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Abstract

Osteoporosis, a widespread bone disorder affecting over 200 million people globally,
is associated with significant morbidity, particularly due to increased fracture risk.
While traditionally considered a condition afflicting the elderly, younger individuals
are also susceptible. In this study, we present a deep learning framework utilizing
Convolutional Neural Networks (CNNs) to detect osteoporosis from knee X-ray im-
ages. Two models, MobileNet V3 and EfficientNet B0, were employed and fine-tuned
on a dataset of 774 knee X-ray images. We further improved model performance by
curating a new dataset, emphasizing critical features using explainable AI (XAI).
Our results show that while both models achieved an accuracy of 0.77 on the original
dataset, EfficientNet B0 consistently outperformed MobileNet V3 on the new dataset
with an accuracy of 0.9189 and an F1 score of 0.9315, compared to MobileNet V3’s
accuracy of 0.8243 and F1 score of 0.8169. These findings demonstrate the effective-
ness of CNNs, particularly EfficientNet B0, in accurately diagnosing osteoporosis
from medical images, and underscore the importance of both model selection and
feature-focused data preprocessing in improving diagnostic performance.

Keywords: Osteoporosis, CNN, EffiecientNet B0, MobileNet V3, XAI
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Chapter 1

Introduction

1.1 Osteoporosis: Impact and Complications

A consensus development conference statement defines osteoporosis as a condition
marked by reduced bone mass and the deterioration of bone tissue’s microarchitec-
ture, resulting in increased bone fragility and a heightened risk of fractures. Bone
mineral measurements are highly specific in assessing fracture risk and allow for the
development of cutoff values to identify individuals at high risk before fractures oc-
cur. These measurements can also diagnose osteoporosis by establishing thresholds,
such as 2.5 standard deviations (SD) below the young adult mean, which identifies
approximately 30% of postmenopausal women as osteoporotic [1]. A lower threshold
of 1 SD below the young adult mean could be used for prevention, as it includes
many women at increased risk of fractures. Diagnostic categories for adult women
based on bone mineral density (BMD) are as follows[1]:

• Normal: BMD within 1 standard deviation (SD) of the young adult mean.

• Low Bone Mass (Osteopenia): BMD between 1 and 2.5 SD below the
young adult mean, where prevention is crucial.

• Osteoporosis: BMD more than 2.5 SD below the young adult mean.

• Severe Osteoporosis: BMD more than 2.5 SD below the young adult mean
with one or more fragility fractures.

Osteoporosis is a significant global health concern, characterized by a decrease in
bone density and quality, which increases the susceptibility to fractures. The risk
of osteoporosis is greater in women than men [1]. This condition predominantly
affects older adults, particularly postmenopausal women, but it is not exclusive to
this demographic; younger individuals can also suffer from osteoporosis, making it
a pervasive and debilitating disorder across age groups [2]. The fundamental issue
in osteoporosis is the disruption of bone homeostasis, a delicate balance maintained
by a complex interplay of hormones, cytokines, and growth factors. These biological
agents work in harmony to regulate bone formation and resorption, ensuring optimal
bone mass and strength. When this balance is disturbed, bone mass decreases, bone
microarchitecture deteriorates, and the risk of fractures significantly increases [6],
[14], [16], [19], [27].
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Research from the Global Longitudinal Study of Osteoporosis in Women (GLOW)
highlights the multifaceted nature of osteoporosis and its intersection with other
chronic conditions. The study identified that individuals with osteoporosis often
have concurrent chronic diseases, including hypertension, heart disease, asthma,
chronic obstructive pulmonary disease (COPD), arthritis, stroke, inflammatory bowel
disease, Parkinson’s disease, multiple sclerosis, and type I diabetes. These conditions
are linked to an increased risk of fractures, compounding the health challenges faced
by individuals with osteoporosis [4], [12]. A comprehensive study involving nearly
20,000 adults in Germany further supports these findings, revealing that 95% of os-
teoporosis patients had at least one other disease. Common comorbidities included
arthrosis, arthritis, chronic low back pain, depression, and chronic heart failure,
which were more prevalent in osteoporosis patients compared to those without the
condition [10].
The global burden of osteoporosis is immense, affecting over 200 million people
worldwide [12]. This condition poses a substantial public health challenge, with
estimates suggesting that approximately one-third of women and one-fifth of men
aged 50 and older will experience fragility fractures due to osteoporosis. These
fractures can lead to significant morbidity, decreased quality of life, and increased
mortality, emphasizing the urgent need for effective prevention and management
strategies [12], [26]

