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Abstract

Maize is a vital crop that feeds over a billion people worldwide and supports nu-
merous industries. However, maize production is threatened by devastating plant
diseases such as Maize Lethal Necrosis (MLN) and Maize Streak Virus (MSV), which
can lead to significant yield losses and economic impacts, particularly in Sub-Saharan
Africa. Therefore, to prevent significant losses of this essential crop, farmers need to
be equipped with advanced tool that enables accurate and timely disease detection.
In this regards, we have implemented a comparative performance analysis of five
Transfer Learning (TF) (EfficientNetV2B2, ResNet50, InceptionV3, VGG16, and
Xception) and five Vision Transformer (ViT) (SWIN, DaViT, MobileViT, MaxViT,
and Involutional Neural Network (INN)) models for maize crop disease detection.
We subsequently developed a fusion model that integrates MobileViT and DaViT.
Afterward, the performance of the models was evaluated using multiple metrics such
as precision, recall, and f1-score. The proposed fusion model perform best across all
the metrics with an accuracy of 96.67%, recall of 95.84%, precision of 96.34%, and
a f1-score of 96.54%. For transparent decision-making, three explainable artificial
intelligence (XAI) techniques such as saliency map, gradient weighted class acti-
vation mapping (Grad-CAM), and local interpretable model agnostic explanations
(LIME) have been implemented. Finally, we deployed the proposed fusion model on
a Raspberry Pi to facilitate real-time detection of maize diseases.

Keywords: maize diseases detection, transfer learning, vision transformers, fusion
model, hardware deployment, Grad-CAM, XAI, LIME, saliency map;
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Chapter 1

Introduction

1.1 Background and Motivation

Agriculture plays a critical role in maintaining global food security and economic
stability [1]. Among the staple crops, maize scientifically known as Zea mays and
commonly referred to as corn, forms the backbone of human diets. In Sub-Saharan
Africa, maize is widely cultivated, particularly in Tanzania, where it spans over 5
million hectares, with an average annual consumption of 128 kg per person. This
versatile crop is consumed directly as corn on the cob and is also processed into
various products like cornmeal, flour, tortillas, snacks, sweeteners, and cornstarch.
Additionally, maize is essential for livestock feed, biofuel production, and biodegrad-
able plastics, making it a remarkably versatile crop [19].

Figure 1.1: Samples of maize leaves infected vs healthy

The global significance of maize is evident in its extensive cultivation and diverse
application, with annual consumption exceeding 1.2 billion metric tons. As the
world’s most produced grain, it accounts for approximately 30% of total cereal pro-
duction, meeting the dietary needs of over 1 billion people worldwide. In low-income
and food-deficit countries, maize can contribute up to 60% of daily caloric intake,
highlighting its vital role in combating hunger and malnutrition. Its importance
extends beyond human consumption, as more than 50% of total maize production
is used as animal feed, sustaining the livestock industry. Additionally, the growing
biofuel sector consumes about 150 million metric tons of maize annually for ethanol
production, illustrating its influence on global energy markets. The versatility and
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multi-sectoral demand for maize mean that disruptions in its supply due to diseases
could have severe consequences. Economic losses from reduced yields, estimated at
$2 billion annually for maize disease outbreaks in Africa alone, can destabilize lo-
cal markets and threaten food security.The interconnectedness of maize across food,
feed, and energy sectors makes protecting it a priority, as the ripple effects of disease
can escalate into higher food prices, livestock feed shortages, and decreased biofuel
production, affecting economies on a global scale.

Despite it is global importance, maize production faces significant challenges such
as Northern Leaf Blight, Common Rust, Gray Leaf Spot, Maize Lethal Necrosis
(MLN), and Maize Streak Virus (MSV). Among these, MLN and MSV are particu-
larly devastating, posing significant threats to maize crops, especially in Sub-Saharan
Africa. MLN is caused by a combination of Maize Chlorotic Mottle Virus (MCMV)
and Sugarcane Mosaic Virus (SCMV), leading to symptoms such as yellowing, leaf
necrosis, stunted growth, and eventual plant death. These diseases can cause sub-
stantial yield losses, affecting food security and livelihoods in the affected regions.
MSV, transmitted by leafhopper insects, manifests through streaking or striping of
the leaves, stunted growth, and reduced grain quality. Outbreaks of MLN and MSV
have been documented across several African regions, including Kenya’s Central
and Rift Valley Provinces, Ethiopia, Nigeria, Tanzania, Uganda, and more recently,
Rwanda [53].

Based on the recent U.S government agriculture statistics [56], Africa’s maize pro-
duction reached nearly 91 million metric tons in the 2023/2024 trade year. However,
forecasts indicate a potential decline to 88 million metric tons in 2024/2025. The
anticipated drop is driven by several challenges, including disease outbreaks, which
could severely affect the continent’s agricultural productivity and food security. Ac-
curate and timely disease diagnosis is crucial for effective treatment that ensures
food security, and maximizes the crop yields. Unfortunately, limited access to ad-
vanced diagnostic technologies in rural farming communities exacerbates the prob-
lem, delaying interventions and resulting in widespread crop damage. Traditional
diagnostic methods that rely on expert field assessments are often time-consuming,
sometimes inaccurate, and inaccessible to smallholder farmers, highlighting the need
for more efficient and accurate approaches.

Recent research has leveraged advancements in artificial intelligence, particularly
deep learning techniques, to classify maize diseases. Convolutional Neural Networks
(CNNs) have demonstrated superior performance in disease diagnosis compared to
traditional machine learning models. CNN-based models such as ResNet50, VGG16,
MobileNet, and MaizeNet have shown promise in this area. Despite this progress,
there remains a lack of reliable studies specifically addressing the diagnosis of MLN
and MSV—two diseases that are often diagnosed late, resulting in critical conse-
quences for farmers and stakeholders.

To bridge this gap, we implemented various transformer learning models and vision
transformers and achieved high-accuracy in maize disease detection using state-of-
the-art AI models. While models such as MobileViT have performed well from
Vision transfer models, we took an additional step and built a fusion model, with
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impressive performance. This fusion Transformer model is lightweight and suitable
for implementation on any device.

Moreover, there is a noticeable gap in the application of Explainable AI (XAI)
techniques in these studies. While these offer transparency and insights into the
decision-making processes of diagnostic models, which is essential for building trust
and understanding among non-expert users, specifically farmers. In this regard, we
incorporated XAI to enhance the reliability of the diagnostic tool in practical appli-
cations.

The dataset used, sourced from the Nelson Mandela African Institution of Science
and Technology and the Tanzania Agricultural Research Institute. It contains a
total of 17,277 images across three different classes: healthy, MLN, and MSV. We
analyzed these images to identify patterns associated with different maize diseases
by implementation of CNN, Vision transformer, and fusion models.

The CNN models used in this study include EfficientNetV2B2, ResNet50, Incep-
tionV3, VGG16, and Xception owing to their proven effectiveness. Additionally, we
employed the vision transformers models such as MobileViT, Swin, Davit, MaxViT,
and Convolutional Neural Network to explore their potential in enhancing accuracy.
Lastly, we implemented a fusion model combined the strength of two well performed
models to create a highly effective diagnostic tool. The dataset was split into train-
ing and validation sets, and all models were trained and evaluated to assess their
performance.

By incorporating XAI techniques, we also ensure transparency and provide insights
into the decision-making processes of the diagnostic models. This helps farmers and
other stakeholders understand the reasoning behind disease identification, fostering
trust and promoting the use of these advanced tools.

1.2 Problem Statement

Maize, one of the world’s most vital crops, faces a constant threat from diseases,
which can drastically reduce crop yields and quality. Diseases have a particularly
strong influence on crop yield in places such as Tanzania, where maize agriculture
is critical to food security and economic stability. Traditional disease diagnostic
methods frequently rely on visual inspection by agricultural professionals, which is
time-consuming, subjective, error-prone and sometimes unavailable to smallholder
farmers. This highlight the need for a highly accurate and effective diagnostic tool
in this field. In this regard, Our study improved diagnostic accuracy using Fu-
sion model and implemented three XAI methodologies, making predictions more
readily identifiable and interpretable by all agricultural stakeholders. This research
aspires to give farmers a reliable, accessible, and intelligible diagnostic tool, thereby
enhancing maize disease management and agricultural output.
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1.3 Aims and Objectives

The main objective of our paper is to develop a reliable and transparent method
for maize diseases detection, incorporating XAI techniques for better interpretation
and detection. Our detailed aims and objectives are as follows:

• Test and compare the performance of EfficientNetV2B2, Xception, ResNet50,
VGG16, and InceptionV3, based on their accuracy and diagnostic effectiveness.

• Incorporate state-of-the-art Vision Transformer models, including MobileViT,
Swin Transformer, DaViT, and MaxViT, to assess their potential in enhancing
disease detection accuracy.

• Built a hybrid fusion model of Vision Transformers to leverage the strengths
and achieve higher diagnostic performance.

• Analyze model outputs using Explainable AI techniques to provide trans-
parency and insight into the decision-making process, making the diagnostic
tools understandable and usable by non-expert users, such as farmers and
agricultural stakeholders.

• Develop a reliable and lightweight diagnostic tool that can be implemented
on various devices, ensuring practical usability for farmers, even in resource-
constrained settings.

1.4 Contributions

This study’s main contribution focused on building a model which is robust and ap-
plicable in real world application. In this regard, we conducted a thorough analysis
of advanced state-of-the-art models that have demonstrated effectiveness in disease
diagnosis. By comparing these trendy and well-performing models, we aim to create
a solution that is both effective and applicable in real-world agricultural settings.
We achieved it with the impressive performance of the fusion model. Additionally,
To ensure transparency and build trust, especially for non-expert users like farmers,
we incorporated various Explainable AI techniques. Another key contribution of
this study is the successful implementation of the model on a Raspberry Pi hard-
ware device. This demonstrates the model’s practicality for real-world agricultural
applications, ensuring that it can be deployed even in resource-constrained environ-
ments.

• The impressive performance of fusion model due to the combination of strengths
from both VT models, MobileViT and DaViT.

• Successful implementation of Fusion model on Raspberry Pi.

• The enhancement on transparency by implementation of three XAI methods
including LIME, Grad-CAM, and Saliency Map on the fusion model.
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1.5 Structure of The Paper

The paper structure is illustrated in figure 1.2 as follows: Chapter One the introduc-
tion, aim, objectives, and problem statement. Chapter Two provides a summary of
the literature review, discussing prior work in this field. Chapter Three details the
methodology, including the dataset and models. Chapter four, Result and Discus-
sion, presents the model performance and accuracy. Chapter five outlines the XAI
and finally, Chapter Six discusses conclusion and future direction.
Together, the paper guides you step by step through the comprehensive process
of developing and advanced maize disease diagnostic tool, from understanding the
challenges to implementing and evaluating cutting-edge solutions. As we move for-
ward, the goal is not just to advance technology, but to make a real difference in
the world of agriculture and beyond.

Figure 1.2: Organization of the Paper.
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Chapter 2

Related Work

Unlike other crops, maize, which is also popularly known as corn, is a versatile crop
and can endeavor in different climates. Maize leaf abnormalities can be categorized,
identified, and calculated using deep learning and machine learning techniques. This
section assess previous studies on identifying corn leaf diseases.

In paper [43], explored the challenge of accurately identifying and categorizing dis-
eases specifically Northern Leaf Blight of maize plant leaf. In addition to Gray
Leaf Spot (GLS), and Northern Leaf Spot, in various environmental conditions. Us-
ing the CD&S dataset comprising 1,597 images, the study aimed to improve disease
classification performance. It proposed MaizeNet, a deep learning model integrating
Faster-RCNN with ResNet-50 and spatial-channel attention mechanisms. Through
extensive experimentation, MaizeNet achieved a notable accuracy of 97.89%, demon-
strating significant improvements in disease spot localization and overall detection
accuracy. It effectively distinguished between a distinct class of corn leaf disease
amidst cluttered backgrounds and lighting variations.

In the study [41], presented a novel mobile system used with regard to identification
and the categorization of diseases in maize leaf, addressing the pressing issue of agri-
cultural losses attributed to undetected or misclassified diseases, particularly preva-
lent in regions like Punjab, Pakistan. To confront this challenge, the researchers
collected a diverse dataset comprising over two thousand images of maize leaf dis-
eases in several growth stages, weather conditions, and time intervals. By employing
deep learning some models used include from YOLOv3-tiny, up-to YOLOv8n, rig-
orous training and testing procedures were conducted, supplemented by meticulous
image preprocessing and annotation techniques. Notably, YOLOv8n came up as the
highly effective model, showing performance that is outstanding, with high precision
and mAP (mean average precision) for disease detection and classification, achiev-
ing a commendable detection speed of 69.76 FPS. This research underscores the
possibility of leveraging deep learning for real-time agricultural management of dis-
eases, urging for proactive measures to minimize agricultural losses and boost crop
yield. Moreover, the study suggests broader applications, advocating for integration
with smartphone apps and UAVs to facilitate widespread adoption in agriculture,
ultimately aiming to enhance global food security through sustainable crop manage-
ment practices.
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Similarly, another study [57], explored a comprehensive approach to boost the accu-
racy of corn leaf disease identification through the utilization of advanced technolo-
gies. By leveraging SVM (Support Vector Machine) alongside Convolutional Neural
Networks such as AlexNet and ResNet50. The study aims to revolutionize disease
identification in maize crops, crucial for global food security. Through the collection
and preprocessing of a dataset comprising over three thousand corn leaf images from
Embu County, Kenya, encompassing three disease categories, the researchers con-
ducted rigorous experimentation and evaluation. The results demonstrate that CNN
models, particularly AlexNet, outperformed traditional SVM classifiers, achieving
remarkable rates of accuracy which are 98.3% and 96.6% respectively. The poten-
tials of deep learning approaches is shown by this research in agricultural practices,
supplying significant avenues in the enhancement of crop protection measures and
contributing to sustainable agriculture worldwide.

