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Abstract

The purpose of our study is to create new technology that will provide a revolution-
ary navigation system with significant improvement of mobility and independence
for visually impaired people. We utilize YOLOv11 and Faster R-CNN to detect an
object which is used in combination with Llama 3.2-3B Instruct for context-aware
navigation by providing helpful guidance of our current essential location. Our paper
tackles the failure points in today’s technologies with lack of flexibility for dynamic
and unfamiliar environments, unreliable performance under changes in lighting con-
ditions and inefficient obstacle detection. By training these models together and
selecting the one with the highest confidence score, we enhance spatial awareness,
identifying obstacles in key areas like the left, right, or center. This approach,
complemented by personalized navigation instructions, ensures improved decision-
making and safety in real-world scenarios. Using advanced locational technologies
available today and imagining those of tomorrow, we aspire to render current navi-
gation methods obsolete by fostering more efficient, real-time and autonomous tools
for visually impaired people as they become part of the familiar or unfamiliar en-
vironments. After fine-tuning the Llama 3.2-3B-Instruct model, BLEU-4 increased
from 0.0442 to 0.1175, and ROUGE-L improved from 0.2102 to 0.3204, indicating
enhanced text generation fluency and coherence.

Keywords: YOLOv11, Faster R-CNN, Llama 3.2-3B Instruct, Object Detection,
Navigation System, Visually Impaired, Location Detection.
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Chapter 1

Introduction

Advancement in technology and our focus on inclusivity have made assistive devices
invaluable for improving the daily quality of life for people with disabilities. Using
the most recent studies, the World Health Organization (WHO) estimates that the
number of people with visual impairment is 285 million. Of these, 246 million have
low vision and 39 million are estimated to be fully blind[3]. Although assistive tech-
nology and medical treatments have improved, many visually impaired individuals
continue to encounter difficulties in navigation without some support from others,
especially in more challenging and unfamiliar situations. Their dependence affects
their independence and mobility. Few existing navigation systems offer sufficient
support, often proving to be too adaptive and not functional in real-time. Current
systems face challenges in dealing with varying landscapes and uneven areas. One
of the main limitations in current navigation technologies is that they combine ob-
ject recognition and customized suggestions in ways that are not always effective,
making everyday use difficult[17]. We are now using YOLOv11 with Faster R-CNN
to assist the visually impaired individuals in a better way. All models are trained
together, and the one with better confidence score is selected. Which allows us to
know if some obstacles are on the left, right or center. This object detection and
spatial awareness combination enables better navigation decisions. We have added
Llama 3.2-3B Instruct, an improved version of the Large Language Model (LLM)
to increase flexibility in dynamic environments with look-up tables for codebook
bindings. This potentially has an effect on the system decision-making which in
turn increases its ability to deploy these types of smart interconnected systems.

1.1 Motivation

Blind and visually impaired people are able to live more independent lives even in
their predicament with the help of technology which promotes a safer environment
as well as easier access to the outside world. That said, there is still a barrier facing
for blind people which impedes them in any meaningful way to travel like others
instantly and independently causing to their communications with people around
the world as well as their quality of life. To address this, we aim to create a smarter
and real-time base navigation system compared with any similar navigation systems.

Our research focus has always been toward useful real-world applications to help
people. Here are a few motivations for carrying out this research:



e Empowering visually impaired people to gain independence: Our
system helps blind individuals safely move independently through any given
space with 180-degree navigation. It enables people to move independently
and navigate difficult, even hazardous places without the help of a human by
means of object identification (obstacle avoidance ) and real-time guiding.

e Objective — Detection, Identification & Location: By employing ad-
vanced YOLOv11 with Faster R-CNN the system makes it possible for detect-
ing and identifying location . It also helps users by representing whether the
blocks are on the left, center or right side because it guides them properly that
impediments are coming from which location so they change their direction
immediately.

e Better Decisions: This system unlike other systems uses Llama 3.2-3B In-
struct for Personalized and Context-Aware Navigation Instructions. Good
decisions facilitate the ability to get by with changing circumstances, which in
turn provide more refined and reliable guidance.

1.2 Problem Statement

Our research mentions the challenges of ensuring safety and safer navigation for
blind and visually impaired people. Despite these improvements in navigational
technologies, many blind people and visually impaired people still struggle to move
independently when they are in unfamiliar or chaotic environments. One of the
major issues have always been the current systems that are poor In object detection,
and navigation support. A number of current technologies are unable to react in
different lighting conditions or everyday dynamic obstacles that can often obstruct
the user’s goal of safely completing a walk.

Additionally, only a small number of object detection models are widely used; how-
ever promising results can be achieved with more advanced ones like YOLOv11
with Faster R-CNN which are able to enhance the precision and running speed
of navigation systems. Nevertheless, object detection and personalized navigation
guidance still pose a great challenge in integrating current technologies that results
in disorientation when it comes to human interaction with the environment.
Additionally, many current solutions lack deeper integration with Llama 3.2-3B In-
struct and optimization for contextual understanding even if they are using it in
some form or another. This type of fine-tuning can drastically increase the system’s
capability to give navigation instructions adapted to the user’s concrete environ-
ment.

In addition to the high degree of human intervention required, these systems gen-
erally have poor performance because they lack a consistent and extensive set of
training datasets for more comprehensive environments commonly encountered by
visually impaired individuals. These trials highlight a pressing necessity for an inte-
grated, tech-based and real-time assistance typology that works seamlessly to assist
people who are blind or visually impaired trust their mobility independently.



1.3 Limitation of Existing Literature

Our research depends on solving many challenges for visually impaired persons.
There are several factors that might prevent the study from being conducted. Some
of them are:

Inadequate Object Classification: Existing systems fail to classify objects
in dynamic environments. This type of limitation can lead to potential risks for
visually impaired individuals. Since the developing assistive technologies for
the visually impaired focus primarily on classification rather than detection,
the challenges lie in accurately identifying objects to ensure user safety and
navigation efficiency.

Lack of Datasets: The majority of navigational systems rely on narrow, tiny
datasets that fall short of accurately capturing the range of settings that blind
people encounter. The issue limits the systems generalizability and applica-
bility in practice.

Poor object detection and navigation integration: It is clear from most
of the present systems that there exists a weak logical connection between
recognition of objects coupled with navigational guidance. It would slow down
the responses and this way end up with an incomplete capability of serving
its purpose. Current systems often miss objects in dynamic environments.
However, this would likely result in false negatives that could prove harmful
to blind or visually impaired end users.

Dependency on High-resolution Input photographs: In order for many
systems to perform at their best now we need clear and high-quality pho-
tographs while these are hard to obtain in real world severe scenarios like bad
weather. That is why the absence of these visuals can lead to an inaccurate
navigational aid and a decrease in identification rates.

Generic Navigation Directions: Many of the systems today provide nav-
igation commands that are generic in nature and fail to consider individual
user requirements or contexts. This makes navigational systems less effective
because different users may require tailored instruction for their particular
situations and difficulties. This decreases any use of navigational systems be-
cause different users might require customized guidelines as per their situation
and problems.

Underutilized Advanced Models: Many of the newest models that yield
significantly better object detection and real-time processing (e.g. YOLOv11
or Faster R-CNN) are notably absent from current navigation systems They
also not able to take advantage of the next generation technology which could
increase their performance.

1.4 Research Contributions

The objective of our study is to design an advanced navigation system that will
allow visually impaired people to move to their preferred locations safely and in-
dependently. Our work points out the most important problems visually impaired



people have, specially in new environments and proposes how to solve these prob-
lems with better technologies. For that purpose, we aim to implement some of the
most widely used object detection models such as YOLOv11 and Faster R-CNN in
order to improve on the accuracy rate which will result in a better navigation sys-
tem able to detect an obstacle. It is complemented by Llama 3.2-3B, optimized for
context-aware navigation to provide individual instructions with regard to the re-
spective environment. This will enhance decision-making in changing circumstances
and provide more appropriate advice. One of the main goals is to seamlessly con-
nect objects detected and personalized navigation instructions, making this process
more quick and improving experience. Our mission is to revolutionize independence
and movement by challenging the limits of current technological advancements. We
want to do this more efficiently, without compromising safety or functionality for
visually impaired people.

Some of the most essential contributions that this research has made are as follows:

e We used the MSCoCo02017 dataset. Then we also introduced a custom dataset,
as part of our research dedicated to navigation for the visually impaired com-
munity, which we have put together from different sources like including the
Telstra Pole Detection dataset, Pothole Detection dataset, Stairs Detection
dataset, and Traffic Lights and Signs dataset from Roboflow. Initially, this
dataset contained 80 classes. Then we removed 3 classes and expanded it
by adding 10 new classes to enhance its functionality and applicability. The
new classes include: 1) Pole, 2) Zebra Crossing, 3) Pedestrian Green Light, 4)
Pedestrian Red Light, 5) Red Traffic Light, 6) Green Traffic Light, 7) Yellow
Traffic Light, 8) Manhole, 9) Stairs and 10) Bus Stop. By doing so, this dataset
can help to bridge the gap of resources available for training and evaluating
models that support users navigating unfamiliar environments.

e Our study shows an innovative approach for object detections using models
like Faster R-CNN with YOLOv11. Using these models we can improve the
performance in terms of accuracy in which obstacles are detected, ensuring
that a visually impaired individual is provided accurate navigational guidance
on time based on what he/she sees around.

e We introduce Llama 3.2-3B Instruct, optimized for context-aware navigation
as well in order to provide individualized and user-specific guidance. It makes
the system more resilient to changes and improves overall user experience.

e Experimental results confirm that the proposed model performs better com-
pared to existing systems targeted towards this kind of navigation assistance in
a complex environment. The presented study is expected to result in significant
enhancements of safety, mobility and independence of visually impaired indi-
viduals during daily life routines by demonstrating the superior performance
obtained using our novel dataset combined with advanced object detection
techniques when implementing Llama 3.2-3B Instruct efficiently.