1.2 Motivation

In recent years, the advancement of artificial intelligence (AI) has brought about
revolutionary changes in various sectors, particularly in the field of medical diagnos-
tics. Deep learning techniques, especially Convolutional Neural Networks (CNNs),
have emerged as powerful tools in the analysis and interpretation of medical images.
These AI-driven methods enable rapid and precise detection of a wide range of dis-
eases, transforming disease diagnosis and management. CNNs, with their ability to
learn and identify complex patterns in images, have been instrumental in diagnos-
ing conditions in both humans and animals. This technology facilitates swift and
accurate identification of disease symptoms, which is crucial for timely and effective
treatment and prevention [22].
In the context of osteoporosis, traditional visual assessment of knee X-ray images by
radiologists can provide an initial diagnosis. However, this process is time-consuming
and subjective, often leading to variability in diagnostic accuracy due to human fac-
tors such as fatigue or lack of expertise. Misdiagnoses, whether false positives or
false negatives, can have serious implications for patient care and outcomes. Imple-
menting deep learning-based diagnostic systems offers a promising solution to these
challenges. These systems can enhance diagnostic precision, reduce human error,
and ensure consistent detection of medical conditions at early stages, ultimately
improving patient care and outcomes [21].
To further improve the reliability and interpretability of AI models in medical di-
agnostics, Explainable AI (XAI) frameworks have been developed. These frame-
works address the ’black box’ problem of many machine learning models, where
the decision-making process is not transparent. XAI frameworks provide detailed
explanations of how AI models arrive at their predictions, making the models more
understandable and trustworthy to healthcare professionals and patients alike. This
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transparency is crucial for building confidence in AI-driven diagnostics and ensuring
their effective integration into clinical practice [20], [25].
Despite the success of traditional machine learning in various applications, it faces
challenges in real-world scenarios, particularly in obtaining sufficient labeled train-
ing data that matches the test data distribution. This process can be costly, time-
consuming, and often impractical [13], [17], [23]. Transfer learning offers a solution
by leveraging knowledge from previously trained models to enhance learning effi-
ciency. In our work, we utilized models initially trained on the ImageNet dataset, a
large-scale dataset with over 1.2 million labeled images across 1,000 classes, serving
as a benchmark for image classification models [3]. Since these original models were
not trained on osteoporosis-specific images, we fine-tuned and trained the models
using our own dataset, keeping the initial layers frozen. This approach allowed us
to measure the models’ accuracy in detecting osteoporosis in knee X-ray images,
demonstrating the potential of AI in enhancing osteoporosis diagnosis and manage-
ment.
Osteoporosis is a prevalent bone disease affecting over 200 million people globally,
characterized by reduced bone mass and deterioration in bone tissue microarchitec-
ture, leading to increased fracture risk. Early detection of osteoporosis is crucial
for effective management and prevention of fractures, especially in high-risk popu-
lations. While traditional diagnostic methods such as bone mineral density (BMD)
measurements and visual assessments of X-rays by radiologists have been used, these
methods can be time-consuming, subjective, and prone to human error. The ad-
vent of artificial intelligence (AI) and deep learning offers an opportunity to address
these limitations by automating the detection process, enhancing accuracy, and re-
ducing the reliance on human expertise. This research was conducted to explore the
application of deep learning, particularly Convolutional Neural Networks (CNNs),
in improving osteoporosis detection from medical images, leveraging the power of
explainable AI (XAI) to ensure transparency in the decision-making process. The
main motivation behind this work is to offer a more reliable, efficient, and consistent
diagnostic tool for osteoporosis detection using AI.

1.3 Research Problem

While several studies have successfully applied machine learning and deep learn-
ing techniques to medical image classification, the field of osteoporosis detection
using knee X-rays has been relatively underexplored. Prior research has primarily
focused on transfer learning methods, utilizing models such as AlexNet, VGGNet,
and ResNet for classifying osteoporosis based on hip X-rays, but knee X-rays, which
are crucial in diagnosing osteoporosis, have received less attention. Moreover, most
of these studies did not incorporate explainable AI methods, making the models’ de-
cision processes opaque, which limits their practical use in clinical settings. The lack
of transparency (the “black box” issue) in deep learning models for medical diagnos-
tics is a significant barrier to their adoption by healthcare professionals. Addition-
ally, earlier works did not emphasize feature-focused data preprocessing techniques,
which can significantly improve model performance by highlighting the critical areas
in medical images. This research aims to bridge these gaps by employing explain-
able AI techniques such as LIME (Local Interpretable Model-agnostic Explanations)
and Grad-CAM (Gradient-weighted Class Activation Mapping) alongside state-of-
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the-art CNN architectures to not only improve osteoporosis detection accuracy but
also to make the models more interpretable.

1.4 Research Objective

The objectives of our research is to:

• Proposed Deep Learning Framework: Introduce a deep learning pipeline
utilizing transfer learning method for detecting osteoporosis from knee X-ray
images.

• Explainable AI (XAI) Implementation: Address the ’black box’ issue of
machine learning models by incorporating explainable AI

• Feature-focused Dataset Creation: Conduct feature extraction method
and propose a dataset for improved quantitative performance parameters

• Comparative Analysis of Models: Conduct a comparative analysis of mod-
els with original and proposed dataset to showcase performance improvement
across various quantitative parameters

Overall, the study advances the field by integrating cutting-edge AI technologies
with medical imaging, focusing on both accuracy and interpretability.

1.5 Thesis Organization

The thesis is organized as follows:

• Chapter 1: Introduction – This chapter introduces the problem of os-
teoporosis, its global impact, and the potential for AI-driven diagnostics to
improve early detection and management. It outlines the motivation for this
research, the objectives, and the structure of the thesis.

• Chapter 2: Related Work – This chapter reviews the existing literature on
osteoporosis detection, transfer learning methods, and the application of deep
learning models to medical image classification. It also highlights the gaps in
current research, particularly the limited focus on knee X-rays and the lack of
explainable AI in previous studies.

• Chapter 3: Methodology – This chapter details the dataset used for train-
ing and testing, the preprocessing steps, and the architecture of the deep learn-
ing models. It also explains the XAI techniques employed in this research,
including LIME and Grad-CAM, and describes the steps taken to improve
model performance by creating a feature-focused dataset.

