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Abstract
This thesis reviews Seiberg-Witten Gauge theory and the Seiberg-Witten invariants of
smooth 4D manifolds. After reviewing some preliminaries on Clifford Algebras, Spin-
bundles, Dirac Operators, We go into discussing a system of mildly nonlinear partial
differential equations on a U(1) bundle which are commonly known as Seiberg-Witten
equations. We discuss its properties, consider their solution space and then quotient it by
the equivalence due to gauge transformations. The moduli space that we get after moding
on the space of solutions has some nicer properties as compared to Donaldson’s. In the last
chapter, we briefly talk about the Witten conjecture which makes a connection between
the Seiberg-Witten Invariants and the Donaldson invariants. Many physicists argue that
using S-duality, SW theory and Donaldson theory can be viewed as the two extreme cases
(one N → ∞, and the other N → 0) of a common theory, but S-duality is not yet math-
ematically understood fully rigorously. Even with seminal progresses regarding proving
this conjecture which is widely believed to be true by many professional physicists- it still
remains to be proven true in the general sense. This thesis acts as a review of these ideas
as an introduction to Seiberg-Witten theory.

Keywords: Invariants; Seiberg-Witten Invariants; Principal U(1)-bundles; Complex Line
Bundle; Clifford algebras; Spinor Bundles; Dirac Operator; Seiberg-Witten Gauge theory;
Monopoles; Moduli Space; Witten Conjecture; S-duality.
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Chapter 1

Clifford Algebras and Spin Groups

In this chapter, we review some basic results and preliminaries on Clifford Algebras, their
complexifications, splittings, the representations of the complexified Clifford Algebras,
Pin and Spin groups, Spin-bundles and Spinc-bundles, connection, and curvature. Our
discussions follow [7], [6], [12], [5]

1.1 Clifford Algebras
Definition (Clifford Algebras). The Clifford algebra C(V ) of a real inner product space
(V,(,)) is the algebra generated by the elements of V , subject to the relations

e · e′+ e′ · e =−2(e,e′) (1.1)

It may also be defined as the algebra which is the quotient of the Tensor algebra T (V )
associated with V by the two-sided ideal I (V ) generated by all elements of the form

v⊗ v+ ||v||21 (1.2)

The multiplicaiton of in the Clifford algebra is called Clifford multiplication.
Given an orthornormal basis {ei} of V ,

eε1
i1 · · ·e

εn
in (1.3)

where εi = 0 or 1 is a basis of C(V ) as a vector space.

The Z2-grading on T (V ) descends to a Z2-grading on C(V ) as C0(V )⊕C1(V ), where
C0(V ) is the image of the quotient map T (V )→ T (V )/I (V ) =C(V ) restricted to T0(V ),
and similarly for C1(V ), the quotient map restricted to T1(V ). In the language of super-
mathematics, this C(V ) is a superalgebra, of which C0(V ) is a subalgebra, and C1(V ) is a
C0(V ) module over this algebra.

Defintion (Complex Spinor Representation). If V is even dimensional, then there is a
unique irreducible representation of C(V ) on a complex inner product space S such that
the elements of V act as skew-hermitian (or anti-hermitian) operators. This is called the
complex spinor representation and it is a 2m-dimensional representation of C(V ). This
representation has a spectral decomposition S = S+⊕S− with respect to the action of the
volume form of C(V ).
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Example 1. C(R1), the Clifford algebra associated with the 1D real vector space is sup-
posed to be

C(R) = T (R1)/I (R1) =
R⊕R⊕ (R⊗R)⊕ . . .

I (R1)
∼=

R[R]
⟨(x2 +1)⟩

∼= C (1.4)

Example 2. C(R2), the Clifford algebra associated with the 2D real vector space is sup-
posed to be

C(R2) = T (R2)/I (R2) =
R⊕R2 ⊕ (R2 ⊗R2)⊕ . . .

⟨(x2 +1),(y2 +1),(xy+ yx)⟩
∼=H (1.5)

It’s easier to see that C(R2)∼=H by considering the vector space structure of C(R2). Let
{e1,e2} be an ONB of R2. Then {1,e1,e2,e1 · e2} will be a basis for C(R2), and we
can have an isomorphism of algebras between C(R2) and H by mapping 1 7→ 1, e1 7→ i,
e2 7→ j, and e1 · e2 7→ k.
Result 1. For any inner product space V , we have an isomorphism of algebras

C(V )∼=C0(V ⊕R) (1.6)

Let e be a unit vector in R. Then the map φ : C(V )→ C0(V ⊕R) which takes a sum of
two homogeneous elements v0+v1 (v0 ∈C0(V ) and v1 ∈C1(V )) and turns it into: v0+v1e
is an isomorphism of algebras.

Definition (Clifford Algebra of the Tangent Bundle of a Riemannian Manifold). Given a
Riemannian manifold M, at each point p ∈ M, we have (TpM.(,)) to be an inner product
space. Then we can consider a vector bundle on M which has the Clifford algebra C(TpM)
as its fibers at each p ∈ M, which we call the Clifford algebra of the tangent bundle of X ,
and denote by C(T M).

Definition (Spinor Bundle on a Riemannian Manifold). Let M be a hermitian vector
bundle W of complex rank 2m with a map # : T M → End(W ) saisfying #(v)+ #(v∗) =
0 and #(v) · #(v∗) = −|v|2Id for all v ∈ T M. A spin connection on W is a connection
compatible with the Levi-Civita connection ∇LC, that is, a connection

∇ : C ∞(W )→ C ∞(T ∗M⊗W ) (1.7)

such that given any two vector fields u and v on M and any sections s of W , we have

∇u(v · s) = ∇
LC
u (v) · s+ v ·∇u(s) (1.8)

1.2 Pin(V ) and Spin(V ) groups
Let C×(V ) be the multiplicative group of units of the Clifford algebra C(V ).

Definition (Pin(V )). The group Pin(V ) is defined as the subgroup of C×(V ) generated by
elements v ∈V with ||v||2 = 1. The given generators of Pin(V ) are units, since the square
of any of them is −1 in the Clifford algebra.
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Definition (Spin(V )). The group Spin(V ) is defined as the intersection of Pin(V ) with
C0(V ), in other words, the kernel of the group homomorphism Pin(V )→ Z2, induced by
the splitting C0(V )⊕C1(V ). One can also define it to be the universal covering group of
SO(V ).

Example. Pin(1) ≡ Pin(R) is basically the subgroup of C× generated by ±i. So it is a
cyclic group of order 4. Spin(1) then would be a cyclic group of order two {+1,= 1}
inside R.
Example. Pin(2)∼= S1 ×S1, Spin(2)∼= S1. Spin(3)∼= S3. Spin(4)∼= SU(2)×SU(2).

Remark. Pin(V ) contains a vector space basis for C(V ), and Spin(V ) contains a vector
space basis for C0(V ).
If e1, . . . ,en is an ONB for V , then every product ei1 · · ·eik is an element of Pin(V ). Tak-
ing k = 1 here lets us have e1, · · · ,en is contained in C(V ). A similar argument holds for
Spin(n).

Proposition. Two (real or complex) representations of the algebra C0(V ) whose restric-
tions to Spin(V ) are isomorphic representations are in fact isomorphic representations of
the algebra.
Suppose two modules A and A′ for C0(V ) admit a linear isomorphism φ which commutes
with the Spin(V ) actions. Then φ commutes with the actions of an R-basis of C0(V )
(since Spin(V)) contains an orthonormal basis of C0(V )) and hence commutes with the
Cl0(V ) actions. This implies φ is an isomorphism of C0(V )-modules.

1.3 Splitting and Complexification of Clifford Algebras
Let V be an oriented real inner product space and C(V ) be the Clifford algebra associated
with V . We consider the complexification of the Clifford algebra as the complex algebra
C(V )⊗RC.
Let e1, . . . ,en be an oriented orthonormal basis for V . Then we define

ωC = i[
n+1

2 ]e1 · · ·en =⇒ ω
2
C = 1 (1.9)

ωC is independent of the choice of an oriented orthonormal basis. Since it is basis inde-
pendent, and squared to 1, the action on C(V )⊗RC is an idempotent, so it has an eigen-
value of ±1. We then decompose C(V )⊗R C into (C(V )⊗R C)+ and (C(V )⊗R C)−
based on the eigenspaces.

Remark. If dim(V ) is odd, then ωC is in the center of C(V )⊗RC and that (C(V )⊗RC)±
are subalgebras which annihilates each other- whereas if dim(V ) is even, then it is in the
center of C0(V )⊗RC but anti-commutes with the elements in C1(V )⊗RC.

Lemma. If dim(V ) is odd, then the algebras (C(V )⊗R C)± are both isomorphic to
(C0(V )⊗RC).
Multiplication by ωC interchanges (C0(V )⊗RC) and (C1(V )⊗RC). Therefore, we have
the following composition

C0(V )⊗C→C(V )⊗C→ (C(V )⊗C)± (1.10)
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where the first map is just an inclusion, and the second map is the projection over any of
the ± subalgebras, and this is an isomorphism of algebras.