1.5 Thesis Organization

Our thesis is organized as follows: To address the aim of this paper, chapter 2
presents several literature reviews dating back up to earlier years detected but also
some current ones found on object detection. A detailed history of the evolution of
our work paradigm is provided in Chapter 3. Chapter 4 contains all the information
associated with datasets that we actually used to conduct our research. Chapter 5
provides more details of our Learning System. In this post we have displayed how
the models are constructed, what changes made to get the right parameters of a
model, How the resultant is generated and the whole workflow(criteria) as shown
below. The primary segments of technology required to facilitate our research have
been described in the beginning section of chapter 6. This is followed by qualitative
and quantitative comparisons of our model with existing models to show that it can
achieve better performance. Chapter 7 addresses Limitations and Suggestions for
Further Research. Chapter 8 shows results, implication and conclusion of our Study.
Chapter 9 is about the summarization of our thesis.



Chapter 2

Literature Review

Smart navigation systems for visually impaired people have made attention over the
years. Technology has made major progress, with advancement in object detection
models and (LLMs)-Large Language Models enabling new approaches to enhance
navigation assistance. These systems not only increase the individual independence
and safety of visually impaired individuals, but also provide them with guidance that
takes into account different environments. These are YOLO, Faster R-CNN etc.,
and LLMs for use in building efficient navigation systems through some literature
reviews.

2.1 Related works

In the paper, You Only Look Once: Unified, Real-Time Object Detection, the au-
thor doesn’t follow traditional methods which often rely on classifiers for detection
tasks. When implemented for object detection framework YOLO attempts to frame
the problem of detecting objects in images as a single regression process that predicts
bounding boxes and class probabilities directly from full image in one evaluation.
By this new approach, a single neural network runs at full speed on the images in 45
frames per second for the entire base model and up to 155 frames per second with
Fast YOLO. Although the architecture of YOLO enables end-to-end optimization
that is directly associated with detection performance, it produces more localization
errors than methods like R-CNNs. Additionally, YOLO presents a lower false pos-
itive rate on non-object regions than the conventional object detection algorithms
which makes it more practical. Although this model has better accuracy than prior
models, the localization errors it produces are not insignificant and may be prob-
lematic in situations where high precision is required which is an important area for
future research. Though YOLO models have made a large improvement in real-time
object detection, there are some constraints which need to be surpassed to improve
accuracy [5].

The paper, ”Embedded Implementation of an Obstacle Detection System for Blind
and Visually Impaired Persons’ Assistance Navigation”, proposes a system using
an improved version of the YOLO v5 neural network to solve navigation problems
encountered by individuals with visual impairment. By integrating DenseNet in
YOLO structure and improving the full-network both speed wise as well detection



accuracy, this system is able to run at 43 frames per second (FPS) and achieve an
impressive accuracy of 83.42%. The pruning and quantization of the channels were
used to make it possible as embedded implementation in a ZCU 102 board’s system.
The authors point out limitations such as the difficulty of detecting a set of diverse
obstacles within dynamic-cluttered scenes which might affect the system’s general
robustness and adaptability. In the future, further research and development are
required to improve system robustness under real-world conditions for helping BVI
users in a reliable way [18].

In the paper ” Enhancing Surveillance Systems with YOLO Algorithm for Real-Time
Object Detection and Tracking” the author attempts to develop an object detection
system for assisting Visually Impaired Persons (VIP), who cannot identify or detect
objects in the environment. Based on web technology, a study was done with the use
of YOLO (you only look once) for accurate object prediction with a deep learning
approach. The classifier that is trained on 500 images achieves an accuracy rate
up to 94%, meaning it can perform significantly better than traditional machine
learning or image processing techniques. Nevertheless, to develop a system that can
be even better in other real-world settings or more robust against unseen changes
adaptation will require future research [9)].

In the paper Real Time Object Detection using YOLO Algorithm, authors made
use of the You Only Look Once (YOLO) method for object detection and checked
its efficiency compared to the leading models in speed and performance. Whereas
traditional algorithms might scan regions of an image through multiple forward
and backward propagations, YOLO architecture performs a single evaluation that
first predicts bounding boxes and associated class probabilities from features maps
using logistic regression itself. This has the benefit of speeding up the detection
process drastically which can be applied to real-time applications. Thus the research
correctly showcases benefits of YOLO which is quick and accurate, thereby proving
it to be a good alternative solution in scenarios like autonomous navigation etc.
However, it limits its effectiveness and needs more work to enhance the robustness
of YOLO under a general case like localization error in complex environments [16].

The study YOLO-Based Models for Smoke and Wildfire Detection in Ground and
Aerial Images focuses on improving UAV-based object detection, specially for small
objects, by optimizing the YOLOv8 model for aerial photography scenarios. In-
tended for application in UAV detection systems, the newly proposed model named
UAV-YOLOvS aims to solve a recurring challenge of low accuracy due primarily
to resource constraints. Using Wise-IoU (WIoU) v3 for accurate localization, an
attention module called BiFormer to increase the focus on salient information and a
feature processing unit known as Focal FasterNet block (FFNB), which helps unify
features by leveraging multiscale representations. Experimental results show that
UAV-YOLOVS achieves mean detection accuracy up to 7.68% higher than the base-
line, meanwhile better in detecting small objects. A few seconds later, the study
indicates that detection may be more difficult for small, featureless objects (like a



bike-like vehicle) and requires further optimization [22].

In the paper Real Time Object Detection using YOLO Algorithm, the paper pro-
vides a comprehensive overview of the benefits that can be derived from the YOLO
approach when it comes to object detection, and how these results are compared
with existing algorithms, especially Faster R-CNN. While Faster R-CNN achieves
great results on both detection accuracy and speed it still needs to well-handle a
massive amount of negative samples so it may be not that robust in real application.
The authors suggest two approaches to address this problem: hard negative sam-
ple mining and alternating training. In other words, hard negative sample mining
is to find those tough to predict negative samples and use them for model updat-
ing in order to improve the classification. Meanwhile, alternating training allows
the Region Proposal Network (RPN) and Fast R-CNN components to share con-
volutional layers, promoting a more cohesive learning process rather than treating
them as independent networks. Simulation results show that this integrated method
considerably enhances the detection precision and spotlight its utility in real-time
applications such as surveillance, autonomous systems, etc. Moreover, the paper
also suggests that further tuning may eventually be required to overcome remaining
algorithm complexity and computational needs limitations [10].

In the paper ”An Improved Faster R-CNN for Small Object Detection”, authors
introduce methods to overcome difficulties in detecting small objects under complex
scenes by using convolution neural networks(CNN). This paper proposes a refined
Faster R-CNN based algorithm for small object detection. In this method, a two-
stage detection strategy is used. Improved loss function based on Intersection over
Union (IoU) is introduced for bounding box regression during the positioning stage.
Moreover, bilinear interpolation is applied to further improve the region of interest
(Rol) pooling operation for precise localization. In the recognition stage, multi-
scale convolutional feature fusion helps to supplement the feature map with more
information and a modified Non-Maximum Suppression (NMS) algorithm is utilized
in order to reduce overlap object losses. The results show that in the (0, 32],
proposed method has a recall rate as high as 90% and an accuracy rate of up
to 87%, which is far better than the original Faster R-CNN. The effectiveness of
these enhancements motivates the further study on object detection frameworks and
provides us a valuable way to consider handling small objects for them. However,
further studies remain to be done on the adaptability of this algorithm to different
environment and object types [11].

In the paper ”Accurate Object Classification and Detection by Faster-RCNN”, the
authors show how to combine Region Proposal Networks (RPN) with Faster R-CNN
for high quality object detection faster. They concentrate on utilizing a joint net-
work that can let the RPN predict region proposals, which are later sent to Faster
R-CNN for classification instead of incorporating externally RIO extraction and re-

ducing your computational overhead. They trained their VGGNet architecture on
two popular datasets (PASCAL VOC 2012 and MS COCO) only using a low cost



GPU, and they explored the performance change as the region proposals increased.
Their findings reveal an increase in the Mean Average Precision (mAP), with im-
provements peaking at 1.2% for 1,800 proposals before reaching saturation around
2,000 proposals In this paper, it highlights the efficacy and precision of algorithms
proposed in comparison with other methods. Yet, scalability of the approach to
larger datasets and more diverse object classes is an area that should be further
investigated [8].

In the paper ” A Closer Look at Faster R-CNN for Vehicle Detection”, the authors in-
vestigate the application of the Faster R-CNN algorithm to vehicle detection, noting
its initial unimpressive performance when directly applied to large vehicle datasets.
After much trial and error, the authors detail their study on model architecture as
well as tweaks to parameters and algorithms. Due to their modification the model
performance gets greatly enhanced; the most competitive result is achieved on the
KITTI vehicle dataset. This work provides a good reference point for others to use
in optimizing Faster R-CNNs further and shows the benefits of different kinds of
designs used on object detection tasks. However, using parameter tuning to reach
for this additional performance may also indicate difficulties in achieving robust
performance across diverse datasets without the level of customization needed [4].

