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Abstract

The goal of this research is to introduce the non-practicing reader to the new disci-
pline of quantum machine learning, which merges the machine learning and quantum
computing fields, as well as to the emerging topic of quantummechanical learning. is.
In order to provide you a deeper grasp of the most recent quantum machine learning
approaches, this paper discusses quantum machine learning from the fundamentals
of quantum logic to some specific quantum computing elements and algorithms.
Then, utilizing the most recent quantum machine learning techniques, we discuss
challenges with drug discovery and cover fundamental aspects of quantum machine
learning, including in-depth explanations of some well-known algorithms.

Keywords: Quantum Computing, Machine Learning; QNN; Drug Discovery
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Chapter 1

Introduction

The procedure of identifying and developing new potential medicines is known as
Drug discovery. The recent phenomenon of Covid-19 has highlighted the possibility
of new diseases. New medicines are necessary for treating the new diseases. At the
same time, it is necessary for recovering those symptoms of new diseases by immu-
nization. Target identification is the first process of drug discovery which requires
identifying molecules, protein or biological processes that illustrate a particular dis-
ease. Then, the next step is to find the core compounds for any particular disease.
After that, scientists perform enormous experimental testing to ensure efficiency
and safety. This stage requires vitro experiments, animal testing and other various
tests. The positive confirmation of this stage leads to the next which is human
trials where these drugs are tested on the human body. Studies tell us that around
700,000 people a year die due to superbugs (Drug resistant bacteria and fungi) and
also researchers predict that it will kill ten million people a year by 2050[1]. There-
fore, drug discovery is a complicated and long-term process with the purpose of
developing safe and effective medication to treat diseases and human health.

Nowadays, drug companies test millions of drug samples on classical computers.
However, there are some limitations such as molecule size. Classical computers
can perform tests on up to a certain size of molecules. Whereas it is possible in a
quantum computer which can perform tests on very large molecules. Accenture labs
has found that it is better to use quantum computers for drug discovery rather than
classical computers.

Quantum computing has had significant revolution in the areas of science and tech-
nology including cryptography, drug discovery, materials science and artificial intel-
ligence. The idea of quantum computing actually comes from quantum mechanics.
In the 1980’s scientists and researchers Richard Feynman and Yuri Manin introduced
the idea of quantum computing [3]. From then researchers explored the field of using
quantum mechanics to perform calculation and process information. In the following
decades, scientists and researchers developed several theories and built technologies
of quantum computing. Even in today, quantum computing is a comparatively new
and rapidly developing field with numerous challenges and opportunities yet to be
explored.

The application of quantum theory to computer technology is known as quantum
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computing. It uses subatomic particles like electrons and photons. In quantum
computing, data is processed using quantum bits. Quantum bits are known as
Qubits which can exist in multiple states simultaneously. Existence of qubits in
multiple states actually allows quantum computers to perform certain tasks faster
than classical computers. The quantum superposition principle refers to the fact that
qubits can exist in many states. Qubits can concurrently exist in combinations of ’0’
and ’1’, according to superposition theory. A well-known illustration of superposition
is the Schrödinger’s cat puzzle. In this experiment, there is a 50/50 probability that
the cat will live or die while it is inside a box of poison. The cat is in an overlay
state where you can tell if it’s living or dead at the same time up until the box is
opened and the condition is distorted. The building blocks of quantum circuits used
in computation are known as quantum gates [4].

Quantum states means the condition of a system that defines physical properties of
a photon such as momentum, energy and position. Two or more quantum systems
can connect in such a way that the state of one system is dependent on the other
system though both systems are separated by long distance. This phenomenon is
known as the quantum entanglement state.

There are numerous subfields of quantum computing, including quantum network-
ing, quantum machine learning, and others. Quantum machine learning focuses on
the meeting point of machine learning and quantum computing. These are some
quantum machine learning algorithms -

Quantum Principal Component Analysis, Quantum Support Vector Machine, Quan-
tum Boltzmann Machine

Recently, quantum computing has become demandable due to several breakthroughs
on the technology side and an important increase in funds. The pharmaceutical in-
dustry is at the beginning stage of quantum maturity, it means the pharma industry
already hired scientists and researchers to support possible use cases for quantum
simulation in drug design. Although a survey result shows that, the adoption rate
of quantum computing for industry is about 2.9 out of 5 on average [5]. Past five
years, technology, media, and telecom companies have made several remarkable rev-
olutions through quantum computing [5]. In the industry area the investment rate
and funding have increased rapidly in the last five years [5].

