
Memory partitioning divides memory into several levels including row and channel
to enhance the parallelism of memory access hence enhancing memory bandwidth.
To maximize this parallelism in the DRAM structure, it is desirable for accesses to
different rows to appear random. This goal has been achieved by CPU manufac-
turers designing DRAM mapping functions that map physical addresses to banks,
ranks, and channels seemingly randomly. While some of these functions of mapping
are unique to particular CPU families, most of these are not stated clearly by the
manufacturers [17].

Figure 3.5: DRAM address mapping from physical memory

10

Knowledge of these mapping functions can make attacks such as cross-CPU row-
buffer covert channels [11], and Rowhammer attacks [4, 8]. DRAMA [13] is a tool
that is designed to do just the opposite of these mappings, by analyzing large con-
tigouous memory regions and detecting timing differences that are due to row-buffer
hits and conflicts. Figure 2.5 illustrates the reverse engineered mapping from physi-
call address to DRAM banks and ranks. In our test, this mapping will enable us to
determine physical neighbors and additional physical address bits from the pages in
those neighbors. These extra bits will enable us to execute row operations with a bit
index r almost completely avoiding the row-shuffling Rowhammer defense present
on the target device.

3.2 RowHammer
Modern DRAM devices are susceptible to disturbance errors which is caused by
repeated access to a single DRAM row and that can inadvertently alter the values
of cells in neighboring rows. This is a technology failure that occurs from elec-
tromagnetic crosstalk interference with the neighboring cells called RowHammer.
The risk of RowHammer is increasing due to the technology nodes getting smaller,
where, the neighboring DRAM cells become more compact and closer to each other.
Consequently, as DRAM manufacturers progress improving storage density, the sus-
ceptibility of chips to RowHammer-caused bit flips also increases. RowHammer is
a low-level system security vulnerability that has been explored widely in previ-
ous research from both offensive and defensive perspectives. Studies have shown
that RowHammer can be exploited to perform various system-level attacks which
includes privilege escalation [3, 5, 6, 7, 13], data leakage [21], and denial of ser-
vice [16, 17]. These findings necessitate the systems to incorporate protections
against RowHammer to maintain secure and reliable memory system. Previous
works has proposed RowHammer defenses across both hardware [8], [9] and soft-
ware [13] domains. DRAM vendors have implemented an in-DRAM mechanisms
known as Target Row Refresh (TRR) [4], which utilizes proprietary operations to
reduce vulnerability to RowHammer attacks, though these solutions have recently
shown limitations [26]. Memory controllers and system manufacturers have intro-
duced additional defenses, such as increasing refresh rates [22, 23] and Hardware
RowHammer Protection (RHP) [28], [37].

3.3 Blacksmith
This section illustartes the design and implementation of Blacksmith. Firstly we de-
scribe the high-level overview of Blacksmith’s architecture and then how Blacksmith
creates RowHammer patterns, providing a formal explanation of the core concepts
involved. Figure 9 shows the main components of Blacksmith. The Pattern Gen-

11

erator, (1), which is responsible for implementing non-uniform access patterns by
randomizing the timing of aggressor accesses within each pattern. The Aggres-
sor Mapper, (2), assigns these aggressor patterns to DRAM locations using known
bank/rank address functions [17], [40].

Figure 3.6: Overview of Blacksmith Fuzzer

During this process, aggressors are either evenly distributed across the same DRAM
bank or randomly mapped, maintaining one row between aggressors targeting the
same victim row. Mapping parameters are shuffled in the fuzzing phase. Virtual
addresses generated by the mapper for the hammered rows and passes them to
the Code Generator (3), which compiles the hammering instructions into formatted
code. To avoid conditionals like if-else during execution (to prevent speculative exe-
cution of branches), it compiles access patterns directly, which ensures access order
integrity. This compilation also lets us identify where memory reads and flushes
need to be serialized using fences. We apply a “flush-early and fence-late” approach
by flushing aggressors from the cache right after access and fencing immediately
before re-access to reduce the performance overhead of serialization. The Executor,
(4) then executes the compiled code across multiple refresh windows (64 ms inter-
vals). To maintain the correct frequency of row accesses, it synchronizes with the
DRAM REFRESH at the start of each pattern repetition, similar to. Finally, the
Memory Scanner, (5), checks if any changes took place in the generated random
data pattern previously written to memory. Since any aggressor pattern may cause
bit flips, the scanner inspects the two rows around each aggressor for bit flips; if de-
tected, it records the flipped bits and restores the original data pattern. Following
this, Blacksmith either re-hammers the same pattern on a different DRAM location,
or hammers the same pattern with a new mapping or generates a new pattern to
restart the process.

