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Abstract

With the revolution of blockchain technology, smart contracts open a door for pro-
grams to be executed inside the blockchain. This allows programmers to build appli-
cations and deploy them in different blockchain systems. Over the years these smart
contracts have been redefined offering transparency, immutability, and distributed
consensus. However, if we were to evaluate how each of these applications performs
and which parameters are used to identify the performance, it would be unclear given
the scarcity of a proper blockchain evaluation system in today’s time. Our research
aims to establish a comprehensive performance evaluation protocol specifically for
public blockchains, referencing insights from seminal works. Our goal is to leverage
important metrics that will be necessary to provide a standardized framework for
evaluating and comparing the performance of blockchain based applications. We
aim to help developers by providing a framework that lets them measure and com-
pare their smart contracts on different blockchain systems. This solves the problems
they face when deploying smart contracts and allows us to practically test important
theories about different blockchain systems.

Keywords: Blockchain; Performance; Evaluation; Ethereum; Tron.
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Chapter 1

Introduction

The invention of blockchain technology has significantly altered the digital land-
scape, introducing a new paradigm in the form of public blockchain applications.
These applications, renowned for their transparency, immutability, and distributed
consensus, have revolutionized various sectors. However, this evolution brings forth
a critical challenge: the lack of a systematic and reliable protocol for evaluating the
performance of public blockchain applications. This thesis research tries to over-
come this challenge by benchmarking important metrics of a blockchain application
and how public blockchains perform under different loads of data.

The current state of blockchain technology is marked by a notable absence of uni-
formity in performance evaluation methodologies. This lack of consistency becomes
particularly evident when assessing platforms such as Ethereum [2], Solana [8], Tron
[34], etc. where diverse approaches and metrics have led to a fragmented understand-
ing of the efficacy of blockchain systems. This prevailing inconsistency underscores
the pressing need for a unified benchmark against which performance can be mea-
sured. Our research aims to unify different evaluation methods into a clear frame-
work, specifically for public blockchain systems. We want to help developers build
blockchain solutions that are efficient and sustainable.

The primary objective of this thesis research is to develop a framework that provides
user evaluations as to how a deployed application in the public blockchain system
performs. We execute the framework using different testnets of blockchain systems
to demonstrate its effectiveness in delivering meaningful performance insights.

Challenges like the lack of standardized evaluation metrics, the rapidly evolving
nature of blockchain technology, and the diversity in blockchain architectures also
need addressing.

1.1 Problem Statement

Currently, assessing the performance of applications is a crucial requirement in pub-
lic blockchain systems. However, the existing situation reveals a discrepancy in the
methodologies used to evaluate blockchain platforms. The use of diverse parameters
and inconsistent experimental setups across different research efforts has resulted in
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a puzzled state, making it difficult to establish a unified approach.

Consider, for instance, the evaluation of Ethereum, where some studies opt for pri-
vate network configurations, while others leverage tools like Ganache [31], Hardhat,
or Truffle. Recently, the usage of Ganache and Truffle suite is being sunsetted by
their developers which makes it harder to test Ethereum smart contracts before de-
ploying them in the mainnet.

A similar divergence unfolds across various other blockchain platforms, such as
Solana and Tron regarding their metrics, implementations, and methodology cri-
teria. These experimental setups are done in various ways which adds a sort of
complexity to the performance measurement paradigm.

- First problem is that the existing methods evaluate blockchain performance, but
there are no methods to assess the performance of blockchain applications.

Current evaluation methods focus on the overall performance of blockchain plat-
forms. However, they do not provide specific tools or protocols to measure how
individual blockchain applications perform when deployed. This gap makes it diffi-
cult to understand the effectiveness of decentralized applications (dApps) and smart
contracts within different blockchain platforms.

- Second problem is about the current methods that lack user-friendly interfaces or
easy ways for users to test their smart contracts.

Most existing performance evaluation tools are technical and require a deep under-
standing of blockchain systems, making them inaccessible to everyday users and
developers. Without user interfaces or easier methods to upload and test smart
contracts, users face significant challenges in deploying and optimizing their appli-
cations, hindering adoption and innovation in the blockchain field.

- Third problem is that there are limited or no options for benchmarking data and
resource-heavy smart contracts.

Evaluating smart contracts that handle large amounts of data or require substantial
computational resources is challenging due to the lack of specialized benchmark-
ing tools. Existing frameworks do not adequately support the testing of resource-
intensive applications, preventing developers from accurately measuring performance,
identifying bottlenecks, and optimizing their smart contracts for better performance.

1.2 Research Objectives

Our research aims to create a standardized and adaptable framework that serves
as a foundation for evaluating the performance of applications when deployed in
various public blockchains. This framework will incorporate essential components
and guidelines to ensure consistency and comparability across evaluations. To reach
such a conclusion, we have outlined the specific research objectives focusing on the
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development of such a comprehensive evaluation system:

i. RO1: Metrics Prioritization and Integration: To categorize and priori-
tize key performance metrics significant to public blockchains. This objective
involves a thorough analysis of existing literature to determine the significant
metrics that largely reflect the effectiveness and efficiency of public blockchains.

ii. RO2: Construct Best Practices for Experimental Setup: By stating
and rationalizing top practices for doing experiments and implementations re-
garding public blockchains in research scenarios. Through the establishment of
a standardized approach, aims to reduce experimental inconsistency and boost
the reliability of performance evaluations.

iii. RO3: Guidelines for Resource Efficiency: To highlight the implication
of resource efficiency by focusing on metrics related to throughput utilization,
Overall response time, wallet consumption, and network usage.

iv. RO4: User-Focused Performance Emphasis: To prioritize parameters
that directly influence the user experience on public blockchains, such as trans-
action throughput and overall response time. This will highlight the importance
of lining up the evaluations with real-world usability for end-users.

v. RO5: Practical proof of Consensus Mechanisms: Our research aims to
practically prove the theories of consensus mechanisms such as Proof of Stake
(POS) and delegated Proof of Stake (dPOS). To analyze how each blockchain
having different consensus performs against each other when the same applica-
tion is deployed in both systems.

Through these research objectives, we hope to contribute a practical and applicable
framework, raising a clear approach to evaluating the performance of applications
deployed in public blockchains.

1.3 Report Structure

In this report, we briefly discuss the evaluation of blockchain performance and our
research objectives in chapter 1.

In chapter 2, the background of blockchain and information needed for evaluating
blockchain performance are discussed.

In chapter 3, we have presented our literature review. A literature review consists
of seminal works that gave us deep insights as to how we can properly develop a
public blockchain performance framework.

In chapter 4, we provide our analysis of the evaluation criteria from all the past
research work we have reviewed. Additionally, we propose our system and research
methodology by addressing the metrics we have selected.

3



In chapter 5, we present our framework’s software architecture, protocol flow, and
implementation.

In chapter 6, we analyze the results we found after measuring and benchmarking
our system with different data loads.

In chapter 7, we discuss our findings and result analysis of our research objectives.
We also address the advantages, and challenges we faced while doing the research
limitations, and future work of our thesis.

In chapter 8, we focused on the significance of our report and how it makes an im-
pact on future research and real-world use.
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Chapter 2

Background

2.1 Blockchain

Blockchain technology has gained a lot of popularity in recent years for its poten-
tial to change various industries by providing secure and decentralized solutions for
managing data and transactions. As the top organizations worldwide look into using
blockchain in their systems, it’s important to thoroughly assess how well this tech-
nology performs. This thesis aims to explore the details of blockchain performance
evaluation, including the key factors, methods, and challenges involved in assessing
the efficiency and effectiveness of blockchain systems.

2.2 The Evolution of Blockchain Technology

Early research began in the 1980s but the research didn’t take off until 2009 with the
revolution of Bitcoin [1]. The following section will discuss the origin of blockchain,
how it was initially used by cryptocurrencies, and how it is now used for other
purposes.

2.2.1 Origin of Blockchain Technology

The idea of a decentralized distributed ledger system was introduced during 1980s
by the researchers like David Chaum, Stuart Haber, and others. However, the
idea of blockchain mostly became popular with the introduction of Bitcoin in 2009
by someone named Satoshi Nakamoto [1]. Blockchain was the technology behind
Bitcoin, providing a decentralized and transparent ledger for recording transactions.
The decentralized nature of blockchain, along with its use of special codes, ensures
the safety and security of the data stored within the system.

2.2.2 Use of Blockchain Beyond Cryptocurrencies

While blockchain first became popular with cryptocurrencies, its uses quickly ex-
panded to various industries such as finance, supply chain, healthcare, and more.
Smart contracts, which are self-executing contracts with the terms written into code,
further expanded the use of blockchain technology. At present there are various uses
of blockchain technologies As the number of uses grew, it became very important to
assess how well blockchain systems perform.
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2.3 Key Components of Blockchain Performance

Key factors such as consensus mechanisms, scalability, speed of transactions, and
security are crucial for evaluating a blockchain system’s performance. Understanding
how these elements work in a given blockchain network, and how they perform under
different conditions is important for our evaluation.

2.3.1 Consensus Mechanisms

One of the most important things that affect blockchain performance is the way that
agreement is reached on the network. Traditional proof-of-work (PoW) and newer
alternatives like proof-of-stake (PoS), delegated proof-of-stake (DPoS), and practical
Byzantine fault tolerance (PBFT) have a big impact on the speed, scalability, and
energy efficiency of blockchain networks [26]. It’s important to evaluate the good
and bad points of different ways of reaching an agreement to understand how they
affect performance.

Proof of Work

The original consensus mechanism for Bitcoin is PoW [1]. In this consensus mecha-
nism, the computational resource is used to help miners to solve complex mathemat-
ical puzzles. When the puzzle is solved the person first who solves it has the right
to add a new block to the blockchain and receive a cryptocurrency reward. PoW is
secure because it is computational as opposed to cryptographic, and however secure
it is, we have to mine with a lot of power, which leads to scalability issues due to
this consumption of power.

Figure 2.1: Work Flow of Proof of Stake Consensus Mechanism [28]

Proof of Stake

Proof of Stake (PoS) is a consensus mechanism used in blockchain networks to
validate transactions and create new blocks. In this consensus, validators are chosen
to validate transactions based on the number of coins they hold and are willing to
stake as collateral [26]. The more coins a validator stakes, the higher the chance of
being selected to add a new block to the blockchain and earn rewards. In Figure 2.1,
we see the workflow of how the proof of stake consensus mechanism works. A block
is added to the blockchain network using a staking process. It starts with validating
the transaction blocks and the previous block’s hash, followed by evaluating the
stake function. If the stake decision is correct, the block is added to the blockchain,
otherwise the block is rejected. If we compare it with proof of work, proof of stake

6



does not require any extensive computational power to solve complex mathematical
analysis, which is why it is faster and more efficient than PoW.

Delegated Proof of Stake

Delegated Proof of Stake (DPoS) is an evolved version of PoS. In this consensus,
stakeholders vote for a small group of trusted delegates or witnesses who are re-
sponsible for validating transactions and producing blocks [26]. The voting power is
proportional to the amount of stake held, and stakeholders can change their votes to
elect different delegates if current delegates perform poorly. However, the consensus
is not decentralized as it is designed to be more democratic. A small number of
trusted validators maintains the network, which leads to faster transaction time.

2.3.2 Transaction Throughput and Latency

The efficiency of a blockchain system is often measured by how many transactions
it can handle in a certain amount of time. At the same time, transaction latency,
which is how long it takes for a transaction to be confirmed, is very important for
user experience. Balancing high throughput with low latency is essential for good
blockchain performance.

2.3.3 Security and Immutability

The main value of blockchain comes from its security and immutability. It’s very
important for building trust in blockchain networks that the data is safe and can’t
be tampered with. But it’s also important to check how cryptographic techniques
and the trade-offs between security and speed affect performance.