In another work [13], the paper addresses the pressing issue of low agricultural
productivity due to plant diseases, with a particular focus on maize plants. Empha-
sis was made on the significance of early detection of diseases in mitigating losses
faced by farmers. Random Forest, Decision Tree, K-Nearest Neighbor, Naive Bayes,
and Support Vector are all employed in supervised machine learning models. The
study developed an accurate disease detection and classification models by analyzing
high-resolution images of maize leaves and extracting relevant features. The Ran-
dom Forest classifier proves itself as the highly reliable model, outperforming others
by achieving a classification accuracy as high as 79.23%, underscoring its efficacy in
identifying and categorizing the diseases of maize leaf. Utilizing a large dataset of a
total of 3,823 images categorized into four groups: common rust, healthy, gray leaf
spot, and northern leaf blight, the research shows an enhance agricultural practices
and sustainability through early disease detection by leveraging machine learning
algorithms.

Similarly, in [29], focusing on grapes and tomatoes, the VGG16 modeler was used
to classify and diagnose leaf diseases in these crops. They utilize data augmenta-
tion techniques, hyperparameter tuning, and model optimization to enhance model
performance. This study evaluates the model using different performance metrics,
achieving an accuracy rate as high as 98.40% for grapes and 95.71% for tomatoes.
Researchers point out a significant benefit of early disease diagnosis with regard
to agriculture, as well as demonstrate the effectiveness of deep learning techniques
aimed at enhancing crop management practices. Through hyperparameter tuning
and model optimization, they demonstrate the potential of deep learning to revolu-
tionize agricultural practices and increase food production.

Another work [28], Deep transfer learning, has been used to classify corn disease
and healthy plants from leaf images. Using convolutional neural network (CNN)
models and a collection of 3852 images, the study’s researchers obtained an average
prediction rate of 98.6%, which is a good performance. They used ten public CNN
models through transfer learning and evaluated their performance using various
metrics. The results emphasize the potential of deep learning to enhance agricultural
practices by enabling rapid and accurate disease identification, thereby bringing
precision to crop management and food production.
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In the paper[26] a method for accurate detection of maize foliar disease in complex
environments using LS-RCNN and CENet cascade network is proposed. LS-RCNN
detects corn leaves, and CENet classifies them into four categories. This method
uses a two-stage transfer learning strategy for better accuracy and faster training.
The results demonstrate higher f1-scores and faster training than other methods.
This paper presents the dataset with images of laboratory and natural environ-
ments, along with a discussion of data augmentation.

Similarly, another study [48] presents LeafDoc-Net, a strong and lightweight transfer-
learning design for precisely identifying leaf diseases over numerous plant species,
indeed with constrained image information. The approach combines DenseNet121
and MobileNetV2 models, upgrading them with consideration instruments, world-
wide normal pooling layers, extra-dense layers with swish actuation, and batch nor-
malization layers. Assessed on cassava and wheat leaf malady datasets, LeafDoc-Net
beats existing models in most of the performance measurements, with potential for
further enhancement and expansion in future research.

Existing deep learning methods for corn disease detection often prioritize accuracy
over real-time performance, limiting their usefulness in practical settings. To address
this, [36] propose a lightweight object detection algorithm based on an improved
YOLOv5s model. Their approach incorporates a Faster-C3 module to reduce model
complexity, while also enhancing the neck network with CoordConv and a modified
CARAFE module to improve semantic information extraction and detection accu-
racy. Finally, they leverage channel-wise knowledge distillation during training to
further enhance accuracy without increasing model size. This method achieves a
good balance between accuracy and speed, which made it suitable for real-world
corn disease detection applications.

In response to the global spread of maize diseases, a novel classification model using
DenseNet201 and an optimized Support Vector Machine (SVM) has been developed
to effectively identify maize leaf diseases. In the study [35], leverages the advanced
image-classification capabilities of DenseNet201 and Bayesian optimization tech-
niques to improve SVM performance, addressing challenges such as variable lighting
and reflections in image analysis. The model was tested on a dataset of 4988 im-
ages, categorizing them into four classes: healthy, blight, common rust, and gray
leaf spot. Impressively, the proposed model acquired an accuracy of 94.6 percent,
significantly outperforming traditional SVM approaches, thereby enhancing agricul-
tural productivity and disease management.

In the study [25], a deep learning approach named WG-MARNet was proposed
for identifying maize leaf diseases, that addresses noise, background interference,
and low accuracy. WG-MARNet utilizes wavelet threshold-guided bilateral filtering
(WT-GBF) to reduce noise and decompose images for improved feature extraction.
It then employs a multichannel ResNet architecture with an attenuation factor for
optimized multiscale feature fusion and training stability. Finally, the model lever-
ages PRelu and Adabound for enhanced convergence and accuracy. This approach
achieved a promising average recognition accuracy of 97.96 percent and a detection
time of 0.278 seconds per image, demonstrating its potential for precise maize dis-
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ease control in fields.

Another recent study [44], underscores the significant impact of deep learning tech-
niques in agriculture, particularly in weed, pest, and disease detection.The study
focused on experimenting with different CNN architectures, including DenseNet201,
MobileNet, VGG16, Hyperparameter Search, and InceptionV3. By fine-tuning these
models on agricultural image data, it achieved excellent accuracy in detecting the
disease. In particular, the DenseNet model with outstanding accuracy of 99.62%,
MobileNet performed well with 91.85% accuracy, and VGG16 achieved 78.71% accu-
racy. Additionally, the study highlighted the data augmentation and feature fusion
as critical steps in increasing the models’ performance.

Likewise in the paper [21], a specialized model, MFaster R-CNN, was tailored for
detecting corn leaf diseases based on Machine Vision detecting corn leaf diseases
in agricultural environments. The model enhances the Faster R-CNN framework
by incorporating a batch normalization processing layer and a mixed cost function
to improve accuracy and convergence speed. The study used a dataset of 697 im-
ages showing different maize diseases taken in various weather conditions. Results
showed that MFaster R-CNN performed better than other models in detecting these
diseases. Showcasing its potential for practical applications in agricultural disease
control.

Another study [24], introduces a smart way to detect diseases in maize leaves using a
special computer model called MFF-CNN. This model is designed to tackle common
challenges in disease detection, like changes in lighting, complex backgrounds, and
unclear target areas. The MFF-CNN model outperforms other methods in detecting
maize leaf diseases quickly and accurately. The study’s experiments prove that the
MFF-CNN model works well in spotting maize leaf diseases, even in tricky situations
like overlapping areas and sparse targets. This method not only improves detection
accuracy but also speeds up the process, making it a useful tool for diagnosing maize
leaf diseases and potentially other plant diseases.

In the paper [45], explored the significant impact of biotic stresses, such as fungal,
bacterial, and viral pathogens, on maize yield and emphasized the importance of
identifying resistant genes to develop disease-resistant cultivars. Their study em-
ploys both machine learning and deep learning techniques to classify gene expressions
in maize under normal and stress conditions. The machine learning algorithms used
include Support Vector Machine, Naive Bayes, Decision Tree,K-Nearest Neighbor,
and Ensemble, while a Bi-directional Long Short Term Memory (BiLSTM) network
with a Recurrent Neural Network architecture is introduced for deeper gene clas-
sification. To boost algorithm feature selection, performance was conducted using
the Relief feature selection algorithm. The findings highlighted the superior per-
formance of BiLSTM compared with other algorithms. Crucially, several genes,
including (S)-beta-macrocarpene synthase, zealexin A1 synthase, and others, were
identified as differentially upregulated under biotic stress, marking them as key tar-
gets for enhancing maize resistance to pathogens.

Another study [31], involved the comprehensive analysis of Convolutional Neural
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Networks such as MobileNetV2 and Xception modules for detection of plant disease.
Among the CNN architecture employed, MobileNetV2 displayed great efficiency suit-
able for mobile devices while Xception being an extension of the Inception module
has improved extraction capabilities as its feature. The research paper presents an
ensemble module. This ensemble module combines the strengths of Xception and
MobileNetV2 to improve the performance of plant disease detection. The ensemble
approach is referred to as LEMOXINET. The ensemble model was able to achieve
great results with 99.10% accuracy.

In the study [37], conducted research where they did a comprehensive and compar-
ative analysis of the various deep-learning modules to predict cotton diseases. By
utilizing fine-tuning Transfer Learning algorithms, the Xception module achieved the
highest accuracy of 99.70% among all the modules used. The researchers selected
the Xception module for their web-based application for Cotton disease prediction,
which will assist farmers in early diagnosis of cotton disease, increasing cotton pro-
duction.

In another paper [42], they studied methods of disease classification by using the
triCNN architectures including Inception, Xception, and DenseNet169. The paper
provides some overviews of the triCNN architectures with the aid of visual images.
The paper presents some computerized methodologies for the detection of ground-
nut disease by using the ensemble method. To get an accurate disease prediction,
the researchers used a fusion approach, i.e., combining the triCNN architectures.
An accuracy of 98.46% performance was obtained when their proposed framework
was applied to the groundnut leaf datasets.

In the paper [47] conducted research using machine learning-based automated dis-
ease detection to accurately detect disease. By combining EfficientNetB0 and Mo-
bileNetV2 on PlantVilageatasets with about 54,305 images, the accuracy of disease
prediction was improved by 99.77%. This model shows a more dependable auto-
mated detection system for disease detection.

In another recent study [54] addresses the early identification and precise catego-
rization of numerous diseases affecting maize plants, including corn smut, corn rust,
corn leaf blight, corn mosaic virus, and corn stunt. The motivation for this study
derives from the important need to reduce the suffering caused by these diseases,
especially in humid, warm locations where maize is often farmed. The process in-
volves creating a CNN-based model from a dataset including four types of maize
diseases: rust, gray leaf spot, healthy, and leaf blight. The study discovered that
the suggested deep learning model was highly accurate in diagnosing corn diseases,
with the highest f1-score accuracy recorded at 99.83%. The dataset for the study
was obtained from Kaggle and comprised around 8000 images separated into train-
ing, test, and validation data. The models’ results showed that deep learning is
good at precisely recognizing and distinguishing between different types of maize
diseases, which has implications for increasing crop output and developing agricul-
tural technologies. Future research might entail creating more advanced models for
more accurate and efficient disease categorization in maize crops.
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Similarly [49], addresses the difficulty of accurately classifying corn seed diseases
utilizing advanced AI approaches, especially MobileNetV2 with feature augmenta-
tion and transfer learning. The motivation for this research stems from the growing
relevance of precision agriculture and the necessity for precise assessments of agri-
cultural goods such as corn seeds. The researchers hoped to increase the model’s
capacity to extract features and identify diseases by selectively picking MobileNetV2
and adding layers such as Average Pooling, Flatten, Dense, Dropout, and Softmax.
The study used a comprehensive dataset of 21,662 maize seed images from a labora-
tory in Hyderabad, India, divided into four classes: broken, discolored, silk cut, and
pure. The results showed that the suggested model obtained an accuracy of roughly
96% across all four classes, exceeding state-of-the-art models in terms of precision,
recall, F1 score, and accuracy. Feature augmentation and transfer learning were
critical in boosting the model’s accuracy by reducing overfitting, accelerating train-
ing, and improving adaptability to various patterns in the data. This discovery has
substantial significance for the agricultural business and farmers coping with maize
seed diseases, as it provides a potential approach for improving precision agricul-
ture and crop management. The researchers recommend investigating more model
upgrades and applications in real-world agricultural settings to improve disease cat-
egorization accuracy and efficiency.

Likewise, The study [58] describes image recognition by identifying maize leaf dis-
eases using a dataset created by Indian researchers, intending to provide excellent
solutions for agriculture. The motivation originates from the desire to help agri-
cultural researchers and farmers quickly diagnose and treat maize leaf diseases in
order to increase crop output and quality. The methodology included preprocessing
techniques such as image adjustment, normalization, and data enhancement with
the resnet18 deep learning model, which is well-known for its performance in image
identification tasks. The model performed well in disease categorization, with 98%
accuracy, 95% precision, 95% recall, and 95% f1-score. The dataset included 2,341
images: 575 healthy corn leaves, 661 corn leaf spot images, 503 corn leaf rust im-
ages, and 602 corn leaf blight images. Future study seeks to improve the model’s
accuracy and generalization by evaluating more datasets, resulting in sophisticated
image recognition solutions for agriculture.