Quantum computing ensures precise data projections considering several various
biological constraints simultaneously in the field of drug discovery. To illustrate,
quantum computers can analyze an infinite number of protein ligands that might
ultimately cut the efficacy of a drug in vivo [6]. This strategy has come out to
be very helpful for protein modeling and specification of medicine compounds [6].
The numerous amounts of already accessible information about potential drugs that
have been screened under various experimental circumstances is such a complicated
procedure that it is nearly difficult to do in classical computers. Quantum machine
learning subfield, quantum deep learning algorithms can make these procedures
affordable. Thus, Quantum deep learning has significant roles in drug discovery.
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Chapter 2

Problem Statement

The biggest concerns when it comes to the computer-assisted drug discovery (CADD)
is that classical computers are sorely limited and the predicted basic calculation
of medium size drug molecules could take a generation to compute precisely [7].
The first phase of drug discovery is a complicated process, an expensive and time-
consuming method that includes lengthy computational runs and requires complete
computational analysis [6]. The problem mainly arises when the molecular size is
large. Classical computers can do operations on a limited size of molecules. When
classical computers got large molecules like protein it took a lifetime to calculate
the precise accuracy of drug detection.

Studies show that peptides, proteins, monoclonal antibodies and antibody drug
conjugates are large molecule drug products which are proven to be very effective
on detecting different diseases through drug identification process [8]. However, in
classical computers with large molecules to find out the accuracy of drug detection
is very time consuming. The complete molecular flexibility raises the space and
time complexity of computation [9]. If any situation like Covid-19 arises, classical
computers will take numerous times to identify the recovery drugs for the disease
which will have a huge impact on our world. As we can see the results of 2020 of
Covid-19, in just one-year millions of people lose their lives due to lack of recovery
drugs. It took almost one and half years to get the vaccination of Covid-19. In the
meantime, the molecules already changed their genes and became more powerful
than the previous type.

The major remaining challenge in the drug discovery is to consider target flexibility
[9]. In target identification and validation Classical computers cannot resolve all of
the challenges of simulation-based problems such as formation of protein complexes,
protein-protein interaction and protein- ligand interaction [7].

By observing most of the related works it ensures that computational drug discov-
ery includes producing high-resolution simulations of potential drug molecules. This
simulation and modeling need high performance computation. Moreover, it is al-
ready acknowledged that the drug discovery research process has extensive graphs.
On the other hand, quantum computing can significantly provide high accuracy be-
cause it can measure the performance of various drugs concurrently, high scalability
as it has the ability of adjusting in size or scale which permits drug detection for
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major diseases like cancer, cardiovascular diseases and so on [6].

As a result, the next fundamental issue of employing quantum deep learning algo-
rithms to improve effectiveness, drastically reduce data loss, and concentrate more
on a specific section to detect patterns in drug development behavior can be ad-
dressed.
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Chapter 3

Research Objectives

The objective of the research is to develop an appropriate model for drug discovery.
To correctly identifying medications for treating diseases, this model also offers
distinct patterns for recognizing first-stage drugs. As the pattern evolves, you can
extend your work by gradually improving the molecule’s condition. The procedure
of drug discovery will be improved while the data’s time complexity is reduced.

• Quantum Machine Learning for Time-efficient and Accurate Improvement

• The examination of quantum machine learning methods.

• Quantum machine learning techniques can be used to assess the impact of
drug discovery.

The main purpose is to establish the potential of quantum machine learning in
development of drug discovery. It can bring new, effective and safe medicines to
market with less time and cost.
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Chapter 4

Detailed Literature Review

4.1 Power of data in quantum machine learning

Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio
Boixo, Hartmut Neven, and Jarrod R. McClean wrote The Power of Data in Quan-
tum Machine Learning. In this study, Huang, Broughton, Mohseni, Babbush, Boixo,
Neven, and McClean demonstrate how quantum machines may learn from data
utilizing strong prediction error constraints to solve a number of traditionally un-
solvable problems. It demonstrates consistency. Then, using a projective quantum
model, we may accelerate quantum computation for learning issues in the fault-
tolerant domain in a straightforward and precise manner. These are some classical
data sets on built datasets that were tested in one of the largest numerical tests
of gate-based quantum machine learning to date (up to 30 qubits). The advantage
it has over the traditional model in terms of prediction is significant. The authors
initially discuss intriguing problems and solutions for both classical and quantum
models before providing a clear and fascinating example of how data might enhance
the performance of classical models for quantum data. In this paper, supervised
learning with N training examples (xi, yi) was the main focus. where yi is the asso-
ciated label or value and xi is the input data. In this study, we suggest a straight-
forward approach to build ML problems with significant gaps between quantum and
classical models, even when only a few qubits are available. Given the breadth of
this gap and the trend of up to 30 qubits, it is likely that there are learning tasks
that are straightforward to verify but traditionally challenging to describe, need-
ing only a small number of qubits and taking device noise into consideration. The
evaluation of classical machine learning models as well as classical approximations
of quantum models are necessary in quantum machine learning settings in order to
claim meaningful gains. More work is required to identify embeddings that satisfy
the often-conflicting requirement that they be challenging to classically approximate
while still having relevant signals in the local observations of a very high number of
qubits.
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4.2 Machine learning methods in quantum com-

