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Abstract
Freezing of gait (FoG) is a special symptom found in patients with Parkinson’s
disease (PD). Patients who have FoG abruptly lose the capacity to walk as they
normally would. Accelerometers worn by patients can record movement data during
these episodes, and machine learning algorithms may be able to categorize this
information. Thus, the combination may be able to identify FoG in real time.
In order to identify FoG events in accelerometer data, we introduce transformer
encoder-Bi-LSTM fusion and transformer encoder-GRU fusion models in this study.
The model’s capability to differentiate between FoG episodes and normal movement
was used to evaluate its performance, and on the Kaggle freezing of gait dataset, the
proposed transformer encoder-Bi-LSTM fusion model produced better results with
52.06% compared to combination of transformer encoder and GRU with 49.38% in
respect of mean average precision. The findings highlight how Deep Learning-based
approaches may progress the field of FoG identification and help PD patients receive
better treatments and management plans.

Keywords: Deep Learning, Time Series Analysis, Parkinson’s Disease
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Chapter 1

Introduction

The second most widespread neurodegenerative illness and the one with the great-
est rate of increase in frequency, associated disability, and mortality is Parkinson’s
disease (PD) [37]. 1-2% of people over 65 have PD, and as the people ages, its
prevalence is rising quickly [4]. It affects the nervous system that causes physical
discomfort, disruptions in sleep patterns, mental health issues, and various other
health complications. A survey of 6620 PD patients revealed that 28% of them
reported FoG every day, and 47% reported regular FoG [14]. FoG is an abnormal
gait pattern characterized by unforeseen, episodic, transient episodes of gait inhibi-
tion marked by the incapability to propel the feet ahead in spite of the individual’s
desire to ambulate. It usually occurs suddenly and is brief, with the motor system
being halted for a few seconds to a few minutes [24]. When experiencing FOG, PD
patients frequently report feeling despite that their legs are glued to the floor for
no apparent reason [7]. FOG is less common in patients whose primary symptom is
tremor and more regular in men than in women [5]. Evaluating FoG in the hospital
is tough, as the occurrence and patterns of freezing episodes differ from where suf-
ferers perform their daily activities for living. In most situations, patients exhibit
a minimal amount of freezing in the hospital, whereas their caretakers claim they
freeze extensively at Residence [3]. The reason for this is that the activations for FoG
episodes (for example, certain locations at home such as walk-in kitchens, crossing
the road) are difficult to locate in the clinic’s small area. Schaafsma et al. have
identified five varieties of freezing: open space hesitation, destination hesitation,
start hesitation, turn hesitation, and hesitation in confined spaces [7]. For patients,
FOG has significant social and medical repercussions. It seriously lowers quality of
life [1], disrupts everyday activities, and is a frequent cause of falls [8]. Therefore,
developing methods that can aid in lowering the prevalence of FoG is crucial.

Treatment with pharmaceuticals does not work effectively for FoG. Levodopa (LD)
is the most often prescribed medication for PD patients’ motor symptoms. The
duration of LD’s effects on parkinsonism symptoms ranges from two to six hours,
and they gradually fade off. Some individuals experience a slow decline in motor
function as a result of this wearing off effect, whereas others experience a sudden
and rather severe decline. It is possible to identify distinct ON and OFF phases
for these people, where ON periods denote when the drug is working and OFF pe-
riods denote when it isn’t. The right duration of each medication dose decreases
with the progression of the disease, necessitating more frequent LD administration
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[5]. Gait abnormalities in PD patients are commonly unresponsive to medication,
despite the fact that FOG episodes typically occur more frequently during the OFF
state [8]. Therefore, in order to alleviate symptoms and enhance mobility, effective
non-pharmacologic treatments must be created as an adjuvant therapy. Clinical re-
search, however, indicates that rhythmic cueing that is in sync with the gait—such
as metronome ticking sounds or periodic lines projected on the floor—can assist
patients in breaking out of the freezing condition and starting to walk again ([10],
[15], [23]). Body-worn accelerometers ([19], [29]) can be used by wearable devices to
detect FoG and, when detected, provide a rhythmic cue. In their thorough analysis
of how external rhythmical cueing effects in PD patients’ gait, Lim et al. [11] dis-
covered compelling evidence that using auditory signals can increase walking speed.
The usefulness of visual and somatosensory cueing was not sufficiently supported
by the findings. Likewise, Nieuwboer et al. demonstrated the benefits of auditory
cueing over visual and tactile cueing [20]. It has been demonstrated that RAS is
especially successful in helping PD patients walk more easily [13]. However, com-
pared to PD patients without FOG, there was no discernible benefit to using this
technique to enhance gait in PD patients who also had FOG [20]. It’s interesting to
note that a research in which PD and FOG patients cued at home using metronome
recordings revealed no reduction in freezing symptoms [9].

Mental health issues may have a significant influence in the pathophysiology of FoG,
which is a known fact that has not yet been fully utilized [12]. Stress and anxiety
are associated with and probably contribute to the incidence of FoG [17]. When a
person feels a strong need to act quickly, such as when they have little time to get
on an elevator before the doors shut, the likelihood of freezing may become more
noticeable. Therefore, by utilizing wearable sensory device technology, it is impor-
tant to track patient gait and obtain an accurate estimate of the occurrence and
intensity of freezing episodes experienced by a patient in their usual environment.
Having a precise figure for the number and intensity of these episodes could help
clinicians accurately select the quantity of levodopa or adjust the settings of brain
stimulation therapy. Machine perception of freezing events could also be utilized to
enable and alter real-time therapeutic techniques.