• Chapter 4: Results – This chapter presents the performance metrics of
the models, including accuracy, precision, recall, and F1 score. It compares
the performance of EfficientNetB0 and MobileNet V3 on both the original and
feature-extracted datasets, demonstrating the improvements achieved through
the proposed methodology.
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• Chapter 5: Conclusion – This chapter summarizes the key findings of the
research, discusses the implications of the results, and suggests directions for
future work in applying AI and explainable AI to medical diagnostics.

This organization ensures a logical flow from identifying the problem and gaps in
current research to proposing and evaluating a solution, followed by a discussion of
its implications and future prospects.
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Chapter 2

Related Work

Osteoporosis is a condition characterized by weakened bones and an increased risk of
fractures, commonly affecting the elderly. It often progresses silently until a fracture
occurs, making early detection crucial. Transfer learning, a technique in machine
learning where a model developed for one task is reused as the starting point for
a model on a second task, proves to be highly effective in medical image classifica-
tion due to its ability to leverage pre-trained networks and adapt them to specific
datasets. Recognizing the importance of accurate diagnosis, Wani et al. employ
transfer learning techniques utilizing AlexNet, VGGNet-16, ResNet, and VGGNet-
19 to classify knee joint X-Ray images into three categories: normal, osteopenia,
and osteoporosis [32]. Their dataset comprises 381 knee X-Ray images. Among the
models used, the pretrained AlexNet achieves the highest accuracy, reaching 91.1%.
Abubakar et al. also adopt transfer learning techniques with VGG 16 to detect
osteoporosis from the Mendeley dataset, which consists of 323 radiographs of knees
affected by osteoporosis and 323 normal knee radiographs [18]. Given that osteo-
porosis leads to decreased bone density and quality, their model’s high accuracy of
88% with fine-tuned parameters is particularly significant for early intervention and
treatment.
Ensemble learning, which combines multiple models to improve overall performance,
shows promising result in enhancing the accuracy of osteoporosis detection through
medical imaging. Klontzas et al. use ImageNet-trained CNN architectures, includ-
ing VGG-16, InceptionResNetV2, and InceptionV3, to differentiate between 210
cases of avascular necrosis and 210 cases of transient osteoporosis in hip Magnetic
Resonance Images (MRI) [24]. By adopting an ensemble decision-making process,
they improve classification accuracy, highlighting the potential of ensemble learning
in medical diagnostics. In their work, Inception-ResNet-V2 attained the highest
AUC score of 97.62%. Kumar et al. also leverage ensemble learning by employing a
fuzzy rank-based unification of classifiers with convolutional neural network (CNN)
architectures such as Inception v3, Xception, and ResNet 18 [30]. Their approach
achieves an impressive accuracy of 93.5% with a loss of 0.082. Their dataset includes
X-Rays from 240 subjects, with 37 having normal bone density, 154 having osteope-
nia, and 49 having osteoporotic bone density. This study underscores the effective-
ness of ensemble methods in accurately detecting varying degrees of bone density.
Rasool et al. propose a weighted ensemble learning model using EfficientNetB0 and
DenseNet121 to detect knee osteoporosis from a dataset of 372 knee images. By as-
signing different weights to these models, they identify the optimal combination to
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achieve the highest accuracy. This innovative approach further demonstrates the po-
tential of ensemble learning to improve the detection and diagnosis of osteoporosis,
ultimately aiding in better patient outcomes [33].
One prominent technique in Explainable AI (XAI) is Local Interpretable Model-
agnostic Explanations (LIME). LIME is designed to elucidate the predictions of
complex, black-box models by approximating them with locally interpretable mod-
els. This technique can be applied to any machine learning model, irrespective of its
type (e.g., neural networks, decision trees, Support Vector Machine), as it treats the
model as a black box and requires no knowledge of its internal mechanics. LIME is
primarily focused on explaining individual predictions rather than the overall model
behavior. It generates explanations valid for the specific instance being analyzed,
thereby providing insights into why the model made a particular prediction. The
interpretable model is trained on perturbations of the instance being explained, with
these perturbations weighted according to their proximity to the original instance.
Osteoporosis is a condition characterized by decreased bone mineral density and
mass, leading to weak and brittle bones. Often undiagnosed until fractures occur,
it requires early detection. Utilizing an open-source dataset of 1,493 patients, mul-
tiple heterogeneous machine learning frameworks were designed by Khanna et al.
to predict osteoporosis risk [29]. The best-performing model, combining Forward
Feature Selection and a custom multi-level ensemble learning stack, achieved 89%
accuracy. Explainable AI tools like SHAP, LIME, ELI5, and Qlattice were used to
interpret model predictions, aiding physicians in diagnostic decision-making. Osteo-
porosis requires early detection for effective management, yet traditional screening
methods and machine learning models often struggle with low accuracy and lack
individualized explanations. A study by Suh et al. develops an interpretable deep-
learning (DL) model for osteoporosis risk screening, using XAI techniques to provide
individual feature contributions and insights [31]. The model, trained on NHANES
and KNHANES datasets, achieves high AUC values of 0.851 and 0.922 for femoral
neck and total femur bone mineral density, respectively. By employing methods
like LIME, the study offers detailed, individualized explanations of risk factors, en-
hancing both the accuracy and interpretability of osteoporosis screening. Similar
techniques like Grad-CAM highlights the regions of an image that are critical for a
particular class prediction by producing a coarse localization map that can be over-
laid on the original image to indicate the areas the model is focusing on. Grad-CAM
employs the gradients of the target class flowing into the final convolutional layer to
generate this localization map. These gradients reveal the importance of each neuron
in the convolutional layer for the target class prediction [9]. Kassem et al. performs
feature extraction using GoogleNet, ResNet50, and AlexNet networks, trained on
the ImageNet dataset, to classify pelvis images into fractions and normal categories
[28]. The networks are fine-tuned with new layers while retaining the pre-trained
ones to speed up training and reduce data requirements. To enhance interpretabil-
ity, the study employs Gradient-weighted Class Activation Mapping (Grad-CAM),
which uses gradients to highlight the important regions in images that influence
classification decisions, validating that the network focuses on relevant pelvic areas
for accurate predictions. Jang et al. developed a deep learning model to predict
osteoporosis from simple hip radiography, using 1,001 images and VGG16 with a
non-local neural network [15]. The model achieves an accuracy of 81.2% and an
AUC of 0.867. Grad-CAM is used to visualize and validate that the model cor-
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rectly focuses on relevant features like the proximal femur cortex and trabecular
patterns in the radiographs, confirming its potential as a practical screening tool for
osteoporosis.
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Table 2.1: Summary of Literature Review