In the paper [34], The authors utilize six CNN architectures, including Basic CNN,
EfficientNetV2B0, EfficientNetV2B1, VGGNet, LeNet-5, and ResNet to detect the
maize image diseases. The study use a dataset, consisting of 1,5344 maize leaf im-
ages, including MLN, MSV, and healthy. Moreover, to increase the performance of
the models, the study performs hyperparameter tuning. The study results showed
that the EfficientNetV2B0 model perform well with promising accuracy of 99.99%
to detect the maize leave disease. Finally, the study implements Explainable AI
method Grad-CAM for model interpretability.

In another research [53], focuses on the use of machine learning techniques, specifi-
cally Explainable AI and Deep Learning, to diagnose two prevalent diseases in maize
crops: maize streak and maize leaf blight. The study utilize two pre-trained Trans-
fer Learning models such as VGG19, and MobileNet for maize disease detection.
Furthermore, the study implements two Explainable AI method shapley additive
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explanations (SHAP), and local interpretable model-agnostic explanations (LIME)
with best performing model for model interpretability.

In [52], the research examines the performance of six deep transfer learning pre-
trained models such as VGG19, VGG16, MobileNetV2, ResNet50, ConvNextBase,
and InceptionV3 to detect maize leaf diseases. The study use two maize leaves im-
age datasets, namely PlantDoc, and Plant Village. Moreover, the research suggests
a new method of combining the attention mechanism with ResNet50 and VGG16
models. The use of attention mechanisms has greatly enhanced the precision of de-
tecting diseases in maize leaves. Overall, the composite VGG16+SE model achieve
a validation accuracy of 93.44%, while the MobileNetV2 model excel with the best
accuracy of 94.76% among all models.

In light of the challenges posed by disease vulnerability in the maize industry, the
study [23], proposed an automated system for disease identification, severity assess-
ment, and yield loss quantification in maize using a real-world dataset annotated by
plant pathologists. The authors put forward a deep learning model called ‘MaizeNet’
that uses K-Means clustering for region of interest extraction and has a remarkable
accuracy of 98%. 50% accuracy. The integration of the model into the ‘Maize-
Disease-Detector’ web application provided a friendly user interface; thus, it is a
valuable resource for plant pathology specialists. The high accuracy of the model,
the ability to extract features, a small number of parameters, and the speed of train-
ing show the possibility of using the model to transform disease control in maize
crops.

In the paper [38], the authors stressed on the significance of disease diagnosis at
an early stage in crops to enhance the quality and quantity of crops. Conventional
disease identification was a complicated process that called for expertise and time,
which is why the authors proposed an automated system that would be very helpful
in agriculture. They developed a stepwise disease detection model that involved
images of diseased and healthy plants, with the images being passed through a
CNN algorithm with five pre-trained models. This model was structured into three
stages: crop classification, disease identification, and disease categorization with
an ‘other’ category for increased model versatility. In validation tests, the model
achieved a high level of accuracy in categorizing crops and disease types at 97. 09%.
Further, the flexibility of the model was demonstrated when the accuracy of the
model increased when non-model crops were included in the training data set. The
study claimed that the model had a lot of potential for smart farming, especially
for Solanaceae crops, and its applicability was believed to grow as more crop types
were included in the training set.

In the study [39], discussed the limitations of automated crop disease detection,
including data privacy and costs, in the context of federated learning. They exper-
imented with CNN models, mainly ResNet50, and vision transformers (ViT) using
a dataset from PlantVillage. Findings revealed that federated learning is efficient
based on the number of learners and the quality of data. ResNet50 was the best
suited to federated learning compared to ViTs because of the higher computational
complexity. This study also highlighted the possibility of using federated learning
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in crop disease classification and the directions for future research.
The paper [40] introduces an interpretable machine learning framework utilizing
Convolutional Neural Networks (CNNs) and explainable AI (XAI) techniques to
accurately diagnose Maize Streak Disease. The framework combines deep learning
for precise disease classification with interpretability methods such as SHAP and
LIME. the accuracy of 96% in identifying Maize Streak Disease, highlighting the
effectiveness of the interpretable deep learning approach. The study emphasizes the
importance of transparency and interpretability in deep learning models to enhance
user trust and understanding in agricultural disease diagnosis.

Similarly, In [55], the study explores the application of deep learning and vision
transformer models for detecting and classifying maize leaf diseases. The study
evaluates the performance of various CNN architectures and vision transformers.
CNNs, such as ResNet and DenseNet, have demonstrated high accuracy in disease
detection, with reported accuracies between 94% and 99%. Vision transformers per-
formed well in handling complex image data, offering detailed feature extraction and
potentially superior performance.

In another comparative analysis paper, [50] the performance of different CNNmodels
such as EfficientNetV2, MobileNetV3, ResNet50, and InceptionResNetV2 evaluated
on image classification tasks. In the study, the InceptionResNetV2 achieved the
highest accuracy of 88.9%, which is the combination of Inception and ResNet ar-
chitectures. For the optimal performance, it requires fine-tuning. MobileNetV3 is
optimized for low-latency applications and is ideal for mobile and edge devices with
limited computational power. Also, ResNet50 offers good performance but demands
significant computational resources, effective in training deep networks. The study
concludes that the choice of CNN model depends on the specific requirements of the
application, including computational resources and accuracy needs.

This study [11] presents a domain-specific vision dataset called DataDeep. The
CropDeep is aimed at providing the data benchmark for a deep-learning-based clas-
sification and detection model construction based on realistic characteristics of agri-
culture. The CropDeep consists of 31, 1347 mages with over 49,000 annotated
instances from 31 different classes. These images were collected in a wide variety
of situations using different cameras and greenhouse equipment. It also features vi-
sually similar species and periodic changes with more annotations, which have sup-
ported stronger benchmarks for deep-learning-based classification and detections.
To verify the applications of the DeepCrop, deep learning models were performed
on the data sets. In the process of ascertaining the applications of DeepCrop, a com-
parison of performances of seven deep learning models was used and classification
and detection results were accumulated. VGG16, VGG19, SqueezeNet, InceptionV4.
DenseNet121, RasNet18 and Rasnet50. Out of these seven models, RasNet50 had
the highest performance accuracy with 99.89% accuracy. In terms of detection re-
sults for Faster R-CNN, SSD, RFB, YOLOv2, YOLOv3, and RetNet. YOLOv3
obtained the second-highest average mAp of 91.44% and the study suggests that
the YOLOv3 network has good potential in agriculture applications.

Another study [51] introduces an approach for Northern Leaf Blight detection as
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early as four to five days using sensors of the Internet of Things (IoT). With the
utilization of Convolutional Neural Networks and Long Short Memory(LSTM), ul-
trasound and Volatile Organic compound emissions were visualized and analyzed.
A hybrid CNN-LSTM model was used to classify the Volatile Organic Compound,
while an LSTM model was used for the classification of ultrasound detection from
the maize crop. The hybrid CNN-LSTM model achieved a test accuracy of 96.39%
after 15 training epochs in terms of Volatile Organic Compound classifications. A
99.98% accuracy was exhibited by the LSTM model in identifying anomalies in the
ultrasound emissions from the maize plant.

Another study [20] performed deep learning approaches to identify maize disease.
The dataset used for this study contains images of three diseases which include May-
dis Leaf Blight, Turcicum Leaf Blight, and Banded Leaf and Sheath Blight. Utiliz-
ing the basic framework of the state-of-the-art InceptionV3 network, three network
architectures were modeled on the dataset. The computational layers were trained
with the dataset by the application of baseline learning. The Inception-V3 GAP was
efficient in learning the features of the symptoms of the maize disease and thereby
produced an accuracy of 95.99% in the separated dataset. To demonstrate the
effectiveness of the proposed approach, a comparative analysis of pre-trained state-
of-the-art networks was conducted. The results showed that the Inception-V3 GAP
model involves higher computational cost. Besides the higher computational cost,
the Inception-V3 GAP model performed quite better in terms of the classifications
of diseases correctly based on the learned features from the dataset

Table 2.1: Summary Table For Selected Papers

Ref Year Proposed Findings Accuracy
[43] 2023 MaizeNet: Identifi-

cation of Corn Leaf
Illnesses using Deep
Learning Methods

Showed significant improve-
ments in disease spot local-
ization and successfully distin-
guished various types of dis-
ease lesions amidst crowded
backgrounds and lighting vari-
ations.

97.89%

[41] 2023 detecting and
classifying maize
leaf disease using
deep learning and
a mobile-based
system

The research shows the effec-
tiveness of YOLOv8n and the
potential for real-time agricul-
tural disease management.

N\A

[57] 2023 Employing Con-
volutional Neural
Networks AlexNet
and ResNet50 and
Support Vector Ma-
chines to Identify
Corn Leaf Diseases

They combined AlexNet and
ResNet50 to identify maize
leaf diseases accurately.The
study shows that AlexNet out-
perform traditional SVM clas-
sifiers.

98.3%
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Table continued from previous page

Ref Year Proposed Findings Accuracy
[13] 2020 Using Machine

Learning Algo-
rithms to corn Leaf
Disease Detection
and Classification

The study emphasizing the
importance of early detection
and potential of timely dis-
ease identification for farmers.
They employed techniques like
Naive Bayes and Random For-
est.

79.23%

[29] 2021 Using VGG CNN
for multi-crop leaf
disease classifica-
tion

Leaf diseases detection using
deep learning. improve model
performance by data augmen-
tation and VGG model tun-
ing.

98%

[28] 2022 Using deep transfer
learning for maize
diseases Classifica-
tion

Utilized deep transfer learn-
ing for maize diseases clas-
sification. Explained deep
learning’s potential in agricul-
ture. Improves crop manage-
ment and food production.

98%

[26] 2022 Maize Disease Iden-
tification using Cas-
cade Networks &
Two-Stage Transfer
Learning

Introduces LS-RCNN and
CENet for maize disease clas-
sification. Two-stage transfer
learning boosts accuracy and
training speed. Achieves
high f1-scores. Includes
dataset and discusses data
augmentation.

99.70%

[48] 2024 Transfer learning-
based architecture
for accurate detec-
tion of leaf diseases
in numerous plants
using less amount
of images

Surpasses current models in
terms of AUC, recall, accu-
racy, and precision metrics on
cassava and wheat leaf disease
datasets. Emphasizes data
augmentation and preprocess-
ing, utilizes Grad-CAM++
for performance analysis, and
shows promising results for
generic leaf disease detection.

98%

[36] 2023 Efficient Model for
Detecting Maize
Leaf Disease us-
ing Knowledge
Distillation

Improved the YOLOv5s
model for detecting maize
diseases by incorporating a
Faster-C3 module, enhancing
it with CoordConv and a
revised CARAFE module,
and utilizing channel-wise
knowledge distillation.

mAP(0.5)
accuracy.
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Table continued from previous page

Ref Year Proposed Findings Accuracy
[35] 2023 Identification of

maize diseases
based on improved
support vector
machines using
DenseNet201’s deep
features

Developed a classifier that in-
corporates DenseNet201 and
SVM, improved with Bayesian
optimization. This model ef-
fectively tackled imaging is-
sues, such as lighting contrast
changes.

94.6 %

[25] 2023 Maize leaf disease
identification based
on WG-MARNet

Used machine learning and
deep learning techniques, in-
cluding a Bi-directional Long
Short Term Memory (BiL-
STM) network, to identify
maize genes that respond to
biotic stress.

92.86%

[44] 2023 Crop Yield Im-
provement with
Weeds, Pest and
Disease Detection

The study highlighted the im-
portance of data augmenta-
tion and feature fusion in
getting better performance of
each model. The models
used in the study were the
DenseNet, MobileNet, and
VGG16.

DenseNet:
99.62%,
MobileNet:
91.85%,
and
VGG16:
78.71%

[21] 2023 MFaster R-CNN for
Maize Leaf Diseases
Detection Based on
Machine Vision

The specialized model intro-
duced in the paper, MFaster
R-CNN performed better than
all other models in detecting
diseases which has performed
on a dataset containing 697
images.

97.18%

[24] 2022 One-Stage Dis-
ease Detection
Method for Maize
Leaf Based on
Multi-Scale Feature
Fusion

Comparative analysis of dif-
ferent CNN models, where
MFF-CNN outperformed well
even in handling overlapping
and sparse targets. It can han-
dle effectively challenges like
changes in lighting, complex
backgrounds, and unclear tar-
get areas that make it a fea-
sible solution even for other
plants disease detection.

N\A
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Table continued from previous page

Ref Year Proposed Findings Accuracy
[45] 2023 Integrated tran-

scriptomic meta-
analysis and com-
parative artificial
intelligence models
in maize under
biotic stress

Used a variety of ML and DL,
including a BiLSTM network,
to identify gene expressions
in response to stress. BiL-
STM demonstrated greater ef-
ficacy in identifying impor-
tant genes such as (S)-beta-
macrocarpene synthase, which
are prospective targets for en-
hancing maize disease resis-
tance.