Example. C(R1) ∼= C, so C(R1)⊗RC ∼= C⊗RC. The decomposition of C(R1)⊗RC
into (C(R1)⊗RC)+ and (C(R1)⊗RC)− then corresponds to the usual decomposition

C⊗RC∼= C⊕C (1.11)

Example. C(R2) ∼=H, and so C(R2)⊗R ∼=H⊗RH. Define a map from H to C[2]- the
algebra of 2×2 complex matrices by

(α + jβ ) 7→
(

α −β̄

β ᾱ

)
(1.12)

Wriiting element of H as x+ jy where x,y ∈ C, this matrix basically gives us the action
of α + jβ by left multiplication on H viewed as C2. Extending scalars, we get a homo-
morphism of complex algebras H⊗C→ C[2]. In fact, this extension is an isomorphism
and gives us an identification of C(R2)⊗C with the matrix algebra C[2].
Note. These computations are enough to determine the structure of the complexifications
of all the Clifford algebras by induction.
Example. C(R3) ∼= H⊕H which is already splitted. Thus, in this case, the splitting
complexification of the complex algebra is induced from the splitting in the real algebra.

C⊗RC∼= C⊕C (1.13)

Lemma. If the dimension of V is congruent to 3mod4, then C(V ) splits as an orthogonal
sum of two algebras, C(V ) =C(V )+⊕C(V )− induces the above splitting on the complex-
ified algebras.
dimV ≡ 3 mod 4 =⇒ ωC = (−1)

n+1
4 e1 · · ·en and is therefore contained in the real alge-

bra, and so its ±1 eigensppaces are real subspaces.

Lemma.

C(V ⊕R2)⊗RC∼= (C(V )⊗RC)⊗C (C(R2)⊗RC) (1.14)

Let v1,v2, · · · ,vn be an ONB for V . Let e1,e2 be the standard basis forR2. Then we define
a map,

V ⊕R2 → (C(V )⊗RC)⊗C (C(R2)⊗RC) (1.15)

by sending v j to iv j ⊗e1e2 for all 1 ≤ j ≤ n and by sending er to 1⊗er. This map satisfies
the condition to extend to an algebra homomorphism

C(V )→ (C(V )⊗RC)⊗C (C(R2)⊗RC) (1.16)

and by the extension of scalars to a map from C(V )⊗RC to this tensor product.

Some Corollaries to this Lemma.

• If V is even dimensional, then C(V )⊗RC is isomorphic to the matrix algebra C[2n].

4



• If V is odd dimensional, then C(V )⊗RC is isomorphic to the direct sum of two
copies of C[2n] as an algebra.

• If V is even dimensional, then (C0(V )⊗RC)+ ∼= C[2n−1]

• If V is even dimensional, then C(V ) has a unique irreducible finite dimensional
complex representation SC(V ) upto isomorphism. Any such representation has di-
mension = 2n. The action of C(V )⊗C on SC(V ) induce an isomorphism

C(V )⊗C→ EndC(SC(V )) = SC(V )⊗SC(V )∗ (1.17)

• If V is odd dimensional, then C(V ) has exactly two irreducible, finite dimensional,
complex representations upto isomorphism. These induce isomorphic representa-
tions of C0(V ) by restriction. Any such representation has dimension 2n, and the
action of Clifford multiplication induces a map

C0(V )⊗C→ EndC(SC(V )) = SC(V )⊗SC(V )∗ (1.18)

The proof of the last two lemmas involve a theorem in Representation theory called Wed-
derburn’s theorem, which tells us that C[n] has a unique irreducible, finite dimensional,
complex representation Sn

C up to isomorphism, and that furthermore, the map

C[n]→ End(Sn
C) (1.19)

for this representation is an isomorphism of algebras. The result for even dimensional V ’s
follows from this.

Some important results.

• Suppose V is even dimensional. Let SC(V ) be an irreducible (complex) representa-
tion of C(V )⊗C. Then, SC(V ) decomposes into SC±(V ) under the action of ωC.

• This is a decomposition of modules over C0(V )⊗Cwhereas the action of C1(V )⊗C
interchanges S±C(V ).

• Clifford multiplicaiton induces the following isomorphisms

(C0(V )⊗C)+ ∼= EndC(S+C(V )) (1.20)

(C0(V )⊗C)− ∼= EndC(S−C(V )) (1.21)

(C1(V )⊗C)− ∼= HomC(S+C(V ),S−C(V )) (1.22)

(C1(V )⊗C)+ ∼= HomC(S−C(V ),S+C(V )) (1.23)

• S±C(V ) are the only two inequivalent irreducible representations of C0(V )⊗C up to
isomorphism.

5



Most of these results follow directly from the fact that the Clifford multiplication induces
an isomorphism

C(V )∼= End(SC(V )). (1.24)

• There is a unique complex representation of Spin(V ) upto isomorphism induced
from any irreducible finite dimensional representation of C(V ). This representation
is call the complex spin representation, and is denoted by

∆C : Spin(V )→ AutC(SC(V )) (1.25)

This follows from the previous results and we also use the fact that Spin(n)⊆C0(V ).

1.4 The Complex Spin Representation
There is a unique complex representation of Spin(V ) up to isomorphism induced from the
irreducible complex finite dimensional representation of C(V )- which is called the com-
plex spin representation and is denoted by ∆C : Spin(V )×SC(V )→ SC(V ).

Some Results that follow.

• If V is even dimensional, then this representation ∆C decomposes into two inequiv-
alent irreducible representations of Spin(V )

∆
+
C : Spin(V )×+

C (V )→ S+C(V ) (1.26)

∆
−
C : Spin(V )×S−C(V )→ S−C(V ) (1.27)

• If dim(V ) = 2n, then these two representations ∆
+
C and ∆

−
C are 2n−1 dimensional.

Example. C(R)∼=H, and hence C(R)⊗C is isomorphic to C[2]. Hence the spin repre-
sentation is basically the map

∆C : Spin(R2)→ Aut(C2). (1.28)

This representation decomposes as a sum of two 1D complex representations

∆
±
C : Spin(R2)→ Aut(S±C(R

2)) (1.29)

But, Spin(R2) ∼= S1 embedded in the standard way in C ⊂ H. Under the embedding
H⊂ C[2], this circle S1 is embedded as

α ∈ S1 →
(

α 0
0 ᾱ

)
. (1.30)

Since in this case, ωC = ie1e2, the element e1e2 acts on S+CR
2 by −i and thus S+CR

2 has
the action conjugate to the standard action of S1 on C. Similarly, S−CR

2 has the standard
action.

Example. Spin(R3) ∼= SU(2) as both of them are double covers of SO(3). Th spin
representation ∆C is the standard representation of SU(2) on C2.
Example. Spin(R4) ∼= SU(2)× SU(2). The spin representation ∆

+
C is the projection

of Spin(4) onto the first factor, followed by the standard representation of SU(2) on C,
whereas the spin representation ∆

−
C is the projection of Spin(4) onto the second factor,

followed by the standard representation of SU(2) on C.

6



1.5 Spin and Spinc-structures
A Riemannian manifold M equipped with a spinor bundle as defined above is said to have
a spin structure. Not all manifolds admit a spinor bundle, and the existence of such a
bundle is equivalent to a Spinc-structure on M, which we will discuss shortly. But before
that, we need the notion of Spinc groups.

Definition 1. (Spinc group) Spinc(V ) is the multiplicative group of units of C(V )⊗RC
generated by Spin(V ) and the unit circle of complex scalars.

Definition 2. (Spinc group) The group Spinc(n) := (Spin(n)×U(1))/Z2 is an extension

1 → Z2 → Spinc(n)→ SO(n)×U(1)→ 1. (1.31)

This yields the following long exact sequence in sheaf cohomology:

· · · → H1(M;Spinc(n))→ H1(M;SO(n))⊕H1(M;U(1))→ H2(M;Z∈)→ . . . (1.32)

Here, H1(M;G) represents the equivalence classes of principal G-bundles over M.

The connecting homomorphism of the sequence H1(M;SO(n))⊕H1(M;U(1))→H2(M;Z∈)
is given by

δ : (PSO(n),PU(1)) 7→ w2(PSO(n))+ c̄1(PU(1)), (1.33)

where c̄1(PU(1)) is the reduction mod 2 of the first Chern class of the principal bundle
PU(1) and w2 is the second Stiefel-Whitney class.

1.5.1 Spin Bundles
Let (V,(,)) be a real inner product space with dimV = n ≥ 2. Suppose P → M is a prin-
cipal SO(n)-bundle. We want this bundle P to lift to a principal Spin(n)-bundle P̃ → M
on M, meaning that we want to find a principal Spin(n)-bundle P̃ → M whose quotient
by the center {−1,1} of Spin(n) is isomorphic as an SO(n)-bundle on M to P. This is a
standard problem in obstruction theory, the soltution to which is quite well-known.

Result. The SO(V )-bundle P → M lifts to a Spin(V )-bundle if and only if the Second
Stiefel-Whitney class w2(P) ∈ H2(M;Z2) is equal to zero.

Definition. (Spin Structure for a Principal SO(n)-bundle) If a lifting to a principal Spin(V )-
bundle P̃→M exists for a principal SO(V )-bundle P→M, then that lifting is called a Spin
structure for the principal SO(V )-bundle P on M.