Paper Method Dataset Accuracy XAI Disease
Detected

Wani et
al. [32]

AlexNet,
VGGNet-
16, ResNet,
VGGNet-19
(Transfer Learn-
ing)

381 knee X-rays 91.1%
(AlexNet)

No Osteoporosis,
Osteopenia

Abubakar
et al.
[18]

VGG 16 (Trans-
fer Learning)

323 osteoporosis
knee X-rays, 323
normal knee X-
rays

88% No Osteoporosis

Klontzas
et al.
[24]

VGG-16, Incep-
tionResNetV2,
InceptionV3
(Ensemble
Learning)

210 avascular
necrosis, 210
transient os-
teoporosis hip
MRIs

97.62%
(Inception-
ResNet-
V2)

No Transient
Osteoporosis

Kumar
et al.
[30]

Fuzzy rank-
based unifica-
tion of CNN
classifiers (En-
semble Learn-
ing)

X-Rays from
240 subjects
(37 normal, 154
osteopenia, 49
osteoporosis)

93.5% No Osteoporosis,
Osteopenia

Khanna
et al.
[29]

Forward Feature
Selection, Multi-
level ensemble
learning stack

1,493 patient
records

89% Yes Osteoporosis

Suh et
al. [31]

Interpretable
deep-learning
(DL) with XAI
(LIME, SHAP)

NHANES,
KNHANES
datasets

AUC:
0.851
(femoral
neck),
0.922 (to-
tal femur)

Yes Osteoporosis
(Femoral
Neck, Total
Femur)

Jang et
al. [15]

VGG16 with
non-local neural
network, Grad-
CAM (XAI)

1,001 hip X-rays 81.2% (Ac-
curacy),
AUC 0.867

Yes Osteoporosis

9



Chapter 3

Methodology

In this work, we propose a proposed pipeline to detect osteoporosis from knee X-
Ray images employing transfer learning method with EffecientNetB0 [11], and Mo-
bileNet [8]. We use XAI architecture, LIME [7] to differentiate the features that
our models focus primarily on the classification task. Subsequently, we implement
a feature extraction method to isolate the prominent features from the original im-
ages, creating a separate dataset, and train our models on this extracted feature
dataset to enhance classification accuracy. We utilize various numerical parame-
ters to demonstrate the improvement of model accuracy by adopting our proposed
framework. The complete framework is depicted in Fig. 3.1.

Figure 3.1: Proposed framework to detect osteoporosis from Knee X-Ray images.
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3.1 Dataset Description

We utilize X-Ray images from available dataset in Kaggle [34]. The dataset contains
images of knee radio-graphs of two categories: normal, and osteoporosis. A total of
774 images, distributed equally across two categories .

(a) Normal Knee X-Ray (b) Osteoporosis Knee X-Ray

Figure 3.2: Sample images from dataset.

3.2 Dataset Pre-processing

We split the dataset into three sets: training, validation, and test by the ration
7:2:1. The training set contains a total of 520 images, the validation set 150 images
and the test 74 images. The distribution of images in dataset is depicted in Fig. 3.3.

Figure 3.3: Image distribution of training, validation, and test sets.

The images are of various sizes, as depicted in Fig. 3.4. Other statistic parameters of
image sizes are presented in Table 3.1. The table provides a summary of the image
sizes in the training set, detailing key statistical measures for both width and height
in pixels. The mean width of the images is 629.29 pixels, and the mean height is
956.12 pixels, indicating the average dimensions of the images in the dataset. The
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standard deviation for the width is 756.87 pixels, and for the height, it is 909.49
pixels. The minimum width of the images is 128 pixels, and the minimum height is
256 pixels, which are the smallest dimensions in the dataset. The first quartile (25%)
for both width and height is 128 pixels and 256 pixels respectively, meaning 25%
of the images have dimensions equal to or smaller than these values. The median
(50%) values are also 128 pixels for width and 256 pixels for height, indicating that
half of the images have dimensions equal to or smaller than these values. The third
quartile (75%) for width is 1068 pixels and for height is 1994 pixels, meaning that
75% of the images have dimensions equal to or smaller than these values. The
maximum width recorded in the dataset is 2430 pixels, and the maximum height is
2660 pixels, representing the largest image dimensions.
To ensure uniformity and increase model memory and computational efficiency, we
resize all the images to 224×224 pixels. We further augment the images to increase
the number of training images. The augmentation parameters we adopt include
randomly rotating images by up to 20 degrees, randomly shifting images horizontally
by up to 20% of the width, randomly shifting images vertically by up to 20% of the
height, randomly applying shear transformations by up to 20%, randomly zooming
in/out on images by up to 20%, and randomly flipping images horizontally.