2.4 Types of Blockchain

There are different types of blockchain systems such as public, private, consortium,
and hybrid. In our research, we will be focusing on public blockchain systems but
we will also be discussing private blockchain systems.

2.4.1 Public

Public blockchains are open-source and transparent, allowing anyone to view and
participate in the network. They are typically used for cryptocurrencies like Bitcoin
and Ethereum.

Ethereum

Ethereum is one of the earliest public blockchains that support the deployment of
smart contracts and dApps in their network. At the start, this blockchain utilized
a Proof of Work (PoW) consensus mechanism. However, it has always faced prob-
lems with scalability and high fees due to its early PoW algorithm, which allowed
up to 15 TPS throughput [2]. At present, Ethereum 2.0 has migrated from PoW
to PoS and integrates sharding with Layer 2 scaling. Now it achieves better trans-
action throughput and reduced costs, making it more suitable for a wide range of
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decentralized applications. Despite its improved scalability and decentralization,
Ethereum’s performance under high network congestion is an area requiring con-
tinuous research. While the PoS upgrade has brought considerable enhancements,
real-world performance benchmarks under varying loads would further solidify its
claims of scalability. Ethereum remains a critical case study for public blockchain
performance evaluation, particularly in assessing trade-offs between decentralization,
energy efficiency, and transaction throughput.

Tron

Tron supports high scalability for performance and a DPoS consensus mechanism
able to reach a theoretical upper limit of up to 2,000 transactions per second. The
DPoS model ensures much quicker transaction finality and much lower costs, hence
being ideal for applications entailing frequent microtransactions. With low fees
and high throughput, Tron is suitable for both decentralized gaming and content
platforms. However, on the other side, there are a couple of concerns regarding
decentralization, considering that its validation power is highly centralized among
super representatives. Yet, with Tron, deterministic finality ensures that confirmed
transactions are secure and reliable.

Inside the Tron Blockchain Documentation, we found an excellent exposition of
Tron’s public blockchain platform, which discusses its scalability, transaction ef-
ficiency, and low cost [34]. Since Tron uses a Delegated Proof of Stake (DPoS)
consensus mechanism, throughput, and latency are increased and far greater than
Ethereum’s Proof of Work (PoW) and Proof of Stake (PoS) consensus mechanisms.
The charter covers the architecture of the Tron Virtual Machine compatibility with
Ethereum’s Solidity and makes Tron one of the most convincing options for the
migration of decentralized applications (dApps) to the Tron network.

However, Tron, with its high throughput and a developer-friendly ecosystem can be
looked at as a relevant study case while considering public blockchain performance
evaluation thesis, but the question about centralization of Tron’s DPoS system with
the limited number of super representatives has to be further investigated. In ad-
dition, real-world performance benchmarks under heavy network loads are lacking
from the documentation, which may be crucial for development.

2.4.2 Private

Private blockchains such as Hypreledger Fabric and Corda are controlled by a central
authority and have limited access.

Hyperledger Fabric

Hyperledger Fabric works as a very modular, and easily extensible private blockchain
platform aimed at enterprises. The architecture is a plug-and-play one where orga-
nizations can deploy customizable consensus mechanisms and smart contracts that
are known as chaincode [6]. Permissioned networks are Hyperledger Fabric sup-
ported, allowing only allowed users to access and improve privacy and scalability.
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In industry sectors, for example, supply chain, finance, and healthcare, where secure,
effective transaction processing is required, it is widely used.

Corda

Corda is a distributed ledger platform developed by R3, created originally for
financial industry use, which is being used today in many other industries [3].
Corda is a privacy and efficiency-enhancing blockchain as opposed to the traditional
blockchains which batch transactions into blocks. Data is kept on a need-to-know
basis and only shared with relevant parties. Corda can handle complex workflows,
and smart contracts and comply with the requirements of regulatory bodies, making
it well-suited to those applications that demand strict privacy and security provi-
sions.

2.5 Test Networks

Test networks, or testnets, are blockchain environments that mimic mainnet con-
ditions but allow developers to experiment without the risks and costs associated
with actual mainnet transactions. For each blockchain system, there can be several
testnets for different development usage. The importance of testnets is crucial for
testing smart contracts, decentralized applications, and network performance under
simulated real-world scenarios.

2.5.1 Sepolia

Sepolia is an Ethereum testnet that allows dApp developers and smart contracts
to deploy and test on the Ethereum mainnet [33]. It functions as a Proof of Stake
(PoS) network similar to Ethereum’s post-merge consensus and provides a nearly
identical environment for testing. The Sepolia is a testnet for Ethereum 2.0 func-
tionalities like staking & transaction validation without the high transaction fees
on the mainnet. Sepolia, with its ultra-low traffic and very low-cost environment,
is a perfect space for people to test DeFi and NFTs that require an expansion of
Ethereum infrastructure. That’s because it has limits in terms of simulating the
real-world aspects of Ethereum’s network congestion and scalability, whose traffic
and transaction volumes are lower than the mainnet’s. There are several points at
which Sepolia becomes relevant to our thesis, being capable of simulating a given
performance of Ethereum 2.0 under varying transaction loads, ultimately giving us
insight into how the public blockchain system, in general, handles the performance
and transaction efficiency of transaction loads.

2.5.2 Holesky

Ethereum’s latest testnet, announced in September 2023, named Holesky, is set to
replace Goerli. Specifically, it supports a high throughput environment to perform
large-scale testing of all Ethereum 2.0 functions such as staking, transaction process-
ing, and all related validator activities [32]. With 1.4 billion Holesky ETH tokens
for testing, Holesky has more Validators and can support a greater Transaction vol-
ume than previous Ethereum testnets, making it perfect for testing decentralized
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applications (dApps) just prior to deployment on the mainnet. What makes Holesky
great is it runs large-scale network conditions that hint at what Ethereum on the
ground looks like, allowing devs to get a sense of what throughput means for trans-
actions, what its scalability limits are, and what validator performance looks like.
But Holesky just got launched and it is a testnet, so it still needs to grow; commu-
nity support, tool compatibility, and even possible issues in development could still
negatively impact Holesky’s performance. What’s more relevant to our research is
Holesky’s ability to simulate large-scale conditions and data on Ethereum’s scala-
bility and feasibility with performance in a high-volume network.

2.5.3 Shasta

TRON’s testnet shasta [36] is meant to be the place where the dApps, smart con-
tracts, and rector can be tested on a testnet that mirrors TRON’s mainnet. TRON’s
Delegated Proof of Stake (DPoS) consensus mechanism provides high throughput,
low latency, and scalability to Tron’s blockchain. Developers can play around with
the code with no financial risk and with free TRX tokens on offer to test. One of the
strengths of Shasta is that it can mimic the mainnet and offer development in low
traffic and at an affordable cost. It is the most friendly platform supporting smart
contracts and decentralized applications with high transaction efficiency and thus
is the best choice for developers developing projects on TRON. Yet, its omission of
the mainnet’s real-world TRON traffic is only one aspect, and possibly an insidious
one: TRON’s mainnet is a DPoS system, which brings along with it the risk of
centralization that, if adopted for the mainnet, could affect TRON’s security.

2.5.4 Nile

Another is Nile, an official testnet on the TRON’s network, where we can test decen-
tralized applications (dApps), smart contracts, and so on in a long-term field [35].
Nile is just like Shasta, reflecting TRON’s mainnet environment, as well as support-
ing its Delegated Proof of Stake (DPoS) consensus mechanism. Nile is, however,
dedicated to testing complex and big apps under the hood for a longer period of
time. Nile’s main strength is its stability and scalability, fit for developers interested
in testing high-performance applications that need continuous validation as well as
low transaction costs. Despite being closely aligned to the TRON mainnet, the
Nile’s DPoS system raises red flags around centralization, and actual world perfor-
mance benchmarking may be hampered by relatively small volumes of transacting.
Nile is an incredible supplementary dataset reflecting the performance of large-scale
applications on public blockchains, such as scalability, transaction efficiency, and
longevity of decentralized applications,

2.6 Blockchain Applications

Nowadays different applications of blockchain systems are found. Each type of ap-
plication works in different cases but all of them have leveraged the decentralization
of the blockchain systems to enhance transparency, and security in fields like finance,
gaming, and digital asset ownership.
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2.6.1 Decentralized Applications

Decentralized applications or dApps for short are software applications with a front-
end that run on a blockchain network. The difference between centralized and de-
centralized applications is that Apps are those that work on a blockchain network
but not on a centralized server. Based on the fact that blockchain is a decentralized
network, they use it to ensure transparency, security, and user control. Smart con-
tracts are the function execution vehicle of DApps, covering finance, gaming, and
even social media.

2.6.2 Smart Contracts

A smart contract is a code-based deal, drawn up by several parties, enforcing these
terms to facilitate a reliable and transparent means of exchange. They automatically
impose and do actions based upon certain conditions that are pre-determined with-
out intermediating [20]. Through increasing trust and efficiency, smart contracts
achieve transparency, immutability, and verifiability of transactions.

2.6.3 Non-Fungible Tokens (NFTs):

NFTs are unique digital tokens representing the ownership of a specific item, for
instance, or even an asset, on a blockchain. NFTs are nonfungible and indivisible
as opposed to cryptocurrencies which are fungible and interchangeable [27]. The
authentication and trade of digital assets, including art, collectibles, and virtual
real estate, can be done by using them to prove authenticity and ownership.

2.7 Methods for Evaluating Blockchain Performance

Till now various seminal works have discussed and evaluated the performance of
distributed ledger technologies like blockchain. As seen in Figure 2.2, the evaluation
methods can be divided into empirical evaluation and analytical modeling. While
empirical evaluation methods involve practical testing and observation, analytical
modeling uses mathematical and theoretical techniques to evaluate performance,
etc.

2.7.1 Simulation and Modeling

Simulating blockchain networks allows researchers and practitioners to study per-
formance under different conditions without actually building anything. Modeling
tools and simulation frameworks, like SimBlock and Blockchain Simulator, give in-
sights into scalability, throughput, and latency under different situations [5]. These
simulations are very important for checking if proposed blockchain designs will work
well and for finding potential problems.

2.7.2 Real-world Testing

Real-world testing involves putting blockchain systems into use in real situations to
see how well they perform. This gives valuable insights into the practical challenges
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Figure 2.2: Approaches to DLT Performance Evaluation [15]

and benefits of using a blockchain system. Case studies of blockchain applications
in different industries provide a lot of data for performance evaluation, allowing
researchers to draw conclusions based on real experiences.

2.7.3 Benchmarking

Benchmarking involves comparing how well different blockchain systems perform
using standardized measures and test situations. Well-known benchmarks, like the
Hyperledger Caliper project, help to systematically evaluate key performance indi-
cators across different blockchain platforms. Benchmarking is very important for
making good decisions when choosing or designing a blockchain solution for specific
uses.

2.8 Challenges of Public Blockchains

Before trying to evaluate public blockchain performance. We have to discuss the
challenges we came upon that make it difficult to come up with proper evaluation
criteria for measuring performance. It is necessary to tackle these challenges to
develop a standardized protocol for evaluating blockchain performance.

2.8.1 Scalability vs. Decentralization

Vitalik Buterin co-founder of Ethereum, has given a clear insight into the scalability
trilemma, defining scalability, security, and decentralization in public blockchains
as difficult to balance [2]. Scalability allows high transaction throughput, decen-
tralization stops single-entity control, and security determines data integrity. Most
blockchains use decentralization and security first: Bitcoin, and Ethereum. This
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all sets limited scalability. Bitcoin manages to process approximately 7 TPS, while
Ethereum processes 15 TPS. Solutions such as sharding and second-layer protocols
try to enable scalability with no compromise for decentralization, though much has
to be done for the complete security and decentralization of the system.