Definition. (Spin Structure for a Manifold) In the special case when P happens to be the
tangent or cotangent bundles T M or T ∗M of a Riemannian manifold, then the lifting, if it
exists, is called a spin structure for the manifold.
Definition. (Associated complex vector Bundle) Suppose that P → M is a principal
SO(n)- bundle with a spin structure P̃ → M. Then there is an associated complex spin
bundle

P̃×Spin(n) SC(Rn) (1.34)

7



induced by the representation ∆C : Spin(n)→ Aut(SC(Rn)), which we denote by SC(P̃)
For even n, the decomposition of ∆C into ∆

+
C⊕∆

−
C corresponds to a decomposition of the

associated complex vector bundle

SC(P̃) = S+C(P̃)⊕S−C(P̃) (1.35)

S±C(P̃) = P̃×S±C(R
n) (1.36)

These S±C(P̃) are called the plus and minus spin bundles associated with P̃.

8



Some results.

• These plus and minus spin bundles are complex vector bundles of complex dimen-
sions 2

n
2−1

• Spin(n) is compact.

• These bundles S±C(P̃) carry hermitian inner products unique up to isomorphism.

• We can choose the metric to be invariant under the action of Pin(Rn) since the
bundles are induced by an action of the Clifford Algebra on SC(Rn) =⇒ Clifford
multiplication by a unit vector in Rn ⊂C(Rn) is an isometry of SC(Rn).

From here on, we will implicitly assume that we are working with the metric that is
invariant under the action of Pin(Rn) as per the result.

1.5.2 Spinc Bundles
We ask an analogous question as before. Given a principal Spinc(n)-bundle P̃ → M on a
smooth manifold M, does a lifting of P̃ to a principal SO(n)-bundle P → M exist?

Definition (Determinant Line Bundle associated with a Principal Spinc(n)- bundle) We
can have a map Spinc(n)→ SO(n) where we divide out the map Spin(n)→ SO(n) (double
covering) by the center of Spin(n). The homomorphism Spinc(V )→ S1 given by dividing
out by Spin(n) determines a complex line bundle L → M- which is associated with any
principal Spinc(n)- bundle. This is called the determinant line bundle of the Spinc(n)-
bundle.

Definition (Spinc-structure). A Spinc-structure on an oriented n-dimensional Rieman-
nian manifold M. is a lift of the bundle Fr of oriented orthonormal frames to a principal
Spinc(n)-bundle.

If the Principal Spinc-bundle lifts to a SO(n)-bundle, then the determinant line bundle L
has a first Chern class c1(L ) which agrees mod 2 with the second Stiefel-Whitney class.
Conversely, given any line bundle L → M whose first Chern-class satisfies this mod 2
equation, there is a Spinc(n)-lifting of P with determinant line bundle isomorphic to L .

Proposition. Let M be an oriented 4−manifold and let P → M be the frame bundle of the
tangent bundle. Then there is a lifting P̃ of P to a Spinc(4)-bundle.

One of the great advantages of Spinc-structures in studying 4-manifolds is that every ori-
ented 4−manifold possesses one.

Clifford Bundle and Their Actions on the Spin bundles. Let P be a SO(n)−bundle.
We thus can form the associated complex spin bundles to a Spin or Spinc-bundle P̃ lifting
P. We can also form bundles of complexified Clifford Algebras associated to P.
Since SO(n) acts on the Clifford algebra C(Rn), we can associate to P → M a bundle
without the need of a spin structure.

C(P) = P×SO(n)C(Rn) (1.37)
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which is a locally trivial bundle of Clifford algebras. The complex version

C(P)⊗C= P×SO(n) (C(Rn)⊗C) (1.38)

a bundle of complexified Clifford algebras. These bundles decompose as

C(P) =C0(P)⊕C1(P) (1.39)

C(P)⊗C= (C(P)⊗C)+⊕ (C(P)⊗C)− (1.40)

In the presence of a spin (or Spinc) structure P̃ on P, these Clifford bundles then act on
the complex spin bundles. Let SC(P̃)→ M be the associated complex spin bundle.

1.6 Connections and Curvature
Let P → M be a smooth principal G-bundle over a smooth manifold. At each point p ∈ P,
we have the vertical tangent space T vPp. This is the subspace of the tangent space of P
which is tangent to the fiber of the projection mapping.
Defintion (Connections on Principal Bundle) A connection on a principal bundle is a
distribution {Hp}p∈P, i.e. a smoothly varying family of linear subspaces of the tangent
bundle T P which is everywhere complementary to the vertical distribution and which is
invariant under the action of the group G.
The condition that the distribution be complementary to the vertical distribution simply
means that under the project.ion mapping each linear subspace of the distribution projects
isomorphically onto the tangent space to M at the image point. This condition is expressed
by calling the distribution the horizontal distribution

Definition. (Connection one-form) Given a connection on P→M there is an associated 1-
form ω on P with values in the adjoint bundle ad(P) of P, i.e. the vector bundle associated
to P and the adjoint action of G on its Lie algebra g. This one-form is called the connection
one-form. Its values at any p ∈ P is a linear map ωp defined as follows:

ωp : T Pp → T νPp ∼= g (1.41)

where the first map is the projection with kernel Hp, and the second map is the inverse
of the isomorphism induced by the action of G at p. The equivariance property of the
distribution translated into the condition that ω transforms by the adjoint action:

(∀h ∈ G)(∀p ∈ P)(∀τ ∈ T Pp)ωph(τ ·h) = h−1
ωp(τ)h. (1.42)

Also, the restriction of ωp to the fiber of the projection is identified with the left invariant
Mauer-Cartan form on G. This is the form on G with values in g whose value at any
τ ∈ T Gh is equal to h−1τ ∈ g. It is the unique form on G which is invariant under left
multiplication by any element in the group and which is the the identity map at the iden-
tity of the group.

These two properties characterize the connection one-forms. Given a connection one-
form, one can recover the horizontal distribution as the kernels of the one-form.
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Definition. (Induced connection on a Vector Bundle) Given a connection on a principal
bundle P, there is an induced connection on any vector bundle E = P×G V coming from
a linear representation of G on a vector space V . The natural way to view this connection
is as a covariant derivative as follows.

∇ : Ω
0(M;E)→ Ω

1(M;E) (1.43)

which is

• linear over the scalars

• a derivation over the scalar-valued functions with respect to the usual d, i.e. for any
section σ ∈ Ω0(M;E) and any scalar-valued function f on M, we have

( f ·σ) = f ·∇(σ)+d f ⊗σ (1.44)

1.6.1 Formulae for the Connection One-form and the Covariant Deriva-
tive in a Local Trivialization

Let P → M be a principal G-bundle with a connection ω ∈ Ω1(P;g). We fix a local trivi-
alization of P|U for some open subset U ⊂ M. We can view this trivialization as a section
σ0 : U → P|U . We then have the form σ0 ∗ (ω) ∈ Ω1(U ;g). This is the connection one-
form with respect to the given trivialization.

If G ⊂ GL(n,R) so that g ⊂ Mnxn(R), then σ∗
) (ω) is a matrix valued one-form (ωi, j)

whose value at every point belongs to the subspace g. For example, if G = SO(n), then
(ωi, j) is a skew-symmetric matrix-valued one form; i.e.,

ωi, j =−ω j,i (1.45)

Suppose that σ : U → P|U is another section. Then there is a smooth map h : U → G such
that σ(u) = σ0(u)h(u). It follows that

σ
∗(ω)(u) = h(u)−1σ

∗
0 (ω)(u)h(u)+h(u)−1dh(u). (1.46)

In other words, if σ(u) = (u,h(u)) with respect to the original trivialization and if τ is a
tangent vector to U at u, then

ω(
∂σ

∂τ
) = h(u)−1ω̃(τ)h(u)h(u)−1

∂h
∂τ

(u) (1.47)

1.6.2 The Curvature of a Connection
For one-forms ω on P with values in g, we denote by 1

2ω ∧ω the two-form whose value
on a pair of tangent vectors (τ1,τ2) and a point p is given by

[ωp(τ1),ωp(τ2)]. (1.48)
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Lemma. Let ω be a connection one-form on a principal G-bundle over M. Then the
two-form

dω +
1
2

ω ∧ω (1.49)

is a two-form on P which is induced via the pullaback from a two-form on M with values
in adP.

Definition (Curvature form of the connection). The two form on M- the existence of
which is guaranteed by the previous lemma, is called the curvature form of the connec-
tion.

For a covariant derivative ∇ in a vector bundle E associated to a principal G-bundle P
over M, and a representation of G on a vector space V , we have the operator

∇◦∇ :0 (M;E)→ Ω
2(M;E) (1.50)

is linear over the functions, and hence is a section of Ω2(M;End(E)). This section is
the image of the curvature of the connection under the map g → End(V ) induced by the
action of G on V . Using a local trivialization, we can write that

∇◦∇(ei) = ∇(∑
j
(ω j,i ⊗ e j)) (1.51)

∇◦∇(ei) = ∑
j

dω j,i ⊗ e j −∑
j

ω j,i ∧∇(e j) (1.52)

∇◦∇(ei) = ∑
j

dω j,i ⊗ e j −∑
k

ωk,i ∧ (∑
j

ω j,k ⊗ e j) (1.53)

∇◦∇(ei) = ∑
j

dω j,i ⊗ e j +(∑
j
∑
k

ω j,k ∧ωk,i)⊗ e j (1.54)

∇◦∇(ei) = ∑
j
(dω j,i +

1
2
(ω ∧ω) j,i)⊗ e j (1.55)

∇◦∇(ei) = ∑
j

Ω j,i ⊗ e j (1.56)

Which means that

∇er ◦∇es −∇es ◦∇er = Ω(er,es) (1.57)

as sections of endomorphism bundle of E|U .