Figure 3.4: Image size distribution.

Table 3.1: Summary of Image Sizes in the Training Set

Statistic Width Height Units
Mean 629.29 956.12 pixels

Standard Deviation 756.87 909.49 pixels
Min 128 256 pixels
25% 128 256 pixels
50% 128 256 pixels
75% 1068 1994 pixels
Max 2430 2660 pixels
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3.3 Model Description

The proposed framework utilizes a pipeline to detect osteoporosis from knee X-Ray
images using transfer learning method with EffecientNetB0, and MobileNet.

3.3.1 EfficientNetB0

EfficientNet introduces a Convolutional Neural Network (CNN) architectures by
leveraging compound scaling across width, depth, and resolution. This method
ensures that the resulting models are efficient in terms of both computational re-
sources and performance, making them highly suitable for deployment in real-world
applications where efficiency and accuracy are critical factors [11].
The proposed CNN architecture utilizes the EfficientNetB0 model as a foundational
feature extractor for image classification. This model is initialized with weights
learned from extensive training on a large-scale image classification dataset, Ima-
geNet [3], providing a robust starting point for feature extraction in our detection
task.
In the feature extraction phase, the top layer of the EfficientNetB0 model is excluded,
transforming it into a feature extractor. This modification enables the efficient ex-
traction of high-level features from the input images, which are crucial for capturing
the intricate patterns necessary for accurate classification.
Following feature extraction, custom classification layers are added to refine and
classify the extracted features. The first layer is a Global Average Pooling layer,
which serves to reduce the spatial dimensions while preserving the essential features
of the input. This is followed by a Dense layer with 1024 units and a Rectified Linear
Unit (ReLU) activation function. The ReLU function, defined in Equation 3.1.

ReLU(x) = max(0, x) (3.1)

where max(0, x) returns x if x is positive and 0 otherwise. This activation function
is chosen for its effectiveness in introducing non-linearity into the model, thereby
enabling it to learn complex patterns within the data.
The final layer is a Dense layer with a softmax activation function, designed for
multi-class classification. The softmax function, defined in Equation 3.2.

Softmax(z)i =
ezi∑K
j=1 e

zj
for i = 1, . . . , K (3.2)

where z is a vector of raw class scores, K is the number of classes, and e is the base
of the natural logarithm. This function produces a probability distribution over
the classes, ensuring that the output probabilities for each class sum to one. This
facilitates the model in making clear, probabilistic predictions for each class in the
dataset.
The model compilation phase involves setting up the model for training by defining
the loss function and the optimizer. Categorical crossentropy is selected as the loss
function, which is well-suited for multi-class classification problems. It is defined in
Equation 3.3.

Categorical Crossentropy = − 1

N

N∑
i=1

C∑
c=1

yic log(pic) (3.3)
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where yic represents the true label and pic represents the predicted probability for
class c for the i-th sample. The Adam optimizer is chosen for its adaptive learning
rate capabilities, which help in efficiently navigating the optimization process during
training. Through this meticulous setup, the model is well-prepared for robust
training and accurate prediction tasks.
The proposed model is depicted in Fig. 3.5.

Figure 3.5: Proposed model architecture based on EfficientNetB0 as encoder.

3.3.2 MobileNet V3

MobileNet is built on a streamlined architecture that employs separable convolu-
tions to construct lightweight deep neural networks. This architecture splits the
standard convolution operation into two distinct layers: a depthwise convolution
and a pointwise convolution. This separation drastically reduces the number of
parameters and computations compared to traditional convolutions, making Mo-
bileNet models both efficient and effective. These models are designed to strike a
balance between accuracy and computational cost, performing well on benchmark
datasets while maintaining low resource requirements [8].
The architecture begins with an Input Layer that accepts input images followed by
a Convolutional Layer, which consists of an initial standard convolution layer with a
large number of filters, accompanied by Batch Normalization and ReLU activation.
The ReLU activation function, is defined in Equation 3.1. Which is applied to
introduce non-linearity into the model. The core of MobileNet comprises Depthwise
Separable Convolution Blocks. Each block contains a depthwise convolution followed
by a pointwise convolution. These blocks significantly reduce the computational load
and parameter count, forming the essential building units of MobileNet.
After the convolutional blocks, the architecture includes a Global Average Pooling
layer. This layer reduces each feature map to a single value by averaging, thus
decreasing the spatial dimensions and further reducing the computational complex-
ity. Finally, a Fully Connected Layer is employed for classification tasks. This dense
layer has a number of neurons equal to the number of output classes, completing the
architecture and enabling the model to perform its classification functions efficiently.
The proposed model using MobileNet V3 as feature extractor is depicted in Fig. 3.6
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Figure 3.6: Proposed model architecture based on MobileNet V3 as encoder.

3.4 Model Training

The models are initially trained on the original dataset, which consist of 520 images,
for 30 epochs. Following the training, EfficientNetB0 achieves an accuracy of 87.88%,
while MobileNet V3 attains an accuracy of 83.08%. For both models, the ‘Adam’
optimizer [5] and the ‘Categorical Cross Entropy’ loss function are utilized. The
categorical cross-entropy loss is defined as:

L = −
N∑
i=1

C∑
c=1

yi,c log(pi,c) (3.4)

where:

• L is the categorical cross-entropy loss,

• N is the number of samples,

• C is the number of classes,

• yi,c is a binary indicator (0 or 1) if class label c is the correct classification for
sample i,

• pi,c is the predicted probability of sample i being in class c.