Based on Faster R-CNN, In this paper, "Face Detection With Different Scales”, the
authors dealt with detection of small faces because most existing detectors suffer
from severe feature map shrinkage in deep convolutional networks. They proposed
Different Scales Face Detector (DSFD) that achieves better accuracy on face detec-
tion in real time manner, preserving the efficiency of their model by using multitask
RPN for region proposal and modifying anchor generation from single-size to multi
scales at different facial landmarks. The DSFD consists of three parallel Fast R-
CNN networks customized to different proposal scales, utilizing various strategies
such as multitask learning and feature pyramids to improve detection accuracy. Ex-
periments on multiple benchmarks such as FDDB, WIDER FACE demonstrate that
the proposed method outperforms techniques like UnitBox and HyperFace. How-
ever because its architecture is quite complex it would be difficult to implement in
real-time application [14].
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The paper, ”An Automated Navigation System for Blind People”’, addresses the
challenges faced by visually impaired persons. The proposed system incorporates
ultrasonic sensors for obstacle detection and stereo camera to capture an image of
the surroundings, based on deep learning algorithms that will achieve better envi-
ronmental perception. The software also includes face recognition, to determine if
it knows people in the images, as well as speech recognition for user input. Further-
more, the system is a cloud-based storage to store information and comes with web
and mobile applications that can trace users in real time where parents or guardians
or others may respond during emergencies. Experimental results demonstrate that
this system as a complete accessible solution supplies detailed environmental intelli-
gence and friendly interaction manners, which can greatly benefit the navigations of



visually impaired people. Nonetheless, comprehensive technology dependence may
be harmful with respect to accessibility and generality in different application areas
[17].

The study "Smart Eye: A Navigation and Obstacle Detection for Visually Impaired
People through Smart App”, aims to solve the largest hurdle which is faced by blind
people in navigating an unfamiliar environment as reported by WHO, who states
that globally over 283 million people are visually impaired. Their intended product
model seeks to improve the everyday living of visually impaired persons (VIPs) by
providing low-cost, lightweight assistive devices utilizing artificial intelligence and
sensor technology. Ultrasonic sensors will detect obstacles that occur in the way
of the user and a smart app takes photos to categorize them. It gives voice com-
mands to run alerts, bringing the interface and allowing users to identify imminent
threats. The proposed system provides qualitative and quantitative improvements
in performance, providing a means of independently navigating through groups of
VIPs. The study does, however, note that current navigation aids are not always
used efficiently because of their expense and complexity, which the researchers say
supports a push for less prohibitive devices [19].

The Paper, ”A Review of Navigation Systems (Integration and Algorithms)” anal-
yses the latest developments in navigation technology with particular reference to
GPS/INS integration. This integration has greatly increased the accuracy of navi-
gation, performance and overall cost-effectiveness. The paper review focuses on the
performance evaluation of these systems and reported improvements for optimizing
their operational efficiency. Yet, the majority of them only regard high-precision
Inertial Measurement Units (IMUs) that are dedicated to inertial sensing without
direct navigation outputs. The research paper suggests further investigation in this
field to improve the overall navigation solutions with respect to cost and efficiency
[28].

Over the years, autonomous navigation systems have evolved from traditional meth-
ods involving dead reckoning to based on an amalgamation of GPS technology, Iner-
tial Navigation Systems (INS), LIDAR and Radar; which drastically raises precision
levels in relation to navigating different environments. The real-time data on direc-
tion, speed and position are critical for navigation carried out by integrated sensor
systems. Yet limitations remain, partly due to expensive advanced sensor technolo-
gies, vulnerability of sensors in changing climatic conditions that can reduce per-
formance accordingly and complication from the need for feature level fusion which
increases computation requirements potentially compromising system reliability. As
a result, while improvements in autonomous navigation are encouraging evidence to
support the feasibility of this vision, they also highlight the many challenges that
are yet unsolved and need solving for greater scale-up until they can be practically
used everywhere [1].
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Inertial navigation sensors specially Ring Laser Gyros (RLGs), Fiber-Optic Gyros
(FOGs) and Micro-electro-mechanical Systems (MEMS)-based gyros and accelerom-
eters has revolutionized navigational applications by providing smaller, rugged so-
lutions while retaining high-performance capabilities. That includes the ability to
bake navigation tech into new areas previously considered impractical like personal
navigation devices and artillery systems. RLGs and FOGs have matured technolog-
ically, but there are continuing developments which may make MEMS practical for
commercial or tactical three dimensional gyroscopes. As good as MEMS sensors are,
they can’t meet the performance of RLGs and FOGs and high-performance MEMS
require more exotic materials which isn’t conducive to cost-effective mass produc-
tion. The future of it almost certainly involves smaller sizes and better stability
(cold atom interferometry is an example tech that can be expected to deal with a
few limitations) [2].

Image captioning is an interdisciplinary research field that bridges the gap between
computer vision and natural language processing by learning models that integrate
top-down semantic attention with bottom-up information in image representation.
The selective focus on semantic concepts in this innovative algorithm enhances the
output quality from recurrent neural networks. Quantitative evaluations on Mi-
crosoft COCO and Flickr30K datasets show that this approach significantly outper-
forms several technologies. On the downside though, it does not do object detection,
and is not a good way to provide accurate precise locations of objects in complex
scenes. Additionally, the prerequisite of large annotated data sets, that are not
always available, emphasizes the further need for research.|[6].

The study proposes Object Relation Transformer, for generating image captions
that builds on top of traditional encoder-decoder architectures by adding geometric
attention to model spatial relationships between detected objects. The related ex-
periments on the MSCOCO dataset demonstrate that, by leveraging object detector-
based feature vectors as external guidance signals in a simple parallel module, this
solution achieves substantial performance gains over image captioning benchmarks
according to widely recognized figures of merit. However, the geometric attention
model has limitations in terms of complex scenes with many objects congested to-
gether. The drawback of this constraint is that it reduces its ability to capture all
relevant items appropriately and give accurate spatial information, hence the model
needs future research for strengthening performance in such situation. [12].

The paper introduces the Attention on Attention (AoA) module, which improves
existing image captioning architectures by mitigating their well-known shortcomings
of traditional attention mechanisms. The main difference is that AoA helps to get
the over information needed for decoding better connected with query. This module
will be integrated in the proposed AoA Network (AoANet), on both encoder and
decoder, which outperforms previous methods and achieves superior performance
when evaluated with MS COCO dataset. While it is true that these make this model
very hard to use across datasets generally, they are also its biggest challenge. The
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ability of a neural network system to generalize beyond training set size. Besides,
AoANet does not provide object location information. It only gives a salience score
of the attended region, so generated captions are very high level but lack specific
context. The speed of AoANet for real-time applications should be improved so that
it is relevant when considering more rapidly evolving environments.|[13].

In their paper ”Intelligent LIDAR Navigation: Leveraging External Information and
Semantic Maps with LLM as Copilot”, Xie Zhang Schwertfeger introduce a new take
on robot navigation which combines Large Language Models (LLMs) with tradi-
tional occupancy grid maps and laser-based sensing approaches. The research aims
to improve robotic navigation systems with some latent contextual understanding
similar to human cognition by exploiting osmAG and a fabulous topometric hier-
archical map representation. With this integration, robots can leverage external
information and experiential knowledge from requests to other robotic services like
elevator maintenance updates for better navigation efficiency. But as useful and
receptive as these maps are, a big hindrance is that the need to use it for the robot
to get anywhere which brings up potential obstacles when in real-world situations
where a rather dated map can be practically worthless. Furthermore, when the
events reach LLMs to examine their paths and if the traffic is examined a lot, real-
world areas that are not directly affected nearby or outside these zones (the distance
after them) leads to some problems. Authors argue that addressing these problems
by using LLMs in path planning can prevent the system from being too careful, and
ensure all available passages are recognized to improve navigation results[27].

In the paper ATLAS, an autonomous navigation system that transcends conven-
tional immobile navigational agents solely based on static maps and predefined
landmarks. ATLAS expands a navigable landmark set through an object detection
module and a path planning unit that is combined with Transformers for Natural
Language Understanding (this task-based Transformer, or TB-Transformers). This
creative technique enables the model to reason abstractly at a high level and ele-
vates agent performance in challenging navigational tasks across different simulator
domains. But the technique has had struggles with navigational accuracy when it
tries to recognize and localize objects in real-time, which constricts path planning.
Moreover, it may have a sensation of difficulty in performing navigation as result
never been exposed to environment changes since system mostly based on dynamic
landmark acquisition[24].

This article presents a new approach for household service robots and similar multi-
agent groups to communicate using massive language models (LLMs) as part of the
unit design. In this paper, a communication-triggered dynamic leadership structure
is incorporated, which can balance team consensus and navigation effectiveness un-
der lower cost of inter-robot communications. This novel approach highlights the
ability of LLMs to cooperatively traverse intricate terrains. The study thus has
scalability limitations, as team size grows it becomes harder to communicate effec-
tively. At the same time coordinating multiple people in busy environments can be
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susceptible to lead frequent breaks and chances of impact on overall navigation effi-
ciency, task completion or may even cause clashes between each other due to lack or
confusion if appropriate measures are not taken into account for coordination[26].
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Chapter 3

Background Study

Our research work is divided into two parts which are object category identification
and object localization. We combined LLaMA 3 with YOLOv11 and Faster R-CNN
in the work. To improve image recognition and localization speed, we modified
these models. For an example, We have implemented Principal Component Analysis
(PCA). It can make the extract features smaller and efficient at the same time. Their
modifications led to higher results in accuracy as well as in peaked effectiveness.