12

Chapter 4

Research Methodology

In this chapter, we discuss the methodology undertaken to develop a comprehen-
sive DRAM address mapping library and test it across multiple Intel architectures
to validate its effectiveness in generating precise address mapping functions. This
research aims to bridge the gap between DRAM address mapping extraction and
fuzz testing by facilitating automated mapping function generation adaptable to
different CPU architectures. Following the extraction and analysis phase, where
we validated the library’s functionality on Intel’s Goldmont Plus (Celeron N4000),
Comet Lake (Core i5-10500), and Raptor Lake (Core i9-13900K) architectures, we
plan to integrate the generated mapping functions into the Blacksmith fuzzer. This
application will enable methods of access to memory that will be targeted and also
improved ways of creating fuzzers and this will boost the chances of finding out
vulnerabilities that are related to DRAM. Thus, with an exact reproduction of the
specific DRAM configuration of each architecture, the developed mapping functions
will facilitate enhanced fuzzing and enable the Blacksmith fuzzer to perform the
tests more efficiently and accurately according to each architecture’s characteristics.

4.1 Reverse Engineering the DRAM Address func-
tion

In order to reproduce the Blacksmith fuzzer on our tested machines, we first had
to reverse engineer the DRAM address functions for the respective architectures as
the DRAM address functions were hard coded in Blacksmith [43]. Based on the
technique used in IAIK DRAMA [44], we developed a library by calling which, the
DRAM bank address functions will be reverse engineered based on the architecture.
Our library with Python specially designed to automate the setup building and the
execution of DRAM address mapping methods used in IAIK DRAMA [44] which is
extensively used in memory research. The DRAMA tool expects users to perform
a number of compilational steps and to deal with several dependencies on their
own which necessitates largely manual approach. To overcome these challenges our
library abstracts these tasks into simple Python interface, which makes the process

13

much easier for common users, who may have no experience with that makefiles or
build systems.
The process by which DRAMA works is splitted into three main stages. In step
1, it detects row and column bits that gives coarse-grained results which is either
most of the row and most of the column is detectable but some of them are still
in grey boxes. In Step 2, physical addresses are chosen that only vary at the bits
represented by grey boxes, and then categorize them into distinct sets (each set
corresponds to a bank), from which we can determine bank address functions that
hold for all members of the set. In the third step, we perform a more detailed
examination of the determined bank address functions in order to identify new row
or column bits that are also present in the bank address functions of the previous
step. The following figure explains our description.

Figure 4.1: DRAM address mapping from physical memory

The design of our library involved significant effort to ensure reliability and simplic-
ity of use. First of all, we studied the structure behind DRAMA project and its
dependencies, custom build targets and potential failure points during compilation.
Based on our observations, we implemented a series of Python functions for utilizing
the make command through the subprocess module so that each phase, from depen-
dency confirmation to build implementation, is seamless. For the users, it means
that testing DRAM address mapping tool becomes simple which requires just calling