92.86%

[31] 2022 LEMOXINET:
Plant disease pre-
diction using the
Lite ensemble Mo-
bileNetV2 and
Xception models

combine two CNN modules,
MobileNetV2 and Xception
to form an ensemble module
called LEMOXINET with an
accuracy of 99.10%.

99.10%

[37] 2023 A deep learning
module for Cotton
disease prediction
using fine-tuning
with a smart web
application

Xception module is selected
for the cotton disease predic-
tion web application due to its
high accuracy among all the
Transfer Learning modules.

99.70%

[42] 2023 An ensemble of
CNN models for de-
tecting groundnut
plant leaf diseases.

An accuracy of 98.46% was
achieved from the combina-
tion of the tri-CNN archi-
tecture (Inception, Xception,
and DenseNet169) in ground-
nut plant leaf disease detec-
tion.

98.46%

[47] 2023 Ensemble of deep
learning models for
multi-plant disease
classification and
smart farming

Combination of Efficient-
NetB0 and MobileNetV2
to improve plant disease
classification accuracy.

99.77%

[54] 2024 Deep Learning for
Classifying Corn
Diseases

The study identified success-
fully maize diseases using deep
learning, indicating its poten-
tial for enhancing crop pro-
ductivity.

99.83%
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Table continued from previous page

Ref Year Proposed Findings Accuracy
[49] 2024 Using MobileNetV2

with feature aug-
mentation and
transfer learn-
ing to enhanced
corn seed disease
classification

model for maize seed im-
ages. Feature augmenta-
tion and transfer learning
boosted model accuracy, de-
creased overfitting, and accel-
erated training.

96%

[58] 2024 Using the ResNet18
model to identify
maize leaf disease
images

The model improved its
disease classification perfor-
mance by using approaches
like image adjustment and
data enhancement, surpassing
other models using a dataset
of 2,341 images.

95%

[34] 2024 Detecting Maize
Lethal Necrosis and
Maize Streak Virus
using deep learning
approach

Utilized six CNN architec-
tures, including Basic CNN,
EfficientNetV2B0, Efficient-
NetV2B1, VGGNet, LeNet-5,
and ResNet to detect the
maize image diseases.

99.99%

[53] 2023 XAI for Maize Dis-
ease detection

Utilized VGG19, and Mo-
bileNet to implement XAI for
maize diseases detection.

N\A

[52] 2024 SE-VGG16
MaizeNet: Maize
Disease Classi-
fication Using
Deep Learning and
Squeeze and Ex-
citation Attention
Networks

Examined the performance
of six deep transfer learn-
ing pre-trained models such
as VGG19, VGG16, Mo-
bileNetV2, ResNet50, Con-
vNextBase, and InceptionV3
to detect maize leaf diseases.

94.76%

[23] 2022 Disease detection,
severity predic-
tion, and crop
loss estimation in
MaizeCrop using
deep learning

introduced ‘MaizeNet’, a deep
learning model for maize dis-
ease management, achieving
98.50% accuracy and promis-
ing to revolutionize disease
control through its web appli-
cation integration and efficient
training.

98%

[38] 2023 Developed a deep
learning disease de-
tection model for
plants.

Implemented an automated,
versatile CNN-based disease
detection model for crops that
proved highly accurate and
showed potential for expand-
ing smart farming practices.

97. 09%
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Table continued from previous page

Ref Year Proposed Findings Accuracy
[39] 2023 Crop disease detec-

tion using images
and federated learn-
ing.

Demonstrated that federated
learning can effectively ad-
dress data privacy and cost is-
sues in automated crop disease
detection, with ResNet50 out-
performing other models.

ResNet50:
100%,
ViT B16
98.56%,
Vgg16 &
ViT B32,
98.2%,
Incep-
tionV3,
and
96.20%

[40] 2023 Interpretable deep
learning for diagno-
sis of Maize streak
disease

The study combines deep
learning for precise disease
classification with techniques
for model interpretability,
such as SHAP and LIME.

96%

[55] 2024 Maize Leaf Disease
Detection Using
Vision Transform-
ers (ViTs) and
CNN-Based Classi-
fiers: Comparative
Analysis

The evaluation performance
of various CNN architectures
and vision transformers. Vi-
sion transformers performed
well in handling complex im-
age data.

CNN(94%
99%)

[50] 2024 Classifying fine-
grained maize leaf
diseases using deep
transfer learning

Among all the CNN models
the combined architecture of
Inception and ResNet has the
highest accuracy. It balances
accuracy and efficiency but re-
quires fine-tuning for optimal
performance.

88.9%

[11] 2019 CropDeep: The
Crop Vision
Dataset for Clas-
sification and
Detection in Agri-
culture Using Deep
Learning

CropDeep is a dataset aimed
to provide a benchmark for
deep-learning-based classifica-
tion. Other models are also
used to verify CropDeep Ap-
plications

For classi-
fication
InceptionV4:
96.89%
For Detec-
tion
RetNet:
92.79%

19



Table continued from previous page

Ref Year Proposed Findings Accuracy
[51] 2024 Detecting non-

visual maize disease
using wave trans-
form and hybrid
CNN-LSTM models
using VOC and ul-
trasonic IoT sensor
data

With Convolution Neural Net-
works, LSTM, and IoT sen-
sors, Northern Leaf Blight dis-
ease can be detected as early
as for to five days after the oc-
currence of the disease.

Hybrid
CNN-
LSTM
96.39%
LSTM
99.98%

[20] 2022 A deep learning-
based method for
identifying maize
crop diseases

InceptionV3 GAP has a
higher accuracy with higher
computational cost but still
performs better

95.99%

In summary, from the above discussion, it is distinctly noticed that most of the
research in this field is classification and detection and most classification tasks are
based on corn leaf disease classification and detection. However, there are some
diseases which have not been analyzed. For instance, Maize Lethal Necrosis (MLN)
disease classification, Moreover some research was focused on different crop disease
detection as depicted in Table 2.3. Furthermore, Minor works on maize leaf disease
detection using deep learning has been conducted, maize disease detection using
explainable artificial intelligence should be more prominent. In this digital era agri-
culture should not be left behind with the use of technology, therefore creation of a
detection tool for farmers in Africa and the rest of the world especially in Tanzania
who mostly face those diseases is essential.

Table 2.3: Comparison of Different Papers With Our Paper

Paper Year Maize Disease MLN MSV Dataset ML & DL XAI
Analysis used

[48] 2023 - - - - ≡ ≡
[57] 2024 ≡ ≡ ≡ = ≡ -
[29] 2022 - - - ≡ ≡ -
[21] 2022 ≡ - - - ≡ -

[28], [26] 2022 ≡ - - = ≡ -
[43], [41], [13] 2023 ≡ - - = ≡ -
Our paper 2024 ≡ ≡ ≡ ≡ ≡ ≡

≡ Covered = Partially Covered - Not Covered
Dataset Image used < 1000: -

Dataset image used 1000 to 5000: =
Dataset Image used > 5000: ≡
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Chapter 3

Methodology

3.1 Work Plan

The work plan for this thesis followed a structured and systematic approach to de-
velop and evaluate advanced deep learning models to detect maize diseases as it can
be seen in figure 3.1.The research was divided into key stages to ensure a smooth
flow of work from data collection to model evaluation and deployment.

Initially, the dataset was gathered over a six-month period using the AdSurv mo-
bile application. This was followed by a critical preprocessing phase, where the
images were cleaned, resized, and normalized to meet the input requirements of
various models. Next,the data was used to train and assess several Transfer Learn-
ing and Vision Transformer models.. These models incorporated EfficientNetV2B2,
ResNet50, InceptionV3, VGG16, Xception, as well as Vision Transformers like Swin,
DaViT, MobileViT, MaxViT, and the Involutional Neural Network (INN). During
this phase, hyperparameters were fine-tuned to improve model performance.

Following the training and evaluation of individual models, a fusion model com-
bining the strengths of MobileViT and DaViT was developed. This hybrid model
achieved outstanding results and was further tested for its robustness and accuracy
across various test scenarios.

The final stage involved deploying the fusion model on a Raspberry Pi, demonstrat-
ing the practical applicability of the solution to be effective in resource-constrained
environments. Additionally, XAI techniques such as Grad-CAM, LIME, and Saliency
Maps were incorporated to ensure model transparency and usability for non-expert
users, like farmers.
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Figure 3.1: Diagram of the Work Plan.

3.1.1 Data Collection

The data collection process involved acquiring maize leaf images from farmers’ gar-
dens in Tanzania using the AdSurv mobile application installed on Samsung phones.
A group of researchers and students from Tanzania Agricultural Research Institute
and The Nelson Mandela African Institution of Science and Technology collected the
dataset for a period of six months, from February 2021 to July 2021. The images
were collected to diagnose MLN and MSV diseases as shown in figure 3.2, aiming to
assist farmers in disease diagnosis and improve maize production.

The dataset consists of 17,277 labeled images categorized into Healthy (5,542), Maize
Lethal Necrosis (5,068), and Maize Streak Virus (6,667) as depicted by figure 3.3.
Each image instance includes the crop status, variety, age, and location (district,
sub-county). The data collected is well-labeled and curated, providing an open and
accessible maize image dataset for machine learning experiments.
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Figure 3.2: Sample images.

Figure 3.3: Distribution of Images in Each Class.

3.1.2 Data Preprocessing

For this thesis, the preprocessing of the maize disease detection dataset played a
crucial role in ensuring the accuracy and robustness of the models. The dataset,
containing images of maize leaves classified into Healthy, MLN, and MSV, under-
went a series of essential preprocessing steps.

Firstly, all images were scaled to meet the input size requirements of each model.
For instance, MobileViT required images to be resized to 224x224 pixels, while Swin
Transformer worked with 256x256 pixel images. After resizing, normalization was
applied to ensure that the pixel values were standardized. The normalization process
used the mean and standard deviation values computed from the training dataset,
helping the models to learn consistently across all image inputs.To enhance model
generalization and improve performance, data augmentation techniques were em-
ployed. These techniques included random horizontal flips, rotations, zooms, and
cropping, introducing variability in the training data. By applying these augmenta-
tions, the models became more resilient to variations in the maize images, such as
lighting conditions and leaf orientations, which are common challenges in real-world
scenarios.

Considering that the dataset is rather unbalanced, with certain classifications, like
MSV, had more instances than others, a careful approach was taken to ensure that
the models learned equally well across all categories. Weighted cross-entropy loss
functions were implemented during training, compensating for the class imbalance
and ensuring that predictions were not skewed toward more frequent categories.
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The dataset was also split into training, validation, and test sets with an 80-10-10
ratio. The training set was used to train the models, while the validation set helped
monitor performance and adjust model parameters. The test set, which was kept
entirely separate, was reserved for evaluating the final performance of the models.

Efficient data loading was another critical part of the preprocessing pipeline. The
dataset was batched, with batch sizes ranging between 16 and 32 images, depending
on the available GPU resources. On-the-fly processing, including augmentation and
normalization, was incorporated into the data pipeline, ensuring that the images
were preprocessed in real time during model training. This approach minimized
memory bottlenecks and sped up training times. Together, these preprocessing
steps, resizing, normalization, augmentation, class balancing, and efficient batch-
ing were crucial in preparing the dataset for the deep learning models used in this
research. They enabled the models to achieve high accuracy in maize disease iden-
tification, leading to reliable and practical outcomes.

3.2 Transfer Learning Models

Using a pre-trained model to increase learning efficiency on new tasks is known
as transfer learning, a machine learning technique. It improves performance by
transferring information from a source domain to a target domain, especially when
the training data is inadequate or out-of-date. In computer vision, this technique
has shown to be rather successful, particularly for applications like diagnosis and
prediction[22]. Since AlexNet’s victory in the ImageNet competition, convolutional
neural networks (CNNs) have been crucial to many deep learning tasks, frequently
employing transfer learning. This method involves adapting a model trained on a
large dataset to a related, smaller task. For example, a model trained on a large
image classification dataset can be fine-tuned to categorize specific categories such
as dogs and cats. The model’s learned features, such as edge or pattern detection,
are either reused or refined to enhance performance on the new task[27]. Unlike
multitask learning, which learns numerous tasks at once, transfer learning focuses
on gradually transferring knowledge, making it excellent for settings that require
progressive training and adaptability.

3.2.1 ResNet50

To improve the capacity to train deep networks, adding more convolutional layers
by using residual learning is achieved using skip connections which successfully ad-
dresses the vanishing gradient problem figure 3.5 a transfer learning ResNet50 model
was constructed[17]. It is a pioneering deep convolutional neural network built by
Microsoft Research in 2015. It has 50-layer design where its architecture as depicted
in figure 3.4 is separated into four major components: convolutional layers for fea-
ture extraction, identification blocks, convolutional blocks for feature modification,
and fully connected layers for classification[7]. Furthermore, It was trained on the
large-scale ImageNet dataset achieved a remarkable top-5 error rate of 6.71%, which
is comparable to human performance. Moreover, It is the favored model for a many
image classification applications, including medical image analysis, object identifi-
cation, and facial recognition, because of its high accuracy, rapid convergence and
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quick training [4].