3.1 Faster R-CNN

Faster Region-based Convolutional Neural Networks (Faster R-CNN) represent a
significant advancement in object detection. It is combining both object localization
and classification in a single architecture. Faster R-CNN developed by researchers
at Microsoft and this model integrates the generation of region proposals with the
object detection network itself. Unlike its predecessors which is R-CNN and Fast
R-CNN; it does not rely on external methods for generating region proposals.[21]
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Figure 3.1: Faster R-CNN Model Architecture
The key innovation in Faster R-CNN is the use of a Region Proposal Network
(RPN), which significantly speeds up the process of identifying objects by sharing

computation with the convolutional layers. It also has other key components like
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ROI pooling, anchor boxes, Softmax classification, and bounding box regression
contribute to its success in tasks of object detection and image classification.

3.1.1 Convolutional Neural Network(CNN) Layer

The Convolutional Neural Network (CNN) is the backbone of Faster R-CNN; as it
used for feature extraction from input images. The input is processed by a CNN
with several layers of convolutional operations. It captures virtually all the impor-
tant spatial and hierarchical features, such as edges and textures in an image or
photographic pattern information. The information in these feature maps must be
significant if work is to be done transformer processes down-stream to make the
region proposals and learn about classes. In Faster R-CNN, well-established CNN
architectures such as VGG-16 or ResNet are often used as feature extractors. These

Stage 2 Stage 4

—_—

—_— —_ —_
Stage 1l Stage 3 Stage 5

Figure 3.2: CNN Layer Architecture

feature maps created by the CNN are important in the Faster R-CNN system as
a whole since they are passed over to the Region Proposal Network (RPN), which
uses them to suggest promising places for objects to appear. These feature maps
serve as inputs for both the Region Proposal Network (RPN) and the classification
and bounding box regression components, underscoring the pivotal role of CNN in
the Faster R-CNN architecture.

3.1.2 Region Proposal Network (RPN)

The key underlying innovation of Faster R-CNN is the Region Proposal Network
which is used to generate region proposals that integrate directly in the object
detection process. This replaces traditional methods such as Selective Search with
a trainable neural network. For this component Faster R-CNN is different from its
predecessors model. Due to this key innovation, Faster R-CNN have a faster speed.
At each chunk of location, the Region Proposal Network (RPN) slides a window
over feature maps generated by CNNs that have been trained to recognize objects.
Region proposals are represented by pre-defined anchor boxes over different scales
and aspect ratios to cover different object sizes.

A region proposal will have at least one anchor box associated with it. Each anchor
box is also associated with an objectness score, which serves to identify if a region
is an object or background. Moreover, the slide would result in the coordinates
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of the anchor box not aligning properly with the actual object. Therefore, the
output results of RPN are as follows: ‘(probabilities of the region being object,
coordinates of the anchor box)‘. Finally, the results are put through the Non-
Maximum Suppression to filter out redundant and overlapping region proposals.

3.1.3 Region of Interest(ROI) Pooling

The Region of Interest Pooling layer is important when processing region proposals
of varying size generated by the RPN. The ROI Pooling layer transforms the regions
by organizing them into a fixed-size feature map. Meanwhile, in the ROI Pooling
stage, each region proposal is divided into a set of cells (equally-sized grid). This
is followed by max pooling, which applies individually to each cell and picks the
highest value in that area. In the second step, features and objectness are extracted
from each resized region to produce a fixed-length representation for every proposal.
This transformation helps to maintain the processing uniformity after layers and it is
indeed very helpful in proper object classification along with an accurate bounding
box prediction|7]

These are then pass through Classification and Regression layers, which produces
a fixed length representation for predictions that can handle proposals of variable
shapes and sizes.

3.1.4 Anchor points

Another important concept in Faster R-CNN is anchor boxes, they are used to detect
objects of various shapes and scales. RPN uses these hardcoded boxes as the anchor
points, and from this point onward predicts object presence in other frames. At
every position on the feature map, we generate multiple anchor boxes at different
scales and aspect ratios.
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Figure 3.3: Anchor point Architecture

During anchor matching, anchors are assigned with IoU thresholds to be the positive
or negative samples. An anchor is a positive example if its loU with any ground truth
box exceeds 0.7, otherwise it is negative which means no object. Anchors with low
overlap, generally less than 0.3, are negative anchors or considered as backgrounds.
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Positive — IoU > 0.7

Positive — 0.5 < IoU < 0.7

Negative — IoU < 0.3

Not Negative/Positive — 0.3 < IoU < 0.5

Objectness,,,.(loU) =

score

This technique helps the model learn to localize where different objects appear in an
image and can provide a hint of the most object-containing area vs non-object region,
which instructs the network for better predictions. This anchor-based mechanism
enables RPN to predict and refine location of objects which can have different lengths
rather than localization assuming standard single configuration.

3.1.5 Classification and Bounding Box Regression

After the region proposals have been passed through the ROI Pooling, the feature
maps are passed to two parallel layers. One of the parallel layers is responsible
for classification, and the other is responsible for bounding box regression. The
two layers are as shown below: The regions are passed for softmax classification,
and each class is assigned a probability distribution including the background class.
The class with the maximum probability is chosen to be the prediction. This layer
assigns to each class (including the background) a probability. The probabilities are
used to determine the identity of the object contained in the proposed region. The
class that has the maximal probability is usually used as the prediction. Bounding
box regression adjusts the proposed bounding boxes for the image. The regression
layer refines the anchor coordinates by predicting some offset values. This kind of
classification and bounding box regression helps the faster R-CNN to classify and
give the accurate location where the object is.

3.2 You Only Look Once(YOLO)V11

The introduction of the YOLO (You Only Look Once) marked an important leap
forward in real-time object detection with high accuracy. The newest iteration is
YOLOv11, which further enhances the detection speed and precision as well more
complex object features. YOLOvV11 is a neural network for multi-class object detec-
tion in an image using deep learning techniques, and it processes the images directly
to identify objects without multiple passes. This kind of approach makes YOLO very
fast even when accuracy requirements are too high as well. The unique backbone,
innovative anchor-free mechanism and the support for multi-scale feature detection
are major reasons that make this model performance with high accuracy.[23]
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Figure 3.4: YOLOV11 architecture

YOLOvV11 has a pretty straight-forward detection pipeline consisting of several key
components. These are the steps including Feature extraction, Feature Aggregra-
tion, Output Processing etc. At each of those steps, YOLOv11 enhances its ability
to infer objects more efficiently and accurately. This guide will go through each
process.[20]

3.2.1 Backbone

YOLOvV11 consists of different stages, the first one is Backbone which has many
processes and which extracts fundamental features from input image. Here it has
few composite and technical blocks

Convolutional Neural Networks (CNN)

These are the convolutional layers at the start of the backbone. Each layer learns
simple visual patterns like edges, shapes, and textures, while subsequent layers learn
more complex features as the data moves deeper through the network. This step is
really important for understanding the image content.

Cross Stage Partial Networks (CSP)

CSP blocks are used in YOLOv11 to enhance the efficiency of feature extraction.
CSPs divide the input feature map into two branches and only one of them is pro-
cessed while the other one is passed through. Merging the two paths after processing
This method helps reduce repetitiveness, lowers the processing burden and provides
a wider range of extracted characteristics. The use of this technique also enables
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the model to capture more complex relationships but withoutgoing beyond the pro-
cessing capacity of the system.

Spatial Pyramid Pooling (SPP)

One difficulty in object detection is that we have to conduct image classification
using the input images of various sizes, and it is also necessary to perceive the in-
stances with different scales in a common integral image. To mitigate the above,
the SPP block pools features from multiple kernel sizes which enables different re-
ceptive fields to be captured. This ensures that YOLOv11 can effectively extract
multi-scale features from images enabling the network to perform good detection for
smaller parts and at larger scales.

CSP with Spatial Attention Mechanism (SAM)

SAM is combined with CSP blocks to take advantage of the capability of backbone.
SAM allows the model to pay more attention to only the relevant regions of an image
by bringing the most distinguishable areas in focus which is essentially where one
or more objects are likely to be present. Focusing on these regions helps the model
to increase accuracy in detection without overloading computation resources.

3.2.2 Feature Aggregation:Neck

After the backbone extracts features, in neck, it processes the features to be ready
for detection at final stage. One of the key responsibilities of the neck is to combine
features at different levels from the backbone, so that we do not lose important
details and context. There are a few operations that make up the neck:

Upsampling

The neck first upsamples the feature maps, in other words, it increases the resolution
of some of the feature maps. It enables features from lower-resolution layers to
participate in comparison and aggregation with those of higher-resolution layers. It
is important for preserving fine detail which can be lost thru pooling when trying
to detect small objects, so upsampling becomes more evident here.

Feature Concatenation

The neck combines features learned across multiple scales via a simple concatenation
following upsampling It is suggested that this concatenation operation works because
it enables the model to use information from different layers of the neural network
and allows for a more informative representation of feature maps. This feature fusion
across multiple scales allows the model to better recognize objects that appear in
various sizes and parts of the image.

3.2.3 Object Detection and Output Generation:Head

The head layers are the last part of the YOLOv11 architecture that we will be
covering and this is where we get detection results out from our model. Employing
the feature extracted multi-scale features via neck, head utilizes it right to detect
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objects and generate bounding box. It is formed with a few component that are
specialized in image detection, both accurately and efficiently

Detection Blocks

The V10Detect blocks, which act as a core of the head that processes feature maps to
create predictions. These blocks will also execute multiple convolutions to identify
objects, classify them and infer bounding box coordinates. Fine tuning of size and
shape discrimination on each detection block allowing multiple objects to be detected
in an image frame.