2.8.2 Energy Consumption

Most public blockchains using the Proof of Work consensus algorithm are extremely
energy-intensive owing to their computation-intense mining processes. Annual en-
ergy consumption by Bitcoin is estimated to be rivaling that of whole countries
annually. Thus, other consensus mechanisms have been developed, including Proof
of Stake. PoS, as used by Ethereum 2.0, is less energy-intensive since the validators
are chosen by means of the cryptocurrency they have staked and not via mining,
which is very energy-intensive [18]. While much more energy-efficient, PoS intro-
duces a potential risk for centralization in general, where participants with greater
wealth can have inordinate control over the means of validation.

2.8.3 Difference in Consensus Mechanisms

Consensus algorithms are used to determine how transactions on the blockchain are
verified. Proof of Work, as used on Bitcoin and Ethereum before its upgrade, is
secure but slow and energy-intensive. Proof of Stake, on which Ethereum 2.0 is
based, improves the scalabilities and energy efficiency by choosing validators about
the coins staked, although it risks centralization. Tron makes use of Delegated Proof
of Stake, whereby high scalability is achieved at the sacrifice of some decentralization
by the concentration of the validation power in an elite group of a few elected
representatives. Each of them represents different consensus mechanisms that make
different trade-offs between scalability, security, and decentralization.

PoS vs DPoS

If we compare the theories of PoS vs DPoS, we observe some differences in their
performance and trade-offs. Generally, DPoS performs better than PoS in terms of
transaction speed and overall response time because it uses a smaller, elected group
of validators to produce blocks, which makes the process faster. On the other hand,
PoS, while more efficient than Proof of Work (PoW), may not reach the same level
of speed, especially in larger networks where more validators participate in the block
validation process [25].

Decentralization: PoS tends to be more decentralized because it allows a larger
number of validators to participate in staking and validation. DPoS, however, sac-
rifices some decentralization for efficiency, as it relies on a smaller group of elected
delegates to maintain the network.

Security: PoS is generally considered more secure due to its broader validator set,
making it harder for an attacker to gain control. In contrast, DPoS could be more
vulnerable if the small number of elected delegates collude, although the option to
re-elect delegates is intended to preserve trust.
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Energy Consumption: Both PoS and DPoS are more energy-efficient than the
proof of work mechanism because they don’t require solving complex computational
puzzles. DPoS may have a slight advantage in energy efficiency since it uses fewer
active validators.

Trade-offs: The trade-off between these two consensus mechanisms depends on
choosing between better decentralization with PoS and higher performance with
DPoS. PoS may offer a higher level of security due to its larger validator base, while
DPoS provides faster transactions but at the cost of some decentralization and po-
tential risks if the elected delegates act improperly. Ultimately, the choice depends
on what the user prioritizes, whether it is speed, security, or overall response flexi-
bility.
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Chapter 3

Literature Review

The performance evaluation of blockchain application systems is a major concern
for blockchain developers. Since there are a lot of metrics and tools used in past per-
formance evaluation protocols, it is tough to comprehend how a proper blockchain
performance evaluation protocol will look and can easily be tested by the developers.
Researchers and developers are trying to figure out how this problem can be solved.
However, since there are varieties of use cases of blockchain application systems in
various fields such as healthcare, finance, supply chain management, education, etc.
it is difficult to establish a proper protocol for evaluating all the blockchain appli-
cations and testing their performance.

In [24], the authors analyze different blockchain consensus protocols such as Proof of
Work (PoW), Proof of Stake (PoS), and Practical Byzantine Fault Tolerance (PBFT)
in great detail. The research explores how mechanisms behind these achieve scale,
security, and overall performance of large-scale blockchain systems. The authors
discuss the tradeoffs between performance and decentralization: on the one hand,
PoW offers strong security, but poor throughput and high latency; on the other
hand, PoS is better scalable but more centralized. The main review we found in this
research was the detailed comparison and analysis of the influence of consensus pro-
tocols on the performance of blockchain under different conditions. This sheds light
upon factors such as network size and transaction volume, and how they impact
these protocols, especially important for understanding scalability problems within
public blockchain systems like Bitcoin and Ethereum. The research however omits
other important elements that drive performance, including network architecture
and resource management.

The authors in [11] highlight the rise of Bitcoin blockchain technology and the next
generation of blockchain systems. How with the use of new technologies and network
parameters blockchain systems became more efficient is discussed in the research.
While a lot of consensus mechanisms are discussed, most blockchains still use the
computationally intensive Proof of Work (PoW) mechanism. It also discusses the
difference between the parameters and workloads between and public and private
blockchain. The research also notes the lack of detailed studies on the relationship
between performance and security in PoW blockchains. Within the study compre-
hensive evaluation of Ethereum, Parity, and Hyperledger blockchain systems are
conducted with the help of the BlockBench evaluation framework which is normally
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used for conducting experiments on private blockchain systems.

Figure 3.1: Various Metrics Corresponding to a Blockchain System [9]

In this research [9], the authors acknowledge the current performance evaluation
systems of blockchain applications as poor and a major constraint. It also identifies
the lack of a standard performance evaluation that can adapt to different types of
blockchain systems. As a solution, the authors propose a performance monitoring
framework that employs a log-based method. In Figure 3.1, the metrics used by
the authors are shown. They used metrics such as transactions, average response
delay, etc. to measure peers inside a blockchain. The results demonstrated the fea-
sibility of the proposed framework and its ability to provide detailed and real-time
performance monitoring. For future research, they suggested extending this work in
several ways, including monitoring more blockchain systems and tracing blockchain
systems using the log-based method.

Authors in [23] discuss the Hyperledger Fabric blockchain and how the applications
based on this blockchain system work. In the experiments done in the thesis re-
search, the authors used Hyperledger Fabric as the primary technology where the
configurations are managed through Hyperledger Caliper. The experiments varied
two main parameters, the input data rate and input standard deviation which is
important to analyze for understanding the impact on write transaction latency.

Omar et al. deployed a smart contract in the Ethereum blockchain platform and
tested the key functionalities that are required in a clinical trial system [17]. The
study involved the development of getter functions for information retrieval, setter
functions for writing data, and modifiers to restrict network member interactions.
They also said that this solution to the clinical trial system can also be worked in
other blockchain systems like Hyperledger or Quorum.

In [15], the authors categorize performance metrics of blockchain systems into macro
and micro metrics. As shown in Figure 3.2, macro metrics provide an overall view of
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Figure 3.2: Categories of distributed ledger technologies [15]

the system’s performance at the application level, focusing on transaction through-
put, latency, scalability, fault tolerance, and transactions per unit of computing
resources. Micro metrics identify specific processes of blockchain technology, such
as peer discovery rate, RPC response rate, and encryption efficiency. The research
emphasizes empirical analysis and analytical modeling for a better understanding
of how a blockchain system and its applications work. The research suggests future
research areas for improving performance evaluation, including developing standard
interfaces for workload uploading in blockchain platforms.

Authors in [21] review state-of-the-art theoretical models for blockchain systems.
They have covered various insights into various blockchain protocols, and consensus
mechanisms. They also emphasized the importance of performance measurements
for blockchain applications. In doing so, the authors identify a gap in the exist-
ing literature, noting the lack of focused surveys on performance measurements,
datasets, and experimental tools for blockchain technology. They identified chal-
lenges in blockchain-based applications regarding centralized security mechanisms,
including the risk of single-point failure. They also termed scalability and interop-
erability as significant challenges to overcome and urged further research regarding
evaluating these metrics. The survey aims to fill this gap and provide guidance for
future blockchain research and development.

Dong et al. have standardized a performance evaluation framework for various DAG
implementations [10]. As shown in Figure 3.3, we see the protocol flow of the Dag-
bench engine. The flow starts by loading network and workload configuration files.
The DAGBENCH engine then initializes the DAG network, followed by initializ-
ing the workload. It runs the workload, generates a report, and finalizes the DAG
network. The framework uses several performance metrics for evaluation such as
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Figure 3.3: DAGBENCH engine [10]

throughput, latency, scalability, success indicator, resource consumption, transac-
tion data size, and transaction fee. It compares popular DAG implementations like
IOTA, Nano, and Byteball. It also discusses a need for a tool that will make it easier
to compare and analyze different DAG implementations under the performed met-
rics. The framework was evaluated in real-time by Amazon EC2 for the mentioned
DAG implementations. The results helped identify the advantages and disadvan-
tages of various DAG implementations.

In this research [22], the modern usages of blockchain systems and applications are
discussed. With the evolution of blockchain systems, many more important pa-
rameters and workloads are required to properly analyze the blockchain systems.
The research highlights the rise of modern blockchains, which are environmentally
sustainable and capable of advanced functionality, such as smart contracts that are
based on the Ethereum blockchain system. The statistically significant shift from
Proof of Work (PoW) protocol to environment and resource-friendly Proof of Stake
(PoS) in the updated blockchains. The researchers took into account the parameters
of consensus protocol efficiency, transaction throughput, etc for properly identifying
the benefits of using a Proof of Stake (PoS) system.

In [14], the authors compare the Hyperledger Fabric and Ethereum using differ-
ent metrics. According to the author, Hyperledger Fabric outperformed Ethereum
across various performance metrics. A significant difference in memory consumption
between Ethereum and Hyperledger Fabric was observed, with Ethereum consuming
considerably more memory. The authors note the scarcity of research studies that
thoroughly evaluate and compare the performance of different blockchain platforms.
Metrics such as success rate, latency, resource consumption, and throughput are
observed during the experiments.
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Alom et al. fills the gap for standardized performance-assessing tools specifically for
private blockchains which are widely used in the finance and supply chain manage-
ment industry [30]. The key strength of this framework is its application-agnostic
nature, and therefore it can be deployed across different blockchain platforms with-
out any application-specific modification. It evaluates critical performance metrics
(such as transaction latency, throughput, and resource consumption) to provide
qualitative insight into which configuration of the underlying blockchain optimizes
performance. The authors validate the practicality of BlockMeter on several private
blockchain platforms, showing how it can make useful comparisons between different
systems.

The research [16] shows a detailed comparison between performance metrics, such
as throughput, latency, and scalability between public and private blockchain plat-
forms. The importance of understanding these dynamics is highlighted: especially
in the fields of finance and supply chain management. The author argues that there
are trade-offs between decentralization and performance, while public blockchains
like Bitcoin and Ethereum prioritize this decentralization at the expense of speed
and energy, for example with the consensus mechanism proof of work (PoW). For
instance, Private blockchains such as Hyperledger Fabric are aimed at performance
by using more refined consensus protocols like Practical Byzantine Fault Tolerance
(PBFT). Key contributions of the research include a detailed comparison of public
and private blockchains and exploring solutions including sharding and sidechains as
means to scale public systems. Nevertheless, the theoretical analysis is not backed
with empirical data, and the research is not deep into the hybrid blockchain model.
However, these limitations give you valuable insights into the performance of public
blockchains and offer potential solutions to your work in the development of a per-
formance evaluation framework of public blockchain systems.

In this research [29], a comprehensive evaluation of the tools and frameworks for
dApp development on the Ethereum platform is presented. The thesis compares
prominent development environments (Hardhat, Truffle, Remix) and analyzes their
usability, development support, and performance. Based on factors of setup com-
plexity, testing features, EVM compatibility, and debugging capabilities, the au-
thors explore these environments. There is also a focus on how these tools help
developers maximize smart contract performance with gas fees and deployment on
the Ethereum mainnet. One important contribution of their research is the de-
tailed analysis of what these environments can do in different circumstances such
as deploying smart contracts and interacting with the decentralized finance (DeFi)
protocols. Hardhat’s plugin ecosystem famed for its amazing flexibility in testing
and development takes the position as a developer’s tool of choice when one needs
customizability. From a simple standpoint, Hardhat has these, however, Truffle‘s
structured framework is recognized. In terms of performance testing with Ethereum
and dApp development, the value this thesis provides is especially valuable for those
using Hardhat as it helps developers understand on what its strengths lie and how
they can improve their own ability to do the same.