puting theory

The research paper ”Machine learning methods in quantum computing theory”
by D.V. Fastovets, Yu.I. Bogdanovabc, B.I. Bantyshab, and V.F. Lukicheva illus-
trates the basic ideas of quantum machine learning. The authors outline several
cutting-edge methodologies that combine traditional machine learning algorithms
with quantum computing methods. A multiclass tree tensor network technique was
demonstrated, along with its use on an IBM quantum processor. They also offered
a neural network solution to the quantum tomography problem. They used a neural
network model in this instance to estimate the final quantum state while removing
noise from the quantum system. A method like this can be applied in actual experi-
mental settings to accurately reconstruct the correct quantum state. Their findings
are discussed in relation to strategies for quantum machine learning. They offer a
quantum circuit that functions as a binary classifier and is based on a tree tensor
network (TTN). Authors used Fisher’s Iris, a straightforward classical dataset, to
demonstrate the usefulness of these approach. additionally demonstrated the TTN
method on the IBM quantum processor. In this research, they demonstrate how to
accomplish quantum tomography using neural networks. In a number of research,
this classical-quantum method can be applied to detect unobserved relationships
between input data and measurement results.

4.3 Modeling of Supervised Machine Learning us-

ing Mechanism of Quantum Computing

The article ”Modeling of Supervised Machine Learning using Mechanism of Quan-
tum Computing” by Dr. S. G. Bhirud and Ms. Mukta Nivelkar focuses on how
quantum computation and machine learning can be combined to model quantum
machine learning. Using example data, it is shown how to construct a quantum pa-
rameterized circuit, create a quantum feature set, and put it into practice. Quantum
concepts like superposition and entanglement are used in supervised machine learn-
ing. Many traditional machine learning techniques can be improved with quantum
machine learning for more accurate analysis and prediction using challenging mea-
surement. In addition to articulating quantum machine learning using a classical-
quantum paradigm for implementation based on already available cloud quantum
services, this research article explained how machine learning will be represented
using quantum technology.
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4.4 Analyzing SARS CoV-2 Patient Data Using

Quantum Supervised Machine Learning

Using information from publicly accessible COVID-19 instances, Zara Yu’s article
”Analyzing SARS CoV-2 Patient Data Using Quantum Supervised Machine Learn-
ing” constructed and improved this quantum classifier. Author showed that QML is
capable of processing patient data quickly and reliably for the diagnosis of COVID-
19. The use of the quantum variational method to effectively categorize data while
accounting for the numerous correlations among the qualities was one of the key
elements of the author’s plan. The model has demonstrated some really intriguing
properties, the author says clearly. The model built using a classifier influenced
by quantum mechanics may undoubtedly forecast some significant connections be-
tween a SARS-CoV-2 patient case and the chosen traits. Of course, adding fresh
data to the model could make it more accurate. The author has shown that the
ML technique inspired by quantum mechanics may provide accurate and efficient
analysis for COVID-19 diagnosis procedures. High efficiency is undoubtedly desired
to combat the possibility of a global catastrophe like the SARS-CoV-2 pandemic.
In such a situation, quick data collection, information processing, and accurate di-
agnosis techniques are essential. One advantage of the approach is the use of the
quantum variational technique, which has shown to be efficient in classifying data
while taking key multiple correlations into consideration. Additionally, the author
showed that using the traits presented in this research, machine learning influenced
by quantum theory can process information accurately and efficiently and diagnose
COVID-19 circumstances.