The space of connection one-forms for a bundle There is more than one possible con-
nection form on a principal bundle π : P → M. For any connection one-form ω and for
any one-form η on M with values in adP, the sum ω +π∗η is a connection one-for as
well. A bit non-trivial fact is that one can obtain all connection one-forms on P like this...
So the space of connection one-forms for P becomes an affine space associated to the
vector space Ω1(M;adP).
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1.7 Action of the Group of Changes of Gauge
Definition (Change of Gauge) A change of gauge is nothing but a bundle automorphism
of the principal bundle, i.e. gauge group G = Aut(P → M).
We can consider the action of the group of automorphisms of P → M on the space of
connection one-forms. If φ : P → P is a diffeomorphism commuting with the action of G
and with the projection to M, then φ is said to be an automorphism of P. These from a
group: Aut(P;M) or just simply Aut(P). These bundle automorphisms can be interpreted
as a function from P → G which satisfies ψ(ph) = h−1ψ(p)h for any h ∈ G.

If ω is a connection one− f orm and φ is a bundle automorphism, then φ∗ω is also a
connection one form, where

φ
∗(ω) = φ

−1
ωφ +φ

−1dφ (1.58)

The effect of this action on Ω, the curvature of the connection is to conjugate it by φ , i.e.
if Ω is the curvature from for the connection ω and Ω′ is that for φ∗ω , then

Ω
′ = φ

−1
Ωφ (1.59)

So the noem-squared of the curvature is left invariant by the action of the group of changes
of gauges.
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Chapter 2

The Dirac Operator

The discussions here mostly follow [7], and
Let M be a Riemannian manifold; let P → M be the SO(n)-principal bundle associated to
the tangent bundle; let P̃ be a lifting of this bundle to a Spin-bundle, or a Spinc-bundle.
Let SC(P̃) be the associated spin bundle, which is a complex vector bundle inherently.
In the case of a Spinc-bundle, we also need to fix a U(1)-connection A on the determinant
line bundle L → M. Let ∇̃ be the spin connection induced by the Levi-Civita connection
and the connection A .
Definition The Dirac operator is defined as a map

DA : C∞(SC(P̃))→C∞(SC(P̃)) (2.1)

which is defined as follows.
Take {e1, . . . ,en} to be an oriented orthonormal frame for T Mp. Then the operator can be
locally defined as

DA (σ)(p) =
n

∑
i=1

ei · ∇̃ei(σ)(p) (2.2)

where the · is the Clifford multiplication. This is in the case of a Spinc-bundle. For a
Spin-bundle, there is no connection A and we then simply denote it by D .

Lemma. The operators DA and D are independent of the choice of orthonormal frame
{e1, . . . ,en}
Proof. Suppose that {e′1, . . . ,e

′
n} is another oriented orthonormal frame. Suppose that

e′i =
n

∑
j=1

Bi, je j (2.3)

Then, B is an element of SO(n). Let us consider

n

∑
i=1

e′i · ∇̃e′i
(σ) (2.4)

Using the bilinearity of the Clifford multiplication, we can say that for any α ∈ SC(P̃),

e′i ·α =
n

∑
j=1

Bi, je j ·α (2.5)
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Also, since ∇̃e is linear in e, we see that

∇̃e′i
(σ) =

n

∑
j=1

Bi, je j∇̃e′j
(σ) (2.6)

Combining these, we have

n

∑
i=1

e′i · ∇̃e′i
(σ) =

n

∑
i=1

(
n

∑
j=1

Bi, je j · (
n

∑
j′=1

Bi, j′∇̃e j′ (σ))) (2.7)

=⇒
n

∑
i=1

e′i · ∇̃e′i
(σ) = ∑

i, j, j′
Bi, jBi, j′e j · ∇̃e j′ (σ) (2.8)

Since B is an orthogonal matrix, it satisfies

∑
i

Bi, jBi, j′ = δ j, j′ (2.9)

Thus,

=⇒
n

∑
i=1

e′i · ∇̃e′i
(σ) = ∑

j, j′
δ j, j′e j · ∇̃e j′ (σ) =

n

∑
j=1

e j · ∇̃e j(σ) (2.10)

This completes the proof.

Dirac operator in a local trivialization of a SO(n)-bundle. Let us write out the expres-
sion for the Dirac Operator with respect to a local trivialization of the principal SO(n)-
bundle P → M associated to the tangent bundle of a Riemannian manifold M with a spin
structure P̃.
Let M be a Rimannian manifold with a principal SO(n)-bundle P → M associated to the
tangent bundle T M, and a spin structure P̃. In a local trivialization, let ω̃i j be the connec-
tion 1-form and let σ be a local section of SC(P̃) given by σ(u) = (u,s(u)) in the induced
local trivialization. Let {e1. . . . ,en} be the orthonormal basis at u ∈ X corresponding to
the standard basis for Rn under trivialization. We then have,

D(σ)(u) = ∑
i

ei∇̃ei(σ)(u) = (ui ∑
i

ei(
ds(u)
dei

+
1
2 ∑

j<k
ω̃k, j(ei)(e jek) · s(u))) (2.11)

D(σ)(u) = (ui ∑
i

ei ·
ds(u)
dei

+
1
2 ∑

i
∑
j<k

ω̃k, j(ei)(eie jek) · s(u)) (2.12)

Here the · represents Clifford multiplication. From the last expression, we see that the
operators D at the point p is of the form ∑

n
i=1 ei · ∂

∂ei
plus a zeroth order term involving no

derivative. In particular, we see that D is a linear first order operator.

For the case of a Spinc-lifting, P̃ and a U(1)-connection A on the determinant line bundle
L → M, the formula is as follows.

DA (σ)(u) = ∑
i

el ·
ds(u)
del

+
1
2 ∑

l
(A (el)el + ∑

j<k
ω̃k, j(ei)(e jek)) · s(u) (2.13)
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To know how DA changes with the connection A , and we have the following lemmas.
Lemma. Let A and A ′ = A + α be two U(1)-connections on the determinant line
bundle L of a Spinc structure P̃ for M. Then for any section ψ of SC(P̃), we have

DA ′
ψ = DA

ψ +
1
2

α ·ψ (2.14)

Lemma. Let M be a closed manifold with a spin or Spinc-structure P̃. Then the Dirac
operator D : SC(P̃)→ SC(P̃) is formally self-adjoint in the sense that

(D(σ1),σ2)L2 = (σ1,D(σ2))L2 (2.15)

where (·, ·)L2 is the L2 inner product on sections of SC(P̃) induced from the pointwise
Hermitian inner product on the fibers.
Proof. The Hermitian inner product on C∞ sections of SC(P̃) is given by

(D(σ1),σ2)L2 =
∫

M
⟨D(σ1,σ2)⟩dVolM (2.16)

where the inner product on the RHS is the pointwise hermitian inner product on the fibers
of the complex spin bundle. Let us fix a coordinate system at a point p so that the standard
unit tangent vectors {e1, . . . ,cn}, we have ∇eiei = 0 at that point. Computing at p ∈ M we
have

⟨D(σ1),σ2⟩p = ⟨∑
i

ei∇̃ei(σ1),σ2⟩p (2.17)

=⇒ ⟨D(σ1),σ2⟩p =−⟨∑
i

∇̃ei(σ1),eiσ2⟩p (2.18)

=⇒ ⟨D(σ1),σ2⟩p = ⟨∑
i

σ1, ∇̃ei(eiσ2)⟩p −
∂

∂ei
⟨σ1,eiσ2⟩p (2.19)

=⇒ ⟨D(σ1),σ2⟩p = ⟨∑
i

σ1,ei∇̃ei(σ2)⟩p + ⟨∑
i

σ1, ∇̃ei(ei)σ2⟩p −
∂

∂ei
⟨σ1,eiσ2⟩p (2.20)

=⇒ ⟨D(σ1),σ2⟩p = ⟨∑
i

σ1,ei∇̃ei(σ2)⟩p −
∂

∂ei
⟨σ1,eiσ2⟩p (2.21)

=⇒ ⟨D(σ1),σ2⟩p = ⟨σ1,D(σ2)⟩p −∑
i

∂

∂ei
⟨σ1,eiσ2⟩p (2.22)

Now let us define a complexified vector field V on M, i.e. a section of T M ⊗C by the
condition

⟨V (p),W (p)⟩= ⟨σ1,W ·σ2(p)⟩ (2.23)
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for all vector fields W and all p ∈ M. Then the above equalities can be written as

⟨D(σ1),σ2⟩p = ⟨σ1,D(σ2)⟩p −div(V )p (2.24)

All the quantities defined in this expression are global- this expression holds at every
point p ∈ M. By integrating over M, we have

⟨D(σ1),σ2⟩L2 = ⟨σ1,D(σ2)⟩L2 −
∫

M
div(V)dVolM (2.25)

and we’re done.