Output Processing

After generating predictions with the V10Detect blocks, the head will take the out-
puts and produce final detections . This means taking non-maximum suppression
to remove overlapping bounding boxes, getting only the best detections. This helps
to determine if something is identified as the target object in a simpler and uncom-
plicated manner, the result will be the bounding boxes of objects with their class
labels and confidence scores surrounding them.

3.3 Large Language Model Meta Al (LLaMa 3.2
3B Instruct

LLaMA is a family of language models developed by Meta, formerly known as Face-
book. The model was released in 2023, and it has shown strong performance on mul-
tiple benchmarks, the majority of them being the open-domain tasks. Despite being
smaller than most large language models like Generative Pre-trained Transformer
, it has achieved excellent results. Such a characteristic is beneficial if one does
not have enough computational capacity and wants to work with these model[25]
LLaMA is a large language model based on the Transformer architecture. Origi-
nally developed as a structure to support massive parallel processing of sequence
data, Transformers have become the underlying architecture of a growing number
of very big models primarily due to the self-attention mechanism it uses to effec-
tively capture long-distance dependencies in text. Another important characteristic
of LLaMA is that it is pre-trained in an unsupervised manner on the vast corpus
of internet text and then fine-tuned on specific tasks. The model is available in
different sizes to suit the researchers’ requirements and computation resources.
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Figure 3.5: LLaMa 3.2 3B Instruct Diagram

3.3.1 Pretraining

In the first phase, LLaMA is pre-trained on a huge dataset that usually consists of
text. More recently, multimodal pre-training has been introduced, including both
text and images. In this phase, the model is trained to predict the next word in a
sentence, learning about the fundamental properties of language, such as linguistic
structures, semantics, and context. The LLM we are using is LLaMA 3.2 3B Instruct
which was developed for broad language comprehension through extensive large scale
pre-training by meta.

3.3.2 Fine tuning

To complete the essential training phase, LLaMA must next be fine-tuned with more
data and used additional data during pre-training. Fine tuning involves retraining
a model with more specific data relevant to a particular task. Examples of task
training with fine-tuning are training for text classification, image captioning, or
translation. This is the last stage of the LLaMA training, as in this stage LLaMA
updates its parameters and trains the model more for the purpose of performing
better in a particular domain.
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3.3.3 Inference

This stage pertains to the process whereby the LLaMA model is trained or fine-tuned
and becomes ready to generate inferences. In other words, it is the part of model
use when it produces responses or predictions relative to the received prompts. For
instance, given an input photo or sentence, the model can be requested to complete
or generate a description, provide reasoning on a topic, or others. The previous
experience on pre-training and fine-tuning is used to make sure that inferences pro-
vided by the model are within an appropriate context and precise, i.e. achieving the
best performance.

3.4 Low-Rank Adaptation (LoRA)

LoRA is a technique designed for more efficient fine-tuning of large language models
such as LLaMA. The main principle underlying the operation of LoRA is a reduction
in the total number of parameters that require training by implementing low-rank
matrices through specific model layers. It is worth noting that the given approach
allows practitioners to both accelerate and reduce the overall computational and
memory demands of the model. Apart from that, the technique has shown to help
improve the overall performance of models while maintaining comparable accuracy
results[15].

Weights

W e R4

Pretrained

Figure 3.6: LoRA Diagram

LoRA applies low-rank decomposition matrices to the attention layers of a pre-
trained model, such as LLaMA. Instead of updating the full weights, this model
inserts additional matrices that are lower in rank. These matrices are responsible
for catching the task or context-specific adaptations of a model and can update
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during the fine-tuning process without the need for full re-training or a substantial
degree of memory usage.

3.5 Google Text to Speech (TTS))

When we had the navigation sentences generated by detected objects and spatial
locations, they were with Google Text to Speech (TTS) in text form converted
into audio representation. Google Text-to-Speech is by far the most reliable and
efficient way to synthesize text into human-like speech necessary for guiding visually
impaired individuals in real time. This is applicable in the case of providing textual
directions to Audible Book, with my use case for an automation around converting
text-based navigation instructions into audio. This was done using GTTS library.
Each sentence, for example ”You can cross at the zebra crossing on your right”
or "Proceed to stairs in center,” has been synthesized into mp3 voice files. Easily
integrated into navigation systems because they omit a spoken feedback The speech
is clear and sounds human-like when produced with Google TTS, allowing easy to
comprehend step-by-step directions for real time notification of the correct direction.
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Chapter 4

Dataset

This section outlines the datasets used in our thesis, how they were prepared, and
the methodologies employed for annotating and enhancing object detection for the
visually impaired. Our dataset is made up of two major sources: the MSCOCO
dataset and an additional set from Roboflow for new object classes.

4.1 Image Dataset Source and Composition

4.1.1 MSCOCO Dataset

The MSCOCO dataset is a widely recognized dataset for object detection. It com-
prises 80 object classes. Three of the classes were removed for this paper as they are
not relevant to the task of guiding a visually impaired person. Since the MSCOCO
dataset has a broad variety of images, contains rich annotation, and is strongly
supported by the developmental community, it makes more sense to use it in ap-
plication, as it is efficient for developing better models. The MSCOCO dataset
provided around 116081 training and 4900 validation images, each with annotated
bounding boxes and object locations for multiple objects. This large dataset facil-
itates model training for object detection and localization in different conditions,
resulting in better guidance systems that can be employed to help visually impaired
individuals with navigation.
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Table 4.1: Training and Validation size of object Class

Class Training | Validation
Person 262465 11004
Bicycle 7113 316
Car 43867 1932
Motorcycle 8725 371
Airplane 5135 143
Bus 6069 285
Train 4571 190
Truck 9973 415
Boat 10759 430
Fire Hydrant 1865 101
Bench 9838 413
Bird 10806 440
Cat 4768 202
Dog 5508 218
Horse 6587 273
Sheep 9509 361
Cow 8147 380
Elephant 5513 255
Bear 1294 71
Fork 5479 215
Knife 7770 326
Spoon 6165 253
Bowl 14358 626
Banana 9458 379
Apple 5851 239
Sandwich 4373 177
Orange 6399 287
Broccoli 7308 316
Carrot 7852 371
Hot Dog 2918 127
Pizza 5821 285
Donut 7179 338
Cake 6353 316
Chair 38491 1791
Couch 5779 261
Potted Plant 8652 343
Bed 4192 163
Dining Table 15714 697
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Class Training | Validation
Zebra 5303 268
Giraffe 5131 232
Backpack 8720 371
Umbrella 11431 413
Handbag 12354 540
Tie 6496 254
Suitcase 6192 303
Frisbee 2682 115
Skis 6646 241
Snowboard 2685 69
Sports Ball 6347 263
Kite 9076 336
Baseball Bat 3276 146
Baseball Glove 3747 148
Skateboard 5543 179
Surfboard 6126 269
Tennis Racket 4812 225
Bottle 24342 1025
Wine Glass 7913 343
Cup 20650 899
TV 5805 288
Laptop 4970 231
Mouse 2262 106
Remote 5703 283
Keyboard 2855 153
Cell Phone 6434 262
Microwave 1673 55
Oven 3334 143
Toaster 225 9
Sink 5610 225
Refrigerator 2637 126
Book 24715 1161
Clock 6334 267
Vase 6613 277
Scissors 1481 36
Teddy Bear 4793 191
Hair Drier 198 11
Toothbrush 1954 57
Toilet 4157 179




Class Distribution in Training and Validation Datasets
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Figure 4.1: Distribution of training and Validation images
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4.1.2 Primary Dataset

To be more precise and enhance the model’s capability we introduced 10 new classes.
They are, Pole, Zebra Crossing, Pedestrian Green Light, Pedestrian Red Light, Red
Traffic Lights, Yellow Traffic Lights, Manhole, Stairs and Bus stop. With Roboflow,
we compiled nearly 11490 training images and 2878 validation images that include
a mix of different objects. To generate annotations for these classes, Roboflow was
employed which helped in accurate annotation of the object locations within an
image. This integrated strategy is not only beneficial for data enrichment but also
enhances the performance of training models in challenging navigation situations,
facilitating better assistance to visually impaired individuals.

Table 4.2: Training and Validation size of object

Class
Class Training | Validation
Pole 247 59
Zebra Crossing 3042 744
Pedestrian Green Light 1020 254
Pedestrian Red Light 1267 314
Red Traffic Light 1739 449
Green Traffic Light 1740 443
Yellow Traffic Light 1014 255
Manhole 1512 387
Stairs 1101 277
Bus Stop 912 235
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Figure 4.4: Localized Images

4.1.3 Data Annotation Process

Establishing new projects in the various settings for an annotation job, where labels
are established, is the first step in using Roboflow for data annotation. Next, we
bulk upload pictures to the interface from the Roboflow platform. Users can man-
ually annotate the photos with tools such as bounding boxes for rectangular items
and polygons for irregular forms, once the 10 new object classes (e.g., Pole, Zebra
Crossing, Traffic Lights) are specified. This ensures that each element has the ap-
propriate class given to it. The workflow is then subjected to quality control so that
annotations may be assessed and corrected for correctness. Finally, ML methods
may be utilized directly with the annotated data after it has been exported into
COCO or CSV format. As a result of this streamlined procedure, the annotation
accuracy is very high, allowing the system to recognize key objects in real-time for
providing directions to blind people.