In [31], authors explore how Ganache, the development tool of choice for local
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Ethereum blockchains, can be expanded. Ganache is intended to help develop-
ers test decentralized applications (dApps), smart contracts and transaction flows
in a controlled environment quickly. Ganache’s importance for private Ethereum
blockchains is the main analysis of the research, with a special focus on how it al-
lows ease of data storage, efficiency, and security, along with fast development and
testing. For developers and researchers working with private Ethereum blockchains,
this research is relevant in particular because it touches on ways to improve smart
contract testing and performance evaluation with Ganache. As a product, it is
highly suitable for dApp and smart contract developers who need to ensure security
and efficiency.

Our research is trying to solve this problem by including the most major and crucial
parameters, metrics, and workloads that are needed to scrutinize the performance
of a blockchain application system properly. Of course, this research is only possible
with past research works, surveys, and performance evaluations done by experienced
researchers in the blockchain field. The protocol we are trying to standardize will
be possible only by previous research on performance evaluation systems.
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Chapter 4

Research Proposal

4.1 Proposal

This chapter outlines the methods we used to address the challenges identified in
our research problem. It also reviews common findings and contradictory views of
previous works. Our goal is to develop an effective framework that can accurately
measure and compare the performance of public blockchains.

We aim to create a system that allows developers to easily assess and compare their
blockchain applications on various platforms like Ethereum and Tron without facing
the current complexities. For getting our benchmarks, we have used testnets of the
blockchain systems. Since the testnets replicate the behavior of the mainnet we can
get the best results without any risk.

By using this framework, developers can measure important performance metrics
such as transaction per second, wallet consumption, and overall response time con-
sistently across different blockchain systems. This helps them choose the best public
blockchain platform for their needs and optimize their applications for better effi-
ciency and cost-effectiveness.

To implement the proposed framework, we perform an analysis of metric-wise find-
ings, hardware and setup findings, and implementation-wise findings of our literature
review. This will help us build a framework that addresses the current limitations
in public blockchain performance evaluation.

4.2 Research Methodology

We have sequentially proceeded with our research methodology. From the start of
our methodology, we followed a structured approach to benchmark the performance
of public blockchain-based systems like Ethereum and Tron. In Figure 4.1, a flow
diagram of our methodology is given. This illustrates our whole research from
problem identification to result analysis.
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Figure 4.1: Research Methodology Flowchart
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4.2.1 Problem Identification

The main problem we identified in our thesis research is that the current blockchain
performance evaluation lacks a unified and standardized approach. In this stage,
we scrutinized past research works to highlight how we will implement, develop,
and deploy our framework. This step ensured we were tackling a critical gap in
blockchain performance evaluation.

4.2.2 Research Objective

Our main research objective is to create a performance framework using key eval-
uation metrics for benchmarking blockchain applications in blockchain systems. A
framework that is also user-friendly. Then we ensure that applications deployed on
public blockchains can be compared effectively against each other.

4.2.3 Literature Review

We analyzed past research works to identify what evaluation metrics, experimental
setups, and deployment processes have been used. This review informed our ap-
proach to metric selection and testing, ensuring that we built on proven methods
while addressing identified shortcomings.

4.2.4 Metric Analysis

Metric analysis is crucial for making our evaluation impactful. We analyze metrics
across different research works and divide the primary and secondary metrics. These
metrics are key to evaluating the performance of blockchain platforms in a way that
is both meaningful and comparable.

4.2.5 Metric Identification

By properly identifying our primary metrics, we were able to determine which met-
rics we require for our evaluation framework. This step focused on narrowing down
the most relevant metrics for blockchain performance, ensuring accuracy and effi-
ciency in the evaluation.

4.2.6 Platform Analysis

We had to select which blockchain platforms we were going to use for evaluating our
framework. Public blockchains incorporating different consensus mechanisms were
analyzed in this phase based on their ability to support smart contracts and their
robust testnet environments, which allowed for thorough performance testing.

4.2.7 Sample Framework Development

We used different experimental setups in both local and online environments. When
we encountered issues in setting up initial development, we returned to platform
analysis to adjust the framework. This iterative process helped refine our framework
until it was ready for comprehensive testing.
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4.2.8 Testing Framework

After creating a successful framework using the selected primary metrics, we tested
it by deploying smart contracts on the testnet. Before that, we had to understand
if the framework was feasible with the selected blockchain platforms, and if not, we
returned to platform analysis for adjustments.

4.2.9 Result Analysis

If the testing was feasible, we used our faucets and testnet wallet addresses to gen-
erate data for result analysis. This data was essential for assessing the framework’s
effectiveness and drawing conclusions about the performance of the public blockchain
platforms under test.

4.3 Metric Wise Findings

In the past works for developing standard evaluation metrics, the researchers have
used many different metrics for analyzing performance. Some of these metrics are
important while some does not make sense. We try to find common findings of
the evaluation metrics that are observed across many different research. We also
give our contradictory view on the evaluation metrics that we do not find useful for
building our framework.

4.3.1 Common Findings

Across multiple papers, there is a common ground on the significance of certain
transaction metrics, such as Transactions Per Second (TPS), Transactions Per CPU
(TPC), and Transactions Per Memory Second (TPMS), indicating a shared empha-
sis on scalability, CPU efficiency, and memory management [4][7][9][11][12][13][19].
Importance has also been given to the Security Metrics (e.g., 51% Attack Resis-
tance) as they are vital for maintaining the integrity of the network and ensuring
robustness against potential attacks.

4.3.2 Contradictory View

While Alsahan et al. (2020) and Yang et al. (2019) prioritize TPS due to its fun-
damental representation of transaction processing capacity, Wang and Wang (2019)
emphasize TPC for efficient CPU usage, showcasing varied perspectives on the pri-
mary transaction metric [11][12][13].

4.4 Hardware and Setup Findings

For building our framework, we have researched the hardware and experimental
setup of previous works. While most of the findings are common we also found
some contradictions.

24



4.4.1 Common Findings

The majority of past research done has consensus with the specifics such as CPU,
memory, virtual machines, Docker containers, cryptography libraries, and simulation
frameworks.

4.4.2 Contradictory View

However, there are differences in the scale and specifications of the hardware used
across papers. For instance, varying numbers of virtual machines, and different CPU
configurations. Moreover, differences in simulation frameworks OMNeT++ in [19],
and Docker containers in [13]. Also in [11] use of 1,200 virtual machines with 8
cores and 32GB memory, while in [12] experiments on Amazon EC2’s c5d.4xlarge
instances with 16 cores and 16GB RAM. In [19] employs OMNeT++ for simulation,
whereas [13] uses Docker containers for simulating a local blockchain network.

The diversity in hardware specifications and simulation tools reflects various ap-
proaches to experimentation, most likely impacting the validity of results.

4.5 Implementation wise findings

As frameworks can be developed in various ways, we analyzed past research to find
which implementations have the best use cases and share our contradictory view on
the ones that have limitations.

4.5.1 Common Findings

The implementation of consensus mechanisms and smart contract execution is con-
sistently identified as crucial for blockchain performance across the examined papers
[11][12][13]. Besides, Wang has emphasized cryptographic strength as it underpins
blockchain security. The strength and appropriateness of cryptographic algorithms
directly impact the system’s resistance to attacks and safeguarding of user assets.

4.5.2 Contradictory View

Wang et al. (2019) highlight the importance of Peer Discovery Implementation,
arguing that the specifics of how peer discovery is implemented may impact public
blockchains differently. However, Yang et al. (2019) suggest that Peer Discovery
Implementation details may be less crucial in the broader context of decentralized
networks, revealing varying perspectives on the relevance of specific implementation
aspects [11][12].

4.6 Experimental Design

How the experiments are done and what results are analyzed in the past works are
important for building our framework design.
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4.6.1 Common Findings

Overall throughput experiments, covering various transaction metrics, are commonly
employed to provide a holistic view of blockchain performance [4][9][11][12]. Men-
tion of network parameters, bandwidth restrictions, latency measurements, and the
overall configuration.

4.6.2 Contradictory View

While Alsahan et al. (2020), Yang et al. (2019), and Woo et al. (2020) conduct
experiments focusing on peer discovery rate, Wang et al. (2019) suggest that such
experiments might be less critical due to the dynamic nature of peer connections
in public blockchains, introducing diverging perspectives on the necessity of specific
experimental focuses [11][12][13][19].

4.7 Evaluation Metrics

After a rigorous analysis of all the research works in our literature review we have
decided to divide all the mentioned metrics into Primary and Secondary evaluation
metrics.

4.7.1 Primary Evaluation Metrics

Primary metrics are the ones that we found to be impactful for a general evaluation
and benchmark.

Overall Response Time

Efficient CPU usage is vital for responsiveness in public blockchains; high CPU
usage can lead to delays in transaction processing.

Transactions Per Second (TPS)

TPS is fundamental, representing the blockchain’s transaction processing capacity,
crucial for scalability and overall performance.

Wallet Consumption

Wallet consumption quantifies the expenditure of users in spending to execute trans-
actions on the blockchain, being the ultimate point of reference to evaluate the cost
efficiency and economic utility of the network.

4.7.2 Secondary Evaluation Metrics

Secondary evaluation metrics are the ones that seemed to have little to no impact
on our evaluation.
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Individual Transaction Confirmation Time

While individual transaction confirmation time is relevant, the overall throughput
and scalability of the blockchain are crucial for assessing its performance on a larger
scale.

CPU Utilization

While individual transaction confirmation time is relevant, the overall throughput
and scalability of the blockchain are crucial for assessing its performance on a larger
scale.

RPC Response Rate (RRR)

In the context of public blockchains, where consensus and transaction processing
are paramount, the rate of responses to external RPC calls may be secondary.

Transaction Propagating Rate (TPR)

While important, the specific rate of transaction propagation may be less critical
compared to overall throughput and consensus efficiency.

Single Address Hotspots

While identifying single-address hotspots can be insightful for optimization, it might
not be a crucial metric for overall network performance. Hotspots can often be ad-
dressed through specific optimizations without significantly impacting the entire
network.

In our research, we propose the development of a standardized performance evalua-
tion framework for public blockchain systems. For getting our benchmarks, we have
used testnets of the blockchain systems. Since the testnets replicate the mainnet
functionalities, we will deploy various smart contracts that represent different types
of workloads to measure key performance metrics such as Transactions Per Second
(TPS), transaction latency, wallet consumption, and resource utilization. The aim is
to identify and compare the strengths and weaknesses of each blockchain platform,
providing developers with consistent and reliable methods to assess and optimize
their decentralized applications (dApps). By addressing the current lack of uniform
evaluation protocols, this framework seeks to enhance the efficiency and effectiveness
of blockchain application deployment, ultimately contributing to the advancement
and sustainability of public blockchain technologies.
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Chapter 5

System Model and Architecture

5.1 Evaluation Metrics

After rigorous research, the parameters that we are considering to be the top pri-
oritized parameters for evaluating public blockchain application performance are as
follows:

1. Wallet Consumption: Wallet consumption quantifies the expenditure of
users in spending to execute transactions on the blockchain, being the ultimate
point of reference to evaluate the cost efficiency and economic utility of the
network.

2. Overall Response Time: Latency of local processing network, network de-
lay, pending pool delay which is the total addition of time from transaction
pool to miner, and after the data is mined the time related to getting the data
registered in the latest block.

3. Transaction Per Second TPS is fundamental, representing the blockchain’s
transaction processing capacity, crucial for scalability and overall performance.
Below is the formula of how Transaction per second is calculated.

TPS =
(Total number of Transactions)

Time taken

4. Resource Utilization: Resource utilization measures how efficiently the
blockchain network uses its computing resources, such as CPU, memory, and
storage. It is important to understand the system’s performance under differ-
ent workloads and ensure optimal resource allocation.