(a) EfficientNetB0 training loss (b) MobileNet V3 training loss

Figure 3.7: Training loss of models on original dataset
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Fig. 3.7 shows a figure depicting two subplots that compare the training loss and
validation loss of two different neural network models over a number of training
epochs.
Fig. 3.7a displays the training and validation loss curves for the EfficientNetB0
model. The x-axis represents the number of training epochs, while the y-axis shows
the loss values ranging from 0.5 to 3.5. Two distinct curves are plotted. The blue
curve represents the loss on the training dataset, which decreases rapidly during the
initial epochs and stabilizes as training progresses. The orange curve represents the
loss on the validation dataset, which follows a similar trajectory, initially decreasing
but with some fluctuation. Toward the end of the training process, the validation
loss becomes almost flat, signifying that the model’s performance has plateaued.
Fig. 3.7b presents the training and validation loss curves for the MobileNet V3
model. The x-axis represents the number of training epochs, while the y-axis shows
the loss values, which range from 0 to 5. The blue curve corresponds to the training
loss, which rapidly declines in the early epochs, indicating that the model is learning
quickly. Similar to EfficientNetB0, the loss gradually stabilizes after the initial few
epochs. The orange curve represents the validation loss, which also decreases rapidly
during the first few epochs but shows some fluctuations in the early stages. However,
like the training loss, it levels off as training progresses.

3.5 Explainable AI

Further to improve the models, we adopt two XAI techniques: LIME [7], and Grad-
Cam [9]. After classifying the images into two classes with the models, we utilize
these XAI architectures to address the black box issue of the deep learning mod-
els. It illustrates the regions of the images on which the models primarily focus for
classification.

3.5.1 Local Interpretable Model-agnostic Explanations (LIME)

We employ LIME to illustrate the features of the images that the models predom-
inantly utilized for classification. An example of such an image is presented in
Fig. 3.10. This figure shows the region where the model with EfficientNetB0 feature
extractor primarily focuses to classify the image.

• Original Image (Fig. 3.8a): The first sub-image presents the original X-ray
of a knee joint, which serves as the input to the EfficientNetB0 model. The
X-ray displays key structural elements of the knee, such as the bones and the
joint area. This is the primary image used by the model to assess the presence
of osteoporosis, a condition that affects bone density and can be diagnosed
through changes visible in such medical images.

• Highlighted Focus Area (Fig. 3.8b): The second sub-image shows the
regions of the original X-ray that the model considers most relevant for its
prediction, delineated by a yellow contour. These highlighted areas represent
the regions of the knee joint that the model focuses on when making a classi-
fication decision. In this case, the model primarily concentrates on the joint
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and surrounding bone regions, which are critical indicators in diagnosing os-
teoporosis. The yellow boundaries offer a clear visual representation of the
model’s selective attention within the entire X-ray image.

• Focus Area of the Original Image (Fig. 3.8c): The third sub-image
isolates the regions of the X-ray that were highlighted by the model in the
previous sub-image. This focused area is extracted from the original image,
allowing for a more direct view of the regions the model deems important. By
concentrating on this region, the model minimizes distractions from irrelevant
parts of the image and hones in on specific areas where osteoporosis-related
changes are more likely to occur. This visualization emphasizes how the deep
learning model selectively filters the input image to make more accurate pre-
dictions.

• Heatmap (Fig. 3.8d): The final sub-image provides a heatmap that visually
represents the distribution of the model’s attention across different regions of
the X-ray image. In this heatmap, the color gradient ranges from deep blue to
red. In this case, the blue areas indicate regions of higher focus by the model,
meaning that these areas are considered most relevant in the prediction of
osteoporosis. Conversely, the red areas represent regions of lesser importance,
where the model allocates minimal attention. This color-coded representation
provides a clear understanding of how the model emphasizes certain regions,
particularly those in blue, for making its classification decisions. The heatmap
thus highlights the spatial regions that play a critical role in the model’s pre-
diction process.

Same process is followed for MobileNet V3 for an example image in fig. 3.9.

3.5.2 Gradient-weighted Class Activation Mapping (Grad-
Cam)

Fig. 3.10 depicts the focused regions of the knee joint as highlighted by the models
EfficientNetB0 and MobileNetV3 using Grad-CAM (Gradient-weighted Class Acti-
vation Mapping). Grad-CAM is a popular interpretability technique that provides
visual explanations for deep learning models, allowing us to observe which areas of an
image are most influential in the model’s decision-making process. The sub-images
(a), (b), (c), and (d) demonstrate how both models concentrate on certain areas of
the X-ray for the classification task, which in this context is likely related to osteo-
porosis detection. These visualizations are crucial for validating and understanding
the models’ behavior in medical imaging.

• Knee Region Focused by EfficientNetB0: The first sub-image shows
the region of the knee X-ray that the EfficientNetB0 model focuses on. The
heatmap overlay uses a color gradient, where warmer colors such as red and
orange signify areas of greater focus or importance for the model’s decision.
In this case, the model’s attention is primarily directed to the knee joint,
with emphasis on the surrounding bone structures. These areas are crucial for
detecting changes in bone density and structure, which are characteristic of
osteoporosis. The use of Grad-CAM allows us to visualize how EfficientNetB0
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(a) Original image (b) highlighted focused area

(c) Focus area of the original image (d) Heatmap

Figure 3.8: Focused area of an image with EfficientNetB0.

assigns higher relevance to the central joint region in its decision-making pro-
cess.