4.2 Fine-Tuning Dataset Generation for Naviga-
tion Sentence

We created two separate datasets and compiled them together for fine-tuning LLaMA
3.2-3B Instruct to generate navigational sentences. These datasets are crucial to help
the model learn how to tackle navigating through real-world spaces. The datasets
are:

1.Navigating Sentence Generation Dataset with 948 entries.

2. Description Generation Dataset with 2,269 entries.

Both are well-organized datasets with three important parameters (instruction, in-
put, output). These 3 things help the model to capture what task is supposed to
be done. To take input from a given environment and generate possible answers as
seen on how we do a situation-based command execution.
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4.2.1 Navigating Sentence Generation Dataset

The Navigating Sentence Generation Dataset is targeted for training the model to
provide real-time navigational instruction. The instructions rely on object detection
in the world, as well as the poses of objects relative to each other (e.g., people; zebra
crossings and pedestrian signals). These data sets are particularly useful in helping
visually impaired individuals who need to understand the whereabouts and routes
for movement or safety. Each entry in this dataset follows a consistent structure:

Instruction: Directs the model to generate a navigational sentence.

Input: A description of the scene, including objects and their spatial positions (e.g.,
left, right, center).

Output: The corresponding navigation command, which directs the user on what
actions to take based on the input.

Examples of Entries:

Instruction: Generate a navigating sentence.

Input: There are 2 persons on the left, 1 person in the center, 1 zebra crossing on
the right, 1 ped_green_light in the center.

Output: You can cross at the zebra crossing on your right.

Instruction: Generate a navigating sentence.

Input: There are 3 persons on the right, 2 persons in the center, 1 zebra crossing
on the left, 1 ped_red_light in the center.

Output: Do not cross the zebra crossing on the left.

Instruction: Generate a navigating sentence.
Input: There is 1 person on the left, 1 stairs in the center.
Output: Proceed to the stairs in the center.

Instruction: Generate a navigating sentence.
Input: There is 1 manhole on the left, 1 bus stop on the right.
Output: Manhole on the left, move right, proceed to the bus stop.

Instruction: Generate a navigating sentence.
Input: There is 1 manhole in the center, 1 footpath on the right.
Output: Manhole in the center, move right to the footpath, proceed with caution.
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4.2.2 Description Generation Dataset

The Description Generation Dataset focuses on training the model to output elab-
orate descriptions regarding either objects or interactions in the environment. The
navigating sentence dataset just gives guidance, whereas this one describes objects
and what users can do with them such as positioning a baseball bat for playing or
placing a bottle in order to drink. Dataset Structure: Each entry in this dataset
follows the same three-parameter structure as the navigation dataset:

Instruction: Directs the model to generate a description.

Input: A detailed description of the environment, including objects and their spatial
positions.

Output: The generated description of the object interactions, often focusing on
how the user can interact with the object.

Examples of Entries:

instruction: ”Generate a description”

input: "There are 3 persons on the right, 1 person in the center, 1 baseball bat on
the left.”

output: 7 A baseball bat is on your left, you can play with it.”

instruction: ”Generate a description”

input: "There are 2 persons on the right, 1 person in the center, 1 bottle on the
left.”

output: ”A bottle is on your left, you can drink from it.”

instruction: ”Generate a description”

input: "There are 2 persons on the right, 1 person in the center, 1 wine glass on
the left, 1 bottle on the right.”

output: "The person to your left is consuming wine from a bottle using a glass.

instruction: ”Generate a description”

input: "There is 1 bowl on the right, 1 apple on the right, 1 person in the center,
2 bowls on the left.”

output: "You can eat the apple from the bowl on your right.”

4.2.3 Dataset Generation Process

We carefully generated these datasets so that the model will be able to produce
accurate results for both navigational commands and object descriptions. Here’s an
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outline of how it is:

Scenario Design: Real-world scenarios were created to simulate the types of en-
vironments visually impaired individuals might encounter. Scenarios were based on
common objects (people, zebra crossings and pedestrian lights as well specific tasks
(crossing a road, avoiding hazards).

Manual Entry Construction: We built each turn by hand to cover a wide range
of diverse high-level navigation and object description entry behaviors. The input
was specifically crafted to include object positions and types, while the output was
adapted to deliver contextual navigation instructions.

Diverse Examples: The model can be expected to work in many potential sce-
narios, these datasets are training with various examples - from basic commands
such as ”crossing road” up until more detailed sentences listing several objects and
interactions (e.g. avoiding obstacles; interacting with items).

Fine-Tuning Focus: Through this structuring of the data, we fine-tuned both
our LLM models and chose the best model with a specific emphasis to learn from
navigation-specific issues and provide pinpointed clear responses. By optimizing
between guiding sentence generation and object description, we can provide the
balance that enables models to give useful contextually rich guidance.
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Chapter 5

Methodology

The goal of this research was to create a method of navigational guidance for the
blind people by objectifying classes and localization using an ensemble model of
YOLOv11, Faster R-CNN and then from class and location LLaMa will generate a
navigational sentence and this sentence will be converted into audio through GTTS.

5.1 Proposed Model

Our proposed model aims to provide navigational guidance for the blind persons by
focusing on key outdoor objects. Initially, we trained YOLOv11 on the MSCOCO
dataset, but it struggled with critical classes like zebra crossings and stairs, which
were absent. To address this, we created a primary dataset of a amount of images
with 10 key classes and used a hybrid approach combining YOLOv11 and Faster R-
CNN. Then we trained YOLOV11 with the primary dataset. After the processing
steps of YOLOV11 like Convulational Neural Network layer, Cross Stage Partial
network, Spatial Pyramyd Pooling, Feature Aggresstion, upsamling and concatenate
etc. give the output of classified objects name with a bounding box and a confident
score. For the Faster R-CNN model we also trained it with primary dataset and
changed the layers to get more fine result. Here after feature extraction we used
PCA(Principle Component Analysis) to resize the feature and generated smaller
feature which is efficient for the model. As the Both models were trained separately,
and their results were ensembled with selecting predictions by higher confidence score
for each object. This improved accuracy while maintaining real-time performance.
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Text to Speech conversion using Google TTS

We also trained LLaMA 3.2 Instruct 3B to generate descriptive sentences from de-
tected objects, fine-tuning it with Low-Rank Adaptation (LoRA) for efficient learn-
ing. Finally, these descriptions were converted to audio using Google Text-to-Speech
(gTTS) and it is providing real-time, voice-guided navigation for users.
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5.1.1 YOLOvV11 for Object Detection

Firstly, we utilized YOLOv11 which is a real-time object detection system. It pro-
vides bounding boxes and class probabilities for objects that appear in images. It
was first trained on COCO dataset, which includes a wide range of classes used but
it was not inclusive of specific classes that would be used for outdoor navigation.
Therefore, a primary dataset was developed, which includes 10 classes that are crit-
ical in outdoor navigation. The dataset includes 14,975 images. The classes to be
included in the dataset were determined by the fact that they are critical in enabling
the blind to navigate. They include zebra crossing, pole, stairs, bus stop.

We again trained YOLOv11 using the primary dataset to enable it to recognize
navigation-related objects more effectively. We then used two models during infer-
ence:

e Integrated Model: It works by predicting bounding boxes and classes for
navigation-related objects. It was trained on the primary dataset.

e COCO Model: It is used to detect general objects in the scene. It was trained
on COCO classes.

During inference, the two YOLO models work independently to provide bounding
boxes, labels and confidence scores.

5.1.2 Faster R-CNN for Object Detection

At first We added Faster R-CNN as an alternative which is another powerful ob-
ject detection model. After implementing the model we realized it is give more
accurate result than YOLOV11 though it is a bit slower than YOLOV11. The
YOLO model detects objects on a single-pass basis, but Faster R-CNN is designed
to detect objects based on a two-pass region of interest proposal model and then
to classify these regions. This method is especially useful for detecting smaller ob-
jects or objects that are less common. Faster R-CNN was trained exclusively on the
primary dataset composed of 10 navigation-related classes. In addition, PCA was
implemented within the CNN layers for optimization, reducing the dimension of the
extracted features while retaining essential data and reducing training complexity
and time. The architecture of Faster R-CNN allowed for targeting the fine detail of
our classes more efficiently, increasing the correct detection of the objects.

5.1.3 Ensembling YOLOv11 and Faster R-CNN

We used an ensembling method to improve the accuracy of detections on both
YOLOv11 and Faster R-CNN over our data. After having predictions from the two
models, we consolidated the best from both to obtain more accurate detections. The
process is as follows:

e Separate Inference: Both models run separately on the input images. Both
outputs detections, which are lists of boxes, confidence scores, and labels for
the objects present in the input image.

e Confidence-based Selection: For each predicted box from both models, the
confidence scores are compared. The box that carries the highest confidence
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label is selected. This method takes advantage of the virtue of both mod-
els, which are in the speed and precision of YOLOv11 and Faster R-CNN,
respectively.

Do not keep redundant detections: To ensure our output detections are clean
and precise, the best way to obtain this is to remove duplicates. For this reason,
Intersection-over-Union (IoU) calculation is done. If two detections have an
IoU score that shows high overlap between the pair of detections, then one
is removed. The detection with the lower confidence score is removed. After
such calculations, our data has only the non-overlapping detections between
both models with the higher confidence detection. We kept the threshold IoU

value at 0.5 to detect overlap.

After testing we found out our approach to ensembling the output from the two
models in this scheme improved the accuracy as it better detected the navigation’s

in the data.