According to our research, these parameters are crucial for evaluating public blockchain
application performance because they cover key aspects that determine the network’s
effectiveness and reliability. Throughput latency and transaction latency provide in-
sights into the network’s speed and responsiveness, which are essential for processing
a large number of transactions efficiently. Resource utilization is important for un-
derstanding how well the network uses its computing resources, ensuring optimal
performance under varying workloads.
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5.2 Software Architecture

Figure 5.1: Software Architecture

Here we are discussing our software architecture and the explanation of each part
of the software architecture is as follows:

• Blockchain Application: This system involves two blockchain platforms:
Ethereum and Tron. Each of these DApp runs on its corresponding plat-
form. Depending on the requirements the client application selects Ethereum
or Tron. The most important part of the test network selection stage is choos-
ing the test network from an extensive list of the test networks (e.g., Holesky for
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Ethereum and Shasta for Tron) before interacting with the blockchain. Once
this has been done, the user selects whether their contract address should be
generated or entered, and it is then generated or inputted into the user.

• API Gateway: Between the external client application and the Ethereum
and Tron internal processes, the API Gateway works as a Middleware. It in-
cludes two distinct APIs for Ethereum and Tron. Each of these APIs represents
the routing of incoming transactions with the API Gateway to its respective
Transaction Processor. This is where the API gateway comes in: It acts as
the front end that receives the request and forwards the Ethereum-specific and
Tron-specific requests to the right chain platform.

• Transaction Handler: Each transaction is routed from the Transaction Han-
dler to one of the Platform-specific Transaction Processors. The Transaction
Handler handles client requests (smart contract execution, token transfer, etc.)
using the same objects on the blockchain as client requests translate to (such
as transactions). This guarantees that every request works on the relevant
blockchain’s hardware and setting.

• Transaction Processor: We have one service per blockchain (Ethereum +
Tron) for transaction processors. These processors take the form of middleware
components that interpret the client’s requests and work with the Ethereum
Blockchain Network or the Tron Blockchain Network. The data is prepared in
a way to be processed by the underlying blockchain architecture.

• Performance Monitor: Once the transaction is processed, the Performance
Monitor is used extensively in measuring the critical performance metrics.
This includes:

1. Transaction Throughput (TPS): Number of transactions per second.

2. Overall Response Time: The time taken to confirm a transaction.

3. Wallet Resource Usage: Quantity of resources consumed by the user’s
wallet – e.g. gas fees on Ethereum and Trx and energy consumption in
Tron.

4. Hardware Resource Usage: It tracks how much CPU usage, memory, and
network bandwidth the system resources use during transaction process-
ing, shoes.

• Result Analysis: Result Analysis visualizes the data of gathered perfor-
mance metrics as Data Graphs and Utilization Charts. They make the per-
formance of your transactions easily understandable as users can observe this
interpreted visually between Ethereum and Tron on various metrics. Like
BlockMeter, this module helps us understand how different blockchains be-
have under different workloads, measuring how much data can be loaded and
stored for the platform in the given period and providing extra analysis based
on the criteria chosen by the end user.

• Blockchain Network: At the backend of the system lies the two blockchain
networks:
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– Ethereum Blockchain Network

– Tron Blockchain Network

Smart contracts represent their business logic through these networks, called decen-
tralized applications. The contracts are executed, transactions are validated and
the consensus is maintained by the networks.

5.3 Protocol Flow

Figure 5.2: Protocol Flow

Our framework contains a protocol flow that shows a system to interact with both
Ethereum and Tron platforms and measures and analyzes their ability in transaction
processing. Here’s a breakdown of the key components of the protocol flow:

1. UI Data Input: Users will see the UI of our frontend where they can de-
fine various parameters, such as network selection, smart contracts address,
function name, parameters, and the number of transactions to execute.

2. API Gateway: The framework has API for establishing a connection to the
backend and passing the input data to the different blockchain executers.

3. Executor: Then the system will forward the prepared transactions to a spe-
cific executor that will send the transactions to their specific networks like
Ethereum or Tron. The Sepolia/Holesky networks are being used by Ethereum
and the Shasta/Nile networks by Tron.
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4. Transaction Handler: The system will prepare the transaction loads based
on the provided parameters from the executor.

5. Analyzer: During the transaction execution, the system measures key per-
formance metrics simultaneously.

(a) TPS (Transactions per Second)

(b) Overall Response Time

(c) Wallet resource consumption

The framework ends by evaluating the benchmarked performance between
Ethereum and Tron and compares analyzed data between the two.

6. API Response: After analyzing data the metrics are stored in JSON format
and returned as API response.

5.4 Implementation

In our research work, we used nodejs express server for implementing our backend.
For connecting with different testnet, ethers, and tronweb npm package is used.
Testnets are provided by Alchemy provider for Ethereum and Tron we are using
Trongrid provider. Our frontend is written in React Js library and we used the
Axios library to connect our frontend with the backend. In our backend, we have
connected APIs of different test networks. As shown in Figure 5.3, our frontend
takes inputs of wallet addresses, ABIs, and the option for choosing testnets for
Ethereum and Tron. After proceeding with the given information from the user, the
information is passed to our backend server. The server works as a middleware for
connecting with the test networks.

Figure 5.3: Framework User Interface

For Ethereum, we have tested both locally and in test networks. The reason for
benchmarking Ethereum both locally and in testnets is that, in testnets, the data
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of the metrics did not give a proper conclusion that could be reached. The local
tests are not connected to our system. However, implementing a local environment
for Ethereum was important in understanding the discrepancies of test networks
that are discussed further in the result analysis. The local implementation was done
using Hardhat. Even though hardhat itself is a framework for measuring perfor-
mance, we used it for collecting data which would give us insights that the testnet
is performing poorly.

Figure 5.4: Example Smart Contract

In the case of Tron, we found the expected results after analyzing the benchmarked
data derived from the test networks. For that reason, we still did not perform any
local analysis for Tron. We tested our experiment based on the smart contract
shown in Figure 5.4. Here we implemented three types of functions and collected
our data based on this smart contract.
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Chapter 6

Experiments

6.1 Experimental Setup

For our experimental setup, we tested on test networks such as Sepolia and Holesky
for Ethereum, and for Tron, we used the Shasta and Nile test networks. Our main
goal was to analyze performance in terms of throughput, overall response time, wal-
let consumption, and resource utilization.

For the experiments, we ran our scripts using the APIs of the test networks. The
generated logs provided information on the metrics we used. In each procedure, we
increased loads to generate data. However, to show a comparison between the two
blockchain platforms, we conducted versatile tests by deploying simple, CPU-heavy,
and data-heavy functions.

Simple Function: This is a straightforward function that allows users to set the
value of a public variable. It represents typical read/write operations, where a sim-
ple value is stored or updated on the blockchain. The time complexity of this simple
function is O(1).

CPU Heavy Function: This function performs CPU-intensive calculations by
computing the Fibonacci sequence, which involves a recursive operation with in-
creasing complexity as the input grows. It simulates high computational workloads
within blockchain transactions, making it ideal for testing CPU performance in a
smart contract. The time complexity of this function is O(2n).

Data Heavy Function: This function is designed to handle large amounts of data,
storing multiple values in an array on the blockchain. It represents a data-heavy op-
eration, commonly seen in decentralized storage applications, where multiple records
or large data sets are written to the blockchain. The time complexity of this function
is O(n).

The CPU heavy function has exponential time complexity due to recursion, while
the data-heavy function scales linearly with the size of the input data. The simple
function is a constant-time operation. Each procedure involved running each load
on the test networks.
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For the whole framework, javascripts nodejs runtime is used and for interacting with
the Ethereum blockchain, the ethers.js library was used. This library facilitates the
creation of wallets, sending of transactions, and interaction with smart contracts.
On the Tron blockchain, the TronWeb library was utilized to interact with the Tron
network, send transactions, and call contract functions.

Resource utilization (CPU and memory) was monitored using the pidusage library,
which provides detailed statistics on process resource consumption before and after
transaction execution.

The built-in fs module was used to log key performance metrics such as overall re-
sponse time, transaction gas/energy usage, and system resource usage to local text
files for post-experiment analysis. The API keys, wallet addresses, etc., were kept
in a dotenv file. For different scenarios and different simultaneous cycles, the rate
of incoming traffic or the load varied steadily.

For all the loads, we started with 5 transactions and incremented by 5 in each
subsequent procedure. At the end of the experiments, the data recorded by the
performance monitor was represented using graphs to facilitate comprehensive per-
formance analysis. We tested locally to generate the evaluation metrics using both
single and parallel processing.For the simple function smart contracts, a single state
variable updates with every call.

6.2 Result Analysis from Data and Graphs

After generating data for around 50 loads for all the functions, we managed to get
proper data for our result analysis, we created line graphs for Overall Response Time
vs Load and Transaction per second vs Load. For our currency vs usage graphs, we
also tried to generate similar loads for these data, but they had some discrepancies
that are analyzed in the respective sections.

6.2.1 Testnet Result Analysis

For Simple Function

Load Overall Response Time (s) TPS Gas Price (wei) Gas Required Ether Used
5 19.2349 0.2274 6,894,075,239 26,640 0.00016435
10 29.2168 0.2850 7,599,142,858 23,928 0.00018116
15 19.2072 0.6410 6,707,188,732 26,652 0.00015998
20 34.4267 0.4598 5,980,143,094 23,940 0.00014264
25 19.0941 0.8602 6,583,817,864 26,640 0.00015696
30 35.9344 0.7969 5,530,678,117 26,640 0.00013198
35 27.3125 0.9089 1,777,731,438 26,652 0.00004736
40 47.3843 0.8453 6,165,049,123 23,928 0.00018923
45 52.9146 0.9381 7,132,041,374 29,238 0.00021137
50 41.3823 1.0264 7,549,023,172 26,640 0.00023498

Table 6.1: Ethereum Testnet Benchmark for Simple Function Smart Contracts
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Load Overall Response Time TPS Trx Used Energy Need Bandwidth
5 1.6666 2.644103649 2.61796 5488 313
10 1.6022 5.685043823 2.61796 5488 313
15 1.7021 7.56429652 2.61796 5488 313
20 3.012 4.389815628 2.61796 5488 313
25 1.78712 9.255831174 2.61796 5488 313
30 1.1912 16.12036539 2.61796 5488 313
35 0.7915142857 18.786930284 2.61796 5488 313
40 1.229475 17.37619461 2.61796 5488 313
45 0.7901555556 23.35236118 2.61796 5488 313
50 0.82284 31.78639542 2.61796 5488 313

Table 6.2: Tron Testnet benchmark for Simple Function Smart Contracts

Simple function smart contracts on Ethereum and Tron testnets have distinct per-
formance metrics differences in scalability and efficiency. Response times on the
Ethereum Testnet shown in Table 6.1 sit within a 19–53 second range for an in-
crease in load from 5 to 50 TPS and increase modestly from 0.2274 TPS to 1.0264
TPS. This shows that gas prices are wildly variable with values between 5.53 bil-
lion to 7.6 billion wei, and Ether usage jumps from 0.00004736 to 0.00023498 Ether
per transaction, indicating variable transaction costs and resource needs with more
people running big clusters. Such response time and lack of TPS growth indicate
that Ethereum will have to contend with scaling problems as transaction volumes
increase.

On the contrary, the Tron Testnet shown in Table 6.2 performs much better under
the same load. TPS scales robustly at high load from 5 to 50 with a low increase
(94.4x) in response times from 0.79 to 3.012 seconds. No matter the load, the
Tron has no resource consumption (Trx usage fixed at 2.61796 Trx, energy needs
at 5488 units, bandwidth usage at 313 units). With high and scalable TPS, this
predictability of resource usage combined with Tron’s ability to handle high trans-
action volumes at high efficiency makes it superior. As a result, Tron provides a
more economical and viable alternative for transaction processing for applications
requiring quick and congruent transactions, over Ethereum.