Figure 3.4: ResNet50 Model Architecture.

How ResNet50 solved the disappearing gradients’ problem:

Figure 3.5: Skip Connection.

3.2.2 InceptionV3

InceptionV3 model is used in image identification. This model is a convolutional
neural network architecture created by Google researchers in 2015, marks a vast step
forward in computer vision. It has been built on the original Inception designs V1
and V2, it is intended to be computationally efficient while maintaining outstanding
performance in image categorization applications. To extract features from im-
ages, the architecture employs a succession of convolutional, pooling, and inception
modules. Furthermore, Inception modules enable the network to learn features at
various scales and resolutions by performing numerous simultaneous convolutional
operations of varying sizes. Moreover, it has showed world-class performance in a
variety of computer vision tasks, including object identification, image classification,
and visual question answering. It attained a 21.2 percent top-1 error rate and a 5.6
percent top-5 error rate in the 2012 ImageNet Large Scale Visual Recognition Chal-
lenge for single-frame evaluations [5]. Therefore, these performance measurements
highlight InceptionV3’s remarkable accuracy and efficiency, making it the preferred
choice for difficult computer vision applications and cementing its status as the top
deep learning architecture. In addition, InceptionV3 obtained a performance of 80%
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accuracy, an 75 percent f1-score, and a recall of 76 percent in Maize disease identifi-
cation using an 80:20 training-to-testing dataset. This demonstrates InceptionV3’s
effectiveness in image classification and detection applications.

3.2.3 VGG16

This is a kind of artificial neural network introduced by K. Simonyan and A. Zisser-
man of the University of Oxford, It has become a key in the field of computer vision
since its release in 2014. This model, which finished second in the ILSVRC 2014
classification challenge [2], is known for its basic yet successful design of 16 layers,
comprising convolutional layers with modest 3x3 filters, max-pooling layers, and
fully linked layers as shown in figure 3.6 [8]. Furthermore, it achieved an outstand-
ing 92.7 percent top-5 test accuracy on the ImageNet dataset, which comprises over
14 million images from 1000 classes [3]. Moreover, by substituting bigger kernel-
sized filters with many 3x3 filters, it improves on previous models such as AlexNet,
allowing for deeper networks with more parameters. In addition, its design is dis-
tinguished by a constant input size of 224x224 RGB images, consistent usage of
rectified linear units (ReLU), and the lack of Local Response Normalization (LRN),
which reduces computation time and memory consumption. VGG-16 was trained
on NVIDIA Titan Black GPUs, which is still an effective technique for large-scale
image recognition.

Figure 3.6: VGG16 Architecture.
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3.2.4 EfficientNetV2B2

The EfficientNetV2 model developed by Mingxing Tan and Quoc V. Le is an in-
novative convolutional neural networks that achieve higher quicker training speeds
and parameter efficiency than earlier models [10]. It was created through training-
aware neural architecture search and scaling, improves both model size and training
speed while including new procedures like Fused-MBConv as depicted in figure 3.7
[16]. This method allows EfficientNetV2 to be up to 6.8 times smaller and much
quicker than other models. Furthermore, the design enhances further progressive
learning by adaptive increasing regularization in parallel with image size, ensuring
accuracy while preventing overfitting [16]. Moreover, it surpassed most current Vi-
sion Transformer (ViT) by 2.0% in accuracy and trained 5x-11x quicker with the
same computing resources.

Figure 3.7: EfficientNetV2 Structures.

3.2.5 Xception

Xception model created by François Chollet in 2017 introduces a important step
forward in convolutional neural network (CNN) design by using depth-wise separa-
ble convolutions, which separate spatial and depth operations to reduce parameters
and computational costs while maintaining high computational power. This method
enables Xception to surpass InceptionV3, particularly for large-scale image classifi-
cation tasks. Xception outperfoms InceptionV3 on both ImageNet dataset and on
a larger dataset with 350 million images with 17,000 classes, all without increasing
the number of parameters [6]. Furthermore, Xception’s architecture is made up of
entry and exit flows, which are strengthened by ResNet-inspired skip connections,
and it uses global depthwise separable convolutions in its final layers to record global
context. Additional tactics like data augmentation and batch normalization help to
ensure quick training and higher results. Moreover, in our study we employed the
Xception Model in Maize disease classification and achieved a performance of 89%
accuracy, 86% f1-score, and a recall of 86% utilizing 80:20 training to test data with
10 input data epochs. Therefore, Xception delivers outstanding results, establishing
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it as a robust and efficient model for a variety of computer vision tasks.

3.3 Vision Transformer Models and Hybrid Model

The Vision Transformer (ViT) is a unique architecture that uses the Transformer
model, which was initially created for natural language processing applications, to
do image identification at scale. It divides an image into sequences of flattened 2D
patches, each handled as a ”token,” similar to how words are processed in NLP tasks,
and then feeds them into the Transformer encoder. Unlike typical convolutional neu-
ral networks (CNNs), which use convolutional layers to identify local characteristics
and generate hierarchical representations, ViT uses self-attention techniques to cap-
ture global dependencies in the image from the start [12]. This method reduces
the requirement for handmade architectural components tailored to images, pro-
viding a more adaptable and scalable solution for image categorization problems.
One of the primary benefits of applying a pure transformer model directly to im-
age patch sequences is its ability to model global context without being constrained
by the locality of convolution operations, potentially leading to improved perfor-
mance on tasks requiring a holistic understanding of the image as depicted in fig
3.8. Pre-training ViT on large datasets, such as JFT-300M, and using transfer learn-
ing significantly improves its performance on various benchmarks by providing rich
feature representations and improving generalization, outperforming state-of-the-
art results on datasets such as ImageNet, CIFAR-100, and VTAB. ViT’s efficiency
in reaching competitive accuracy with fewer processing resources makes it an ap-
pealing alternative for picture classification tasks, demonstrating its potential to
transform computer vision applications. To encode an image, we break it into fixed-
size patches, linearly embed each one, add position embeddings, and use a typical
Transformer encoder [9]. To classify a sequence, we often include a ”classification
token” that may be learned.

Figure 3.8: ViT Structures.
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In our study, we used Vision Transformer (ViT) models such as SWIN ViT, DaViT,
MaxViT, and MobileViT, which use self-attention processes to capture global visual
features. These models are appropriate for tasks. that need fine-grained feature
extraction and generalization across many visual datasets. Furthermore, we used a
hybrid model called the Involution Neural Network, which combines CNN efficiency
with improved spatial feature learning via involution operations. These models were
chosen based on their proven accuracy and adaptability in computer vision tasks,
particularly when dealing with complicated patterns and little data.

3.3.1 Shifted Window Transformer (SWIN)

The Swin Transformer is a unique vision Transformer architecture intended to act
as a flexible backbone for a variety of computer vision tasks. It proposes a hier-
archical method to visual data processing using Shifted Windows, which enables
fast calculation of self-attention inside non-overlapping local windows. This design
option addresses fundamental differences between the language and vision domains,
such as visual entity scale and image pixel resolution. The Swin Transformer’s
hierarchical architecture has substantial advantages for modeling at many sizes, al-
lowing the model to capture characteristics at numerous levels of abstraction. The
Swin Transformer creates hierarchical feature maps by merging nearby patches in
deeper layers, which may then be used with advanced approaches such as feature
pyramid networks and U-Net [14]. One of the Swin Transformer’s important break-
throughs is its shifted windowing method, which enhances computational efficiency
in self-attention computing by lowering the number of tokens required to interact
while still maintaining the connection between neighboring windows. This method
greatly decreases processing complexity when compared to standard Transformers,
making it more efficient for high-resolution imagery. The shifted windowing tech-
nique increases computational efficiency by confining self-attention computation to
local windows, but it also allows for cross-window connections, which enhances the
model’s capacity to capture long-range relationships. As shown in figure 3.9. By
combining grayscale image patches in deeper levels, the Swin Transformer gener-
ates hierarchical feature maps. Because each local window (red) uses self-attention
processing, the computation cost is linear with the size of the input image. For
applications involving dense recognition and picture categorization, it might serve
as a general-purpose backbone. Conversely, prior vision Transformers [12] had a
quadratic computing cost in respect to input image size because of global self at-
tention computation, and they produce feature maps with a single low resolution.
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Figure 3.9: Swin Transformer vs ViT

In the context of image classification tasks, the Swin Transformer’s linear compu-
tational complexity with respect to image size, together with its good performance
on benchmarks like ImageNet-1K, make it an appealing option for jobs that need
accurate and quick visual modeling. Its hierarchical and efficient architecture makes
it ideal for processing high-resolution pictures and complicated visual data, resulting
in improved accuracy and performance.

3.3.2 Dual-Attention Vision Transformer (DaViT)

The model called the DaViT (Dual Attention Vision Transformer) model was pre-
sented to improve vision by including both spatial and channel attention. The model
is built on a dual attention strategy, in which the channel attention model focuses
on dependencies across feature channels, and the spatial attention model focuses
on the interaction between various spatial positions of an image. This allows com-
plex visual patterns managed by DaViT with improved capabilities and delivers
better feature representations. It consists of several transformer layers, each with
an incorporated spatial and channel attention mechanism. While the spatial atten-
tion allows the model to focus more on those crucial areas of input by re-weighting
spatial locations, the channel attention amplifies features based on the relevance of
specific channels to capture more contextual information in greater detail [18]. Some
of the key features of DaViT are the Dual Attention Mechanism, which integrates
both spatial and channel attention within a single framework for the exploitation of
image spatial relations and channel dependencies. Multi-Scale Feature Extraction
also combines different-scale features to enable the model to process variously-sized
objects, enhancing its generalization capability. Another feature is the efficient com-
puting system which balances high performance and computational cost. It can be
applied to a range of vision applications, including segmentation, object identifica-
tion, and image classification. DaViT is a more accurate and effective solution than
traditional vision transformers for today’s visual issues.
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Figure 3.10: DaViT Architecture

In figure 3.10, the DaViT architecture has its focus on the dual attention mechanism.
It is a sequence of transformer blocks with spatial attention and channel attention
as two important components. Spatial attention shall be used for refinement in the
relationship between the features in space, while the channel attention shall enhance
the dependencies along with inter-channels. These modules work together through
multi-layers to process the input images, extract multi-scale features, combine spa-
tial and channel attention, and promote feature representations. It thus can let
DaViT handle complex visual patterns efficiently, which is very useful in tasks such
as image classification and segmentation.

3.3.3 MobileViT

MobileViT is a powerful deep learning architecture designed to combine the strengths
of CNNs (Convolutional Neural Networks) and transformers, making it suitable for
mobile devices and resource-limited environments. MobileViT blends the strengths
of CNNs and transformers, each playing a pivotal role in enhancing model perfor-
mance. Where CNNs excel at capturing local features, like edges and textures, much
like how our eyes first recognize the details in an image. Meanwhile, transformers
are great in capturing and understanding long-range dependencies which provide
a broader context that helps connect these finer details to the bigger picture. By
combining both approaches, MobileViT ensures the model can grasp both intricate
local patterns and overarching global relationships that result in stronger perfor-
mance across tasks like image classification and detection [15]. One of the standout
features of MobileViT is its lightweight and efficient design, specifically created to
run on devices with limited computational power, like smartphones. Convolutions
and transformers are used by MobileViT such that the resulting MobileViT block
exhibits convolution-like characteristics and permits global processing, as shown in
figure 3.11. This modeling capability allows us to design shallow and narrow Mo-
bileViT models, which in turn are light-weight. While transformers are typically
resource-intensive, MobileViT scales them down to maintain high accuracy without
sacrificing speed or memory efficiency.
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Figure 3.11: MobileViT Architecture

MobileViT Architecture: Here, in this case, MV2 stands for MobileNetv2 block,
while Conv-n × n in the MobileViT block denotes a typical n × n convolution.
Blocks with ↓ 2 are those that use downsampling.

3.3.4 MaxViT

The architecture known as MaxViT which stands for Maximum ViT was first intro-
duced in [32] and attempts to combine a convolutional neural network (CNN) and
transformers to perform better on tasks by capturing both local and global features
in images. All these achieve better performance in different vision tasks. This model
utilizes multi-axis attention in improving the understanding of images. With images
split into multiple patches, MaxViT is able to capture dependency in multiple direc-
tions, hence paying attention to local details and global information. Moreover, its
dynamic attention layers improve classification and detection tasks by increasingly
focusing on more informative parts of the image. With flexibility in scaling depth
and width, MaxViT effectively balances computational efficiency and representation
power, achieving state-of-the-art results on numerous vision benchmarks.
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Figure 3.12: MaxViT Architecture

As shown in figure 3.12 We follow a typical hierarchical design of ConvNet practices
(e.g., ResNet) but instead build a new type of basic building block that unifies
MBConv, block, and grid attention layers. Normalization and activation layers are
omitted for simplicity.