4.5 Deep learning in drug discovery: an integra-

tive review and future challenges

Heba Askr, Enas Elgeldawi, Heba Aboul Ella, Yaseen A. M. M. Elshaier, Mamdouh
M. Gomaa, and Aboul Ella Hassanien’s article ”Deep learning in drug discovery: an
integrative review and future challenges” explains how explainable AI (XAI) might
assist with drug development issues. Success stories and drug dose adjustment are
also discussed. The final research problems for drug development challenges are open
concerns and digital twining (DT). There are obstacles to be overcome, as well as
potential research areas and an extensive bibliography. Additionally, they showed
that employing the features they chose, machine learning influenced by quantum
theory is capable of processing information accurately and efficiently and diagnosing
COVID-19 conditions. The main goal of the study paper is to provide a systematic
Literature review (SLR) that takes into account the most recent developments in
DL technology and their applicability to various problems relating to drug discovery.
DTIs include, but are not limited to, drug sensitivity and responsiveness, drug-drug
similarity interactions, and drug-side effect predictions. Benchmark databases and
data sets are relevant here. It also looks at related topics like XAI and DT and how
they help with medication development. Success stories and drug dose adjustment
are also covered.
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Chapter 5

Description of the Data

This dataset contains information about chemical compounds which are essential for
Drug discovery and bioinformatics purposes. It’s a secondary dataset collected from
Kaggle [1]. It allows users to collect dataset for their research purpose. The data
was collected as of 2022 and made publicly available by the government of India as
a part of their Drug Discovery Hackathon.

In addition the goal of this dataset appears to be the evaluation and comparison of
various chemical compounds based on their molecular properties and their potency
as measured by pIC50 values. The dataset provides a basis for developing predictive
models that can forecast the potency of new compounds based on their molecular
descrip- tors. Besides, those models can accelerate the drug discovery process by
identifying potential high-potency compounds before synthesis and testing.

pIC50 in this dataset refers to the negative logarithm (base 10) of the IC50 value
and it is a measure of the potency of a compound in inhibiting a specific biological or
biochemical function. The IC50 value indicates the concentration of the compound
required to inhibit the activity by 50%. Again, it converts this value to pIC50 where
the data is presented on a logarithmic scale. The higher pIC50 values indicate greater
potency (lower IC50 values). In the dataset, the first four compounds pIC50 values
are as follows:

• · Compound with CID 2744814 has a pIC50 of -0.477121255
• · Compound with CID 2821293 has a pIC50 of -1
• · Compound with CID 2820912 has a pIC50 of -1.041392685
• · Compound with CID 2820914 has a pIC50 value listed as ”BLINDED”, indicating
that this value is not disclosed in the dataset.

5.0.1 Dataset Overview:

• · 40 columns

• · 105 rows
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5.0.2 Feature Description

The name of the feature, it’s datatype and descrition are given in this table-6.1.

5.0.3 Handling Missing Data

There are 3 missing values from InChIKey to Volume3D and 4 missing values from
XStericQuadrupole3D to ConformerCount3D.

• By using fillna() method these missing values fills with specific values, means,
medians, or other calculated values.

5.0.4 Low Data Variation

Data variation refers to the extent to which data points in a dataset differ from each
other and from the overall mean. It is a measure of the spread or dispersion of data
values. Again, it indicates how much the values fluctuate. Moreover, high variation
means data points are widely spread out. Also, low variation means they are clus-
tered closely around the mean. Besides, common measures of data variation include
variance, standard deviation and range. Understanding data variation is crucial for
analyzing data distribution and making informed decisions in statistical and ma-
chine learning models. There are several Columns that have low data variation and
it is given in table 6.2.

The column ”FeatureCationCount3D” in your dataset exhibits low variation because
the values are predominantly zeros and ones. Again, it only has a few instances of
twos. Besides, low variation in a dataset means that most of the data points are
similar or identical and it can reduce the usefulness of this feature for predictive
modeling or analysis (Figure-6.1) .

The column ”BondStereoCount” in your dataset contains low variation because the
values are almost entirely zeros. Again, it consists of only a couple of ones and twos
(Figure-6.2) .

The column ”ConformerModelRMSD3D” in your dataset exhibits low variation be-
cause the values are concentrated around a narrow range (Figure-6.3) .