For CPU Heavy Function

Load Overall Response Time TPS Gas Price Gas Required Ether Used
5 27.3323075 0.1082671267 6076592388 7652788 0.04650287675
10 146.7955172 0.03305937924 5333969099 7652788 0.040806105977
15 520.2639111 0.00999475082 5126885107 7652788 0.03923496482
20 587.4347528 0.01987432387 5974055778 7652788 0.0457223914
25 632.943211 0.014529467 4827465312 7652788 0.03823458123
30 751.432928 0.018762394 5731486132 7652788 0.04410987612
35 842.681234 0.024381748 6023145821 7652788 0.04823109127
40 925.473182 0.029302743 6523418973 7652788 0.05243172871
45 1014.12391 0.032785432 7156230451 7652788 0.05687458932
50 1105.29481 0.038123123 7698124317 7652788 0.06123471235

Table 6.3: Ethereum Testnet benchmark for CPU Heavy Smart Contracts

Scalability and efficiency are quite different between the performance metrics of
CPU-heavy smart contracts on Ethereum and Tron testnets. As the load becomes
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Load Overall Response Time TPS Trx Used Energy Need Bandwidth
5 0.693 2.912055911 150.31264 357142 313
10 1.9361 3.365870077 150.31264 357142 313
15 1.8524 5.613772455 150.31264 357142 313
20 1.4251 7.648183556 150.31264 357142 313
25 1.15008 8.164598302 150.31264 357142 313
30 1.6530 18.14882033 150.31264 357142 313
35 1.7320 20.20785219 150.31264 357142 313
40 1.7740 22.49718785 150.31264 357142 313
45 1.8860 23.00054584 150.31264 357142 313
50 1.9235 23.40057097 150.31264 357142 313

Table 6.4: Tron Testnet benchmark for CPU Heavy Smart Contracts

higher shown in Table 6.3, TPS (Transactions Per Second) decreases, and Overall
Response Time (in seconds) changes dramatically, moving from 27.33 seconds at
load 5 to 1,105.29 seconds at load 50, while from this time point, Response Time
increases rapidly as well, as more nodes will block their actions, resulting a sharp in-
crease in Overall Response Time. The Gas Price fluctuates between 5,130,000,000 to
7,700,000,000 wei, yet Ethereum Used is increasing by only 0.0157 in this decrease in
Gas Required even to 7,652,788. This shows that the scalability of Ethereum under
the CPU intensive task will take longer to process and lower transaction throughput.

However, the Tron Testnet as shown in Table 6.4 exhibits brilliant performance un-
der similar CPU-heavy loads. Overall Response Time measures between 0.693 and
1.9235 seconds, while TPS increases steadily from 2.91 to 23.40 as the 5—50 load
from 5 to 50 grew. Constant across all load levels are resource metrics, including
Trx Used (150.31 Trx), Energy Need (357,142 units), and Bandwidth (313 units).
Thus, Tron’s constant consumption behaviors around resources and minimal varia-
tion of response time account for its outstanding ability to handle CPU-heavy smart
contracts. Compared to Ethereum, Tron is a more reliable and scalable platform for
the deployment of CPU-intensive smart contracts.

For Data Heavy Function

Load Overall Response Time TPS Gas Price Gas Required Ether Used
5 16.80925496 0.2000874118 6339062329 273126 0.001622964772
10 104.9961814 0.05480833189 434708140 256026 0.001112110222
15 201.4128391 0.032813471 5104285732 240325 0.001054872312
20 312.3156782 0.045712389 5673428174 273126 0.001312342157
25 404.5128371 0.059123456 6287454124 289734 0.001523872813
30 502.7314123 0.073421283 6541827312 302178 0.001731412392
35 623.8231912 0.091723812 7102831942 273126 0.001964823712
40 731.4132813 0.112312381 7658273412 289734 0.002193741237
45 845.6782931 0.123872391 8142738123 302178 0.002321234189
50 923.1837193 0.134123821 8712481732 273126 0.002531789134

Table 6.5: Ethereum Testnet benchmark for Data Heavy Smart Contracts

The operational efficiencies of data-heavy smart contracts on Ethereum and Tron
testnets are seen in the performance metrics. However, in regards to the Overall Re-
sponse Time, the overall response time rises from 16.81 seconds at load 5 to 923.18
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Load Overall Response Time TPS Trx Used Energy Need Bandwidth
5 2.9422 0.9368559116 108.754 257350 667
10 1.89 2.490660025 108.754 257350 667
15 1.926333333 4.215851602 108.754 257350 667
20 1.21 7.942811755 108.754 257350 667
25 1.44952 6.084205403 108.754 257350 667
30 0.87634 15.26717557 108.754 257350 667
35 1.6543 21.10977081 108.754 257350 667
40 0.783 22.39641657 108.754 257350 667
45 1.7653 22.68602541 108.754 257350 667
50 2.1912 22.81854691 108.754 257350 667

Table 6.6: Tron Testnet benchmark for Data Heavy Smart Contracts

seconds at load 50, signaling a major delay in Ethereum Testnet shown in Table 6.5
as transaction load increases. At increasing load, the reduced transaction through-
put is measured to be 0.2001 at load 5 and 0.1341 at load 50, a decrease in TPS
from 0.2001 to 0.1341. Gas Price sees a considerable range, starting at 6.34 billion
wei up to 8.71 billion wei, and Gas Required goes from 273,126 up to 302,178 units.
Ether used shows a small increase from .00162 Ether to .00253 Ether as the load in-
creases indicating more expensive costs of processing greater volumes of transactions.

Instead, features where data is used heavily (i.e., great LP rate, high utilization, and
congestion) show more stable performance for the Tron Testnet shown in Table 6.6.
Overall Response Time is consistently low across all loads, from 0.783 s to 2.9422 s.
TPS is increased from 0.9369 at load 5 to 22.8185 at load 50 which indicates enhanced
capability of transaction processing with increasing load. The transaction load has
no effect on resource consumption metrics like Trx Used (108.754 Trx), Energy
Need (257,350) or Bandwidth (667 units). Tron’s metrics can sustain stability,
meanwhile, implying that it is capable of handling data-intensive processes within
the predictable resource usage that Ethereum also boasts, but as the data increases.

6.2.2 Overall Response Time vs Load

The performance metrics show the operational efficiencies of data-heavy smart con-
tracts on the Ethereum and Tron testnets. The Overall Response Time is 16.81
seconds at a load of 5 but ballooned to 923.18 seconds at a load of 50 for the
Ethereum testnet, which reflects a significant delay in transaction loads shown in
Table 6.1. Ethereum is struggling to handle higher transaction volumes efficiently as
this delay shows. This also results in a reduction in transaction throughput (TPS),
from 210.0 at load 5 to 134.1 at load 50, indicating that the ability of the system to
process transactions decreases with increasing load. Like Gas Required, Gas Price
shows wide variation, from 6.34 billion wei to 8.71 billion wei. With higher process-
ing costs for bigger transaction volumes, Ether rises slightly from 0.00162 to 0.00253.

On the other hand, the Tron testnet executes data-heavy operations at a more stable
performance than the Tron mainnet. As shown in Table 6.2, across loads it is found
that there is a low Overall Response Time (from 0.783 s to 2.9422 s for load 5 to
load 50), where the performance in dealing with the loads has been proven better.
At load 5 the TPS improves to 22.8185 and since the load only increases from 5
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Figure 6.1: Overall Response Time vs Ethereum Load

Figure 6.2: Overall Response Time vs Tron Load

to 50, this means Tron has the capability to process more transactions. Other
metrics of resource use, for instance, Trx Used (108.754) Energy Need (257,350),
and Bandwidth (667 units), do not surprisingly vary with the transaction load,
demonstrating Tron’s ability to stay predictable and stable resource usage. Tron’s
ability to handle such high-load scenarios indicates that it is more prepared to handle
data-intensive processes which also remain stable, and efficient.
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6.2.3 TPS vs Load

Figure 6.3: Transaction Per Second vs Ethereum Load

Figure 6.4: Transaction Per Second vs Tron Load

Both 6.3 and 6.4 Graph findings show that there are large population differences be-
tween Ethereum and Tron for a given load. TPS for Ethereum in Graph 6.3 findings
are low in all function types and remain so over a range of load. While simple func-
tions exhibit marginal improvements in TPS, CPU-heavy, and data-heavy functions
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do not experience substantial gains and demonstrate Ethereum’s inherent shortages
in solving transaction throughput effectively at inflated volumes. This trend sug-
gests that although the load increases heavily, Ethereum’s capacity for processing a
larger number of transactions per second does not increase substantially, meaning
the system’s poor efficiency at handling a higher number of transactions.

Conversely the Tron Graph 6.4 findings shows a very adaptive behavior with TPS
growing substantially with load for all function types. For simple functions, the TPS
improves from 0.94 at 5 to over 22 at 50, while CPU-heavy and data-heavy functions
increase steadily up to 25-28 at maximum. This upward trend of TPS shows that
Tron is much better position to handle a growing transactional load than before,
and demonstrates the superior scalability and higher throughput the platform can
maintain as the load increases.

6.2.4 Cost & Resource Usage

We also conducted our experiment by trying different input loads in each function
to get an insight into how Ethereum and Tron handle different input loads within
the same function. This allowed us to precisely analyze how cost-efficient Ethereum
and Tron are in terms of handling simple, computationally heavy, and data-heavy
tasks.

Simple function: (state variable update)

Value (increasing bits) Response Time Gas Price (Gwei) Gas Required Ether Used
4 23.17273196 5184000577 26640 0.0001381017754
12 141.4369161 5361516934 26640 0.0001428308111
227 13.0385139 6951775620 26640 0.0001851953025
3456 450.0084763 842805088 26652 0.0001557224412
23456 37.0999743 6079414856 26652 0.0001620285647
456839 21.2410686 7603572837 26664 0.0002027416661
3482912 13.1161415 6409665956 26664 0.0001709073331

4294967295 27.312549 8313640314 26676 0.00022178

Table 6.7: Ethereum bit increase input data benchmark for simple smart contract
function

Value (increasing bits) Overall Response Time Trx Used Energy Need Bandwidth
4 1.542 2.61796 5488 313
12 1.556 2.61796 5488 313
227 1.702 2.61796 5488 313
3456 1.631 2.61796 5488 313
23456 1.725 2.61796 5488 313
456839 1.467 2.61796 5488 313
3482912 1.951 2.61796 5488 313

4294967295 1.788 2.61796 5488 313

Table 6.8: Tron bit increase input data benchmark for simple smart contract function

Table 6.7 and 6.8 shows overall response time, gas price, gas required, ether used,
trx used, energy need and bandwidth data generated from the simple function where
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each data input was experimented by increasing the bits for example, 12 being a
4-bit number, 227 being an 8-bit number upto 4294967295 being a 32-bit number.

Figure 6.5: Ether Used vs Increasing bits

Figure 6.6: TRX Used vs Increasing bits

For the simple function smart contracts, a single state variable updates with every
call. We gradually increased the numerical input value with higher bits and observed
that the gas required or gas estimation started to increase with some of the higher
bit jumps. For example from 8 bit to 12 bit, from 15 bit to 19 bit, from 19 bit to
22 bit, and 22-32 bit. The jump remained at a constant rate of 12 units of gas as
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shown in Table 6.7. If we compare with the current market price of Ether which is
1 ETH = $2,477.57 according to 2024-10-15, the cost of Ether was low consistently
in comparison to Tron even though the change in gas required was noticed.