3.3.5 Involutional Neural Network

Involutional Neural Networks (INNs) are a recent architectural paradigm designed
to replace standard convolution operations with a more efficient and adaptable pro-
cess known as involution. Unlike convolution layers, which apply a fixed spatial
kernel uniformly across all channels and pixels, involution utilizes dynamic ker-
nels that are generated locally for each spatial position. This allows the model to
flexibly adapt its operations to each pixel, improving both efficiency and context-
awareness—particularly valuable when handling large spatial data, such as plant
images. In this maize disease detection thesis, the use of INNs helps capture local-
ized disease patterns more effectively by enabling the model to dynamically adjust
its focus based on the surrounding context. This makes INNs more robust and effi-
cient compared to traditional convolutional models.
Beyond that, involution introduces a novel approach that is both location-specific
and channel-agnostic. Traditional convolutions face limitations in processing variable-
resolution input tensors due to the fixed nature of their kernels. Involutions solve
this issue by generating each kernel conditioned on specific spatial positions, as
shown in the accompanying diagram. This allows the model to process input data
at different resolutions with ease, improving adaptability to local variations in the
input images. Based on the idea of maize disease detection, this dynamic kernel
generation enhances the model’s ability to detect fine-grained disease symptoms,
making it a valuable tool for recognizing intricate disease patterns and ensuring
accurate diagnosis.
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Figure 3.13: INNs Architecture

3.4 Proposed Fusion Model

To optimize the performance of our maize disease classification model, we created
a fusion model by combining our trials’ top-performing Vision Transformers: Mo-
bileViT and DaViT. Both pre-trained and fine-tuned models on our dataset demon-
strated high accuracy in feature extraction and classification. MobileViT was chosen
for its lightweight architecture and computational efficiency, making it appropriate
for real-time applications, as well as its use of convolutional layers and self-attention
techniques to collect both local and global information. DaViT, with its dual-
attention mechanism, excelled at handling complicated patterns, providing richer
feature representations, particularly in demanding settings such as variable lighting.
Our fusion method blended both models’ final layer outputs, resulting in a uni-
tary feature vector that incorporated MobileViT’s local details with DaViT’s larger
contextual knowledge. This vector was then fed through fully connected layers for
categorization, allowing the model to make more accurate predictions as depicted
in figure 3.14. The fusion model beat each individual model in terms of accuracy,
generalization across a wide range of situations, and robustness, especially when one
model struggled with unique data changes. This method demonstrates how merging
transformer-based models can boost performance and efficiency in complex image
classification problems.

Figure 3.14: Fusion Model Structure
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Chapter 4

Results and Discussion

4.1 Transfer Learning Model’s Performance

A comprehensive study was undertaken to improve the effectiveness of models., as
shown in table 4.1. To ensure uniformity, many CNN architectures were explored
utilizing standardized input sizes of 224x224x3. ResNet50, using a batch of size
32, Adam optimizer, learning rate of 0.001, and Categorical Crossentropy loss, used
residual connections to decrease overfitting while avoiding dropouts. InceptionV3
and VGG16 employed the same batch size and optimizer, but with a 0.0001 learning
rate and a 0.5 dropout rate to prevent overfitting. Xception used a learning rate
of 0.001 and 0.5 dropout for depthwise separable convolutions. EfficientNetV2B2,
which uses a dynamic learning rate, used built-in regularization rather than dropout
to ensure a balance between learning capacity and model generalization.

Table 4.1: Parameter Settings for Different Models

Parameter ResNet50 InceptionV3 VGG16 Xception EfficientNetV2B2
Batch Size 32 32 32 32 32
Optimizer Adam Adam Adam Adam Adam

Learning Rate 0.001 0.0001 0.0001 0.001 0
Input Size 224×224×3 224×224×3 224×224×3 224×224×3 224×224×3
Dropout 0 0.5 0.5 0.5 0

Loss Function Categorical Crossentropy
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4.1.1 ResNet50

Training the datasets with the ResNet50 Model, 10 epochs, 383 batches and a data
split ratio of 2:8 was used, with 80% for training and 20% for validation which
yielded an accuracy of 91%. To aid understanding, the following confusion matrix
in figure 4.1 and table 4.2 highlight the key trends and patterns observed in training
the dataset with the ResNet50 model

Figure 4.1: ResNet50 Model Confusion Matrix

Class precision recall f1-score support
HEALTHY 0.99 0.99 0.99 1023

MLN 1 and MLN 2 0.98 0.96 0.97 796
MSV 2 0.73 0.93 0.82 631
MSV 1 0.90 0.67 0.77 619

Accuracy 0.91 3069
macro avg 0.90 0.89 0.89 3069

weighted avg 0.92 0.91 0.91 3069

Table 4.2: ResNet50 Model Report.
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4.1.2 InceptionV3

Employing the InceptionV3 model to the dataset with 10 epochs, 383 batches and a
data split ratio of 2:8 was used, with 80% for training and 20% for validation which
yielded an accuracy of 91%. To visualize the findings, the following training and
validation accuracy & loss in figure 4.12 and table 4.10 highlight the key trends and
patterns observed in training the dataset with the InceptionV3 model.

Figure 4.2: InceptionV3 Model Accuracy & Loss Metrics

Class precision recall f1-score support
HEALTHY 0.99 0.95 0.97 1023

MLN 1 and MLN 2 0.88 0.91 0.90 796
MSV 2 0.55 0.80 0.65 631
MSV 1 0.70 0.38 0.50 619

Accuracy 0.80 3069
macro avg 0.78 0.76 0.75 3069

weighted avg 0.81 0.80 0.79 3069

Table 4.3: InceptionV3 Model Report.

4.1.3 VGG16

Using the VGG16 Model with 10 epochs, 383 batches and a data split ratio of 2:8,
with 80% for training and 20% for validation. An accuracy of 81% was obtained.
To facilitate clear understanding, a visual representation has been employed. The
following Training and validation accuracy & Loss in figure 4.10 and table 5.2 high-
lights the key trends and patterns observed in training the dataset with the VGG16.
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Figure 4.3: VGG16 Model Accuracy & Loss Metrics

Class precision recall f1-score support
HEALTHY 0.97 0.96 0.97 1023

MLN 1 and MLN 2 0.91 0.97 0.93 796
MSV 2 0.57 0.82 0.68 631
MSV 1 0.73 0.36 0.48 619

Accuracy 0.81 3069
macro avg 0.80 0.78 0.77 3069

weighted avg 0.82 0.81 0.80 3069

Table 4.4: VGG16 Model Report.

4.1.4 EfficientNetV2B2

Employing the EfficientNetV2B2 model to the dataset with 10 epochs, 383 batches
and a data split ratio of 2:8 was used, with 80% for training and 20% for validation
which yielded an accuracy of 91%. To visualize the findings, the following confusion
matrix in figure 4.4 and table 4.5 highlight the key trends and patterns observed in
training the dataset with the EfficientNetV2B2 model.

Class precision recall f1-score support
HEALTHY 0.99 0.99 0.99 1023

MLN 1 and MLN 2 0.95 0.97 0.96 796
MSV 2 0.81 0.85 0.83 631
MSV 1 0.87 0.79 0.82 619

Accuracy 0.92 3069
macro avg 0.90 0.90 0.90 3069

weighted avg 0.92 0.92 0.92 3069

Table 4.5: EfficientNetV2B2 Model Report.

38



Figure 4.4: EfficientNetV2B2 Model Confusion Matrix

4.1.5 Xception

Training the datasets with Xception Model using 10 epochs, 383 batches and a data
split ratio of 2:8, with 80% for training and 20% for validation yielded an accuracy
of 89%. To aid understanding, the following training and validation accuracy & loss
in figure 4.5, figure 4.6 and table 4.6 highlight the key trends and patterns observed
in training the dataset with the Xception model.

Figure 4.5: Xception Model Accuracy Metric
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Figure 4.6: Xception Model Loss Metric

Class precision recall f1-score support
HEALTHY 1.00 1.00 1.00 1023

MLN 1 and MLN 2 0.99 0.97 0.98 796
MSV 2 0.88 0.55 0.68 631
MSV 1 0.66 0.94 0.78 619

Accuracy 0.89 3069
macro avg 0.89 0.86 0.86 3069

weighted avg 0.91 0.89 0.88 3069

Table 4.6: Xception Model Report.

4.2 Vision Transformer & Hybrid Model’s Per-

formance

Table 4.7 summarizes the hyperparameters for the various Vision Transformer mod-
els utilized in the experiment. All models—SWIN, DaViT, MobileViT, MaxViT,
and Involution Neural Network (INN) used the Adam optimizer to enhance their
training in batches of size 32. The setting for the learning rate was 0.0001 for all
models except INN, which had a learning rate of zero. The input size for each
model was standardized to 224x224x3, ensuring consistency between models. Every
model was trained for thirty epochs using Categorical Crossentropy as the loss func-
tion, which is suitable for multi-class classification. These hyperparameter settings
were chosen to achieve an equitable balance of learning capability and generalization
across models.
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Table 4.7: ViT HyperParameter Settings

Parameter SWIN DaViT MobileViT MaxViT INN

Batch Size 32 32 32 32 32

Optimizer Adam Adam Adam Adam Adam

Learning Rate 0.0001 0.0001 0.0001 0.00001 0

Input Size 224×224×3 224×224×3 224×224×3 224×224×3 224×224×3
Epochs 30 30 30 30 30

Loss Function Categorical Crossentropy

4.2.1 SWIN ViT

The SWIN Transformer model was trained and evaluated utilizing an 80:20 split,
then optimized with the Adam optimizer at a learning rate of 0.0001 across 30
epochs. The model’s input size have been standardized at 224x224x3, and the batch
of size 32. SWIN obtained 93% accuracy in maize disease classification as shown in
table 4.8, demonstrating its potential to capture both local and global contextual
data using its hierarchical architecture and window-based self-attention mechanism.
In figure 4.7 highlights the key trends in patterns observed by SWIN ViT Model.

Figure 4.7: Swin ViT Model Confusion Matrix

The Categorical Crossentropy loss function was used for multiclass classification,
which is excellent for this task as depicted in figure 4.8 and figure 4.9. With a GPU
memory consumption of 1369.42 MB and an average epoch time of 260 seconds,
SWIN was computationally intensive but extremely effective, establishing a mix
between efficiency and accuracy in dealing with complicated visual patterns.
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Class precision recall f1-score support
HEALTHY 1.00 1.00 1.00 999

MLN 0.99 0.99 0.99 820
MSV 1 0.77 0.96 0.86 637
MSV 2 0.95 0.71 0.82 614

Accuracy 0.93 3070
macro avg 0.93 0.92 0.92 3070

weighted avg 0.94 0.93 0.93 3070

Table 4.8: Swin Transformer Model Report.

Figure 4.8: SwinViT Accuracy Metric

Figure 4.9: SwinViT Loss Metric

4.2.2 DaViT

The DaViT model was employed with an 80/20 split for training and testing, 30
epochs, a batch size of 32, and the Adam optimizer with a learning rate of 0.0001.
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The input size was set to 224x224x3, which ensured uniformity between models.
DaViT exhibited an impressive 95% accuracy in maize disease classification, match-
ing the best performance shown in table 5.2 and figure 4.10 which depicts the key
trends in pattern observed.

Figure 4.10: DaViT Model Confusion Matrix

Class precision recall f1-score support
HEALTHY 1.00 1.00 1.00 1081

MLN 1.00 0.99 1.00 796
MSV 1 0.86 0.88 0.87 604
MSV 2 0.88 0.86 0.87 588

Accuracy 0.95 3069
macro avg 0.94 0.94 0.94 3069

weighted avg 0.95 0.95 0.95 3069

Table 4.9: DaViT Model Report.

Its dual-attention technique, which combines global and local feature extraction,
was extremely effective in collecting complex patterns, even under difficult situa-
tions such as lighting or image orientation changes as shown in figure 4.11. This
capability made DaViT ideal for activities that required more in-depth contextual
understanding. The model was trained with Categorical Crossentropy as the loss
function, which was a good fit for the multi-class classification challenge and con-
tributed to the model’s strong performance across the dataset.

43



Figure 4.11: DaViT Model Metrics

4.2.3 MobileViT

The MobileViT model was trained with an 80:20 split for training and testing, 30
epochs, and 32 batches. Employed learning rate of 0.0001 and Adam optimizer, the
input size have been set to 224x224x3. MobileViT obtained an outstanding 95%
accuracy as depicted in table 4.10, placing it among the top-performing models in
the research study. The model’s lightweight architecture, which blends convolutional
layers with self-attention processes, enabled it to efficiently capture both local and
global information, making it very successful at detecting subtle trends in maize
disease classification. In figure 4.12 shows the confusion matrix which highlights the
patterns and observertion of the model.