1.1 Research Objective
Utilizing ML techniques, the aim of this research is to identify the beginning and
end of each freezing episode, besides the incidence of the following three categories
of freezing gait events-walking, turning, and start hesitation. The aims of this study
include:
1. Detect the start and stop of each freezing episode and the occurrence in series of
three types of FoG events.
2. Improve the ability of medical professionals to optimally evaluate, monitor, and
ultimately, prevent FoG events.
3. Participate in the creation of novel techniques and resources for the early identi-
fication and monitoring of cognitive and motor decline.
4. Help researchers better understand when and why FoG episodes occur.
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1.2 Research Contribution
In this thesis, we design and develop a machine learning (ML) model to detect and
classify FoG in patients with PD using wearable sensor data. When wearable sensor
devices are used with ML methods, the accuracy of detecting FOG from a lower back
accelerometer is relatively high. The key contributions of this research are as follows:

• We proposed a Transformer Encoder-Bi-LSTM fusion model to detect freezing
of gait where Transformer Encoder was utilized for feature extraction and Bi-
LSTM for classifying the type of FoG event.

• We have tested our model on two benchmark datasets. The proposed model
outperformed the state-of-the-art models without extensive data preprocessing
and ensemble multiple models.

1.3 Report Organization
The remainder of this report is structured as follows: Chapter 2 provides a com-
prehensive review of the literature relevant to the field. Chapter 3 outlines the
background study and details the architecture of the proposed model. Chapter 4
describes the methodology employed, including a thorough discussion of the dataset
and the proposed model. Chapter 5 presents the performance evaluation metrics and
the experimental results. Finally, Chapter 6 concludes the paper with a summary
of findings and potential future directions.
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Chapter 2

Related Work

Early attempts at identifying FoG episodes relied on the concept of acceleration sig-
nals. Progressive work by Han et al. in 2003 utilized a 4-level Daubechies wavelet
transform on acceleration data from PD patients’ ankles [6]. They discovered a dis-
tinct shift in the main frequency of the signal during freezing events, rising from 2
Hz during normal movement to a range of 6 to 8 Hz. Building on this, Moore et al.
in 2008 introduced the freezing index (FI) [16]. This index calculated the energy
distribution within specific frequency bands of a single vertical acceleration signal
from the shank. The FI employed a threshold classifier to distinguish between nor-
mal movement and freezing based on the energy distribution. Bächlin et al. further
refined detection in 2010 by incorporating an additional criterion that differentiated
standing from freezing based on the overall energy disparity in the signal [18].

However, these accelerometer-based methods had limitations. They primarily iden-
tified freezing patterns resembling tremors, which while common, don’t encompass
all FoG presentations. Recognizing this, researchers explored incorporating addi-
tional sensors and more sophisticated classifiers. Coste et al. in 2014 demonstrated
the limitations of relying solely on acceleration energy [28]. They proposed a new
benchmark by utilizing a shank-mounted sensor to measure stride length and ca-
dence alongside acceleration. These additional gait characteristics, combined with
a threshold classifier, improved FoG detection accuracy. Another approach involved
combining different sensor modalities. Cole et al. in 2011 employed accelerom-
eters and EMG sensors positioned on the shank, thigh, and arm to detect FoG
[22]. They utilized a two-stage classification system. First, a linear classifier dis-
tinguishes between sitting/lying and standing. Then, a Dynamic Neural Network
classifier identified freezing during movement. Mazilu et al. further emphasized the
value of multimodal approaches, suggesting that incorporating more information
could enhance detection speed and accuracy [25]. Cappeci et al. [31] echoed this
sentiment, demonstrating improved results when integrating gait factors into deep
learning models for FoG detection. For a more comprehensive exploration of FoG
identification research, refer to [34].

Several studies explored effective machine learning techniques for FoG detection in
real-world settings. Ahlrichs et al [30]. introduced a method for monitoring FoG
occurrences in home environments. They extracted various frequency-based fea-
tures from 3.2-second data segments. Analysis using a SVM classifier with 10-fold
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cross-validation yielded impressive results, achieving a sensitivity of 92.3% and a
perfect specificity (100%). Rodríguez-Martín et al. [26] explored FoG detection in
daily activities using an SVM classifier with 55 features encompassing statistical and
spectral characteristics. Their LOSO evaluation yielded a sensitivity of 0.7903 and
a specificity of 0.7467. Samà et al. [38] further optimized this approach by lessening
the number of attributes while maintaining high performance (sensitivity of 91.81%
and specificity of 87.45%).