2.1 The symbols of D and DA

Definition. (Symbol of a first order differential operator) Let D be a first order differen-
tial operator from sections of a bundle E → M to sections of F → M. Then the symbol of
D, denoted by Symb(D) is a bundle map from π∗E to π∗F between the pullbacks of the
bundles over the cotangent bundle T ∗M of M.

The symbol of a differential operator is a bundle map which is a function only of its
leading order term. As for the discussions on Dirac operators, the symbol(s) should be a
function only of the first order term.
Let us fix a local coordinate (x1,x2, . . . ,xn) which are orthonomal at the a point p. Let us
assume that an operator D can be expressed in the local coordinates by

D(σ) = ∑
I

αI
∂ |I|

∂xI +(lower−order− terms) (2.26)

where the leading sum ranges over multi-indices I of total length |I|= n, and αI is a linear
map from E to F .
The symbol of D on a cotangent vector ζ ∈ T ∗

p M is defined as the linear map

Symb(D)(ζ ) = in ∑αIζ
I (2.27)

where ζ = (ζ1, . . . ,ζn) in the dual basis of T*M to (∂/∂x1, . . . ,∂/∂xn). Thus the symbol
of D on (T ∗M)p is given by

Symb(D)(ζ ) = i∑
j

ζ j · () (2.28)

where · is the Clifford multiplication.

For any non-zero cotangent vector ζ , Clifford multiplication by iζ induces an isomor-
phism from the fiber of SCP̃ to itself. This means that The Dirac operator is an elliptic
first order linear differential operator.
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2.2 Index Theory of the Dirac Operator
Let M be a closed, oriented, Riemannian 4-manifold. Let P̃ be a spin structure for M.
Since D : C∞(S+C(P̃))→C∞(S−C(P̃)) is an elliptic operator, it follows that kernel of D is
finite-dimensional, and that the image is a closed subspace of finite codimension.

Definition. (Index) The index of D is the complex dimension of the kernel minus he
complex dimension of the cokernel. [1]

The Atiyah-Singer Index theorem computes the index of the operator from this element
in relative K- theory, In this case of the Dirac operator, the index is Â(M)- the so-called
A-hat genus of M. For a closed oriented 4-manifold, we have

Â(M) =
∫

M
− p1(M)

24
=−σ(M)

8
(2.29)

where σ(M) is the signature of M. In the case of a Spinc-structure P̃ on M, the bundles in
question change, and the index formula gives

c1(det(P̃))2 −σ(M)

8
(2.30)

as the index of the Dirac operator in this context.

A couple of consequences of this theory:

• the Â-genus of a spin manifold is an integer

• the index of a spin 4-manifold is divisible by 8. (Actually, it is divisible by 16).
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Chapter 3

Seiberg-Witten Theory

The discussions in this chapter mostly follow [13] [11], [6], and [7].

Let M be a smooth Riemannian 4-manifold with a spinc structure s, its associated spinor
bundles W ±, and its determinant line bundle L . The objects we will be looking at are
pairs

(A,ψ) (3.1)

where ψ ∈ Γ(W +) or S+C(P̃) is a self-dual spinor field, and A ∈ Conn(L ) is a U(1)-
connection on the determinant line bundle L → M. The whole story can be summarised
as follows: We will be looking at solutions (φ ,A) to a couple of non-linear partial dif-
ferential equations called the Seiberg-Witten equations, consider their space of solutions,
from which we will form a moduli space where two solutions would be equivalent upto
the action of the gauge group G (L ).

3.1 The Seiberg Witten Equations
The SW-equations are:

DA
ψ = 0 (3.2)

F+
A = σ(ψ) = ψ ⊗ψ

∗− |ψ|2

2
Id (3.3)

If we have a moduli problem formulated in terms of differential equations, then we may
consider a functional of which the solutions represent the absolute minima. An example
of this is the case of the Yang-Mills functional, and the anti-self-dual equation for SU(2)-
Donaldson gauge theory.

Seiberg Witten Action. In the case of Seiberg-Witten gauge theory, such a particular
functional would be

S(A,ψ) =
∫

M
(|DA

ψ|2 + |F+
A |2 + κ

4
|ψ|2 + 1

8
|ψ|4)dvol (3.4)

The equations above are the Euler-Lagrange equations for this actional.
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3.1.1 Explanation of the Equations
DA is the Dirac operator induced by the connection A, so the first equation basically says
that φ should be in the kernel of this operator. F+

A is the imaginary-valued curvature
2-form of A, and F+

A = 1
2(FA + ∗FA) is its self-dual part. As to the right hand side of

the second equation, W + has a hermitian metric, and this complex vector space can be
identified with its dual via an anti-complex isomorphism. The image of a φ under this
isomorphism is defined by φ∗ which lives in the dual of ⊒+. So,

φ ⊗φ
∗ ∈ W +⊗ (W +)∗ ∼= EndC(W

+) (3.5)

3.1.2 Space of Configurations
The solutions of the SW equations are called (Seiberg-Witten) monopoles. We will pro-
duce a moduli space out of them from which we will construct the SW invriants of the
SpinC structure. For that, we need to talk about the space of solutions first.

Let us denote the space of unitary L2
2-connections on L by A 2

L (L ). (For any vector
bundle V over M, L2

k(V ) means the space of L2
k-sections of V .) Define C (P̃) to be the

space

C (P̃) = AL2
2
(L )×L2

2(S
+(P̃)) (3.6)

where AL2
2
(L ) is as we described. We have the choice to work with any strong or stronger

norm; the moduli space will turn out to be the same consisting of C∞ objects up to gauge
equivalence.

The tangent space at any point to C (P̃) is naturally identified with

L2
2((T

∗M⊗ iR)⊕S+P̃) (3.7)

This space has a natural L2-inner product associated with it.

Seiberg-Witten Functional We define the Seiberg-Witten functional as

F : C (P̃)→ L2
1((Λ

2
+T ∗X ⊗ iR)⊕S−(P̃)) (3.8)

by

F(A,ψ) = (F+
A −σ(ψ),DA (ψ)) (3.9)

In this context, Seiberg-Witten equations can be written simply as

F(A ,ψ) = 0 (3.10)

Lemma. The SW Functional F is a smooth mapping and its differential at (A,ψ) is given
by the following linear map.

DF(A,ψ) =

(
P+d −Dσψ

·1
2ψ DA

)
(3.11)
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where ·1
2ψ represents the Clifford multiplication map sending one-form α to the element

1
2α ·ψ ∈ L2

1(S
−P̃). Furthermore,

Dσψ
(η) = ψ ⊗η

∗+η ⊗ψ
∗− ⟨η ,ψ⟩+(⟨η ,ψ⟩)∗

2
Id (3.12)

This element is traceless, self-adjoint automorphism and hence is identified via Clifford
multiplication with a purely imaginary two-form.
The proof of this lemma involves direct computation of the derivatives, and also uses the
following ideas that F here is an affine mapping plus the quadratic mapping σ(ψ). The
affine map is continuous, hence smooth- and thus it follows from Sobolev multiplication
theorem that σ(ψ) is a smooth map.

3.2 The Group of Gauge Changes
The group of gauge changes is basically the group of Bundle Automorphisms. If we are
working with a Principal Spinc-bundle P̃ → M, we can choose these to be the automor-
phisms of the principal Spinc-bundle which cover the identity on the frame bundle of the
tangent bundle.

Result. Automorphisms of the principal Spinc-bundle that cover the identity on the frame
bundle of the tangent bundle can be given by maps from the manifold M to the center S1

of Spinc(4).

Another derivative on the bundle automorphism is then controlled, so that one can have
a suitable action, and the L2

3 maps are taken in this context. Finally we denote the space
of such mappings with the L2

3 − topology as G (P̃). This is a Hilbert manifold whose
tangent space at the identity is the L2

3−functions on M with values in iR⊂ C.

Result. G (P̃) is an infinite dimensional abelian Lie group with respect to pointwise mul-
tiplication. Its Lie Algebra is L2

3(M; iR) (the space of L2
3-sections of the trivial bundle

M× iR over M) with the trivial bracket.

3.2.1 Action of G (P̃) on the Space of Configurations
Let g ∈ G (P̃) be a group element. The action is given by

(A ,ψ) ·g = ((detg)∗A ,S+(g−1)(ψ)) (3.13)

Lemma. The above action of G (P̃) on C (P̃)is a smooth right action.
The proof of this theorem relies on the Sobolev multiplication theorems.

Lemma. Let g ∈ G and let ψ ∈ S+(P̃). Then

D (detg)∗A (S+(g−1)(ψ)) = S−(g−1)(DA
ψ) (3.14)

Proof. If ∇′ is the covariant derivative on S±(P̃) determined by (detg)∗A and the Levi-
Civita connection, and if ∇ is the covariant derivative on S±(P̃) determined by A and the
Levi-Civita connection, then

∇
′ = S±(g)∗∇ (3.15)
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It follows that

∇
′(S±(g−1)(ψ)) = S±(g−1)(∇ψ) (3.16)

The lemma follows from this since the Clifford Multiplication commutes with the auto-
morphisms S±(g).