5.0.5 Size of The Dataset

In quantum machine learning using less data usage can be advantageous for several
rea- sons:

Quantum Speedup:

Quantum machine learning algorithms can operate and examine the dataset more
efficiently than classical machine learning algorithms. When the data size is reduced,

10



Name of The Columns Data Type Description
CID (Compound Identifier) Integer unique identifier for each chemical compound
SMILES String A textual representation of molecular structure
MolecularFormula String The chemical formula of the compound
MolecularWeight Float The molecular weight of the compound
InChI String A standard identifier for chemical substances
InChIKey String A hashed version of the InChI, often used as a compact identifier
IUPACName String The systematic name of the compound based on IUPAC nomenclature
XLogP Float The logarithm of the partition coefficient between n-octanol and water, used to estimate the hydrophobicity of a molecule
ExactMass Float The exact mass of the compound
MonoisotopicMass Float The mass of the most abundant isotope of the compound
TPSA Float The surface area of a molecule’s polar atoms
Complexity Integer A measure of the structural complexity of the molecule
Charge Integer The charge of the compound
HBondDonorCount Integer The count of hydrogen bond donors in the molecule
HBondAcceptorCount Integer The count of hydrogen bond acceptors in the molecule
RotatableBondCount Integer The count of rotatable bonds in the molecule
HeavyAtomCount Integer The count of non-hydrogen atoms in the molecule
IsotopeAtomCount Integer The count of isotopic atoms in the molecule
AtomStereoCount Integer The count of atoms with stereochemistry information
DefinedAtomStereoCount Integer The count of atoms with explicitly defined stereochemistry
UndefinedAtomStereoCount Integer The count of atoms with undefined stereochemistry
BondStereoCount Integer The count of bonds with stereochemistry information
DefinedBondStereoCount Integer The count of bonds with explicitly defined stereochemistry
UndefinedBondStereoCount Integer The count of bonds with undefined stereochemistry
CovalentUnitCount Integer The count of covalently connected units in the molecule
Volume3D Float The 3D volume of the molecule
XStericQuadrupole3D Float Steric quadrupole descriptors in x-axis
YStericQuadrupole3D Float Steric quadrupole descriptors in y-axis
ZStericQuadrupole3D Float Steric quadrupole descriptors in z-axis
FeatureCount3D Integer The count of 3D features in the molecule
FeatureAcceptorCount3D Integer The count of 3D features that act as acceptors
FeatureDonorCount3D Integer The count of 3D features that act as donors
FeatureAnionCount3D Integer The count of anionic features in 3D
FeatureCationCount3D Integer The count of cationic features in 3D
FeatureRingCount3D Integer The count of 3D features that form a ring
FeatureHydrophobeCount3D Integer The count of hydrophobic features in 3D
ConformerModelRMSD3D Float The root-mean-square deviation of conformer models in 3D
EffectiveRotorCount3D Integer The count of effective rotors in the molecule
ConformerCount3D Integer The count of conformers for the molecule
pIC50 Float A measure representing the negative logarithm of the half-maximal inhibitory concentration (IC50) for the compound

Table 5.1: Feature Descrition Table
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Name of The Columns
IsotopeAtomCount
AtomStereoCount
DefinedAtomStereoCount
UndefinedAtomStereoCount
BondStereoCount
DefinedBondStereoCount
UndefinedBondStereoCount
CovalentUnitCount
XStericQuadrupole3D
YStericQuadrupole3D
ZStericQuadrupole3D
FeatureCount3D
FeatureAcceptorCount3D
FeatureDonorCount3D
FeatureAnionCount3D
FeatureCationCount3D
FeatureRingCount3D
FeatureHydrophobeCount3D
ConformerModelRMSD3D
EffectiveRotorCount3D
ConformerCount3D

Table 5.2: Low Variation Features
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Figure 5.1: FeatureCationCount3D Bar Diagram
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Figure 5.2: BondStereoCount Bar Diagram
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Figure 5.3: ConformerModelRMSD3D
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the potential for achieving significant quantum speedup increases. In addition, it
covers quantum parallelism and entanglement to perform computations faster.

Noise and Error Reduction:

Quantum computers are currently prone to noise and errors. Smaller datasets reduce
the complexity of quantum circuits. Additionally, it minimizes the potential for
errors and the accumulation of noise during computation.

Resource Constraints:

Quantum computers have limited qubits and coherence times. It manages smaller
datasets to work within these constraints. Furthermore, it ensures that the quantum
algorithms can run effectively within the available quantum resources.

Efficient Encoding:

Quantum algorithms often require data to be encoded into quantum states. Also,
smaller datasets simplify this encoding process. Additionally, it makes more feasible
to prepare the quantum states accurately.

Algorithm Scalability:

Many quantum machine learning algorithms are designed to operate optimally with
smaller datasets. Again, reducing the data size helps in maintaining the scalability
and efficiency of these algorithms.

Training Efficiency:

With less data, the training phase of quantum machine learning models can be faster
and more efficient and it enables quicker iterations and optimizations.

Overall, using less data in quantum machine learning aligns with the current tech-
nological limitations of quantum computers and maximizes their computational ad
vantages.