Recent research has successfully employed deep learning models for FoG detection
using sensor data. CNNs and fully connected neural networks have shown promising
results. Camps et al. [36] proposed a deep learning architecture with eight levels
incorporating 1D convolutional layers for FoG identification. Their model achieved
a precision rate of 90.6%, an AUC of 88%, a sensitivity of 0.9190, and a speci-
ficity of 0.8950. San-Segundo et al. [42] compared various classification methods,
including Random Forest, Multilayer Perceptron, and deep CNN, for FoG detec-
tion on the Daphnet dataset. The deep convolutional neural network emerged as
the most effective method, achieving an Area Under the Curve (AUC) of 0.931 and
an EER of 12.5%. Sigcha et al. [43] explored using Recurrent Neural Networks
(RNNs) with 3D accelerometers for FoG detection. Their evaluation, using a LOSO
cross-validation approach, revealed that the CNN-LSTM model achieved the finest
performance with a sensitivity and specificity of 87.1% each, using a three-step look-
back window. This review highlights the ongoing advancements in FoG detection
techniques. From early explorations with acceleration signals to sophisticated deep
learning models, researchers are continuously refining methods to achieve more ac-
curate and reliable identification of this debilitating symptom.

The development of accurate FoG detection models is becoming more and more
popular with the introduction of wearable sensors and the progress made in ML.
Wearable sensors that track gait objectively and continuously include magnetome-
ters, gyroscopes, and accelerometers. They offer a non-invasive method to capture
the intricate details of movement, making them ideal for detecting FoG episodes.
Numerous studies have leveraged data from these sensors to develop algorithms for
FoG detection. Mancini et al. (2012) demonstrated the feasibility of using ac-
celerometer data to distinguish FoG episodes from normal walking in PD patients
[33]. Similarly, Moore et al. (2008) highlighted the potential of wearable sensors
to monitor gait and predict FoG, underscoring the need for accurate and real-time
detection methods [16]. Traditionally used machine learning techniques including
SVM, KNN, and Decision Trees were used in the early research on FoG identifi-
cation. For instance, Rodríguez-Martín et al. (2017) used SVM to classify FoG
episodes based on features extracted from accelerometer data, achieving promising
results. However, these models often require extensive feature engineering and may
not capture the temporal dependencies in gait data effectively [26]. Recurrent Neu-
ral Networks (RNNs) and their derivatives are a class of deep learning models that
have demonstrated tremendous promise in processing sequential data, such as gait
signals. RNNs are useful for FoG detection because they can record temporal de-
pendencies. An extension of LSTM called Bi-LSTM analyzes data both forward and
backward to give a thorough grasp of the temporal context. For example, Hannink
et al. (2017) utilized an LSTM network to classify different gait patterns, including
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FoG, using wearable sensor data [32]. Their results demonstrated the superiority of
LSTM over traditional methods in capturing the temporal dynamics of gait.

Machine vision is an evaluative technology that uses a machine to see instead of a
human. Machine vision-based approaches are more objective than sensor wearables
because they don’t require the patient to wear a gadget and don’t interfere with
their movement or cause discomfort. A few studies have used the Kinect depth
camera, which is a 3D motion capture system, to extract motion data for the pur-
pose of identifying gait abnormalities [39]. However, these cameras need pricey
specialized equipment like the Microsoft Kinect. Using RGB technology for 2D key
point recognition, as exemplified by OpenPose [41], is an additional technique that
may estimate the joint coordinates of individuals in films captured with a monoc-
ular camera without the need for external scales or markers. In order to identify
FOG using 2D keypoint estimation, a study suggested a unique design for a graph
convolutional neural network and obtained good detection performance [40].
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Chapter 3

Background Study

3.1 Transformer
Vaswani et al., Google researchers, initially presented the transformer design in their
2017 publication “Attention Is All You Need” [35]. An encoder and a decoder, each
consisting of several layers of feed forward and self-attention neural networks, make
up the transformer architecture. The self-attention mechanism, at the core of the
transformer, allows the model to evaluate the relative relevance of many words in a
sentence by taking into account their mutual affinities. This is comparable to how
a human could read a phrase, concentrating on the most important details rather
than reading it in a straight line from start to finish. To help the model remember
the comparative positions of words in a sentence, the transformer adds positional
bias in addition to self-attention. This is essential because a sentence’s meaning can
be greatly influenced by the order in which its words are used.

3.1.1 Transformer Encoder
For applications like text classification, where the model must assign a text pas-
sage to one of several predetermined categories, such sentiment analysis, subject
classification, or spam detection, the transformer encoder architecture is employed.
A whole series of tokens is fed into the encoder, which creates a fixed-size vector
representation of the sequence that can be used for categorization. In 2018, Google
unveiled BERT, one of the most widely used transformer encoder models. Large
volumes of text data have already been used to train BERT, which may be ad-
justed for a variety of NLP tasks. The transformer encoder does not produce any
output sequence; instead, it just cares about the input sequence, in contrast to the
encoder-decoder architecture. By applying a self-attention mechanism to the input
tokens, it is able to focus on the portions of the input that are most relevant to
the recent task. Examples of the transformer encoder architecture in action include
email spam detection, where the model must determine if an email is spam or not,
and sentiment analysis, where the model must determine whether a given review is
good or negative.
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Figure 3.1: Architechture of Transformer [35]
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3.2 Bi-LSTM
Recurrent neural networks of the Bi-LSTM type process sequential data both for-
ward and backward [2]. The model is able to consider the input sequence’s past and
future context by fusing bidirectional processing with LSTM capabilities. To en-
able the progressive selective retention and forgetting of information, memory cells
and gating mechanisms are incorporated. Long-term dependencies spanning several
time steps can be captured by LSTMs due to their persistent internal memory state.
Bi-LSTM architecture is made up of two LSTM layers that process the sequence in
forward and backward. Each layer maintains its own memory cells and secret states.
Beginning with the initial time step and continuing until the forward pass is com-
plete, the input sequence is transmitted to the forward LSTM layer. The forward
LSTM improves its memory cell depending on the recent input, the preceding hid-
den state, and the memory cell in each time step. Furthermore, the input sequence
is delivered to the backward LSTM layer concurrently in backward order, from the
last time step to the beginning. Alike the forward pass, the reverse LSTM determine
its hidden state and improve its memory cell. The hidden states from both LSTM
layers are integrated at each time step when the forward and backward passes are
finished. Applying an extra transformation or combining the hidden states will work
for this combo.