14

some functions in Python bypassing the manual setup typically required. Besides
reducing the setup time, our work also enhances the reproducibility by minimizing
variations in build environments.
Moreover, actively using logging and error handling, we incorporated them into our
library while studying possible problems that may occur during the compilation and
execution phases. In particular, we worked to parse error outputs and provide sub-
stantial feedback to the users, which is especially valuable for debugging complex
build issues. Our library also upholds customization, letting users to specify differ-
ent makefile targets or extra configuration options, adaptable for various research
needs. This customization along with the streamlined execution, makes the library
compatible for integration into any automated workflow or larger data processing
pipelines, which are often essential in DRAM research.
In addition to automating the setup, building and the execution of the DRAM
address mapping tool, we moved a step further. Our library analyze the results
produced and generate corresponding DRAM address functions. The the algorithm
behind DRAMA tool outputs only the raw data regarding the DRAM address map-
ping which necessitates further interpretation to be practically useful for research
and applications. By widening our library to process these results, we equip the users
with a more complete workflow, letting them to move data directly to functional
insights without the need for additional post-processing scripts.
Once the DRAMA algorithms completes its analysis and generates output data on
address mapping, our library parses this data to recognize key patterns and rela-
tionships within the DRAM address space. Following the insights, the library then
automatically constructs address mapping functions that translate between physical
addresses and DRAM row, column, and bank coordinates. This step is very impor-
tant, especially for the researchers who want to have efficient and reliable way to
analyze or to simulate memory access patterns. By creating these functions auto-
matically, we avoid the need for users to reverse-engineer DRAM address mappings,
which otherwise tasks a significant amount of time and is prone to mistakes.
The address functions produced by our library are configured in a user-friendly man-
ner that allows straightforward integration into various environments. In addition,
these functions are outlined to be flexible for different DRAM configurations and ad-
dressing schemes. By producing DRAM address functions automatically, our library
not only streamlines the use of the DRAMA tool but also enables researchers to in-
corporate DRAM-specific address mapping directly into larger projects, whether for
performance profiling, security analysis, or architectural studies. This additional
functionality puts out entire library as an extensive solution for both the generation
and practical application of DRAM address mappings, as a result, it enhances the
accessibility and impact of DRAM research.
The final result, our complete library is a highly accessible and customizable tool
that empowers researchers to focus on the analysis and implementation of DRAM
address mappings without being encumbered by the complexities of tool compilation

15

and setup. The final result, our complete library is a highly accessible and customiz-
able tool that empowers researchers to focus on the analysis and implementation of
DRAM address mappings without being encumbered by the complexities of tool
compilation and setup. Through this library, we tend to make the DRAMA tool
more accessible to the research community, potentially accelerating progress in fields
related to memory performance, reliability, and security. Our code has been open
sourced here.

Figure 4.2: DRAM Address Mapping Library Process Flow

16

https://github.com/mahfuzsobhan/Reverse-Engineering-INTEL-DRAM-Address-functions

Once we are Ready with our DRAM address mapping library, we tested and analyzed
its performance across three different INTEL architectures to observe the variations
in DRAM address mappings and validate the library’s effectiveness. Each of our
tested architecture - Intel Celeron N4000 CPU (Goldmont Plus architecture), Intel
Core i5-10500 CPU (Comet Lake architecture), and Intel Core i9-13900K (Raptor
Lake architecture) shows a different generation and feature set, offering a broad
spectrum of DRAM configurations.

4.2 Testing Process and Analysis
1. Running the DRAM Address Mapping Tool:

• For each architecture, we executed the library’s pipeline which involved
checking dependencies, building the DRAMA algorithms, running it on
the target CPU, parsing the output, and generating DRAM address map-
ping functions based on the extracted bit positions.

• This programmatic process allowed consistent data acquisition across sys-
tems, ensuring that the observed mappings were directly comparable and
free of user-induced variance.

2. Extracted DRAM Address Mapping:

• The tool successfully parsed the DRAM address mappings, uncovering
rows, columns, and bank configurations on our tested architectures. The
bit position and length for each of these fields were analyzed, revealing
architecture-specific nuances in DRAM address mappings.

• To illustrate the N4000 (Goldmont Plus) CPU exhibited a simpler DRAM
address layout with fewer row and column bits, the Comet Lake and
Raptor Lake architectures presented more complex layouts due to their
higher memory hierarchy sophistication and enhanced performance opti-
mizations.

3. Generated Address Mapping Functions:

• Our library generated address mapping functions tailored to each archi-
tecture. The differences in row, column, and bank bit positions observed
across architectures necessitated unique bit-masking configurations for
each function, allowing precise mapping for any given physical address.

• The functions for the Raptor Lake architecture on CPU (i9-13900K)
required handling a greater number of address bits, due to the higher
DRAM bandwidth and parallelism in newer architectures. This function
also accommodated more banks, supporting the increased memory access
concurrency in the Raptor Lake design.

17

4.3 Analysis of Architectural Differences in DRAM
Address Mapping

• Goldmont Plus (N4000): This architecture is typically used in low powered
devices displpayed a minimalistic DRAM mapping structure. Relatively less
address bits were dedicated to rows and columns, with limitations in bank
parallelism, which aligns with its energy-efficient design goals. The address
mapping function generated for this architecture was the simplest, requiring
fewer bitwise operations.

• Comet Lake (i5-10500): As a widely used processor, the DRAM address
mapping for Comet Lake demonstrated more complexity. The extracted bit
positions indicated a balanced allocation between rows, columns, and banks,
allowing for moderately parallel memory accesses. The generated address
mapping function reflected this balanced approach, with more extensive bit
extraction logic than the Goldmont Plus but simpler than the Raptor Lake.