IoU Calculation:

Area of Intersection
IoU =

Area of Union

Intersection is the area where the two bounding boxes overlap.
Union is the combined area covered by both bounding boxes.

Area of Intersection:
inter_area = max(0, inter x2 — inter x1) x max(0, inter_y2 — inter_y1)
Area of Box 1:
box1_area = (22 — x1) x (y2 — y1)

Area of Box 2:
box2_area = (22b — x1b) x (y2b — y1b)

Final IoU Formula:

inter_area

IoU =

box1_area + box2_area — inter_area

5.1.4 Post-Processing and Combining Detections

(vi)

After getting the localized objects along with confidence scores for each objects from
YOLOV11 trained with MSCOCO Dataset and from the ensembling of YOLOV11
and Faster R-CNN with our primary dataset we convert it into a consistent format
and normalize based on the image width. . Using the normalized center, objects are
classified into regions: the left region if the normalized x-center is less than or equal
to 0.33, the center region if it falls between 0.33 and 0.66, and the right region if it

exceeds 0.66.
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Left Region:

Region = Left, if Zcenter < 0.33 (vii)
Center Region:
Region = Center, if 0.33 < Zeenter < 0.66 (viii)
Right Region:
Region = Right, if Zcenter > 0.66 (ix)

As each object is classified into these regions, our system counts how many objects of
each type are found in each regions of the image and creating a summary that works
as a input for the fine tuned Llama that will generate the navigating or descriptive
sentence.
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Chapter 6

Experimental Evaluation

In this section, we will provide the specifications of the desktop computer that ran
all of our models. Next, we will demonstrate the superiority of our model compared
to competing models through both qualitative and quantitative measurements.

6.1 Experimental Setup
Specifications for YOLOv11 and Faster R-CNN Training
e Processor: AMD Ryzen 9 5950X 16-Core
e GPU: NVIDIA GeForce RTX 3080 Ti with 12 GB GDDR6X Memory
e RAM: 64 GB
Specifications for Fine-tuning Large Language Models(LLMs)
e GPU: NVIDIA A100 with 40 GB HBM2 Memory
e RAM: 84 GB System Memory

The A100 GPU is part of NVIDIA’s Ampere architecture and is specifically designed
for AT and machine learning workloads. It has 40 GB of high-bandwidth memory
(HBM2) that is ideal for handling large models and datasets efficiently. Moreover,
it is coupled with 84 GB of system RAM which configuration provides the neces-
sary computational power and memory for fine-tuning large-scale language models,
allowing for the effective handling of large parameter sets and demanding training
processes.
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6.2 Experimental Configuration

6.2.1 YOLOV11
MSCOCO Dataset
e Epochs: 35

e Batch Size: 16

e Learning Rate: 0.01 (cosine decay).

Image Size: 640

Scheduler: Cosine decay learning rate scheduler

Optimizer: SGD (Stochastic Gradient Descent)

Primary Dataset

e Epochs: 70
e Batch Size: 16
e Learning Rate: 0.01 (cosine decay).

e Image Size: 640

Scheduler: Cosine decay learning rate scheduler

e Optimizer: SGD (Stochastic Gradient Descent)

6.2.2 Faster R-CNN
e Epochs: 70

e Batch Size: 16
e Learning Rate: 0.001

e Optimizer: Adam optimizer

6.2.3 LLM Configuration and Training Setup

The model’s maximum sequence length was set to 512 tokens, ensuring efficient
handling of input sequences without exceeding memory limits. Next, the pretrained
model is loaded in 4-bit precision, which significantly reduces memory usage while
enhancing computational efficiency and allowing us for faster processing with mini-
mal resource consumption.
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LoRA setup:
e r(rank) : 16
e « (alpha): 16

Targeted modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, and
down_proj.

e bias = none

Dropout: 0
e Random seed: 3407

Trainer setup:

e Batch size: Set to 2 per device.
e Gradient accumulation: 4 steps
e Warmup steps: 5 steps

e Training steps: 1,500 steps

e Learning rate: 2e-4

e Optimizer: adamw_8bit

e Weight decay: 0.01

e Logging: Steps are logged after every iteration to monitor training progress.

6.3 Experimental Findings

6.3.1 Evaluation of Faster R-CNN and YOLOV11

1. Precision:

True Positives (TP)
True Positives (TP) + False Positives (FP)

Precision =

2. Recall:

True Positives (TP)

Recall =
eea True Positives (TP) + False Negatives (FN)
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3. F1 Score: Precis foeal
recision X Reca

Fl1=2

X Precision + Recall (i)

Table 6.1: Model Performance Metrics of YOLOV11 and Faster-RCNN

Model Precision | Recall | F1 | mAP50 | mAP50-95
F-RCNN(Primary Dataset) 0.9849 0.9862 | 0.9855 | None None
YoloV11(Primary Dataset) 0.9620 0.9116 | 0.9361 | 0.9422 0.7706
YoloV11(Coco Dataset) 0.6373 0.4649 | 0.5376 | 0.5115 0.3610

Loss vs. Epoch Curve
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Figure 6.1: Loss vs Epoch Curve of Faster R-CNN
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Figure 6.3: Training Results of YOLOV11 on Primary Dataset

6.3.2 Evaluation of Fine Tuned Llama 3.2-3B-Instruct

For Comparison of Llama 3.2-3B-Instruct before and after fine tuning, we have
used BLEU and ROUGE metrics because they are very popular in natural language
processing and are uesd to evaluate how well generated text is. BLEU metric is
designed for recall, measuring the quality of the machine translation by comparing
overlapping n-grams or word sequences generated from a corpus to manually cre-
ated reference translations. The higher the BLEU score, the better overlap but it
can be easy to get high scores for synonymous or paraphrase copying. After that,
ROUGE score is also used on the basis of recall which means how much can our gen-
erated text hold that were present in provided reference during evaluating operation.
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Comparison of before fine-tuneing and after fine-tuning:

Instruction: Generate a description

Input: There is 1 knife in the right, 1 apple on the left, 1 person on the right.

Output: You can cut an apple with a knife on your right.

Output before fine-tuneing: There is 1 knife in the right, 1 apple on the left, 1
person on the right. The person is pointing at the knife. The scene is set in a dark

forest.

Here, we can see that the output was poorly organized and unable to provide a good

description without fine-tuning.

Output after fine-tuneing: You can cut an apple with a knife on your right.
But now after fine-tuning we can see that our output is providing the correct de-

scriptive sentence .

Table 6.2: Llama3.2-3B-Instruct BLEU Score

Model BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4
Llama3.2-3B-Instruct(Before Finetune) | 0.1858 0.1053 0.066 0.0442
Llama3.2-3B-Instruct (After Finetune) 0.2982 0.196 0.1473 0.1175

Table 6.3: Llama3.2-3B-Instruct ROUGE Score

Model ROUGE-1 | ROUGE-2 | ROUGE-L

Llama3.2-3B-Instruct (Before Finetune

)

0.2572144958

0.08267532265

0.2102495145

Llama3.2-3B-Instruct (After Finetune)

0.3668390408

0.1617590308

0.3204431557
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6.4 Implications and Results

Figure 6.5: Output of YOLO and Faster R-CNN Model for Zebracrossing

Table 6.4: Generated Sentence for Zebracrossing from Llama

Detection from Yolo and | 1 car on the left, 1 zebracrossing

Faster RCNN on the center, 3 person on the cen-
ter.

Response from LLAMA You can cross safely at the zebra
crossing on the center.

44



Figure 6.6: Output of YOLO and Faster R-CNN Model for Outdoor Stairs

Table 6.5: Generated Sentence for Outdoor Stairs from Llama

Detection from Yolo and | 1 stairs on the center.
Faster RCNIN
Response from LLAMA Please proceed to the stairs on the
center as you walk.
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Figure 6.7: Output of YOLO and Faster R-CNN Model for Indoor Stairs

Table 6.6: Generated Sentence for Indoor Stairs from Llama

Detection from Yolo and | 1 stairs on the center.
Faster RCNN
Response from LLAMA Please proceed to the stairs on the
center as you walk.
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Figure 6.8: Output of YOLO and Faster R-CNN Model for Red Traffic Light

Table 6.7: Generated Sentence for Red Traffic Light from Llama

Detection from Yolo and | 1 person on the left, 1 red traffic

Faster RCNN on the right.
Response from LLAMA A red traffic light is on your right,
you can cross safely.
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Figure 6.9: Output of YOLO and Faster R-CNN Model for Pole

Table 6.8: Generated Sentence for Pole from Llama

Detection from Yolo and
Faster RCNN

1 pole on the left.

Response from LLAMA

Pole on the left, move right.
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Figure 6.10: Output of YOLO and Faster R-CNN Model for Pedestrian Red

Table 6.9: Generated Sentence for Pedestrian Red from Llama

Detection from Yolo and | 1 ped red light on the center.
Faster RCNN
Response from LLAMA Do not cross as the pedestrian red
light on the center is on.
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Figure 6.11: Output of YOLO and Faster R-CNN Model for Manhole without Person

Table 6.10: Generated Sentence for Manhole without Person from Llama

Detection from Yolo and | 1 manholeon the left, 1 car on the
Faster RCNIN left, 1 manhole on the center.
Response from LLAMA A manbhole is on your left and an-
other manhole is in front of you
so, stay right.

20



Figure 6.12: Output of YOLO and Faster R-CNN Model for Manhole with person

Table 6.11: Generated Sentence for Manhole with Person from Llama

Detection from Yolo and | 1 manhole on the center, 2 person

Faster RCNN on the center.