Figure 3.2: Architechture of Bi-LSTM [2]

3.3 GRU
To address the vanishing gradient problem with conventional RNNs, a type of RNN
architecture known as the Gated Recurrent Unit was developed [27]. Its smaller
structure and fewer gates make it computationally more efficient than the LSTM
model. The two main gates that comprise the GRU are the update gate and the
reset gate. By regulating the information flow and choosing what to remember and
what to keep, the update gate, determines what quantity of the past data should
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be transferred forward. In contrast, the reset gate determines what quantity of
the previous data should be discarded in order to determine the recent concealed
state. The GRU combines these features, making it less complicated and quicker to
train than the LSTM, which employs input, forget, and output gates and a separate
memory cell to efficiently capture temporal dependencies in time-series data.

Figure 3.3: Architecture of GRU [27]
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Chapter 4

Methodology

Finding the beginning and end of each freezing episode also the recurrence of these
three types of FoG events are the goals of the proposed Parkinson’s FoG detection
model: walking, turning, and start hesitation. To do this, the model has to be
designed with a procedure that receives as input lower-back 3D accelerometer data
from participants, processes the data in a methodical manner, detects the begin-
ning and end of each FoG episode, and generates predictions of three folds: start
hesitation, turn, or walking. The model uses the input data to detect freezing of
gait events after it has undergone pre-processing. Since the distribution of the two
datasets differs, it is required to create two distinct models: one for tdcsfog and one
for defog. The top level overview of the proposed FoG detection system is shown in
Fig.4.1.

Figure 4.1: Top Level Overview of the Proposed FoG Detection System
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Defog data is not utilized to train tdcsfog models, and tdcsfog models are not trained
using defog data. The proposed FoG detection system is composed of several phases:
(1) Collection of data, (2) Processing the input data, (3) Propose FoG detection
Model, (4) Classification of FoG into three types of events. In the proposed FoG
detection model, two data sets (explained in Section 4.1) have been used. The
next phase is the data processing steps described in Section 4.2. After that, we
proposed a Transformer Encoder-Bi-LSTM fusion model (explained in Section 4.3)
to detect freezing episodes from the data and categorize them into three discrete
classes: Start Hesitation, Turn and Walking. Finally, the model was evaluated by
the mean average precision of predictions for each event class.

4.1 Dataset
Machine learning based FoG detection has been conducted on two freezing of gait
datasets, namely tdcsfog and defog [45]. These data sets have been acquired from
publicly accessible database. These data sets were annotated by expert reviewers
documented the freezing of gait episodes.

The tDCS FOG Dataset (tdcsfog): Consisting of data series collected in the lab.
During each visit, individuals wore a 3D accelerometer on their lower back (sampling
rate 128 Hz). Every trial that caused FoG was captured on camera and examined
offline. Before the test protocol begins, there is a brief (2–3 s) interval of silent
standing while data recordings. The correlation matrix for tdcsfog data is shown in
Fig.4.2.

Figure 4.2: Correlation matrix of tdcsfog

The DeFOG Dataset (defog): Consisting of data series gathered while subjects were
completing a program designed to induce FOG in their homes. Two trips to the
subject’s home surroundings were part of this investigation. The subjects were
assessed at both the off and on medication states at each visit. The subjects wore a
3D accelerometer on their lower backs during the motor evaluation, which gathered
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data at a sample rate of 100 Hz. The correlation matrix for tdcsfog data is shown
in Fig.4.3.

Figure 4.3: Correlation matrix of defog

The following protocols described by Ziegler et al. 2010 [21] shown in Fig.4.4 were
performed each time for collecting data:

1. The 4-Meter Walk Test: Involves the participant walking a distance of 4 meters
at their usual, comfortable pace. The time needed to complete the walk is
collected using a stopwatch, and the test may be repeated multiple times,
with the average time used for analysis.

2. The Timed Up & Go (TUG) Single Task: It requires the participant to begin
seated in a standard chair. Upon the command “go”, the participant stands
up, walks a distance of 3 meters, turns around, walks back, and sits down
again. The total time needed to complete the task is recorded, and the test
assesses mobility, balance, and functional ability.

3. The Timed Up & Go (TUG) Dual Task: The participant performs the stan-
dard TUG test while simultaneously being asked to subtract a specified num-
ber (e.g., subtract 3s from 100) out loud while walking. The total time needed
to complete the task and the accuracy of the subtraction are recorded to eval-
uate the effect of cognitive load on mobility.

4. The Turning - Single Task: Involves the participant performing four 360-degree
turns, alternating the direction with each turn (clockwise and counterclock-
wise). The participant’s speed, stability, and turning technique are observed
and recorded.