• Raptor Lake (i9-13900K): As the latest high-performance architecture,
Raptor Lake exhibited the most intricate DRAM address mapping scheme.
This configuration allocates significant bits to banks and rows which supports
high level parallelism and bandwidth in memory. The resulting address map-
ping function was the most complex, incorporating sophisticated bit masks
and shifts to map addresses accurately within this high-concurrency memory
model.

4.4 Insights and Implications
Our library’s design flexibility allowed it to grasp varied DRAM address mapping
requirements dynamically for each architecture. Through the automatic detection
of parsing and function generation, the library delivered accurate address mapping
functions for every CPU, which could be used directly to address research issues
such as memory profiling or security testing. The differences that are observed in
DRAM configurations across architectures emphasize the need for adaptable address
mapping tools, particularly as memory architectures continue to evolve with each
CPU generation.
Overall, this analysis illustrates the effectiveness of our DRAM address mapping
library across diverse Intel architectures, enabling straightforward mapping function
generation for different DRAM configurations. In our future analysis, we use this
reverse engineered DRAM address functions in the fuzzer used for our research and
studied the RowHammer effect in all three architectures.

18

Chapter 5

Our Analysis and Findings

In this chapter, we present the findings from our experimentation with the Black-
smith fuzzer across three different Intel architectures, implementing our DRAM ad-
dress mapping library for each CPUs. After establishing accurate DRAM mappings
for each architecture (Goldmont Plus, Comet Lake, and Raptor Lake), we imple-
mented these mappings within the Blacksmith fuzzer to conduct rigorous memory
access pattern testing. Our analysis focuses on various aggressor row activation
patterns, refresh intervals, and activation counts to assess each architecture’s sus-
ceptibility to row hammering effects.

5.1 Reproduction of Blacksmith Fuzzer
In order to reproduce and extend the capabilities of Blacksmith fuzzer over different
DRAm configurations, we first had to integrate the architecture specific DRAM ad-
dress functions generated for CPU model: Goldmont Plus (Celeron N4000), Comet
Lake (Core i5-10500), and Raptor Lake (Core i9-13900K). By utilizing these map-
pings, the fuzzer acquired the accuracy required to conduct targeted RowHammering
attacks based on the unique DRAM configurations of each CPU with distinguished
bit allocation for rows, columns, and banks.
Our modification towards the architecture of the fuzzer included replacing its generic
address translation logic with our custom mapping functions. This approach equips
the fuzzer to identify and consistently target specific physical DRAM rows. This
adaptation was necessary because row hammer vulnerabilities are highly architec-
ture dependent and rely on memory layout knowledge. This changed arrangement
enabled the fuzzer to target memory access patterns that trigger bit flips more effi-
ciently.
The modified fuzzer harnessed the unique memory access sequence that derived from
each architecture’s DRAM configuration to maximize the chances of RowHammer-
ing adjacent rows. We incorporated aggressor row addresses that matched each
architecture row, column, and bank layout to enhance the fuzzer RowHammering
effect on each of the target systems. Further, in the fuzzer, we used a cycle-aware

19

mechanism that included the timing information of the clock speeds of each archi-
tecture and DRAM refresh time so as to arrive at a consistent architecture-tuned
row activation during fuzzer testing.
In summary, the harnessing of our custom address mapping functions into the Black-
smith fuzzer allowed us to observe its RowHammering patterns to the unique DRAM
layouts of each tested architecture. This adaptation provided a more accurate and
effective approach to triggering row hammer vulnerabilities, setting the stage for
detailed analysis on aggressor row activation counts, refresh intervals, and the effi-
cacy of two-sided hammering across Goldmont Plus, Comet Lake, and Raptor Lake
architectures.