Response from LLAMA Manhole on the center, move left
or right.

6.5 Discussion

In our paper a novel method of navigation for the visually impaired individual is
presented using YOLOv11, Faster R-CNN along with Llama 3.2-3b Instruct. Al-
though vast improvements have been made in assistive technologies, previous studies
show that contexts are missing location and analysis of contextual information while
the individual is using the device. Our focus was to build a system which not only
detects obstacles but also provides location and detailed spatial arrangement and
origin of sounds, providing them precise navigation capabilities.

Rapid object detection for timely task-related decision making in complex environ-
ments is done by integrating YOLOv11 .This model showed high accuracy in nav-
igation and feedback on the obstacles obstructing the path of a visually impaired
individual. Faster R-CNN, on the other hand, improves classification accuracy by
making more accurate decisions of whether a detected box contains the desired ob-
jects or is in the background. Navigation instructions are made context by the Llama
3.2-3B Instruct model creating clarity of surroundings and path directions help to
empower the knowledge necessary for navigating safely. Such capability is impor-
tant for better user confidence and smooth navigation. In addition, users can easily
get exact location data by our system and make the correct decision for navigating.
Results obtained through our work not only demonstrate the viability of integrating
technologies to help visually impaired people, but also raise attention to general
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challenges in Al-enabled solutions for Navigation. We intend to develop an even
more precise manner for guiding navigation results in a robust and dependable way,
which will bring about exceptional autonomy and mobility for blind users.

&

suppose u have to explain the navigating path to a blind person. so
generate a navigating sentence that where he should go (must be in
one ling)

To reach the manhole, walk straight on a smooth paved road with some cracked areas, follow the
road to your right until you feel a slight upward slope, then veer left at the curb edge until you hear

the hollow sound of the open manhole ahead, located near a highway exit.

Figure 6.13: Comparison with GPT
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Visual Question Answering demo
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Figure 6.14: Comparison with VQA

When comparing our system with other models such as GPT-40 and VQA (Visual
Question Answering), the differences are clear. These models were tested by asking
them to generate navigation instructions and object detection tasks. However, both
models failed to deliver accurate results. For instance, GPT-40 and VQA often gave
incorrect and unorganized navigation guidance, which can be critical when help-
ing visually impaired individuals. In contrast, our system provides clear, accurate,
and context-relevant instructions, making it a more reliable option for navigation
assistance.
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Chapter 7

Limitations and Future Work

7.1 Conclusion

In our study, we made a navigation system for the visually impaired people by us-
ing object detection models YOLOv11, Faster R-CNN with Llama 3.2-3B Instruct
as well. This combination greatly provides the obstacle detection and awareness
that people need to better move through their environment without any human
assistance .The fine-tuned Llama 3.2-3B Instruct model achieved competitive per-
formance metrics, a BLEU-4 score of .1175 and ROUGE-L 0f.3204. Demonstrating
its capacity to generate accurate, contextually relevant navigation instructions with
far less redundancy than other models. Integrating YOLOv11 helped in fast de-
tection of obstacles, which is an important factor as timely decisions need to be
taken in dynamic environments. Faster R-CNN improves this accuracy of class
based recognition and hence delivers dependable information to the users about its
surroundings. The model identifies obstacles, describes the scene and tells people
where to go so they can make informed navigational decisions. This capability is
essential for enhancing user confidence and safety while navigating complex and
unfamiliar environments. Our results show the promise of such a combination to
provide effective and practical solutions for visually impaired individuals. This work
is particularly well placed to highlight how AI technologies are revolutionizing im-
proving navigation accuracy, cost constraint and user confidence for a better living
experience in persons who are blind or visually impaired.

7.2 Limitations

In our paper, we proposed an advanced assistance system based on YoloV11, LlaMa
3.2-3B Instruct and Faster R-CNN to help visually impaired people by achieving
improved mobility. While these technologies hold significant promise, several limi-
tations need to be addressed to fully realize their potential in real-world applications.

1. Real-time Object Detection: Real-Time Object Detection is a significant
limitation to our current study, because it is difficult to apply LLaMA 3.2-3B
and Faster R-CNN for real-time material detecting problems due to their model
architecture limitations. However, as these models are relatively complex and
computationally expensive, they simply cannot deliver the real-time instant
reactions needed for most of today’s applications (which require milliseconds).
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LLaMA 3.2-3B: A large-scale language model based on transformers having
billions of parameters has a very high latency when it comes to processing
inputs and producing outputs from them. It is too expensive as a real-time
data recovery component on devices without specialist hardware and com-
putational power like powerful GPUs. Faster R-CNN also segments region
proposals and classifies them through a two-step method that is very accurate
at finding objects. This makes it less suitable for real-time detection, partic-
ularly in dynamic scenarios requiring immediate action. The computational
burden of these models would be a major obstacle to meet the real-time per-
formance requirements using this architecture, which requires adjusting itself
for operations in changing environments.

. Measurement of Distance: Our study lacks to give accurate measuring
distances. The Faster R-CNN could only detect and classify objects accu-
rately without accurate depth to objects compared to ground truth. Without
this depth information, the system effectiveness can be substantially degraded
as to detect a barrier or anything else. At least two user requirements are
necessary. They are its existence and its distance. Individuals who are blind
need a way to detect how far away from an obstacle they. Mitigating risk by
measuring distance to Obstacle In a world with variable obstacle distances,
real-time navigation requires accurate depth perception (which is confined by
the monocular camera array of the current system). This will be very difficult
as we cannot get an angle of the trajectory and future versions should consider
including LiDAR, stereo vision or any other depth type sensing technologies to
sort this out. This will improve context awareness and provide proper details
about their surroundings.

. High Hardware Requirements for Real-Time Processing: In devices
where computational resources are the limiting performance factor, Faster R-
CNN and LLaMA 3.2-3B Instruct have high hardware requirements that can
limit their ability to process in real time. This makes implementing LLaMA
3.2-3B Instruct with its large-scale transformer architecture that depends on
either specialized hardware or high-end GPUs for effective operation challenges
to test in the region where potential users have portable, low-resource devices
more commonly used by visually impaired people. While we can always im-
prove the model using distillation or pruning, it gets into replacing accuracy
with a large complex network. Similar to this, the two-stage of Faster R-
CNN also requires heavy computing to give accurate results which makes it
less suitable for low-power or mobile devices. Since It needs a lot of hardware
optimizations it becomes difficult for all users to get their hands on the system.

. Limited Training on Diverse Environmental Conditions: The models
have been trained on a few datasets but they were not exposed to diverse
environmental conditions. These real-world ambient variables affect thus per-
formance of the respective object identification and navigation systems. The
current system may fail under very harsh conditions such as heavy rain, fog or
dim lightness that will cause the tests accuracy and image quality to decrease.
The solution to this is to expand the system’s repertoire, so that a broader
range of scenarios can be handled and effective performance guaranteed in
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different circumstances.

7.3 Future Work

Our study shows what we can achieve by leveraging YOLOv11, Faster R-CNN and
LLaMA 3.2-3B Instruct to help visually impaired people to navigate through the
physical world. However, the research identified many challenges in it that future
work will need to address and improve.

1.

Real-Time Object Detection Improvements: YOLOv11l and Faster R-
CNN are well-known as popular object detection models, however these fa-
vorite mode styles for improved real-time consistent recognition have also been
plagued with many issues due to additional complexities. Our future work for
The YOLOv11 and Faster R-CNN models will be further optimized for real-
time performance. Hardware acceleration, quantization and model pruning
etc. will be evaluated to reduce the computational cost/delay so that we can
process as quickly as possible. The aim is to allow visually impaired individuals
to better and more safely navigate in dynamic environments with fast-changing
obstacles that might be unknowable at the time of model training.

. Managing Distance Measurement: Our current study does not convey

information about the distance from detected obstacles of a person, if an indi-
vidual resides in close proximity to any obstacle or is distanced from it cannot
communicate by technology. In a forthcoming work, we will employ such dis-
tance measurements via depth sensors to improve perception. This will allow
visually impaired individuals to improve their decision making when consid-
ering navigation, as the distances of obstacles can be pinpointed instead of
simply detected. Precise distance measurement is necessary to improve the
safety features and real-time responsiveness of a system.

. High Hardware Requirements for Real-Time Processing: The models

YOLOv11, Faster R-CNN and LLaMA 3.2-3B Instruct are complex networks.
It requires large computation operations. GTX GPUs or greater versions are
needed to achieve an optimal performance for real-time processing of the data
published from cameras. It slows down the navigation of blind people on
small devices. Our future work will investigate lighter versions of these models
and hardware optimization to reduce computational needs. We can place our
system on final devices, allow these final nodes to use smaller and cheaper
hardware, which allows us then that we go closer to the user in a larger part
of industries because even here it is now possible.

. Limited Training on Diverse Environmental Conditions: Our current

model is limited, mostly based upon kind of weather condition, limited dataset
and different area types. Our future works will concentrate on increasing the
dataset to include a broader range of real-world scenarios, including low-light,
bad weather, and rugged environments. This will help the system be more
effective across a wide array of scenarios.

. Development of a Noble Navigation Device: We will also develop a

distinct navigation device for the visually impaired from scratch as our future
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work. The real technique would be to view it all as a single device, and this
is where the distance measuring combined with object detection in real-time
actually becomes important In order to solve this, we will try to create a new
navigation device for the visually impaired individuals so that could help them
in their daily life by making them able to navigate more easily simply which
helps them move independently and safely.
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