5. The Turning – Dual Task: The participant performs the same turning task
as before, but with an added cognitive challenge of subtracting a specified
number (e.g., subtract 3s from 100) while turning. The time, stability, and
accuracy of the cognitive task (subtraction) are recorded.
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6. The Hotspot Door Test: Involves the participant walking to a designated
door, opening it, entering an adjacent room, turning around, and returning
to the starting point. This test simulates real-life mobility challenges, such
as navigating through doorways and making directional changes. The total
time needed and any hesitations or difficulties, such as freezing of gait, are
recorded.

7. The Personalized Hotspot Test: The participant is asked to identify an area
within their home, that typically triggers freezing of gait (FoG). The partici-
pant then walks through this area under observation, with the occurrence and
duration of FoG episodes noted, along with any compensatory strategies used.

Figure 4.4: Data collection protocols

Field description of tdcsfog and defog dataset:.

Time: An integer timestep. The datasets differ in their sampling rates: tdcsfog data
is collected at 128Hz, whereas defog data is recorded at 100Hz.

AccV, AccML, and AccAP: Figure 4.5 illustrates the three axes of acceleration from
a lower-back sensor: vertical (V), mediolateral (ML), and anteroposterior (AP). For
tdcsfog and defog, the data is expressed in m/s² and g, respectively.

Start Hesitation, Turn, Walking: Indicator variables for the occurrence of each of
the event types.

Figure 4.5: Time series features from dataset
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4.2 Data Pre-processing

4.2.1 Normalization
Mean-std normalization is applied to the acceleration columns : AccV, AccML, and
AccAP for both tdcsfog and defog data series. By calculating the mean of each data
point in the dataset and dividing it by the standard deviation, mean-std or Z-score
normalization is applied in data preparation to standardize characteristics so that
the distribution has a standard deviation of one and a mean of zero. The tdcsfog
dataset records acceleration in m/s², while the defog dataset uses ’g’ (gravitational
units). These differences in measurement units can lead to inconsistencies when the
data is processed. Mean-std normalization standardizes these values, ensuring that
the different units do not affect the modeling process. Moreover, the datasets have
different sampling frequencies: tdcsfog at 128 Hz and defog at 100 Hz. Normalizing
the features ensure that the variance due to different sampling rates is minimized,
providing a uniform scale across the datasets. Without normalization, features with
larger magnitudes (acceleration values in certain axes) could dominate others in the
modeling process, potentially biasing the model. By applying mean-std normal-
ization, all features are brought to the same scale, ensuring that no single feature
dominates the training process.

4.2.2 Reducing the Sampling Rate of the Data
In this project, the frequency of the target data is reduced to improve the model’s
performance. The original target data has a high resolution with a frequency of
128Hz, which means it captures detailed, high-frequency information over time.
While such high-resolution data can be useful, deep learning models often struggle
to handle targets with a complex structure or excessive detail. In particular, high-
frequency data can introduce noise or unnecessary complexity that creates it harder
for the system to understand relevant patterns effectively.
To address this, the target data, initially in a high-resolution format, is reshaped
and reduced through a series of transformations. The first step reshapes the target
data into smaller patches, reducing the temporal resolution. The data is then trans-
posed to facilitate operations across specific dimensions. Lastly, by choosing the
most important value within each patch, the TensorFlow reduction max operation
is applied throughout the patch dimension, reducing the complexity of the target
data.
This reduction in resolution simplifies the structure of the target data, enabling the
model to better focus on the core signals and features that are relevant for learning.
It also removes high-frequency noise and variability that could impair the model’s
ability to generalize, leading to better performance on lower-resolution, smoothed-
out target data. This preprocessing step helps the model capture important trends
and behaviors more effectively, resulting in improved overall performance.

4.2.3 Partitioning Data into Fixed-length Blocks
By copying and selecting specific columns, and then converting these into a stan-
dardized numerical format, the method prepares the data for further analysis using
patches like Vision Transformers. Padding the series to make its length a multiple of
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the block size ensures that all blocks are uniformly sized, which is crucial for model
compatibility. The use of overlapping blocks, determined by the block stride, allows
the method to capture sequential dependencies and transitional features within the
series, enhancing the model’s ability to detect patterns like freezing of gait (FOG)
events. By extracting these blocks as individual units containing start and end in-
dices along with the values, the processing facilitates the efficient transformation of
continuous time series data into a format suitable for training and testing predictive
models. This structured segmentation approach is essential for ensuring that the
model can learn temporal patterns effectively, increasing its accuracy and robust-
ness in identifying events. Moreover, the overlapping blocks provide a mechanism
for minimizing information loss at the boundaries of each segment, ensuring that
critical transitions are preserved and analyzed. This design also enables the model
to handle variability in signal dynamics, capturing subtle patterns that may indicate
early signs of FOG events. The standardized block-based format further simplifies
batching and parallel processing during training, significantly improving computa-
tional efficiency. By organizing the data in this manner, the method not only ensures
compatibility with advanced architectures like Vision Transformers but also estab-
lishes a foundation for scalability to larger datasets and more complex scenarios,
such as multi-sensor fusion and real-time event detection.