5.2 Aggressor Row Vs Refresh Interval:
In our first fuzzer run, we will observed the number of aggressor row per refresh
intervals for our tested machines. We define Goldmount Plus architecture as Module
A, Comet Lake as Module B and Raptor Lake as Module C in the dataset. The
number of aggressors stands along the Y asix where the x axis represents the refresh
interval in milliseconds. The rows in the DRAM refreshes periodically in a specific
time. The JEDEC standard for refresh interval is 64ms, but it may differ based
on the temperature inside the DRAM. The increment in the aggresor rows number
with prolonged refresh intervals indicates that the longer refresh intervals are more
susceptible to RowHammer as they grant more time for row activations to aggregate.
From the graph, we can see that Goldmount Plus architecture has the highest num-
ber of aggressor rows over the refresh intervals, stating that this architecture is the
most sensitive to increased refresh intervals.
Comet Lake architecture follows a similar trend like the Goldmount Plus architecture
but at a lower magnitude. The number of aggressors increases as the refresh interval
extends. This tells that Comet Lake is having a moderate level of vulnerability to
RowHammer effects than Goldmont Plus.

Figure 5.1: Aggressor rows per Refresh Intervals

Raptor Lake architecture has the lowest number of aggressor rows at each refresh
interval which indicates that it has an improved resilience against RowHammer

20

attacks. Its curve shows a more steady increase where the aggressor rows remain
under 104 even at the high refresh intervals.

5.3 Aggressor Row Vs Activation Interval:
In our second fuzzer run, we observed the number of aggressor rows per activation
intervals. Once the fuzzer finds the aggressor row, it generates activation intervals
against the refresh interval to make successful hammering in the targeted rows.
Goldmount Plus shows the highest number of aggressor rows within the range of
activation intervals with a sharp drop-off near 400 ms. Comet Lake architecture has
fewer aggressor rows compared to Goldmount Plus architecture. Yet it is more that
Raptor Lake which has the lowest aggressor per activation interval among all the
tested architectures.

Figure 5.2: Aggressor rows per Activation Intervals

5.4 Bitflips and our Observations:
We know from our earlier discussions that RowHammer phenomenon occurs when
bitflips occur in the victim cells of an aggressor row. It happens if the activations of
aggressor row, also known as hammering, within the refresh intervals are successful.
Our third and final fuzzer run counts the bitflips over victim cell per aggressor rows.
Similarl to the previous results, the highest RowHammer susceptibility is found
in the Goldmount Plus architercute as the highest number of bitflips are found in
this architecture which raised up 20 victim bits per row. After reaching the peak,
the number of victim cells started showing a downward tend. Comet lake shows a
similar tend to Goldmount Plus but with a lower magnitude of bitflips where the
bitflips peak is around 10 to 20 victim cells per aggressor row. Raptor Lake has the
least number of calculated bitflips which means it is less susceptible to RowHammer
impact. Its Bitflips peak was at fewer than 10 victim cells per row.
Based on our experiments, we can come to the decision that Goldmont Plus appears
to be the most susceptible to RowHammer and Raptor Lake demonstrates the best

21

Figure 5.3: Bitflips per Aggressor rows

resilience. Our study on overall RowHammer effect in our chosen architecture give
a bunch on interesting insights. First of all, out decision is not just based on the
number of bitflips per aggressor rows, yet it was based on the overall RowHammer
attack surface to a targeted machine. We started our experiment from studying the
refresh interval, then activation interval and finally the bitflips and throughout all
the layer of experiments, we Goldmount Plus architecture was easy to break into.
That means, the architecture failed to protect itself from RowHammer since the be-
ginning, where as the protection against RowHammwer for Raptor Lake remained
very strong throughout all the experiments. It seems like that the architecture has
it own shield against the RowHammer. However, the Coffee Lake architecture re-
mained lenient. It was neither too weak to be a victim of RowHammer, not it had its
strong position against RowHammer which signifies that a sophisticated RowHam-
mer attack is possible by targeting a machine based on Coffe Lake architecture.
Also, among all the tested architectures, Goldmount Plus is the oldest and Raptor
Lake is the newest. So we can also claim that, the vendors are taking RowHam-
mer seriously and working on their protection against it. However, despite of the
strengths and weaknesses of our targeted architectures, from our last experiment,
by observing the declination of bitflips once it hits the peak, we can clearly say that
regardless of the manufacturing date, all the architectures has the mechanism to
act against RowHammer. In our future work, we are looking forward to count the
number of clock cycles it takes per each activations over across the architectures
which may lead to a completely new insignts. We claimed that the most recent
architecture, Raptor Lake is relatively secured than the other two, yet, if it’s clock
cycle rate per activation is higher than the other two, it will be equally prone to
RowHammer vulnerability regardless of it’s modern protection mechanisms.