• Knee Region of 2nd Knee X-Ray Image Focused by EfficientNetB0:
The second sub-image provides focus areas identified by EfficientNetB0 of an-
other knee x-ray image, further validating its consistency in targeting key
anatomical structures of the knee. Similar to the previous sub-image, the con-
centration of warm colors in the joint and surrounding bone regions suggests
that these areas play a significant role in the model’s classification output. The
focus on these regions reaffirms the model’s capability to hone in on clinically
significant areas when analyzing the X-ray for potential signs of osteoporosis.

• Knee Region Focused by MobileNetV3: The third sub-image presents
the Grad-CAM visualization for the MobileNetV3 model applied to the knee
X-ray. MobileNetV3 also concentrates its attention on the knee joint, similar
to EfficientNetB0, but with slight variations in the exact regions of focus.
The warmer colors, particularly around the lower section of the knee joint,
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(a) Original image (b) Focus area of the original image

(c) highlighted focused area (d) heatmap

Figure 3.9: Focused area of an image with MobileNet V3 on the same image as Effici-
enNet B0.

indicate the areas the model finds most relevant. These differences in focus
can provide insights into how different models approach the same task, offering
complementary perspectives in detecting osteoporosis or other knee-related
abnormalities.

• Knee Region of 2nd Knee X-Ray Image Focused by MobileNetV3):
This sub-image on the focus areas of 2nd knee x-ray image identified by Mo-
bileNetV3. The heatmap again highlights the central areas of the knee joint,
though the focus appears more distributed along the joint axis compared to
the EfficientNetB0 model. MobileNetV3, like EfficientNetB0, prioritizes the
joint and adjacent bone structures, reinforcing the significance of these areas
in medical imaging analysis for osteoporosis detection.

Fig. 3.10 highlights the importance of using Grad-CAM to interpret deep learning
models like EfficientNetB0 and MobileNetV3, particularly in the context of medical
imaging. Both models focus on critical anatomical regions such as the knee joint
and surrounding bone areas, which are key indicators in diagnosing conditions like
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osteoporosis. The visualizations provided by Grad-CAM enable us to understand
the inner workings of these models, providing transparency in the decision-making
process. This is especially valuable in medical applications, where trust and inter-
pretability are essential for ensuring that models focus on clinically relevant regions
of interest.

(a) Knee region focused by EfficientNet
B0

(b) Knee region focused by EfficientNet
B0

(c) Knee region focused by Mobilenet V3 (d) Knee region focused by Mobilenet V3

Figure 3.10: Focused knee region by the models depicted through GradCam.

3.6 Dataset with Extracted Feature

We create two separate datasets by extracting key areas from the images for both
models. We follow the same process to resize, split and change statistic parameters
for the images of the proposed dataset as the previous dataset.
The training images of these datasets are augmented following the same procedure
described in 3.2. Sample training, validation, and test images from this dataset are
depicted in Fig. 3.11.
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(a) Normal knee X-Ray im-
age from training set of Effi-
cientNetB0

(b) Osteoporosis knee X-Ray
image from validation set of
EfficientNetB0

(c) Normal knee X-Ray im-
age from test set of Efficient-
NetB0

(d) Osteoporosis knee X-Ray
image from training set of
MobileNet V3

(e) Normal knee X-Ray im-
age from validation set of Mo-
bileNet V3

(f) Osteoporosis knee X-Ray
image from test set of Mo-
bileNet V3

Figure 3.11: Sample feature extracted images from proposed dataset.
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3.7 Model Training Improvement

To train the model on our proposed dataset, we follow the same procedure as de-
scribed in 3.4. In this case, the training set of the proposed dataset are utilized
instead of the original one. The training loss of the models on this proposed train-
ing set is described in Fig. 3.12.
On the proposed dataset, the training loss curve of EfficientNet B0 drops more
smoothly and reaches below 0.5, which is significantly lower than in Fig. 3.7. This
indicates a much more efficient learning process. The validation loss also shows
improvement, stabilizing closer to the training loss with fewer fluctuations. The
validation loss stabilizes at around 0.75, a much closer convergence compared to
the old dataset. This suggests that the model generalizes better on the proposed
dataset with reduced overfitting. The EfficientNet B0 model performs significantly
better on the proposed dataset (Fig. 3.12). The overall loss values are lower, and
the gap between training and validation losses has reduced, indicating better gen-
eralization and less overfitting. The smoother curves suggest the model converged
more efficiently, likely due to better data quality or a more appropriate dataset for
training.
In Fig. 3.11f, MobileNet V3 shows significant improvement. The training loss
decreases more consistently, reaching below 1.0 early on, and stabilizes near 0.5 by
the end of the 30 epochs. The validation loss also improves significantly compared
to Figure 3.7. It initially fluctuates, but stabilizes much faster around 0.75, which
is much closer to the training loss than in the previous figure. The reduction in
fluctuation and the smaller gap between training and validation losses in Fig. 3.11f
indicates improved generalization on the proposed dataset. This means the model
learned more effectively and managed to reduce overfitting. The MobileNet V3
model also shows substantial performance improvement on the proposed dataset.
Both training and validation losses are significantly lower, and the validation loss
curve stabilizes more quickly with fewer fluctuations. The close convergence between
the two curves in Fig. 3.11f indicates that MobileNet V3 has better generalization
ability on the proposed dataset, whereas it struggled more with the old dataset
where the larger gap and higher validation loss suggested potential overfitting.