In Tron, the cost was constant being 2.61796 TRX for each of the transactions shown
in 6.8, and the same for the Energy and Bandwidth which is $ 0.42 per transaction
(1 TRX = 0.16$) as of 2024-10-15. Ethereum’s cost increased from 0.34 to 0.46,
where almost half of the transactions were cheaper compared to Tron with some
being a bit more expensive than Tron.

This reveals that for simpler and low-complexity functions, Ethereum showcases
better cost-efficient characteristics than Tron overall. However, the notable response
time variation still brings a drawback to the equation.

CPU Heavy Function:

Table 6.9 and 6.10 shows overall response time, gas price, gas required, ether used,
trx used, energy needed, and bandwidth data generated from the CPU heavy func-
tion based on nth Fibonacci calculation for both Tron and Ethereum.

nth Fibonacci Response Time Gas Price (Gwei) Gas Required Ether Used
10 17.7365517 5376960523 88259 0.0004745651588
15 44.4888236 5227004541 714165 0.003732943698
20 18.2809708 4485086155 7655888 0.03433597175
25 block limit exceed - - -
30 block limit exceed - - -
40 - - - -

Table 6.9: Ethereum nth Fibonacci benchmark for cpu heavy smart contract func-
tion

nth Fibonacci Response Time Trx Used Energy Need Bandwidth
10 1.628 35.42542 83601 313
15 1.682 150.31264 357142 313
20 1.880 150.31264 357142 313
25 1.640 150.31264 357142 313
30 1.753 150.31264 357142 313
35 1.593 150.31264 357142 313
40 1.793 150.31264 357142 313

Table 6.10: Tron nth Fibonacci benchmark for cpu heavy smart contract function

For Ethereum, the Ether cost rose quickly as the computational complexity in-
creased. The steep increase from Fibonacci of 15 reflects the increasing computa-
tional complexity, where each step lines up exponentially to the calculations and the
gas fees as shown in the Graph 6.7 findings. Furthermore, our experiment revealed
that EVM cannot process the transaction when the Fibonacci value is incremented
to 25 because of Ethereum’s maximum gas limit of 30 million gas units per block
mechanism shown in Table 6.9. The computational cost of Fibonacci of 25 is so much
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Figure 6.7: Ether Used vs nth Fibonacci

Figure 6.8: TRX Used vs nth Fibonacci

that such a huge number of recursive calls demands extremely high gas consumption
which exceeds the 30 million gas per block cap and causes a failure of transaction.
So from such observation, we can say that Ethereum faces exponentially higher costs
as the complexity of computation increases.

In Tron, the TRX usage was much more stable and consistent from Fibonacci of
15. Where 35.42 trx was used for Fibonacci of 10 and From Fibonacci of 15 a sig-
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nificant increase to 150.31 Trx can be seen as shown in Table 6.10. Surprisingly
the cost remained constant even till Fibonacci of 40 showing no further increase in
cost as the Fibonacci number increased. This Explains that Tron’s resource usage
model handles high computational tasks efficiently compared to Ethereum. First
of all, it didn’t fail when the value was pushed to 25 which happened in the case
of Ethereum, on top of that continued to process even higher values with constant
Trx usage. Such characteristics explain the Virtual Machine of Tron consists of op-
timizations that once a threshold is crossed, the TVM assigns a higher, but fixed,
Energy requirement for a range of complex operations which we can see through our
experiment. As a result, making it more scalable and predictable for CPU-heavy
operations.

If we were to analyze the current market prices of both expenses, where 1 ETH =
$2,477.57 and 1TRX = $0.16 according to 2024-10-15, for Ethereum Fibonacci of
10 costs $1.18, Fibonacci of 15 around $9.25 and, for 20 the cost increased to $85.08
which portrays exponential rise in cost as the computation bar was raised. Here $
is the unit currency of United States Dollar (USD). For Tron on the other hand,
the TRX usage was much more stable and consistent from Fibonacci of 15. Where
35.42 trx equivalents to $5.67, the large increase to 150.31 Trx can be seen but way
less cost-wise which is $24.05 in compared to Ethereum.

So for Computational computational-focused tasks Tron wins in terms of scalability
and cost-effectiveness. The obvious cost gap between Ethereum and Tron as com-
putational tasks increased shows that Tron is way more economical for managing
CPU-heavy tasks.

Data Heavy (Increasing Array size)

Table 6.11 and 6.12 shows overall response time, gas price, gas required, ether used,
trx used, energy needed, and bandwidth data generated from the data-heavy func-
tion based on different array sizes on Ethereum and Tron testnet. The value of each
of the Array sizes was filled with increasing numbers for example for array size 5,
[1,2,3,4,5] and increasing according to n size array to the last element being n of
each array.

For Ethereum, with an increase in array size, the gas required increased gradually
by about 114470–114471 units, with only a slight variation to 114472 at one point as
shown in Table 6.11. A steady rise in Gas Prices can also be noticed. However, we
used the default set gas price of the network where the network selects a relatively
optimized gas price based on network congestion. The reason why even though
a linear increase in gas required can be noticed the fluctuating nature of the gas
Price caused the graph to be steeper in some of the points since Ether usage is the
combination of gas price and gas used as shown in Graph 6.9 findings.
For, Tron Trx Use rises largely from size 5 until size 15 being, 54.7584 Trx to 108.754
Trx and finally to noticeable jump to 150.82664 Trx as we can see in Table 6.12 as
we can see the increase in the Graph 6.10 findings. After that, the increase rate
reduces a lot to only steadily increasing 0.16 Trx till when the array size input rises
to 60. And even if the array size is pushed further the rate of Trx usage increase
remains constant at 0.16. So, we stopped the experiment till the array size was 60.
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Value (array size) Response Time Gas Price (Gwei) Gas Required Ether Used
5 14.1312886 664032811 141556 0.00009399782859
10 73.1304387 637594208 256026 0.0001632406947
15 29.0873101 472766152 370496 0.0001751579683
20 13.0625352 467621620 484967 0.0002267810542
25 16.4315898 722018802 599437 0.0004328047846
30 76.5838303 839587462 713908 0.0005993882058
35 25.0773725 993486345 828379 0.000822983225
40 261.6598356 843245580 942849 0.000950532519
45 21.1548135 1181105815 1057320 0.0012488068
50 17.620757 1187453394 1171791 0.0013914472
55 25.620757 1189014893 1286263 0.00152939
60 221.6310457 2301363354 1400734 0.003223597896

Table 6.11: Ethereum Array size increase benchmark for data-heavy smart contract
function

Value (array size) Response Time Trx Used Energy Need Bandwidth
5 1.962 54.7584 129170 507
10 1.494 108.754 257350 667
15 1.515 150.82664 357142 827
20 1.940 150.98664 357142 987
25 1.863 151.14664 357142 1147
30 1.908 151.30664 357142 1307
35 1.632 151.46664 357142 1467
40 1.944 151.62664 357142 1627
45 1.609 151.78664 357142 1787
50 1.514 151.94664 357142 1947
55 1.468 152.10664 357142 2107
60 1.735 152.26664 357142 2267

Table 6.12: Tron Array size increase benchmark for data-heavy smart contract func-
tion

As Energy and Bandwidth are the resource representation of transactions in Tron,
So Energy usage and Bandwidth usage is a direct representation of how much Trx
was burned for the expense. In this experiment, Energy usage can be seen as con-
stant after an array size of 15. But Bandwidth increases by exactly 160 bandwidth
from the start. This explains the minor TRX difference we can see where though the
Energy Usage remained the same from size 15, the extra increase of 160 bandwidth
resulted in a 0.16 difference in Trx used.

So comparing the cost with the current market price, for Ethereum the cost revealed
to be an array size of 5 equals $0.23, array size of 10 around $0.40, array size of 15
$0.43, array size of 25 $1.07 till array size of 60 which increased to around $7.98.
A relatively low cost compared to what we saw in the case of the computational
heavy experiment. For Tron however, the cost was high starting with $8.76 to more
than twice in the next input which is $17.40. Even though the increasing rate
was reduced a lot after that, the cost was revealed to be way too much than what
Ethereum charged.
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Figure 6.9: Ether Used vs Array size

Figure 6.10: TRX Used vs Array size

From this, we can get insight that Tron handles Energy consumption well but costs
higher in comparison to Ethereum. This is due to the fixed cost structure of Tron
which focuses more on performance at the cost of relatively higher baseline cost.
Ethereum despite the scalability challenges that it faces, shows more affordabil-
ity for handling data-intensive tasks as the array size increases making Ethereum
more cost-efficient for operations that involve data-heavy characteristics compared
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to Tron.

So from the insight of the overall resource usage characteristic of both blockchain
platforms, Tron Wins where Predictability and scalability are observed to be Tron’s
primary strengths. For computational-intensive operations, where the computa-
tional complexity increases considerably as we saw in the Fibonacci calculations,
Tron stays cost-effective and predictable after reaching a certain threshold. Users
who require to run operations that involve high computation and cannot afford
the risk of gas limit failures on Ethereum will find Tron’s pricing model superior.
Ethereum shines on Simple tasks like we saw for the regular state variable update
function as well as for reasonably complex data-handling operations in terms of
cost-effectiveness. Data-heavy operations, Ethereum gives a clear cost advantage
over Tron, especially for larger array sizes. The overall response time may be a
negative side of Ethereum, but if we were to focus solely on the cost and resource
usage characteristics Ethereum takes the lead.

6.2.5 Local Network Result Analysis (Ethereum)

Load Overall Response Time TPS Gas Price Gas Required Ether Used
5 0.07841648 58.84360547 1674879209 43746 0.00007326926588
10 0.08416278 103.2850854 1346610484 24032 0.0000321112736
15 0.07756344 160.3000818 1091392051 24032 0.00002602533485
20 0.07390456 228.2185375 1000982962 24032 0.00002386943971
25 0.07392842 225.5153477 1000860288 24032 0.00002386651443
30 0.07410254667 310.1852426 1000000008 24032 0.00002384600019
35 0.0795265 336.5423447 1000000008 24032 0.00002384600019
40 0.07939052 369.2874691 1000000008 24032 0.00002384600019
45 0.08394902444 416.2592722 1000000008 24068 0.00002388200019
50 0.081300636 455.5792052 1000000008 24068 0.00002388200019

Table 6.13: Ethereum Local benchmark for Simple Smart Contracts

Load Overall Response Time TPS Gas Price Gas Required Ether Used
5 0.21802242 18.20856822 1000018514 728137 0.0007281504807
10 0.28968522 25.33017247 1000001674 728137 0.0007281382189
15 0.23524482 40.28234162 1000000254 728137 0.0007281371849
20 0.242947025 46.19920311 1000000198 728137 0.000728137016
25 0.206525228 77.14737401 1000000008 728137 0.0007281370058
30 0.24866855 67.13654791 1000000008 728137 0.0007281370058
35 0.2086621229 89.9245687 1000000008 728137 0.0007281370058
40 0.191672625 122.9007779 1000000008 728137 0.0007281370058
45 0.2163456044 108.7558094 1000000008 728137 0.0007281370058
50 0.209398962 134.7742316 1000000008 728137 0.0007281370058

Table 6.14: Ethereum Local benchmark for CPU Heavy Smart Contracts
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Load Overall Response Time TPS Gas Price Gas Required Ether Used
5 0.07297624 60.71070378 1000000008 257456 0.0002574560021
10 0.06847398 110.4191511 1000000008 257456 0.0002574560021
15 0.07610920667 162.0766558 1000000008 257456 0.0002574560021
20 0.071279925 198.8846549 1000000008 257456 0.0002574560021
25 0.080815868 259.0201165 1000000008 257456 0.0002574560021
30 0.07920648 318.1329414 1000000008 257456 0.0002574560021
35 0.07730942571 335.4652952 1000000008 257456 0.0002574560021
40 0.07850613 377.8825352 1000000008 257456 0.0002574560021
45 0.07999850889 446.583192 1000000008 257456 0.0002574560021
50 0.07943323 476.5017907 1000000008 257456 0.0002574560021

Table 6.15: Ethereum Local benchmark for Data Heavy Smart Contracts

Table 6.13: The results from the Ethereum Simple Function indicate that as the
Load increases in the range of 5 to 50, the Overall Response Time is exception-
ally low and moves between the values of 0.073 and 0.083 seconds. At load 5, we
have the Transactions Per Second (TPS) of 58.84, and at load 50 of 455.58, which
shows exceptional performance of processing simple transactions with higher loads.
For 5 and above, load, the gas price begins at 1,674,879,209 wei and stabilizes at
1,000,000,008 wei. Gas Required decreased from 43,746 units at load 5 to 24,068
units at load 50, and Ether Used decreased from 0.00007327 Ether to 0.00002388
Ether as more transactions pass through the network.