Figure 4.12: MobileViT Model Confusion Matrix
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Class precision recall f1-score support
HEALTHY 0.99 1.00 1.00 1052

MLN 0.99 0.99 0.99 779
MSV 1 0.88 0.89 0.88 616
MSV 2 0.89 0.87 0.88 623

Accuracy 0.95 3070
macro avg 0.94 0.94 0.94 3070

weighted avg 0.95 0.95 0.95 3070

Table 4.10: MobileViT Model Report.

MobileViT’s design also allows it to be deployed on edge devices with low computa-
tional overhead—its GPU memory utilization during training was only 128.78 MB,
making it perfect for real-time applications. Categorical Crossentropy was used as
the loss function to fit the model’s multi-class classification problem.

Figure 4.13: MobileViT Accuracy Metric

45



Figure 4.14: MobileViT Loss Metric

4.2.4 MaxViT

MaxViT model was trained with an 80:20 train-test split, as were the other Vision
Transformer models. The training lasted 30 epochs, with a batch of size 32, utilizing
the Adam optimizer and a learning rate of 0.0001. To provide consistent results
across all models, input images were scaled to 224x224x3. MaxViT, which combines
local and global attention mechanisms, was tuned with the Categorical Crossentropy
loss function, the model used a GPU Memory of 1865.52 MB during training for
approximately 600 seconds per epoch. Suitable for various class classification tasks.
for understanding the figure 4.18 highlights the key trends and patterns observed.

Figure 4.15: MaxViT Model Confusion Matrix
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Class precision recall f1-score support
HEALTHY 1.00 1.00 1.00 1007

MLN 0.98 0.99 0.99 789
MSV 1 0.86 0.88 0.87 659
MSV 2 0.88 0.84 0.86 621

Accuracy 0.94 3070
macro avg 0.93 0.93 0.93 3070

weighted avg 0.94 0.94 0.94 3070

Table 4.11: MaxViT Model Report.

The model’s design uses a unique grid and block attention to extract rich feature
representations, allowing it to perform well across a wide range of datasets as you can
see it in table 4.11. This balanced hyperparameter and model design combination
improved classification performance while remaining efficient in feature extraction
and generalization.

Figure 4.16: MaxViT Accuracy Metric
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Figure 4.17: MaxViT Loss Metric

4.2.5 INN

In my study, we employed the Involutional Neural Network (INN) with an 80:20 for
training and testing split to ensure efficient data distribution for both training and
evaluation. The model was trained over 30 epochs with a batch size of 32, utilizing
the Adam optimizer to efficiently update weights. Unlike other models, the INN’s
learning rate was set to 0, allowing it to alter dynamically during training as shown
in figure 4.19. Input images were standardized to 224x224x3, ensuring consistency
across all models as shown in figure 4.5. The loss function used was Categorical
Crossentropy, which was perfect for the various-class classification task.

Class precision recall f1-score support
HEALTHY 0.99 1.00 0.99 5117

MLN 0.99 0.97 0.98 3980
MSV 1 0.85 0.78 0.81 3157
MSV 2 0.80 0.87 0.83 3095

Accuracy 0.92 15349
macro avg 0.91 0.90 0.90 15349

weighted avg 0.92 0.92 0.92 15349

Table 4.12: INN Model Report
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Figure 4.18: INN Model Confusion Matrix

Figure 4.19: INN Model Metric

This configuration intended to balance learning capacity which yielded 92% as de-
picted in table 4.6 and generalization while exploiting INN’s novel architectural de-
sign, which improves feature extraction by focusing on local features via involution
operations.
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4.2.6 Fusion Model

To improve maize disease classification performance, a fusion model was built uti-
lizing two pre-trained Vision Transformer models: MobileViT and DaViT. Both
models used 30 epochs for training, utilizing the Adam optimizer which had a learn-
ing rate of 0.0001 and weight decay of 1e-5. For multi-class classification, the fusion
model’s criteria was set to nn.CrossEntropyLoss, and training was done using a batch
of size 64. The fusion architecture brings together the complementing qualities of
both models: MobileViT, which is noted for its lightweight design and computa-
tional efficiency, and DaViT, which has powerful attention mechanisms that excel
at processing complicated patterns. The final layers of both models are combined in
the fusion to form a strong feature representation that is then passed to the classifier
which allows our model to get an accuracy of 96 % as shown in table 4.13. Moreover,
our model was able to classify well images in their distinct classes as depicted in fig
4.20.

Figure 4.20: Fusion Model Confusion Matrix

Class precision recall f1-score support
HEALTHY 1.00 1.00 1.00 1066

MLN 0.98 1.00 0.99 768
MSV 1 0.90 0.89 0.89 647
MSV 2 0.89 0.89 0.90 589

Accuracy 0.96 3070
macro avg 0.94 0.95 0.95 3070

weighted avg 0.95 0.96 0.96 3070

Table 4.13: Fusion Model Report
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Figure 4.21: Accuracy Metrics for Fusion Model

Figure 4.22: Loss Metrics for Fusion Model

This fusion model demonstrates stable GPU memory usage during the training
process using only 865.78 MB, demonstrating efficient resource utilization with no
significant spikes or fluctuations across the 30 epochs, and achieving greater accuracy
in training and validation than loss, as depicted in fig 4.21 and fig 4.22. This hybrid
approach increased model robustness and classification accuracy.
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4.3 Comparative Analysis

In this study, Transfer Learning (TL) and Vision Transformer (ViT) models were
used to classify maize leaf diseases. The best model in the TL category obtained
92% accuracy, while the bottom-performing model achieved 80%. In contrast, Vi-
sion Transformer models performed better, with the greatest accuracy of 95% and
even the lowest-performing ViT model reaching 92% as shown in figure 4.23. This
demonstrates that Vision Transformers outperform Transfer Learning models in
most situations, particularly when dealing with complicated visual patterns and
extracting global characteristics.

Figure 4.23: All Models Comparison

Our fusion model outperformed single models with a prediction accuracy of 96%.
This highlights ViT models’ accuracy and ability to handle complicated visual data.
The ensemble prediction is based on a robust and complementary fusion of the
models DaViT and MobileViT.
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Table 4.14: Transfer Learning vs. Vision Transformers

Aspect Transfer Learning
Models

Vision Transformer
Models

Best Accuracy 92% (EfficientNetV2B2) 95%(MobileViT, DaViT)
Lowest Accuracy 80% (InceptionV3) 92% (INN)
Parameters (Millions) 25-30M 40-50M
Architecture CNN-based, feature

extraction through pre-
trained models

Self-attention mecha-
nisms, better at captur-
ing global dependencies

Performance Good, but less effective
for complex patterns

Superior in feature ex-
traction and classification
tasks

Complexity Lower computational
cost, easier to deploy

Higher complexity but
better for large datasets

Global Feature Han-
dling

Limited Excellent

From table 4.14 highlights a detailed comparison, demonstrating that Vision Trans-
formers (ViTs) outperform Transfer Learning models in accuracy and global feature
handling, although using more processing resources. The parameter count is like-
wise higher for ViTs, indicating their complexity in feature extraction.

The study we conducted intended to accurately classify maize diseases using sophis-
ticated deep learning models, with an emphasis on Vision Transformer (ViT) archi-
tectures. Models were selected using specified criteria to ensure best performance
in terms of accuracy, computational efficiency, scalability, and real-world relevance
to agricultural diagnostics. The following are the major criteria that guided the
selection of ViT models for maize disease classification.

Table 4.15: Selection Criterias for Vision Transformer(ViT) Models

Criteria Swin ViT MaxViT MobileViT DaViT INN
Architectural
Focus

Shifted
window
attention
for local-
global
feature
capture

Multi-axis
attention
for local-
global
feature
fusion

Hybrid
CNN-
Transformer
architec-
ture for
lightweight
perfor-
mance

Dual at-
tention
mechanism
for com-
prehensive
global
attention

Local
feature
learning
using in-
volution
operation
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Scalability Highly
scalable
for high-
resolution
images

Efficient in
handling
varying
resolutions

Optimized
for low-
resource
environ-
ments
(mo-
bile/edge
devices)

Scales well
across res-
olutions,
suited for
complex
datasets

Primarily
focuses on
local pat-
terns, may
require
modifi-
cations
for larger-
scale data

Computational
Efficiency

Moderate,
suitable for
high-end
GPUs

High ef-
ficiency
despite
complex
architec-
ture

Lightweight,
designed
for low-
memory
devices

Moderate,
suitable
for large
datasets

Efficient
in captur-
ing local
features
but may
be slower
on global
features

Accuracy for
Fine-Grained
Classification

Excellent
for distin-
guishing
subtle
variations

Strong
perfor-
mance
due to
multi-axis
attention

Good per-
formance,
slightly
lower than
heavier
models

Strong
attention
mechanism
enhances
classifi-
cation
accuracy

Performs
well in
capturing
local dif-
ferences
but less
effective
globally

Multi-Scale
Feature
Learning

Yes, via hi-
erarchical
representa-
tion

Yes, with
efficient
multi-axis
mechanism

Limited,
focuses
more on
lightweight
perfor-
mance

Yes, with
dual atten-
tion mech-
anism

Primarily
focused
on local
features
rather
than
multi-scale
integration

Real-Time
Deployment

Requires
higher
compu-
tational
resources

Suitable
for high-
end de-
ployment

Best suited
for real-
time edge
deploy-
ment

Requires
higher
resources
for deploy-
ment

Can be de-
ployed in
real-time
with opti-
mizations

Explainability
and Inter-
pretability

Moderate,
due to
window
attention
mechanism

High, cap-
tures com-
plex inter-
relations

Limited,
optimized
for ef-
ficiency
over inter-
pretability

High,
due to
attention
mecha-
nisms

High
explain-
ability,
especially
in local
feature
interpreta-
tion
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We chose ViT models to reconcile high diagnostic accuracy with computational ef-
ficiency and scalability as depicted in table 4.15. SWINViT, MaxViT, and DaViT
offer robust systems for capturing both global and local features, which are critical
for distinguishing between distinct maize diseases. MobileViT provides a lightweight
option for real-time deployment in limited resource situations, but the Involutional
Neural Network adds interpretability, making it appropriate for explainable AI ap-
plications in agriculture. Together, these models form a comprehensive toolkit for
achieving high accuracy and efficiency in maize disease diagnosis.

Figure 4.24: Training time Vs Memory usage

In summary, the comparative analysis of Vision Transformer (ViT) models demon-
strates the various capabilities and trade-offs in performance and resource efficiency.
Each model was chosen based on its architectural strengths, computing require-
ments, and application to the maize disease classification task. The study em-
phasizes the distinctions between standard Transfer Learning methods and more
advanced ViT models, notably in terms of capturing complex patterns and fine-
grained features. While some models excel in accuracy and attention processes,
others are more scalable and deployable. Furthermore, the comparison of training
times and memory usage as depicted in figure 4.24 explains the practical aspects of
real-time applications. This review sheds light on these models’ potential for im-
proving maize disease detection and classification, hence helping to the development
of more efficient and accurate diagnostic tools in the agricultural realm.
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Chapter 5

Hardware Deployment

As the demand for real-time image classification is increasing, especially in the
agriculture sector, there is a significant challenge in deploying a machine learning
model which is computationally expensive on edge devices. Deep learning models
for instance require hardware with high performance to process data efficiently.
However, in real-world scenarios where power, space, and computational resources
are limited, deploying such a model remains an obstacle. Raspberry Pi is one of
the portable and cost-effective edge devices widely used for real-time processing.
However, It has limited CPU power and memory, which restricts the deployment of
large and complex models typically trained for image classification. By optimizing
and compressing the hybrid model, the problem of deploying highly accurate, pre-
trained deep-learning models on the Raspberry Pi for high image classification will
be addressed. Table 5.1 shows the hardware specs of the Raspberry Pi used.

Specification Details

Processor Broadcom BCM2711, Quad-core Cortex-A72 @ 1.8GHz
RAM 1GB, 2GB, 4GB, or 8GB LPDDR4-3200 SDRAM
Wireless 2.4 GHz & 5.0 GHz IEEE 802.11ac, Bluetooth 5.0
Ethernet Gigabit Ethernet
USB Ports 2 × USB 3.0; 2 × USB 2.0
GPIO Header 40-pin GPIO header (backwards compatible)
HDMI Ports 2 × micro-HDMI® (up to 4kp60)
Display Port 2-lane MIPI DSI
Camera Port 2-lane MIPI CSI
Audio/Video Port 4-pole stereo audio & composite video
Video Decoding H.265 (4kp60), H.264 (1080p60 decode, 1080p30 encode)
Graphics API OpenGL ES 3.1, Vulkan 1.0
Storage Micro-SD card slot
Power Supply 5V DC via USB-C (minimum 3A)
Power Supply via GPIO 5V DC via GPIO header (minimum 3A)
Power over Ethernet PoE enabled (requires separate PoE HAT)
Operating Temperature 0 – 50 degrees C ambient
Power Supply Note 2.5A supply can be used if USB peripherals consume<500mA

Table 5.1: Raspberry Pi Specifications
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5.1 Setup

Hardware Requirements
Component Description
MicroSD card 32GB
Power supply For Raspberry Pi 4
Micro-HDMI cable Connect the Raspberry Pi to the screen
Mobile or desktop device To interact with the Flask web app on the Raspberry Pi

Software Requirements
Component Description
Operating System Raspberry Pi OS
Python 3 Installed on Raspberry Pi
Flask Python microframework for web applications
Torch & TorchVision For model inference and image processing
PIL (Pillow) Image processing library for Python
Timm PyTorch Image Models (for loading pre-trained models)

Table 5.2: Hardware and Software Requirements

Every hardware in Table 5.2 is connected to the Raspberry Pi. Next, the Raspberry
Pi’s microSD port is inserted with a microSD card that contains the OS installed on
it. Using the terminal, sudo apt update and sudo apt upgrade are then typed
to update and upgrade the system respectively. Python 3 is then installed using
sudo apt install python3, the virtual environment is created and updated us-
ing python -m my venv/bin/activate and source my venv/bin/activate. pip
is used to install all the necessary libraries(Flask, PyTorch, TorchVision, Pilow,
Timm).