5.0.6 Label Description

The pIC50 column in the dataset represents the negative logarithm of the IC50 value.
It is a common measure used in biochemistry and pharmacology. IC50 is known for
the half-maximal inhibitory concentration. Also, it computes the effectiveness of a
molecule in inhibiting a certain biochemical function. Here is a detailed description:

1. Definition:

pIC50:

The negative logarithm (base 10) of the IC50 value.

16



2. Interpretation:

• Higher pIC50 values indicate higher potency of the compound (lower IC50
values). Example: A pIC50 of 6 corresponds to an IC50 of 1 µM (micromolar),
while a pIC50 of 9 corresponds to an IC50 of 1 nM (nanomolar).

• Lower pIC50 values indicate lower potency of the compound (higher IC50
values).

3. Data Characteristics:

• Range: The pIC50 values in the dataset range from approximately -2.698970004
to 1.22184875.

• Missing Data: Some values in the pIC50 column are marked as ”BLINDED”
and are represented as None in the dataset.

4. Statistical Distribution:

• The dataset includes a mix of positive, negative, and zero values.

• Negative values are more frequent, indicating that many compounds have low
potency (high IC50 values).

• Positive values and values around zero are less frequent, indicating fewer com-
pounds with very high potency.

5. Example Values:

• -0.477121255: Represents an IC50 of approximately 3.33 µM.

• 0.522878745: Represents an IC50 of approximately 0.3 µM.

• -2.698970004: Represents an IC50 of approximately 500 µM.

• 1.22184875: Represents an IC50 of approximately 0.06 µM.

6. Use in Data Analysis:

• The pIC50 values are used to compare the potency of different compounds in
a standardized way.

• They can be used in regression models to predict the activity of new com-
pounds.

• Visualization (e.g., histograms, box plots) can help understand the distribution
and identify outliers.

7. Visual Analysis:

• Histogram: Shows the frequency distribution of pIC50 values, allowing iden-
tification of common and rare potency levels.

• Box Plot: Provides a summary of the distribution, highlighting the median,
quartiles, and potential outliers.

17



Figure 5.4: pIC50 Histogram and Box Plot

8. Handling Missing Data:

• The ”BLINDED” entries represent missing or undisclosed data points.

• These entries are typically handled by imputation or exclusion, depending on
the analysis requirements.

The pIC50 column is crucial for understanding the relative potency of compounds
in the dataset, facilitating comparative analysis and helping in the identification of
promising candidates for further development.
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Chapter 6

Methodology

The approach that solves all the problems identified so far is using a hybrid model.
We will go through some popular classical algorithm for drug discovery data set
accuracy along with some quantum algorithm.This idea can be the best implemented
and most efficient approach to improve the accuracy of the work.Therefore, the
methodology is written below in a more comprehensive way -

6.0.1 Data Collection and Preparation:

• Collect related datasets for drug discovery. For example, a dataset with molec-
ular structures, biological data, and chemical properties.

• Preprocess the dataset. For instance, remove noise, handle missing values, and
normalize features.

• Divide the dataset into 3 sets such as training, testing and validation. These
sets will help in model development and evaluation.

6.0.2 Quantum Computing Resources:

• A cloud based platform to access Quantum computer.

• Qiskit for quantum programming framework to develop quantum algorithms.
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Figure 6.1: Flow Chart
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Figure 6.2: Min-Max sns pair plotting

Figure 6.3: General Form of Ry Gate

6.0.3 Quantum Feature Encoding:

Using quantum embedding process to quantum feature encoding. Quantum
gates are fundamental building blocks of quantum circuits, analogous to clas-
sical logic gates in classical computing. In quantum computing, these gates
manipulate qubits (quantum bits) to perform operations such as quantum en-
tanglement, superposition, and more complex quantum computations. The
Ry gate, also known as the Rotation around the Y-axis gate, is one of the
single-qubit gates used in quantum computing. It performs a rotation around
the Y-axis of the Bloch sphere. The general form of the Ry gate is showing
on figure - 6.3. The Ry gate can be used to manipulate the quantum state
of a qubit, allowing for the creation of superpositions and other quantum
phenomena. In terms of quantum computation, the Ry gate can be used in
combination with other gates to perform various operations, such as creating
entanglement between qubits or implementing quantum algorithms. For ex-
ample, in quantum algorithms like the Quantum Fourier Transform (QFT) or
variational quantum algorithms, Ry gates are commonly used to manipulate
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Figure 6.4: Quantum Circuit

the amplitudes of qubits, allowing for the encoding and processing of infor-
mation in quantum states. Overall, the Ry gate is an essential component in
the toolkit of quantum computing, enabling the manipulation and control of
quantum states to perform quantum computations.