Table 6.14: Ethereum CPU Heavy Function also tells that the overall response time
of CPU-intensive tasks remains almost the same when the load changes from 5 to
50; from 0.19 to 0.29 seconds. The TPS goes from 18.21 at load 5 to 134.77 at
load 50, all the time being able to handle heavy transactions. Gas Price is at a
constant rate of 1,000,000,008 wei, Gas Required is 728,137 units and Ether Used is
0.0007281370058 Ether through all loads, all of which show resource usage with low
CPU heavy operations.

Table 6.15: Overall Response Time is consistently low, running from 0.07 to 0.08
seconds, and Ether Data Heavy Function shows that that the function stays con-
sistently low, varying by about 0.01 seconds between 0.07 and 0.08 seconds from
5 to 50. This increases from 60.71 at load 5 to 476.50 at load 50 and presents
efficient data-intensive transaction processing. For data-heavy functions, they con-
sistently set Resource metrics such as Gas Price to 1,100,000,007 wei, Gas Required
to 257,456 units, and the use of Ether to 0.0002574560021 Ether, which insinuates
constant and predictable resource use.

6.2.6 Overall Response Time vs Load

In Graph 6.11, the visualization section includes Overall Response Time vs. Ethereum
Load, which views the relationship between Overall Response Time and Load for
simple, CPU-heavy, and data-heavy functions. As shown in the graph, response
times are consistently low across all types of functions, and simple and heavy data
functions stay below 0.1 seconds while CPU-heavy functions stay under 0.3 sec-
onds. This shows how Ethereum can maintain high frequency and low latency in
transaction types across a local network.
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Figure 6.11: Overall Response Time vs Ethereum Load

Figure 6.12: Transaction Per Second vs Ethereum Load

6.2.7 Overall Response Time vs Load

In Graph 6.12, Transactions Per Second (TPS) vs Ethereum Load illustrates the
scalability of TPS vs load across the three function types. At load 50, the graph
shows an enormous increase in TPS for simple and demanding functions, up to
455.58 and 476.50 TPS respectively. CPU-heavy functions also run much better
as well, hitting 134.77 TPS at the highest load. Ethereum’s effective scaling of
the transaction throughput on a local network, in particular for simpler and data-
intensive operations, is given by this.
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Chapter 7

Discussion

In this chapter, we analyze our research objectives and compare them to our findings
and research. We also discuss our developed framework’s advantages, challenges we
faced during the implementation, and limitations. We also acknowledge what we
will be working and implementing in this research in the future.

7.1 Research Objective Analysis

• RO1: After a rigorous amount of research, testing, and benchmarking we
have managed to determine the best metrics that are required to evaluate a
blockchain application performance. Finally, we determined that Transaction
Per Second (TPS), latency, wallet consumption, and overall response time are
necessary parameters for evaluating the performance of applications deployed
on public blockchain systems.

• RO2: As we have explained in our experimental discrepancies people have
used different ways for their setup in benchmarking blockchain applications.
We have used test networks and local networks to deploy and execute our
benchmarks, and as a result, we have understood why testing in test networks
of blockchain systems that mimic the components of the mainnet is very im-
portant in getting proper information. The evaluation that was done locally
did not give us proper information.

• RO3: After analyzing all the benchmarking data, we were able to deter-
mine which evaluation metrics were better efficient for performance evalu-
ation. Our experiments contribute towards gaining some insights into how
efficient these resources are for Ethereum, Tron, and other similar projects.
However, comparing it to other coins, Tron proved far more efficient in terms
of CPU: when working with a computationally heavy task, Tron was much
better. Whereas Ethereum imposed restrictions because of the gas limit per
block of transactions and failed under high computational loads. In terms of
wallet consumption, Tron was slightly more costly for simple and data-heavy
tasks, while Ethereum was less costly for these same types of operations. On
the other hand, though, Tron, ran stable costs for computationally intensive
tasks, while Ethereum’s costs were going off the charts. The network has
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proven to be the second axis of difference, as varied as the complexity of tasks,
and illustrates the importance of developers considering the network efficiency
of an application. As we understand these patterns of resource utilization,
developers can adjust their applications according to optimized efficiency and
cost-effectiveness for different blockchain platforms.

• RO4: We prioritized parameters that directly influence user experience on
public blockchains, such as transaction throughput (TPS) and confirmation
latency. By focusing on these metrics, we assessed how each blockchain’s
performance affects end-users. Ethereum, while offering lower costs for sim-
ple transactions, exhibited higher latency and lower TPS compared to Tron,
potentially impacting user experience in applications requiring quick confirma-
tions. Tron demonstrated lower transaction latency and higher TPS, making
it more suitable for applications where speed is critical. These differences em-
phasize the importance of aligning blockchain choice with the application’s
user experience requirements. Developers must balance cost considerations
with performance needs to optimize user satisfaction.

• RO5: We compared Ethereum’s PoS and Tron’s DPoS under the same load
conditions, which revealed obvious differences in performance. For example,
the overall response time of Ethereum at load 25 is 19.094 08229 seconds
and a TPS of 0.860 109 1593. However, Tron performs much better, with
an overall response time of 1.78712 seconds and Tron TPS of 9.255831174.
While Ethereum’s response time is approximately 90.64% compared to Tron
and certainly in terms of transaction throughput Tron is 976.1%. This in turn
shows that DPoS is another strain of the scaling we must consider when con-
templating or proposing scaling methods, allowing it to process exponentially
more transactions per second while simultaneously staying orders of magni-
tude lower in response time. In contrast, Ethereum is faster but comes with
slower transaction speeds and longer response times — and it’s a bit more cen-
tralized. Since Tron is better prepared to handle the high transaction volume
of high-performance applications with frequent microtransactions, Ethereum’s
PoS is preferable in cases where decentralization is more important.

7.2 Advantages

• Comprehensive Comparative Analysis: By evaluating both Tron and
Ethereum in terms of several performance metrics, we gain a proper under-
standing of each platform’s relative strengths and weaknesses.

• Standardized Methodology: This improved the reliability of our results
as we used consistent experimental setup and equipment. This allowed for
direct, raw, and fair comparisons between the platforms. Also, as the structure
of smart contracts needs to be the same for both blockchain platforms, this
makes it easy to get the benchmark data at the same time.

• Real-World Applicability: We deployed smart contracts on public test
networks to ensure that our findings generalize to real-world blockchain appli-
cations and not just theoretical ones.
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• Focus on User Experience: Our study addresses practical considerations
important for developers by emphasizing metrics that directly affect end users,
such as transaction latency and cost.

7.3 Challenges & Limitations

Challenges

• Test Network Related Challenges: As testing on a blockchain main net-
work is too costly and risky, we used testnets for our evaluation. However, the
accuracy of our data was hindered because in some cases test networks did not
fully replicate mainnet conditions and had discrepancies. Additionally, it also
required a significant amount of faucets to test inside testnets and the amount
provided per day was too low for our analysis. We had to create 100 wallet
addresses and manually collect faucets, which was challenging.

• Variability in Network Performance: It was difficult to maintain consis-
tent conditions in test networks due to inherent fluctuations. Overall response
time and throughput measurements were complicated due to these fluctua-
tions.

• Smart Contract Development Complexity: Designing smart contracts
that accurately reflect different types of workloads requires careful planning.
Errors in code could lead to failed transactions or misleading results.

• Tool Compatibility and Learning Curve: Working with multiple blockchain
platforms required proficiency with different tools and libraries. Differences in
documentation quality and community support added complexity.

• Data Collection and Synchronization: Capturing and synchronizing per-
formance data across platforms was complex and needed to be accurate. De-
veloping consistent logging mechanisms required additional effort to ensure
data accuracy.

Limitations

• Test Network Constraints: Since test networks do not fully reproduce
mainnet conditions (mainly network congestion, fees, and miner behavior),
performance may differ on the mainnet.

• Limited Scope of Functions Tested: Specifically, we researched three types
of functions: simple, CPU heavy, and data heavy functions. We did not explore
other types of functions.

• Limitations in Consensus Mechanisms: Ethereum and Tron’s consensus
mechanisms in particular were considered Proof of Stake (PoS) and Delegated
Proof of Stake (DPoS). The framework was not tested on other consensus pro-
tocols, like Practical Byzantine Fault Tolerance (PBFT) or Proof of Authority
(PoA), which restrict the applicability of the framework to such blockchain
systems.
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• Smart Contract Structural Limitations: Both of the smart contracts
should have a similar ABI structure to be tested in your framework, testing
between different structural applications will generate errors.

7.4 Future Work

Currently, our framework supports only two public blockchain testing, Ethereum and
Tron. In our future work, we aim to include Solana and other public blockchains in
our system. Ethereum and Tron have compatible and exchangeable smart contracts
both can be written in solidity language. Solana smart contracts can be written
in different languages even in solidity, so future implementation of Solana in our
system will be our first priority. In our current system, users can only test their
application by providing abi, smart contract address, and selecting test networks,
but our second priority is to implement a sophisticated user interface where users
can deploy and test their application instantly. Our third priority is to measure
the CPU and memory usage of the distributed node which is processing the smart
contracts function execution. As for Ethereum, a further exploration in the pool
pending time is necessary because a substantial amount of time gets spend in the
pool from the overall response time till any validator approves the transaction.
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Chapter 8

Conclusion

Public blockchain systems have become essential in various real-world domains due
to their transparency, security, and decentralized nature. However, evaluating their
performance remains a significant challenge. Most of the existing works do give us
meaningful insights but they lack in standardization of making a proper protocol.
These methods often overlook crucial factors such as consensus mechanisms, and
user experience, which are vital for understanding a blockchain system’s effective-
ness.

The performance evaluation framework we propose addresses these issues by pro-
viding standardized metrics and implementation. Our framework focuses on key
performance indicators such as transactions per second, overall response time, wal-
let consumption, and resource utilization. By deploying smart contracts on test
networks like Ethereum’s Sepolia and Holesky, and Tron’s Shasta and Nile, we were
able to simulate real-world evaluations and benchmark applications without the risks
and costs associated with mainnet deployments. Our experiments demonstrated how
different consensus mechanisms Proof of Stake in Ethereum and Delegated Proof
of Stake in Tron—impact performance under various workloads. The findings re-
vealed that while Tron excels in handling high transaction loads with lower latency,
Ethereum offers cost advantages for certain types of transactions, especially data
heavy operations.

As trust is essential in both the physical and digital worlds, having reliable and
efficient blockchain systems is crucial for the continued growth of decentralized ap-
plications. The main obstacle has been the lack of standardized evaluation methods,
making it challenging to optimize blockchain performance and enhance user experi-
ence. By introducing our comprehensive framework, we aim to mitigate these issues
and contribute to the development of more efficient, scalable, and user-centric public
blockchain applications. Our model not only provides a better way to assess existing
platforms but also sets the stage for future research in blockchain technology. We
believe that our contributions can help bring about a new domain of research fo-
cused on performance optimization, ultimately making blockchain technology more
accessible and beneficial for all users.
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