Figure 5.1: Raspberry Pi Setup
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5.2 Model Compression and Deployment

To deploy the ensemble model on the Raspberry Pi 4 efficiently, only the essential
parameters has to be saved using torch.save function which reduces the model size.
The pre-trained model was transformed into a serialized format, and the weights were
optimized. The reduced model is capable of running on the CPU of the Raspberry
Pi without overwhelming its processing capabilities.

Figure 5.2: Model Deployment

5.3 System Architecture

At the core of the system is Flask, a web application that offers users a simple
interface for uploading a maize image from their device. The Raspberry Pi processes
and classifies the image. The results are then sent to the user’s device. The flask
application includes the app.py, and it handles loading the model, image uploads,
and the classification logic. The HTML files for the interface are contained in the
templates folder of the Flask application, and the uploaded images are kept in the
upload folder. The image classification pipeline follows multiple stages: the image
uploaded is resized to 224 by 224 pixels and normalized to meet the model input
requirements, and then for inference, it passes through the ensemble model, and
then finally, the highest probability class is returned to the user. With the Flask
app directory and all the necessary files inside it, once the server is running, users
can access the interface through the IP address of the Raspberry Pi.
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Figure 5.3: Hardware System Architecture

Algorithm 1 Image Upload and Classification System

1: user image ← ReceiveUploadedImage()
2: saved image path ← SaveImage(user image, upload folder)
3: preprocessed image ← PreprocessImage(saved image path, Size: (224, 224))
4: model ← LoadModel(model path)
5: output ← ModelForwardPass(model, preprocessed image)
6: predicted class index ← GetPredictedClass(output)
7: predicted class name ← MapClassIndexToName(predicted class index,

class names)
8: DisplayPredictedClass(predicted class name)

5.4 System Demonstration

In this section, the system’s operation is demonstrated in Figure 5.4 which starts
with the user uploading an image through the Flask web and concludes with the
user seeing the results.

5.5 Inference Results

The performance of the system was evaluated using some 10 images each for Healthy,
MSV, and MLN. The metrics evaluated include the confidence score, inference time,
CPU usage and memory usage. Figure 5.5 contains the inference performance met-
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rics and Table 5.3 summarizes the average performance metrics across 10 images
each for Healthy, MSV, and MLN.

Inference Results for Each Class
Class Confidence Score (%) Inference Time (s) CPU Usage (%) Memory Usage (MB)
Healthy 99.99 2.13 54.10 0.96
MSV 99.98 2.92 36.80 2.20
MLN 100.00 3.38 40.50 1.89

Table 5.3: Inference Performance Metrics for Each Class

The confidence score of the deployed ensemble model was 99.95% for healthy im-
ages. This is an indication of high reliability in distinguishing healthy samples from
diseased ones. The model’s inference time was 2.15 seconds for the Healthy class,
2.85 seconds for MSV, and 3.42 seconds for MLN. For CPU usage, Healthy maize
images had the highest CPU usage followed by MSV and MLN. The memory usage
was high for MSV possibly due to the complexity of MSV images. Despite all the
slight variations in the inference time, CPU, and memory usage, The performance
of the system remains efficient with CPU resources.
In summary, this chapter gives the steps necessary to deploy the ensemble model
for maize disease detection using a Raspberry Pi, focusing on challenges in running
resource-intensive models in low-power environments. This chapter also outlines the
hardware setup, showing the important elements of Raspberry Pi 4 and the software
required. With respect to optimization, the model is compressed using torch.save
to reduce computational load. The design of the system shall be web-based, built
on Flask, which classifies images in real-time and allows users to upload images to
diagnose diseases. Finally, the performance of the system is demonstrated with very
efficient use of CPUs and memory, performing accurate and timely inferences across
classes of diseases.
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Figure 5.4: System Demonstration
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Figure 5.5: Inference performance Metrics
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Chapter 6

Explainable Artificial Intelligence
(XAI)

XAI is a technique used by AI experts to test deep learning (DL) models [33]. It
provides the necessary clarity to understand the complex operations of the model
and explains the reasons and methods behind the model’s output [30]. In this
paper, we have used the XAI technique for maize disease detection using a proposed
fusion model that includes saliency map, Grad-CAM, LIME, and SHAP. This model
combines MobileVit with the DaVit model, providing increased accuracy for object
classification.

6.1 Saliency Map

The saliency map, one of the most prominent methods of XAI, shows which portion
of the input image is most important for the model’s predictions. This is especially
relevant in image classification tasks, where it provides a more intuitive explanation
of the model’s behavior by visually depicting which regions of the input image are
the most weighted in the prediction. In order to generate a saliency map, the tech-
nique calculates the gradient of the final output with respect to the input image.
The numerical output indicates how much the perturbation in regions of the image
changes the prediction of the model, and the bigger the area, the more relevant it
is. Therefore, this technique acts as a mediator to explain the internal workings of
the model from the perspective of the human being, whether the model is predicting
based on irrelevant features or necessary aspects.

The saliency map for the maize crop disease detection has been shown in Figures
6.1, 6.2, 6.3 and, 6.4. Remember these figures reproduce in three parts, the first sub-
image (left) is the original input maize leaf image. The second sub-image (center)
shows the salience map, where red areas describe the most relied on areas by the
model in making the prediction. Such red areas are intense to proportions of the
classifications that these regions were given towards the end. Finally, the third sub-
image (right) shows the saliency map with heatmap overlay. The circles overlay show
that the model appears to be centering on specific visual features, including colors
and textures, having some abnormality characteristic of the disease symptoms.
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Figure 6.1: Saliency map results for a healthy maize crop using fusion model: The
original image (left), saliency map (center), and saliency map with heatmap overlay
(right).

Figure 6.2: Saliency map results for a MLN maize crop using fusion model: The
original image (left), saliency map (center), and saliency map with heatmap overlay
(right).
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Figure 6.3: Saliency map results for a MSV 1 maize crop using fusion model: The
original image (left), saliency map (center), and saliency map with heatmap overlay
(right).

Figure 6.4: Saliency map results for an MSV 2 maize crop using the fusion model:
the original image (left), the saliency map (center), and the saliency map with
heatmap overlay (right).

6.2 Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM) is a visualization tech-
nique that helps explain and understand the predictions of the model [46]. It pro-
duces class discriminant localization maps, showing which parts of the input image
are most valuable in the model’s classification decisions.

For this study, Grad-CAM is essential to enhance the interpretation of the predic-
tions of the proposed fusion model. This allows us to see which regions of maize
leaf images the model identifies as indicative of disease, thus validating its focus on
relevant features. Grad-CAM helps identify potential misclassifications and facili-
tates collaboration between data scientists and agronomists. Figure below 6.5, 6.6,
6.7 and, 6.8 below shows the result of the Grad-CAM XAI method with the fusion
model.
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Figure 6.5: Grad-CAM results for a healthy maize crop using fusion model: the
original image (left), Grad-CAM (center), and Grad-CAM with heatmap (right).

Figure 6.6: Grad-CAM results for a MLN maize crop using fusion model: the original
image (left), GradCAM (center), and Grad-CAM with heatmap (right).
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Figure 6.7: Grad-CAM results for a MSV 1 maize crop using fusion model: the
original image (left), Grad-CAM (center), and Grad-CAM with heatmap (right).

Figure 6.8: Grad-CAM results for a MSV 2 maize crop using fusion model: the
original image (left), Grad-CAM (center), and Grad-CAM with heatmap (right).

6.3 LIME

Local Interpretable Model-Agnostic Explanations (LIME) is a method used to inter-
pret the predictions of complex models by approximating them with locally simpler,
interpretable models. In image classification tasks, LIME divides an image into su-
perpixels and perturbs them to see how each part affects the model’s prediction.
It then highlights the most influential areas. In our maize disease detection study,
LIME is highly important for detecting which parts of maize leaf images the model
is focusing on, ensuring that the model’s decisions are based on relevant features.

Figures below 6.9, 6.10, 6.11, and, 6.12 shows a visualization of the explainability
results using LIME for a maize disease detection model, with an original maize leaf
image, a LIME mask, and a LIME heatmap. The first image (left) in each Figure
shows the raw maize leaf input used by the fusion model for classification. Similarly,
The second image (center) shows the regions of the original image that LIME iden-
tifies as important for the model’s decision-making. The yellow regions highlight
the segments that contribute most significantly to the classification decision. The
scattered nature of the highlighted areas indicates the model’s sensitivity to specific
leaf texture and patterns, which correlate with disease symptoms. However, the
third image (right) incorporates a heatmap to visually represent the importance of
different segments. In this context, LIME provides an intuitive way to understand
the deep learning model’s focus by isolating key areas that contribute most to the
prediction, ensuring interpretability and facilitating validation by domain experts.
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Figure 6.9: LIME results for a health maize crop using fusion model: the original
image (left), LIME mask (center), and LIME with heatmap (right).

Figure 6.10: LIME results for a mln maize crop using fusion model: the original
image (left), LIME mask (center), and LIME with heatmap (right).
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Figure 6.11: LIME results for a msv 1 maize crop using fusion model: the original
image (left), LIME mask (center), and LIME with heatmap (right)

Figure 6.12: LIME results for a msv 2 maize crop using fusion model: the original
image (left), LIME mask (center), and LIME with heatmap (right).

To summarize, the diverse XAI techniques employed in our maize disease detection
study, namely saliency maps, Grad-CAM, and LIME, each play a distinct role in
enhancing the model’s transparency and interpretability. The saliency map shows
users how the model prioritizes certain features, such as colors and textures that
indicate disease symptoms. Grad-CAM makes predictions that let users see how
the model prioritizes certain features, such as colors and textures that show dis-
ease symptoms. LIME further complements these methods by breaking down the
image into superpixels, helping to isolate and explain how each segment influences
the model’s output. Together, these techniques create a comprehensive framework
for interpreting complex deep learning models, ensuring that the model’s decision-
making processes are not only transparent but also aligned with domain expertise,
ultimately validating the model’s reliability and accuracy in practical applications.
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Chapter 7

Conclusion and Future Direction

7.1 Conclusion

This research has demonstrated the powerful impact of advanced deep learning
models, particularly Vision Transformers, combined with Explainable AI (XAI)
techniques, on improving maize disease detection. By analyzing leading Transfer
Learning models (EfficientNetV2B2, ResNet50, InceptionV3, VGG16, and Xcep-
tion) alongside Vision Transformer architectures (SWIN, DaViT, MobileViT, MaxViT,
and Involutional Neural Networks), we identified the fusion of MobileViT and DaViT
as the top performer, achieving a remarkable diagnostic accuracy of 96.67. This
model not only outperformed individual approaches but also proved to be practi-
cal, with successful deployment on a Raspberry Pi, providing a scalable solution for
farmers in resource-limited environments. The integration of XAI techniques, such
as Grad-CAM, LIME, and Saliency Maps, further enhanced the model by making its
predictions transparent and easy to interpret, enabling farmers to trust and adopt
this technology without needing deep technical knowledge. Overall, this research
not only achieved state-of-the-art results but also addressed the practical needs of
farmers by offering a cost-effective, interpretable, and scalable solution for early dis-
ease detection. It lays a strong foundation for future developments in agricultural
AI, with the potential to significantly enhance food security and improve sustainable
farming practices globally.

7.2 Future Direction

The success of this research opens promising avenues for advancing maize disease de-
tection and expanding its impact. Building on the strong performance of our fusion
model, future work could involve expanding the dataset to include a wider range
of maize diseases, increasing the model’s applicability across diverse agricultural
settings. Further optimization of the model could unlock even higher performance,
positioning it as a leading solution for crop disease management. Integrating IoT
technologies for real-time monitoring would offer farmers a proactive tool for crop
protection. The explainability features already make the model accessible to non-
experts, and further innovations in this area will drive greater trust and adoption.
These advancements have the potential to significantly enhance food security, im-
prove agricultural productivity, and empower farmers with advanced technology.
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