4.3 Proposed Transformer encoder-Bi-LSTM Fu-
sion Model

In this thesis, a Transformer encoder and two Bi-LSTM layers were combined to cre-
ate a hybrid deep learning model that can identify FoG episodes shown in Fig.4.6.
To find long-range relationships in the data, the model first splits the accelerometer
time-series data into blocks, which are then processed by a Transformer encoder that
employs multi-head self-attention. Each encoder layer applies multi-head attention
with residual connections and layer normalization, followed by a feed-forward net-
work with dropout to enhance generalization. To incorporate temporal positional
information, a trainable position encoding is added to the input, which allows the
Transformer to capture the sequential structure of the data. After passing through
multiple Transformer encoder layers, the features are further processed by two Bi-
LSTM layers, which model both forward and backward dependencies in the time-
series data, crucial for identifying transitions between FOG episodes. Finally, the
model outputs the confidence score of three FOG event types (Start Hesitation,
Turn, and Walking) using a dense layer followed by a sigmoid activation func-
tion. This hybrid architecture leverages the strengths of both Transformers and
Bi-LSTMs, making it highly effective in capturing both long-term dependencies and
local temporal patterns for accurate FOG detection. Additionally, the model’s use
of multi-head self-attention enhances its ability to focus on relevant features across
the input blocks, while the Bi-LSTM layers ensure that fine-grained temporal re-
lationships are preserved. By combining these two approaches, the architecture is
particularly well-suited for handling the complex dynamics of accelerometer data
during FOG episodes. Furthermore, dropout regularization throughout the network
helps mitigate overfitting, making the model robust across varying patient datasets.
This design allows the model to generalize effectively, demonstrating significant po-
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tential for real-world clinical applications.

Figure 4.6: Proposed Transformer encoder-Bi-LSTM Fusion Model

4.3.1 Model Training
In this study, we fine-tune several key hyperparameters to optimize the detection
and classification of FoG episodes using a Transformer Encoder and Bi-LSTM model.
All the training was conducted with TensorFlow capabilities and Kaggle Notebook
resources. The input data is processed in blocks, with each block divided into
smaller patches, allowing the model to handle large sequences while retaining essen-
tial temporal information. The model architecture integrates a Transformer Encoder
and Bi-LSTM layers. The Transformer Encoder applies multiple attention heads,
enabling it to focus on different aspects of the input concurrently, while several en-
coder layers help capture complex patterns in the sequential data. The LSTM layers
capture long-term dependencies crucial for detecting FoG episodes. To prevent over-
fitting and improve generalization, dropout is applied at multiple stages, including
the first layer and the Transformer Encoder. A key aspect of the training process
is the learning rate schedule, which starts with a warm-up phase to stabilize initial
training and then maintains a gradual learning rate for fine-tuning. Batch size and
the number of steps per epoch are optimized to balance computational efficiency and
model stability, while the model also benefits from accelerated training, allowing it
to process the large dataset effectively. Each of these parameters contributes to the
model’s capacity to precisely detect and distinguish FoG events in real-time.

The loss function used in this research is based on binary cross-entropy that com-
putes the loss between the real values and the model’s predicted output without
reducing the dimensionality immediately, enabling flexibility in further processing.
The function first expands the dimensions of both the real values and the output to
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match a shape suitable for element-wise comparison. Next, two particular columns
of the actual tensor are multiplied to create a mask that represents circumstances or
occurrences that should be taken into account when calculating the loss. This mask
is expanded and tiled across the target dimensions to match the shape of the loss
tensor, ensuring that only relevant parts of the input contribute to the overall loss
calculation. After that, all the masked loss values are added, and they are normal-
ized using the total mask sum to provide the average loss value that only represents
the valid segments. This approach effectively handles the sparsity of relevant events
and ensures the model focuses on learning from meaningful parts of the data, im-
proving the accuracy and robustness of the detection model. The optimizer used in
this model is a custom implementation of the Adam optimizer from TensorFlow.
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Chapter 5

Results and Discussion

5.1 Performance Evaluation Metrics
The models were evaluated using the mean average precision (mAP) of forecasts
for each type of occurrence. We independently compute the average precision on
predicted scores for the three event classes (Start Hesitation, Turn, Walking). These
three numbers are then averaged to determine the total score. The trade-off between
precision and recall is seen in mAP. Since they take into account both false positive
(FP) and false negative (FN), mAP is a good statistic for the majority of detection
applications. The mean average precision is shown in the equation (5.1) where APk
is the average precision of class k and n is the number of classes.

mAP =
1

n

k=n∑
k=1

APk (5.1)

Average Precision: Average Precision is calculated as the weighted mean of precisions
at each threshold, where the weight corresponds to the increase in recall from the
preceding threshold. It provides a single metric summarizing the precision-recall
curve. The formulation of Average Precision is provided in Equation (5.2).

Confidence = AP =
1

|Thresholds|
∑
T

TP

TP + FP + FN
(5.2)

It is composed of four submetrics: confusion matrix, Intersection over Union (IoU),
Recall and Precision.

Confusion Matrix: A confusion matrix, depicted in Fig.5.1, is constructed using four
key components.

True Positives: Instances where the model correctly predicts a label, matching the
ground truth.
True Negatives: Instances where the model correctly identifies that a label is absent,
aligning with the ground truth.
False Positives: Instances where the model predicts a label that is not present in
the ground truth.
False Negatives: Instances where the model fails to predict a label that is present
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in the ground truth.

Figure 5.1: Confusion Matrix

IoU: The Intersection over Union, denoted in Equation (5.3), quantifies the overlap
between the predicted bounding box and the ground truth bounding box. It is a
standard metric for evaluating object detection models.