Result. The Seiberg-Witten equations are invariant under the action of G (P̃).

3.3 The Quotient Space
We have an action of G (P̃) on C (P̃), and now we can talk about the quotient of the action.
The point of view that one wants to adopt is, since the SE equations are invariant under
the action of the gauge group G (P̃) But, before we do that- we should wait and ask, ”Can
we reasonably take the quotient at all?” Let us first look at the various types of stabilizers
that appear in this group action. Our following discussion assumes M is connected.

Lemma. The stabilizer in G (P̃) of an element (A ,ψ) ∈ C (P̃) is trivial unless ψ = 0, in
which case the stabilizer is the group consisting of the constant maps M → S1- a group
naturally identified with S1.

M is connected =⇒ the stabilizers of any connection A is exactly the group of constant
maps from M to S1. This subgroup acts freely on ψ unless ψ is identically zero.

Definition. (Irreducible and Reducible) We say that an element (A ,ψ) is irreducible if
ψ ̸= 0, and otherwise, it is reducible. The (open) subset of irreducible configurations in
C (P̃) is denoted by C ∗(P̃).

For reducible solutions, i.e. for the case ψ = 0, the Seiberg-Witten equations become

F+
A = 0 (3.17)

whose solutions must be all anti-self-dual connections on L - which are also studied in
Donaldson gauge theory. So somehow the Seiberg-Witten equations are also capturing
something that the Donaldson gauge theory tries to do.
Theorem. If b+2 (M)≥ 1, then for a generic Riemannian metric, the Seiberg-Witten mod-
uli space M is either empty, or is a smooth manifold of dimension

dimM =
1
4
(c1(P̃)2 −2χ(M)−3 · sgnM) (3.18)

Theorem. If b+2 (M) ≥ 2, then for every two generic metrics g0 and g1, and for every
generic path gt connecting them, all corresponding moduli spaces Mt are smooth mani-
folds (maybe empty), and draw smooth cobordism between M0 and M1.

dimM =
1
4
(c1(P̃)2 −2χ(M)−3 · sgn(M)) (3.19)

Here b+2 (M) is the dimension of the maximal positive subspace for the intersection form
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on H2, sgn(M) is the ”sign” of the manifold, depending on the orientation, c1(P̃) is the
first Chern class of the Principal Spin(n)-bundle (or Spinc(n)−bundle) P̃, and χ(M) is
the Euler characteristic of M.

For the proof that M is a manifold, Along with perturbing the metric, one of the two SW
equations is also perturbed to

F+
A = σ(ψ)+ iη+ (3.20)

for some parameter η+ ∈ Γ(Λ2
+). This perturbative approach is quite fruitful for appli-

cations of Seiberg-Witten theory in the cases of Symplectic manifolds, where a suitable
eta+ is ”grown to infinity”. A proof that it is sufficient to perturb only the metric and
not the equations is in the book by T. Friedrich titled Dirac Operators in Riemannian
Geoemtry. [TFr97]

The main consequence of the above theorem seems to be that when b+2 (M) ≥ 2, the
Seiberg-Witten moduli space M determines a well-defined bordism class inside Conn(L )×
Γ(S+C(P̃)) modded out by G , which only depends on the manifold M, and the spin-
structure P̃, but not on the Riemannian metric. Therefore, by evaluating various cohomol-
ogy classes on M , we can obtain numerical invariants of 4-manifolds M which would
then only depend on the Chern class c1(P̃).

Theorem. The moduli space M is compact.

To prove this, one needs to use Uhlenbeck’s general compactness criterion alongwith
some apriori pointwise bounds on the spinor fields (which arises due to the special nature
of the SW equations) and hence on the self-dual part of the curvature of any solution.
There are also some bounds the come from the assumption that the formal dimension of
the moduli space is non-compact, which implies an L2-bound on the curvature, and even-
tually compactness is established.

Theorem. The SW moduli space M is non-empty for at most finitely many spinc-
structures.
Proof. We first obtain a bound on the curvature FA of any solution (A ,ψ), then use the
result that [FA ] =−2πic1(P̃), restrict to positive-dimensional moduli spaces to conclude
that c1(P̃) must be condined to a finite subset of H2(M;Z).
Let us find the bound on the curvature.

Theorem (Integral Curvature Bound) If (A ,ψ) is a solution of the SW equations, then
we must have:

2
√

2||F+
A || ≤ ||Scal|| (3.21)

where || · || is the L2-norm ||α||2 =
∫

M |α|2dVolM, and ”Scal” refers to scalar curvature.
Proof. The proof of the Integral Curvature bound uses the Lichnerowicz formula which
is:

(DA )∗(DA )ψ = (∇A )∗(∇A )ψ +
1
4

scal ·ψ +
1
2

F+
A ψ (3.22)
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The solutions of SW equations (A ,ψ) would satisfy DA ψ = 0 and F+
A = σ(ψ). Pluggin

these in the Lichnerowitz formula, we get:

0 = (∇A )∗(∇A )ψ +
1
4

scal ·ψ +
1
4
|ψ|2 ·ψ (3.23)

Taking the inner product with ψ on both sides, we get

0 = ⟨(∇A )∗ (∇A )ψ,ψ⟩+ 1
4
⟨scal ·φ ,φ⟩+ 1

4
|φ |4. (3.24)

Then integrating over M (using the Riemannian volume element dVolM, using the fact
that (∇A )∗ is adjoint to (∇A ), we get

0 =
∫

M
|∇A

ψ|2dVolM +
1
4

∫
M

scal · |ψ|2dVolM +
1
4

∫
M
|ψ|4dVolM (3.25)

We rearrange this equality by separating the scalar curvature term. and use the Cauchy-
Schwarz inequality on the right (and let us drop with the subscripts M and the measure
dVolM for a bit):

1
4

∫
|ψ|4 ≤

∫
|∇A

ψ|2 + 1
4

∫
|ψ|4 = 1

4

∫
(−scal)|ψ|2 ≤ 1

4
(
∫
(scal)2)1/2(

∫
|ψ|4)1/2

(3.26)

This means that

(
∫

|ψ|4)1/2 ≤ (
∫
(scal)2)1/2 (3.27)

But |σ(ψ)|= 1
2
√

2
|ψ|2 = F+

A . So,

2
√

2(
∫

|F+
A |2)1/2 ≤ (

∫
(scal)2)1/2 (3.28)

which is exactly what we wanted to show in terms of L2-norms.
Lemma. Let α be any closed 2-form on a 4-manifold. Then:

[α] · [α] = ||α+||2 −||α−||2. (3.29)

Proof. We have to use the following:

α
+∧α

− = 0,∗α
+ = α

+,∗α
− =−α

−,β ∧∗β = |β |2. (3.30)

[α] · [α] =
∫

α ∧α =
∫
((α++α

−)∧ (α++α
−)) (3.31)

=⇒ [α] · [α] =
∫
(α+∧α

+)+
∫
(α−∧α

−) (3.32)

=⇒ [α] · [α] =
∫
(α+∧ (∗α

+))+
∫
(α−∧ (−∗α

−)) (3.33)
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From which the statement follows automatically.

Applying this lemma to FA , with the fact that [FA ] =−2iπc1(L ) =⇒ i
2π
[FA ] = c1(L ),

we get:

4π
2c2

1 = ||F+
A ||2 −||F−

A ||2 ≤ ||F+
A ||2 ≤ 1

8
||Scal||2. (3.34)

We have an upper bound on c1(L ) · c1(L )- and it only makes sense to look at these
moduli spaces that are expected to be of positive dimension. Using the formula dimM −
1
4(c

2
1 −2χ(M)−3 · sgn(M), it is concluded that

2χ(M)−3 · sgn(M)≤ c1 · c1 ≤
1

32π2 ||scal||2 (3.35)

Thus, only finitely many choices of C1(L ) from the integral lattice H2(M;Z) have any
chance to yield a non-empty moduli space.
Theorem. The moduli space M is always compact.

Proof. First we need to obtain a pointwise a priori bound on |ψ|:

Lemma (Pointwise Curvature Bound) If (A ,ψ) is a solution of the SW equations, then
either we have

|ψ|2 ≤ maxx∈M{−scal(x)} (3.36)

or ψ is identically zero.

Proof. If f : M → R has a local maximum at some p ∈ M, then it must have (∆ f )(p) ≥
0, where ∆ = −∑∂ek∂ek is the Laplace operator. Because ∆ f = −Tr(Hessian( f )), and
a maximum at p implies that all the eigenvalues of Hessian( f ) are non-positive, so it
follows that (∆ f )(p)≥ 0.
Then choosing an Orthonormal local frame {e1,e2,e3,e4} in the tangent bundle T M, we
compute.