6.0.4 Quantum Machine Learning Models :

• Select a proper quantum machine learning models like Quantum Neural Net-
work .

• To get best result the modified quantum neural network model will be use.

6.0.5 Performance Evaluation and Scaling Up:

• Estimate model performance by using evaluation metrices.

• To ensure model robustness using cross validation methods.
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Chapter 7

Description of the Model

7.0.1 Proposed Model

The proposed model leverages Quantum Neural Networks (QNNs) to enhance the
predictive accuracy and computational efficiency for the dataset. Additionally, by
integrating quantum computing principles, the model aims to capture complex data
patterns that traditional machine learning models might miss. The dataset consists
of several features with the last column(pIC50) being the label. Again, this mod-
ifications to the QNN are designed to optimize performance for this specific data
structure.

7.0.2 Modifications to QNN

Additional Quantum Layers:

To increase the complexity and depth of the quantum circuit, we added an extra
layer of quantum gates. Moreover, this additional layer helps the model to capture
more intricate relationships within the data. Specifically, after the initial layer of
cirq.rx gates we have implemented a second layer of cirq.ry gates. This optimization
not only increases the model’s capacity but also allows it to explore a larger state
space.

Hybrid Model Structure:

Incorporating a hybrid quantum-classical model structure enhances the QNN’s abil-
ity to process and learn from the dataset. Again, it is between the quantum layers
that we include a classical dense layer. This combination improves the strengths of
both quantum and classical computing. This helps to improve the model’s overall
performance. In addition, the dense layer with ReLU activation functions provides
non-linear transformations. Those are crucial for capturing complex data patterns.

Adjusting Quantum Circuit Parameters:

To ensure better convergence and more precise initial training steps we made the
parameters for the quantum gates initialized within a smaller range. Besides, this
modification helps in achieving faster convergence during training and improves the
stability of the learning process.
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Figure 7.1: Proposed Model Architecture
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Increasing Qubits for Feature Encoding:

According to the number of features in the dataset, we increased the number of
qubits to match the number of features. Each feature is encoded into a separate
qubit. This method allows the model to maintain high-dimensional data represen-
tations. This ensures that the full breadth of the dataset’s information is utilized
effectively.

7.0.3 Proposed Model Architecture

Input Layer:

The input layer encodes the dataset’s features into quantum states using cirq.rx
gates. Again, this encoding transforms classical data into quantum data, enabling
the use of quantum operations.

First Quantum Layer:

The first layer of quantum gates consists of cirq.rx gates parameterized by sympy
symbols. In brief, these gates apply rotations around the X-axis of the Bloch sphere.
Those things represent quantum states.

Additional Quantum Layer:

An additional layer of cirq.ry gates is introduced. These gates apply rotations around
the Y-axis, adding another dimension of transformations. Additionally, this layer
enhances the model’s ability to learn complex patterns by exploring more of the
quantum state space.

Parameterized Quantum Circuit (PQC) Layer:

The PQC layer measures the qubits and outputs quantum state information. This
layer bridges the quantum operations and the subsequent classical processing.

Hybrid Classical Dense Layer:

A classical dense layer with ReLU activation is added after the PQC layer. This
layer provides additional processing power by performing non-linear transformations
on the quantum outputs. Again, the ReLU activation helps in capturing complex,
non-linear relationships in the data.

Output Layer:

The final layer is a dense layer with a sigmoid activation function. This layer is
responsible for the binary classification task. This provides the probability of the
positive class.
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7.0.4 Training and Evaluation

The proposed QNN model is trained over 5 epochs using the dataset with the
(pIC50) column as the label. The training process involves optimizing the quantum
and classical parameters simultaneously. This ensures the hybrid architecture for
better learning.