22

Chapter 6

Conclusion

Our study demonstrates the effectiveness of a custom library built for reverse engi-
neering DRAMM address functions which enables precise mapping of DRAM rows
to physical addresses across architectures.By integrating these mappings with the
Blacksmith fuzzer and running it on our tested machines, we uncovered key obser-
vations in RowHammer vulnerability. Our experiments showed that the hammering
to the rows and the occurrence of bitflips are significantly differently across each of
the architectures based on memory controller designs, cache structures, and DRAM
row address mappings.
The library proved essential in optimizing the address extraction process which en-
ables a streamlined workflow for RowHammer analysis across diverse hardware se-
tups. These findings emphasizes the necessity of architecture-aware testing tools for
accurately assessing Rowhammer susceptibility and provide valuable insights for de-
signing DRAM configurations and memory controllers that are more resilient to such
attacks. Ultimately, this research contributes to the development of standardized,
cross-platform approaches for assessing and mitigating hardware vulnerabilities, ad-
vancing efforts to safeguard next-generation systems against emerging threats.

23

Bibliography

[1] J. A. Mandelman, S. H. Lee, D. H. Lu, R. R. M. L. McGuire, and C. M. N. N. Z. Y. D.
Reiner, “Challenges and future directions for the scaling of dynamic random-
access memory (dram),” IBM Journal of Research and Development (IBM
JRD), vol. 46, no. 2, pp. 1–10, 2002.

[2] S. Hong, “Memory technology trend and future challenges,” in Proceedings of
the 2010 IEEE International Electron Devices Meeting (IEDM), IEEE, 2010,
pp. 1–4.

[3] T. Vogelsang, “Understanding the energy consumption of dynamic random
access memories,” in Proceedings of the 2010 ACM/IEEE International Sym-
posium on Microarchitecture (MICRO), IEEE, 2010, pp. 1–12.

[4] JEDEC, “Double data rate 4 (ddr4) sdram standard,” JEDEC, Tech Report,
2012. [Online]. Available: https://www.jedec.org/standards-documents/docs/
jesd79-4.

[5] O. Mutlu, “Memory scaling: A systems architecture perspective,” in Proceed-
ings of the 2013 IEEE International Memory Workshop (IMW), IEEE, 2013,
pp. 1–6.

[6] S. J. Vaughan-Nichols, “The secret origins of google’s chrome os,” ZDNet,
Mar. 2013. [Online]. Available: https://archive.is/TODn1.

[7] Y. Kim, O. Mutlu, D. Burger, and L. W. Smith, “Flipping bits in memory
without accessing them: An experimental study of dram disturbance errors,”
in Proceedings of the 41st Annual International Symposium on Computer Ar-
chitecture (ISCA), IEEE, 2014, pp. 1–12.

[8] K. Bains et al., “Row hammer refresh command,” US Patent 9,117,544, Filed
in 2015, 2015.

[9] K. S. Bains et al., “Row hammer monitoring based on stored row hammer
threshold value,” US Patent 9,032,141, Filed in 2015, 2015.

[10] S. Mark and T. Dullien, Exploiting the dram rowhammer bug to gain kernel
privileges: How to cause and exploit single bit errors, Black Hat USA, Las
Vegas, NV, Aug. 2015, 2015. [Online]. Available: https://www.youtube.com/
watch?v=0U7511Fb4to.

[11] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to gain
kernel privileges,” in Black Hat, vol. 15, 2015, p. 71.

[12] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and T.
Austin, “Anvil: Software-based protection against next-generation rowhammer
attacks,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 743–755, 2016.

24

https://www.jedec.org/standards-documents/docs/jesd79-4
https://www.jedec.org/standards-documents/docs/jesd79-4
https://archive.is/TODn1
https://www.youtube.com/watch?v=0U7511Fb4to
https://www.youtube.com/watch?v=0U7511Fb4to

[13] S. Bhattacharya and D. Mukhopadhyay, “Curious case of rowhammer: Flip-
ping secret exponent bits using timing analysis,” in Proceedings of the Interna-
tional Conference on Cryptographic Hardware and Embedded Systems (CHES),
Springer, 2016, pp. 602–624.

[14] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est machina: Memory
deduplication as an advanced exploitation vector,” in Proceedings of the 2016
IEEE Symposium on Security and Privacy (SP), San Jose, CA: IEEE, 2016,
pp. 987–1004. [Online]. Available: http : / / ieeexplore . ieee . org / document /
7546546/.