∆(|ψ|2) =−∑∂ek∂ek⟨ψ,ψ⟩R (3.37)

=⇒ ∆(|ψ|2) =−∑∂ek2⟨∇A
ek

ψ,ψ⟩ (3.38)

=⇒ ∆(|ψ|2) =−∑2⟨∇A
ek

∇
A
ek

ψ,ψ⟩−∑2⟨∇A
ek

ψ,∇A
ek

ψ⟩ (3.39)

Here we have used that ∇A is compatible with the fiber-metric of S+C(P̃). We arrange to

∆(|ψ|2)+2∑ |∇A
ek

ψ|2 =−∑2⟨∇A
ek

∇
A
ek

ψ,ψ⟩ (3.40)

Assuming that p ∈ M is the absolute maximum point of ψ|2, then ∆(|ψ|2)|p ≥ 0. There-
fore, at p, we will have

−∑2⟨∇A
ek

∇
A
ek

ψ,ψ⟩ ≥ 0 (3.41)
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On the other hand, by taking inner-product with test-spinor fields φ , integrating over M,
and using the idea due to Uhlenbeck that on compact manifolds, divergences integrate
to 0, we can arrive at the following result that if the chosen local frame {e1,e2,e3,e4}
in T M is such that at p, the Levi-Civita connection has ∇eie j|p = 0 (so called geodesic
coordinates),

(∇A )∗(∇A )ψ =−∑(∇A
ek
)(∇A

ek
)ψ (3.42)

Implies that at the maximum point p, we have

2⟨(∇A )∗(∇A )ψ,ψ⟩|p ≥ 0 (3.43)

If we look again at the Lichnerowicz formula

(DA )∗(DA )ψ = (∇A )∗(∇A )ψ +
1
4

scal ·ψ +
1
2

F+
A ψ (3.44)

applied to a SW solution (A ,ψ) exactly as in the proof of the integral curvature bound
theorem, we are led to

0 = ⟨(∇A )∗(∇A )ψ,ψ⟩+ 1
4

scal · |ψ|2 + 1
4
|ψ|4. (3.45)

At the maximum point p, the first term is positive and that forces

1
4

scal(p)|ψ(p)|2 + 1
4
|ψ(p)|4 ≤ 0 (3.46)

If ψ is non-zero somewhere, i.e. if it is not zero everywhere, then ψ(p) ̸= 0, and we can
cancel:

|ψ(p)|2 ≤−scal(P) (3.47)

Since −scal(p)≤ max−scal(x) and |ψ(x)| ≤ |ψ(p)|, the result follows.

After this pointwise bound on |ψ| has been established, one uses a standard technique
called ”elliptic bootstrapping” arguments to bound all the higher derivatives of both ψ

and A , deducing the compactness of the moduli space.

Result. M is orientable, and its orientations correspond to orientations in the vector
space H1(M;R)⊗H2

+(M;R).
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Chapter 4

Seiberg-Witten Invariants

The discussions in this chapter mostly follow [7] [6] [11] [10].

We’ve seen that the Seiberg-Witten equations have some nice moduli spaces. There is
something more. It can be further shoun that for simply connected M the natural am-
bient space of M , which is the space of all connections-and-spinor fiels pairs modulo
gauge-equivalence, has the homoptopy type of CP∞- which leads to the result that the
cohomology ring of the ambient space is Z[u] for a degree-2 class u. So, if M is even
dimensional, we can evaluate the appropriate class u∪u∪ ·· · ∪u (repeated cup products
with itself) on it and obtain a numerical invariant of M as the following.

S W M(P̃) =
∫
M

u∪u∪·· ·∪u (4.1)

We call it the Seiberg-Witten invariant of the SpinC-structure P̃. It can be shown that it
will only depend on M, and the first Chern class c1(P̃).

If the moduli space M is odd dimensional, then the best we can do is to define

S W M(P̃) = 0 (4.2)

and no information is obtained. There is a result that says that dimM is odd if and only
if b+2 (M) is even. So in case b+2 (M) is even, the SW invariants are blind.

What about non-simply-connected cases?
In the above discussion, we saw what to do with the simply connected cases, but that
would be too restrictive while talking about 4−mani f olds, and specially because there
are infinitely many diffeomorphism classes. In any case, the non-simply connected cases
are also dealt with in a similar way. The moduli spaces in that case are either all even, or
all odd dimensional depending on whether- not b+2 - but

b+2 (M)+b1(M)+1 (4.3)

is even or odd. The cases b+2 (M)+b1(M) = even is particularly uninteresting here since
then dimM would be odd, the homology class of M become trivial and SW can tell us
nothing.
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4.1 Simple Type Conjecture (Open)
Statement. For any simply-connected 4-manifold with b+2 ≥ 2, if the Seiberg-Witten
moduli space is non-empty, then it must be zero-dimensional, and thus consists of finitely
many isolated points.
If this were true, then the implications would be enough to merely count (with signs) their
solutions.Symplectic 4-manifolds constitute a large class of 4-manifolds for which the
above conjecture is true.
There is no known example of a simply-connected manifold with b+2 ≥ 2 that has higher-
dimensional moduli spaces. On the other hand, there are examples from non-simply-
connected cases and of manifolds with b+2 = 1 that each have SW moduli spaces of arbi-
trarily high dimensions.

Definition. (Simple-type manifold) A 4-manifold for which only 0 dimensional SW mod-
uli spaces appear is said to be of Seiberg-Witten type, or simple type.

From our earlier discussion, we saw that

dimM =
1
4
(c1(P̃)2 −2χ(M)−3 · sgn(M)) (4.4)

So, it’s interesting that 0-dimensional moduli spaces occur exactly for those Spinc-structures
for which

c1P̃ · c1P̃ = 2χ(M)+3 · sgn(M) (4.5)

-and these are exactly the SpinC structures that arise from almost-complex structures.
There is a result that says that if M admits an almost-complex structure, then b+2 (M)+
b1(M) must be odd- so it’s good on that end as well.

If the above conjecture turns out to be correct, then one can think of the SW invariants as
an invariant no only of the SpinC-structure, but also of the almost-complex structures. In
the following part of this chapter, we will try to see some results that would follow if this
conjecture is true.

4.2 Main Results and Properties
Definition. (The invariants) The SW invariant is a map

S W M : {Spinc − structures−on−M}→ Z (4.6)

with S W M(P̃) defined by counting the number of solutions of the SW-equations for
Spinc structure P̃, considered up to gauge equivalence:

S W M : #({(A ,ψ)|DA
ψ = 0,F+

A = σ(ψ)}/G (P̃) (4.7)
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4.2.1 Sketch of the Seiberg-Witten Proof of Donaldson’s Theorem
Definition. (Intersection form) Let M be a compact, oriented, simply-connected 4-manifold.
The Poincare-duality isomorphism between homology and cohomology is equivalent to a
bilinear form

Q : H2(M;Z)×H2(M;Z)→ Z. (4.8)

This is called the intersection form of the manifold.

Donaldson’s Theorem. If M is a smooth 4-manifold with negative-definite intersection
form, then in fact, its intersection from must be

QM =⊕m[−1] (4.9)

Proof. (Due to P. Kronheimer and N. Elkeis) Assume that M is a smooth 4-manifold with
negative-definite intersection form. In other words, b+2 (M) = 0 and thus b2(M) = b−2 (M)
and sgn(M) =−b2(M).
Let w be any characteristic element of M. Then we must have w ·w = sgn(M)(mod8) and
hence

w ·w+b2(M) = 0(mod8) (4.10)

Characteristic elements w correspond to Spinc-structures P̃ with c1(P̃ = w. The virtual
dimension of the corresponding Seiberg-Witten moduli space is

vdimM =
1
4
(w ·w−3 · sgn(M)−2 ·χ(M)) (4.11)

=⇒ vdimM =
1
4
(w ·w−3 · sgn(M))−1 (4.12)

A consequence is that the dimension of the moduli space is always odd.
Assume that there is some characteristic element w for which the virtual dimension vdim(M )
is non-negative- that is to say, at least 1. Then the moduli space is either empty or a sin-
gular manifold of the expected dimension. Since b+2 (M) = 0, there are always reducible
solutions in M which here cannot be empty.

The space M 0 of Seiberg-Witten solutions modulo the action of

G = g : M → S−1|g(p) = 1 (4.13)

is a smooth manifold of dimension vdim(M )+ 1. It’s dimension is even and at lease 2.
The group S1 acts on M 0 with fixed points at the reducible solutions, and its quotient is
M .

Assume first that H1(M;R) = 0. Then there is a unique gauge class of reducible solutions.
In other words, there is only one fixed point of the action of S1 on M .

For the manifold M 0, a discussion in terms of the complex

0 → TG )′L |1
dg−→ T

Γ(SCP̃+)×Conn(L )|(A,ψ)
dS W−−−→ T

Γ(SCP̃−)×iΓ(Λ2
+)
|(0,0) → 0
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leads to an identification of the tangent space of M 0 with the first cohomology group of
this complex,

TM 0|[A,ψ] = H 1
(A,ψ) (4.14)

The only difference now is that the tangent spact is not the full space iΓ(R)= i f : M → iR,
but its codimension 1 subspace of maps with f (p) = 0.
At every reducible solution (0,A), the derivatives are

dS W |(0,A)(iν ,ψ) = (DA
ψ, id+

ν),dg|1(i f ) = (0,2id f ), (4.15)

and thus the tangent space to M 0 at [0,A] is merely H(0,A)1 = Ker DA since H1(M;R
was assumed to be trivial.
We think of TM )|[(0,A)] = KerDA as an approximation to the manifold M 0 around the
point [0,A]. The proof then applies Kuranishi techniques which was created by M. Ku-
ranishi in the paper On the locally complete families of complex analytic structures to
study moduli spaces of complex varieties. Its use in gauge theoretic ideas originates with
Atiyah, Hitchin and Singer’s Self duality in four dimensional Riemannian Geometry.