TrainingConfiguration:

• Epochs: 5

• Optimizer: Adam

• Loss Function: Binary Crossentropy

• Metrics: Accuracy

The proposed Quantum Neural Network model with its additional quantum lay-
ers. It also consists of hybrid structure, adjusted parameters. Again, we include
increased qubits which demonstrates superior performance in handling complex
datasets. Moreover, these modifications allow the QNN to achieve higher accuracy
and better generalization compared to traditional models. After that, integrating
these changes, the QNN effectively captures the intricate patterns within the dataset.
This method makes it a powerful tool for advanced machine learning tasks.
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Chapter 8

Result Analysis

8.0.1 Logistic Regression

In the initial phase of our experiment we implemented a Logistic Regression model
on the dataset. Logistic Regression is a fundamental classification algorithm used
for binary classification tasks. The model provided a baseline accuracy of 66%. In
addition, this moderate level of accuracy indicated that while the model was able to
learn some patterns from the data, it lacked the complexity to capture more intricate
relationships present in the dataset. The results from Logistic Regression served as
a reference point for comparing more advanced models. The confusion matrix for
Logistic Regression showed the distribution of true positives (40), true negatives
(29), false positives (15) and false negatives (20). In addition, this provided insights
into the types of errors the model made. Besides, it highlighted the areas for poten-
tial improvement. Despite its simplicity, Logistic Regression laid the groundwork
for understanding the dataset’s structure and the challenges in classification.

Figure 8.1: Confusion Matrix(Logistic Regression)

27



Figure 8.2: Confusion Matrix(Neural Network)

8.0.2 Neural Network

Following the Logistic Regression model, we applied a Neural Network to the dataset.
Neural Networks are known for their ability to model complex, non-linear relation-
ships due to their multi-layer structure. In our experiment, the Neural Network
improved the classification performance, achieving an accuracy of 74%. This signif-
icant improvement over Logistic Regression highlights the Neural Network’s supe-
rior capability in handling the complexity of the dataset. The increased accuracy
demonstrated that the additional layers and non-linear activation functions allowed
the model to better understand the underlying patterns in the data. The confusion
matrix for the Neural Network further illustrated the performance gains. By reduc-
ing the number of false positives (16) and false negatives (11), the Neural Network
provided a clearer distinction between classes. This enhancement in predictive power
underscores the importance of leveraging advanced machine learning techniques for
more accurate results.

8.0.3 Quantum Neural Network

The final model we implemented was a Quantum Neural Network (QNN), which is
the proposed model. QNNs leverage the principles of quantum computing to en-
hance computational efficiency and model performance. In addition, it implements
particularly for complex datasets. By incorporating quantum circuits and quantum
gates, the QNN achieved the highest accuracy of 83%. This considerable improve-
ment over both Logistic Regression and the standard Neural Network underscores
the effectiveness of the modifications made to the QNN model. The quantum-
enhanced approach enabled the model to capture and process data patterns that
classical models struggled with. It demonstrating the potential of quantum com-
puting in advancing machine learning applications. The confusion matrix for the
QNN provided a detailed view of its classification performance. It highlights its
superiority in minimizing misclassifications.
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Figure 8.3: Confusion Matrix(QNN)

Figure 8.4: Accuracy Analysis

The F1, Precision and Recall graph for the QNN illustrated the balanced perfor-
mance across different metrics. It visualizes its robustness in handling both positive
and negative classes effectively.
The accuracy graph over epochs demonstrated the QNN’s learning curve. It shows
the consistent improvement in performance as the model was trained.

Overall, the QNN’s superior performance can be attributed to its ability to leverage
quantum principles. Furthermore, it enables it to solve complex problems more ef-
ficiently than traditional machine learning models. The enhancements made to the
QNN model included the specific modifications and optimizations. This optimiza-
tion played a crucial role in achieving the highest accuracy. This implementation
makes it a promising approach for future research and application in the field of
machine learning.
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Models Accuracy Loss
Logistic Regression 0.6589 0.3410
Neural Network 0.7388 0.2612

Quantum Neural Network 0.8321 0.1679

Table 8.1: Comparison among Logistic Regression, Neural Network and the pro-
posed Quantum Neural Network

Figure 8.5: Accuracy VS Epoch
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Chapter 9

Conclusion

Despite all the advances in medicine, creating new drugs still requires a lot of time
and resources. At each stage of the drug development process, new QML-based
strategies emerge as QML technology advances and the amount of drug-related
information increases. In addition, we have seen large pharmaceutical companies
increasingly interested in AI due to improvements in QML approaches. That’s why
we’re replacing quantum machine learning. The purpose of this article is to introduce
the non-technical reader to the emerging discipline of quantum machine learning and
its subfield, quantum deep learning, which combines the research areas of machine
learning with quantum computing. This work aims to expand our understanding of
state-of-the-art quantum machines. It starts with the basics of quantum logic and
ends with certain elements and algorithms of quantum computing. Describe scien-
tific literature and teaching methods. An overview of the fundamentals of quantum
machine learning follows, followed by an in-depth discussion of many well-known
algorithms and creations that have been solved using state-of-the-art quantum deep
learning techniques.
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