IoU =
Area of Overlap

Area of Union
(5.3)

Precision: Precision, as defined in Equation (5.4), measures the proportion of true
positive predictions relative to the total number of positive predictions made by the
model. It evaluates the model’s accuracy in identifying true positives among all
predicted positives.

Precision =
TP

TP + FP
(5.4)

Recall: Recall, as defined in Equation (5.5), measures the model’s ability to identify
true positives (TP) among all actual positives. It is a key metric for evaluating how
effectively the model captures relevant instances.

Recall =
TP

TP + FN
(5.5)

Accuracy: Accuracy, shown in equation (5.6), is the percentage of correct classifica-
tions that a trained model achieves.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.6)

F1 Score: The F1 score, described in Equation (5.7), represents the harmonic mean
of precision and recall. It balances the trade-off between these two metrics, providing
a single score that reflects both the model’s accuracy in identifying true positives
and its ability to retrieve all relevant instances.

F1− score =
2 ∗ Precision ∗Recall

Precision + Recall
(5.7)
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5.2 Result Analysis
The proposed fusion model combining a Transformer Encoder with Bi-LSTM lay-
ers achieved a mean Average Precision (mAP) score of 0.5206, surpassing the per-
formance of the Transformer Encoder-GRU fusion model, which achieved a lower
mAP score of 0.4938. This improvement underscores the effectiveness of Bi-LSTM
layers in capturing bidirectional temporal dependencies, which are critical for accu-
rately modeling the transitions and complexities inherent in Freezing of Gait (FoG)
episodes.

In this study, the performance of various machine learning architectures was com-
pared for the detection and classification of FoG episodes, with mAP as the primary
evaluation metric. The proposed Transformer Encoder-Bi-LSTM model outper-
formed several baseline architectures, including the Multilayer Bidirectional GRU
(mAP: 0.4729) [46], LSTM (mAP: 0.4445) [47], and 1D ResNet (mAP: 0.3568) [44].
While another model leveraging an ensemble GRU [48] achieved a slightly higher
mAP score of 0.5367, that approach involved extensive data preprocessing and an
ensemble of multiple networks, resulting in a significantly higher computational cost.

The hybrid architecture of the Transformer Encoder-Bi-LSTM combines the global
feature extraction capabilities of attention mechanisms with the temporal modeling
strengths of recurrent networks. Additionally, the use of Bi-LSTM layers enhances
the ability to model both forward and backward temporal dependencies, ensuring
a more comprehensive understanding of sequential data. The lightweight nature of
the architecture, compared to ensemble-based models, also makes it more suitable
for deployment in real-time and resource-constrained environments. The compar-
ative analysis of mAP scores, illustrated in Figure 5.2, highlights the potential of
the proposed architecture to serve as a competitive and computationally efficient
alternative for FoG detection and classification.

Figure 5.2: Comparison of Proposed Models with respect to Mean Average Precision
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The results of the local cross-validation for the Tdcsfog training models are sum-
marized in Table 5.1, where the mean Average Precision (mAP) scores range from
0.473 to 0.602. The individual Average Precision (AP) for each of the three out-
comes across different folds varies as follows: StartHesitation achieves AP values
between 0.360 and 0.594, Turn shows AP values ranging from 0.850 to 0.889, and
Walking records AP values between 0.187 and 0.463.

Table 5.1: Training Results of Tdcsfog Models using Transformer endcoder-Bi-LSTM
Fusion

Configuration AP mAP
StartHesitation Turn Walking

1 0.360 0.872 0.187 0.473
2 0.594 0.850 0.282 0.575
3 0.474 0.879 0.430 0.594
4 0.455 0.889 0.463 0.602

These results were achieved by tuning the following parameters of the model con-
figuration:

• Block Size: The size of each input segment processed by the model.

• Patch Size: The size of smaller chunks into which each block is divided.

• Fog Model Dimension: The dimensionality of the feature embeddings.

• Attention Head: The number of attention heads in the multi-head self-attention
mechanism.

• Encoder Layer: The number of encoder layers in the Transformer.

• First Dropout: Dropout rate applied to the input or initial layers to prevent
overfitting.

• Encoder Dropout: Dropout rate applied to the Transformer encoder, enhanc-
ing generalization by randomly deactivating neurons during training.

• MHA Dropout: Dropout rate applied within the multi-head attention mecha-
nism.

Similarly, the mAP scores for the Defog models, as presented in Table 5.2, range
from 0.432 to 0.489. The individual AP for the three outcomes across the folds is
as follows: StartHesitation achieves AP values ranging from 0.215 to 0.485, Turn
records AP values between 0.410 and 0.492, and Walking shows AP values between
0.238 and 0.490.
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Table 5.2: Training Results of Defog Models using Transformer endcoder-Bi-LSTM
Fusion

Configuration AP mAP
StartHesitation Turn Walking

1 0.215 0.410 0.238 0.432
2 0.440 0.452 0.446 0.446
3 0.460 0.468 0.461 0.463
4 0.485 0.492 0.490 0.489

The change of mAP score for tdcsfog and defog models using combination of Trans-
former Encoder and GRU is shown in Table.5.3 and Table 5.4. The individual AP
for each of the three outcomes in the individual folds ranges from 0.460 to 0.519 for
StartHesitation, 0.520 to 0.696 for Turn, and 0.320 to 0.600 for Walking as shown in
Table 4.3. The Transformer encoder employs 320-dimensional embeddings, 6 atten-
tion heads, and 5 encoder layers, which are designed to capture global patterns and
relationships in the input data. Additionally, the GRU component contributes to
modeling sequential dependencies while maintaining computational efficiency com-
pared to more complex recurrent layers. The dropout set to 0.1 for the initial,
encoder, and multi-head attention layers—provide a balanced approach to regular-
ization, helping mitigate overfitting while retaining critical signal information.