[15] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Can’t touch
this: Practical and generic software-only defenses against rowhammer attacks,”
arXiv preprint arXiv:1611.08396, 2016.

[16] D. Gruss, C. Maurice, S. Mangard, and T. Eisenbarth, “Rowhammer.js: A re-
mote software-induced fault attack in javascript,” CoRR, vol. abs/1605.09536,
2016. [Online]. Available: https://arxiv.org/abs/1605.09536.

[17] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “Drama: Ex-
ploiting dram addressing for cross-cpu attacks,” in Proceedings of the USENIX
Security Symposium, USENIX, 2016, pp. 565–581.

[18] R. Qiao and M. Seaborn, “A new approach for rowhammer attacks,” in Pro-
ceedings of the 2016 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), IEEE, 2016, pp. 161–166.

[19] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip
feng shui: Hammering a needle in the software stack,” in Proceedings of the
25th USENIX Security Symposium (USENIX Security 16), USENIX, 2016,
pp. 1–18.

[20] V. V. D. Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna,
H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic rowhammer
attacks on mobile platforms,” in Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, ACM, 2016, pp. 1675–
1689.

[21] Y. Xiao, T. Eisenbarth, B. Sunar, M. Lipp, and D. Gruss, “One bit flips,
one cloud flops: Cross-vm row hammer attacks and privilege escalation,” in
Proceedings of the 2016 USENIX Security Symposium, USENIX Association,
2016, pp. 1–16.

[22] O. Mutlu, “The rowhammer problem and other issues we may face as memory
becomes denser,” in Proceedings of the 2017 Design, Automation Test in
Europe Conference (DATE), IEEE, 2017, pp. 1–6.

[23] D. Gruss, C. Maurice, S. Mangard, and T. Eisenbarth, “Another flip in the
wall of rowhammer defenses,” in Proceedings of the 2018 IEEE Symposium on
Security and Privacy (SP), IEEE, 2018, pp. 1–18.

[24] A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating software mitiga-
tions against rowhammer: A surgical precision hammer,” in Proceedings of the
International Symposium on Research in Attacks, Intrusions, and Defenses
(RAID), Springer, 2018, pp. 47–66.

25

http://ieeexplore.ieee.org/document/7546546/
http://ieeexplore.ieee.org/document/7546546/
https://arxiv.org/abs/1605.09536

[25] V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna, C.
Kruegel, H. Bos, and K. Razavi, “Guardion: Practical mitigation of dma-based
rowhammer attacks on arm,” in Proceedings of the International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA),
Springer, 2018, pp. 92–113.

[26] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correcting codes:
On the effectiveness of ecc memory against rowhammer attacks,” in 2019 IEEE
Symposium on Security and Privacy (SP), IEEE, 2019, pp. 55–71.

[27] L. Cojocar, M. Neugschwandtner, M. Schwarz, D. Gruss, and K. Razavi, “Ex-
ploiting correcting codes: On the effectiveness of ecc memory against rowham-
mer attacks,” in Proceedings of the IEEE Symposium on Security and Privacy
(SP), San Francisco, CA, USA: IEEE, 2019, pp. 55–71.

[28] V. Corporation, Blackbird bios reference manual, Accessed: 2024-11-09, 2019.
[Online]. Available: https://www.versalogic.com/wp-content/themes/vsl-
new/assets/pdf/manuals/MEPU44624562BRM.pdf.

[29] S. Ji, Y. Zhang, Y. Wu, X. Zhang, and Z. Zhan, “Pinpoint rowhammer: Sup-
pressing unwanted bit flips on rowhammer attacks,” in Proceedings of the
2019 ACM Asia Conference on Computer and Communications Security (ASI-
ACCS), ACM, 2019, pp. 1–14.

[30] T. Yang, J. Li, S. K. S. S. Rajendran, M. Yu, and Y. K. M. T. D. A. Robin-
son, “Trap-assisted dram row hammer effect,” IEEE Electron Device Letters
(EDL), vol. 40, no. 1, pp. 1–4, 2019.

[31] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, and Z. Wang, “Telehammer: A stealthy
cross-boundary rowhammer technique,” arXiv preprint arXiv:1912.03076, 2019.

[32] L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and O. Mutlu,
“Are we susceptible to rowhammer? an end-to-end methodology for cloud
providers,” arXiv preprint arXiv:2003.04498, 2020.