The main proof also requires to use the following algebraic result proved in the paper A
characterization of Zn lattice by Elkies. See [4]

Theorem. ([2]) Let Q : Z×Z→ Z be a symmetric unimodular biinear form. If Q is
neither ⊕[−1] nor ⊕[1], then there exists a characteristic value w such that |w ·w|< rankQ.
Theorem. If M is a smooth manifold with a negative-definite intersection form, then for
every characteristic element w of M, we must have w ·w ≤−b2(M).

Corollary. If M is a smooth manifold with definite intersection form, then QM cannot be
even.
Proof. Any even form would have w = 0 as characteristic element, and thus w ·w = 0 >
−b2(M) which is contradictory.
Consequence. E8 ⊕E8 is out of the smooth realm. [3]
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4.2.2 Seiberg-Witten and Donaldson Theory: Witten Conjecture
In a fundamental paper, Kronheimer and Mrowka described a relation that constrains the
values of the Donaldson invariants for a manifold of Donaldson finite type- which is a
rather technical hypothesis. The polynomial invariants are defined in terms of homology
classes α ∈ H2(M;Z) and a moduli space of Anti-self-dual SU(2)− connections on a
bundle E with instanton number k = c2(E). The moduli space in the Donaldson theory,
M ASD

k has a dimension = 8k−3(b+2 +1).

Definition. M is of Donaldson type if the polynomial invariant satisfies

qd−4(α) = 4⟨µ(α)∧ν
2,M ASD⟩, (4.16)

where α = (α1, . . . ,αd−4).

The following result is due to Kronheimer and Mrowka, and is true for manifolds of Don-
aldson Simple Type.

Theorem. Let M be a simply-connected manifold of Donaldson simple type with b2+ > 1
odd. Combine the Donaldson polynomial invariants qd in the expression

q = ∑
d

qd

d!
(4.17)

Then this expression satisfies

q(α) = exp(
Q(α)

2
)∑

k
akexk·α (4.18)

Here Q is the intersection from of the four-manifols M and the classes

xk ∈ H2(M;Z) (4.19)

are called the Kronheimer-Mrowka basica classes. They are subject to constraints that
the mod 2 reductions of each is the Stiefel-Whitney class w2(M), and the corresponsding
coefficients are non-zero rationals.

Edward Witten has a still open conjecture about the relationship between the SW invari-
ants and the Donaldson invariants which is stated below.

Conjecture. (Witten) In the expression

q = exp(
Q
2
)∑

k
akexk (4.20)

the basic classes xk ∈H2(M;Z) are exactly the Seiberg-Witten basic classes, namely those
that satisfy

s2
k = c1(

√
Lk)

2 =
2χ +3σ

4
, (4.21)
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and correspond to a Spinc-structure P̃ with non-trivial Seiberg-Witten invariant,

S W M(P̃) ̸= 0. (4.22)

Moreover, the corresponding ak is exactly, upto a topological factor, the Seiberg-Witten
invariant S W M(P̃), that is- we have

ak = 22+7χ(M)+11σ(M)S W M(P̃) (4.23)

A related conjecture:

Conjecture. A Simply connected manifold X is Donaldson simple type if and only if
it is of a Seiberg-Witten simple type, namely that if the only non-trivial SW invariants
correspond to the choice of a Spinc-structure such that dim(M ) = 0.

The physics-way to approach the conjectured duality between SW gauge theory and Don-
aldson gauge theory is through a twisted SUSY QFT, and by means of a term called ”S-
duality”, which are not well understood mathemtically. The process is roughly as follows.

We start with a higher dimensional theory, from which we can get some other theory
by dimensional reduction. What goes on is a compactification process- where physicists
would say- this and this dimensions have been ”curled up”. But there are essentially a lot
of ways of doing these compactifications- the process is not unique.
Starting from the same theory, different sort of compactifications and twists can lead to
different types of theories. But physicists argue that since they come from the same theory
in a higher dimension, there should be some kind of duality going on.

In String theory, people have found out that the Donaldson gauge theory and SW gauge
theories come from a common theory ,but in different limits. Trying to argue that there
would be some duality (perhaps also some obstructions) becuase they arise from the same
theory by different twists or limits is essentially, the whole essence of many duality-
arguments that physicists now-a-days make, and S−duality also falls under this- at least
this is what I could decipher.

Mathematicians are also trying to understand these problems and are trying to formulate
these things in a rigorous way. Regarding the conjectures which are widely believed to
be true but are still open, there have been a detailed strategy lined out by Pidstrigatch and
Tyurin. The main idea of the strategy is to relate Donaldson and Seiberg-Witten theory
with a ”mixed theory” of non-abelian monopoles, designed in such a way that the Don-
aldson and the SW moduli spaces appear as singular submanifolds of the moduli space
M of non-abelian monopoles. In this way, the larger moduli space describes a cobor-
dism between the links of the two types of moduli, thus defining a relation between the
invariants- which turns out to be the one prescribed by the Witten conjecture.

Even though the strategy has been clearly outlined, the actual construction of the cobor-
dism presents a lot of analytical difficulty. Most of the difficulty lies in the lower strata
of the moduli space of non-abelian monopoles. The compactness argument fails in the
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non-abelian case. Infact, the moduli space in the Donaldson gauge theory itself is non-
compact, and a lot of analytical tools need to be employed for compactificaiton.

There are a series of papers by Feehan and Leness where they try to tackle the problem
by a large display of technical skills. There is an Uhlenbeck compactification M̃ of the
moduli space of non-abelian monopoles, obtained by adding lower dimensional strata-
where each strata may themselves contain reducibles. Also, like many invariants of this
language, the Donaldson invarians are obtained by integrating some cohomology classes
over the fundamental class of M . If there is a non-trivial intersection with the links of the
reducibles in the lower strata, then that is a problem, and one expects that an analogue to
the Kotschick-Morgan Conjecture holds true.

Conjecture (Kotschick-Morgan) The Wall-crossing terms in the Donaldson gauge theory
only depend on the homotopy type of teh manifold M. [Kot89]

A substantial part of Feehan and Leness is put into proving an algoue of the KM conjec-
ture, which had not been worked out even in the simpler cases, and in the simpler context
of ASD moduli space. [8] [9]

33



Bibliography

[1] Singer I.M. Atiyah M.F. “The Index of Elliptic Operators I”. In: Annals of Mathe-
matics (1968).

[2] Noam D. Elkies. “A characterization of the Zn lattice”. In: Math. Res. Lett. (1995).

[3] Michel Kervaire. “A manifold which does not admit any differentianble structure”.
In: Comment. Math. Helv. (1960).

[4] Peter B. Kronheimer. “Embedded surfaces and gauge theory in three and four di-
mensions”. In: Surverys in Differential Geometry, Vol III (1998).

[5] Michelson Lawson. Spin Geometry. Princeton University Press, 1990.

[6] Matilde Marcolli. Seiberg-Witten Gauge Theory. Hindustan Book Agency, 1999.

[7] John Morgan. The Seiberg-Witten Equations and Applications to the Topology of
Smooth Four-Manifolds. Princeton University Press, 1996.

[8] Thomas Leness Paul Feehan. “On Donaldson and Seiberg-Witten Invariants”. In:
Proc. Sympos. Pure Math (2003).

[9] Thomas Leness Paul Feehan. “PU(2) monopoles I. Regularity, Uhlenbeck com-
pactness and Transversability”. In: J. Differential Geom. (1998).

[10] P.B. Kronheimer S.K. Donaldson. The Geometry of Four Manifolds. Oxford Sci-
ence Publications, 1990.

[11] Alexandru Scorpan. The Wild World of 4-Manifolds. American Mathematical So-
ciety, 2005.

[12] Loring W. Tu. Differential Geometry. Springer, 2017.

[13] Edward Witten. “Monopoles and 4-manifolds”. In: Math. Res. Letters 1 (1994).

34


	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	Nomenclature
	Clifford Algebras and Spin Groups
	Clifford Algebras
	Pin(V) and Spin(V) groups
	Splitting and Complexification of Clifford Algebras
	The Complex Spin Representation
	Spin and Spinc-structures
	Spin Bundles
	Spinc Bundles

	Connections and Curvature
	Formulae for the Connection One-form and the Covariant Derivative in a Local Trivialization
	The Curvature of a Connection

	Action of the Group of Changes of Gauge

	The Dirac Operator
	The symbols of D and DA
	Index Theory of the Dirac Operator

	Seiberg-Witten Theory
	The Seiberg Witten Equations
	Explanation of the Equations
	Space of Configurations

	The Group of Gauge Changes
	Action of G() on the Space of Configurations

	The Quotient Space

	Seiberg-Witten Invariants
	Simple Type Conjecture (Open)
	Main Results and Properties
	Sketch of the Seiberg-Witten Proof of Donaldson's Theorem
	Seiberg-Witten and Donaldson Theory: Witten Conjecture


	Bibliography