Table 5.3: Training Results of Tdcsfog Models using Transformer endcoder-GRU
Fusion

Configuration AP mAP
StartHesitation Turn Walking

1 0.519 0.520 0.320 0.453
2 0.430 0.620 0.579 0.549
3 0.450 0.672 0.600 0.574
4 0.460 0.696 0.590 0.582

Table 5.4: Training Results of Defog Models using Transformer endcoder-GRU Fu-
sion

Configuration AP mAP
StartHesitation Turn Walking

1 0.300 0.410 0.505 0.405
2 0.310 0.420 0.527 0.419
3 0.320 0.436 0.552 0.436
4 0.345 0.462 0.579 0.462
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The performance of our proposed models using other evaluation metrics like preci-
sion, recall, F1 score and accuracy are given in Table.5.5. The results highlight the
performance metrics of two proposed models: the Transformer Encoder-Bi-LSTM
fusion and the Transformer Encoder-GRU fusion. For the Transformer encoder with
Bi-LSTM, the metrics achieved are an F1 score of 0.783, accuracy of 0.897, precision
of 0.798, and recall of 0.768. For the Transformer encoder with GRU, the results
are an F1 score of 0.771, accuracy of 0.844, precision of 0.697, and recall of 0.747.
These metrics demonstrate effective recall performance, capturing a high proportion
of true positive instances, while maintaining a reasonable level of precision.

Table 5.5: Test Results of the Proposed Models

Model F1 score Accuracy Precision Recall
Proposed Transformer Encoder-Bi-LSTM 0.783 0.897 0.798 0.768

Proposed Transformer Encoder-GRU 0.771 0.844 0.697 0.747

5.3 Discussion
The best-performing models on the same dataset [45] performed slightly better than
our solution, even though the proposed Transformer Encoder-Bi-LSTM model has
a strong mAP score. It suggests that doing intensive data preprocessing and ensem-
ble models might produce better overall FoG detection outcomes. Although there
are some drawbacks, the claimed solution’s simplicity makes it stand out. It is
shown how to achieve competitive performance in FOG detection without the need
for excessively complex models, pre-processing, or substantial CPU resources by
integrating two Deep Learning architectures, such as the transformer encoder and
Bi-LSTM. This simplicity not only makes implementation easier, but it also makes
it relatively easy for other researchers who are interested to adopt and expand upon
the published methodology.

In order to improve the standard of life of PD patients, reliable automatic FOG
detection is an important aspect to consider. The present study reported a highly
ranked solution to the Parkinson’s FoG detection. Results show that using a combi-
nation of transformer encoder and two Bidirectional LSTM layers can be successfully
applied to detect FOG related events in accelerometer data from different settings
without applying sophisticated pre-processing. The procedure did not make use of
the daily living dataset. To support the detection modeling, one might add semi-
supervised or unsupervised techniques to the daily dataset’s series.
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Chapter 6

Conclusion

One of the main motor signs of PD that can lead to falls is freezing of gait. The
majority of PD patients are older, therefore falls can cause fractures or even death.
Finding ways to diagnose FOG and stop patients from falling is therefore crucial. An
effective FOG recognition model based on deep learning was created in this study.
This diagnostic examination service lessens the financial burden on PD patients
in addition to mitigating the effects of individual subjectivity. Although there are
alternative methods, FOG-provoking protocols are used in the majority of FOG
evaluation methodologies. Individuals with FOG are captured on camera while
engaging in activities that are likely to exacerbate the condition. After watching the
footage, experts score each frame to determine when FOG happened. This method
of scoring is quite time-consuming and necessitates specialized knowledge, but it
is also reasonably sensitive and dependable. Another approach is to use wearable
technology to enhance FOG-provoking testing. FOG detection is made easier with
additional sensors, but usability and compliance may suffer. Thus, the optimal
strategy might be a mix of these two techniques. The accuracy of identifying FOG
from a lower back accelerometer is comparatively high when paired with machine
learning techniques. This approach can truly provide full-process management and
timely intervention in the PD-FOG population.

6.1 Limitations and Future Work
One key limitation is the computational complexity of this architecture. The Trans-
former encoder, with its multi-head attention mechanism, can be resource-intensiv.
This makes it challenging to deploy the model on edge devices such as wearable
sensors, where computational power and battery life are constrained. Another lim-
itation is related to the real-time performance and latency. Although the model
has strong predictive capabilities, ensuring it operates in real-time with minimal
lag is crucial for practical applications, such as triggering therapeutic responses for
Parkinson’s patients during a FoG episode.

Future work could focus on optimizing the model for real-time deployment. The
model could benefit from incorporating data from multiple sensors, such as com-
bining accelerometer data with gyroscope or electromyography inputs, to enhance
detection capabilities.
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