[33] P. Frigo, M. Lipp, E. W. N. K. H., T. Eisenbarth, and B. Sunar, “Trrespass:
Exploiting the many sides of target row refresh,” in Proceedings of the 2020
IEEE Symposium on Security and Privacy (SP), IEEE, 2020, pp. 1–18.

[34] J. S. Kim, M. Patel, A. G. Yaglıkçı, H. Hassan, R. Azizi, L. Orosa, and O.
Mutlu, “Revisiting rowhammer: An experimental analysis of modern dram
devices and mitigation techniques,” in 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA), IEEE, 2020, pp. 638–
651.

[35] A. Kwong, M. Lipp, T. Eisenbarth, and B. Sunar, “Rambleed: Reading bits in
memory without accessing them,” in Proceedings of the 2020 IEEE Symposium
on Security and Privacy (SP), IEEE, 2020, pp. 1–18.

[36] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee, “Graphene:
Strong yet lightweight row hammer protection,” in Proceedings of the 2020
ACM/IEEE International Symposium on Microarchitecture (MICRO), IEEE,
2020, p. 13. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
9251863.

26

https://www.versalogic.com/wp-content/themes/vsl-new/assets/pdf/manuals/MEPU44624562BRM.pdf
https://www.versalogic.com/wp-content/themes/vsl-new/assets/pdf/manuals/MEPU44624562BRM.pdf
https://ieeexplore.ieee.org/abstract/document/9251863
https://ieeexplore.ieee.org/abstract/document/9251863

[37] TQ-Systems, Tqmx80uc user’s manual, Accessed: 2024-11-09, 2020. [Online].
Available: https://www.tq-group.com/fileadmin/downloads/files/products/
embedded/manuals/x86/embedded-modul/COM-Express-Compact/TQMx80UC/
TQMx80UC.UM.0102.pdf.

[38] Z. Zhang, Y. Cheng, and S. Nepal, “Ghostknight: Breaching data integrity via
speculative execution,” arXiv preprint arXiv:2002.00524, 2020.

[39] S. Qazi, Y. Kim, N. Boichat, E. Shiu, and M. Nissler, Introducing half-double:
New hammering technique for dram rowhammer bug, 2021.

[40] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and K. Razavi,
“SMASH: Synchronized many-sided rowhammer attacks from javascript,” in
30th USENIX Security Symposium (USENIX Security 21), 2021.

[41] P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi, “Blacksmith:
Scalable rowhammering in the frequency domain,” in Proceedings of the 2022
IEEE Symposium on Security and Privacy (SP), IEEE, 2022.

[42] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “Spechammer:
Combining spectre and rowhammer for new speculative attacks,” in 2022 IEEE
Symposium on Security and Privacy (SP), IEEE, 2022, pp. 681–698.

[43] C. Group, Blacksmith: Scalable rowhammering in the frequency domain, Ac-
cessed: 2024-11-09, 2023. [Online]. Available: https ://github.com/comsec-
group/blacksmith.

[44] IAIK, Drama: Dynamic row address mapping tool, Accessed: 2024-11-09, 2023.
[Online]. Available: https://github.com/IAIK/drama.

27

https://www.tq-group.com/fileadmin/downloads/files/products/embedded/manuals/x86/embedded-modul/COM-Express-Compact/TQMx80UC/TQMx80UC.UM.0102.pdf
https://www.tq-group.com/fileadmin/downloads/files/products/embedded/manuals/x86/embedded-modul/COM-Express-Compact/TQMx80UC/TQMx80UC.UM.0102.pdf
https://www.tq-group.com/fileadmin/downloads/files/products/embedded/manuals/x86/embedded-modul/COM-Express-Compact/TQMx80UC/TQMx80UC.UM.0102.pdf
https://github.com/comsec-group/blacksmith
https://github.com/comsec-group/blacksmith
https://github.com/IAIK/drama

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	Introduction
	Literature Review
	Background
	Dynamic Random Access Memory (DRAM)
	RowHammer
	Blacksmith

	Research Methodology
	Reverse Engineering the DRAM Address function
	Testing Process and Analysis
	Analysis of Architectural Differences in DRAM Address Mapping
	Insights and Implications

	Our Analysis and Findings
	Reproduction of Blacksmith Fuzzer
	Aggressor Row Vs Refresh Interval:
	Aggressor Row Vs Activation Interval:
	Bitflips and our Observations:

	Conclusion
	Bibliography