(a) EfficientNetB0 training loss (b) MobileNet V3 training loss

Figure 3.12: Training loss of models on proposed dataset
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Chapter 4

Results

We conduct a comparative analysis of our models using various quantitative evalu-
ation metrics, including accuracy, precision, recall, and F1 score. Initially, we assess
the models’ performance using the original dataset.
Subsequently, after generating a second dataset consisting of the focused regions,
we conduct a second round of quantitative analysis. The comparative performance
of our models between the original and proposed datasets is showcased in Table 4.1.
In both cases, the test sets are used to measure performance.
Accuracy: Accuracy is a metric that quantifies the proportion of correctly predicted
instances (both true positives and true negatives) relative to the total number of
instances. It provides an overall measure of the model’s effectiveness shown in
Equation 4.1.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

Precision: Precision measures the proportion of true positive predictions among
all positive predictions made by the model. It reflects the accuracy of the positive
predictions shown in Equation 4.2.

Precision =
TP

TP + FP
(4.2)

Recall: Recall quantifies the proportion of actual positive instances that are cor-
rectly identified by the model. It indicates the model’s ability to capture all positive
instances shown in Equation 4.3.

Recall =
TP

TP + FN
(4.3)

F1 Score: The F1 score is the harmonic mean of precision and recall, providing a
single metric that balances both aspects shown in Equation 4.4. It is particularly
useful when dealing with imbalanced datasets, as it gives equal weight to precision
and recall.

F1 Score = 2 · Precision · Recall
Precision + Recall

(4.4)

Here, TP = True positive, TN = True negative, FP = False positive, FN = False
negative.
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Table 4.1: Performance metrics for MobileNet v3 and EfficientNetB0 on the original and
proposed datasets

Dataset Model Accuracy Precision Recall F1 Score

Original MobileNet v3 0.77 0.7083 0.9189 0.8000
EfficientNetB0 0.77 0.7632 0.7838 0.7733

Proposed MobileNet v3 0.8243 0.8529 0.7838 0.8169
EfficientNetB0 0.9189 0.9444 0.9189 0.9315

The comparative analysis of MobileNet v3 and EfficientNetB0 using various quan-
titative evaluation metrics on both the original and proposed datasets are shown in
Table 4.1.
For the original dataset, both MobileNet v3 and EfficientNetB0 achieve an accuracy
of 0.77. However, their performance varies across other metrics. EfficientNetB0
exhibits a precision of 0.7632, which is approximately 7.7% higher than MobileNet
v3’s precision of 0.7083. Conversely, MobileNet v3 demonstrates a superior recall
of 0.9189, which is about 17.2% higher than EfficientNetB0’s recall of 0.7838. In
terms of the F1 score, MobileNet v3 has a slight edge with an F1 score of 0.8000,
representing a 3.4% improvement over EfficientNetB0’s F1 score of 0.7733. These
results suggest that while EfficientNetB0 has a higher precision, MobileNet v3 is
more effective in correctly identifying positive cases, as indicated by its higher recall
and F1 score.
On the proposed dataset, both models show significant improvement across all met-
rics. MobileNet v3 achieves an accuracy of 0.8243, a precision of 0.8529, a recall of
0.7838, and an F1 score of 0.8169. EfficientNetB0, however, outperforms MobileNet
v3 with an accuracy of 0.9189, a precision of 0.9444, a recall of 0.9189, and an F1
score of 0.9315. The performance improvement of EfficientNetB0 is notable, with its
accuracy being approximately 11.5% higher than that of MobileNet v3. Addition-
ally, EfficientNetB0’s precision is 10.7% higher, its recall is 17.2% higher, and its F1
score is 14% higher than MobileNet v3’s. These results indicate that EfficientNetB0
not only maintains a high level of precision but also significantly improves its recall,
leading to a substantial increase in the F1 score.
However, there was a slight decrease of MobileNet’s recall on proposed dataset.
The decrease in MobileNet’s recall on the proposed dataset can be attributed to
several factors. First, the proposed dataset was generated by extracting key areas
of the images for classification, and while this improves the model’s precision by
reducing false positives, it may have caused MobileNet to miss some positive cases
that require a broader view of the image. This narrow focus might have led the model
to overlook subtle or dispersed patterns indicative of osteoporosis. Additionally,
MobileNet, being a lightweight architecture, may have overfitted to these extracted
regions, reducing its ability to generalize and identify true positive cases that involve
more complex or less obvious patterns outside the focused areas. Finally, compared
to EfficientNetB0, MobileNet has fewer parameters and a lower capacity to learn
intricate patterns from the feature-focused dataset, which could have contributed
to its reduced recall performance. This suggests that while MobileNet is efficient, it
might struggle to fully capture the complexities of the proposed dataset, particularly
when fine-tuning its attention to critical features.
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The comparative analysis reveals that EfficientNetB0 consistently outperforms Mo-
bileNet v3, especially on the proposed dataset where feature extraction focuses on
the critical regions of the images. The enhanced performance of EfficientNetB0 can
be attributed to its architecture, which is designed to capture intricate patterns in
the data more effectively than MobileNet v3. The pre-processing step of refining
the dataset to focus on regions of interest likely contributes to the improved perfor-
mance of both models, allowing them to better utilize the most relevant features for
classification.
The confusion matrix shown in Fig. 4.1a represents the EfficientNetB0 for the orig-
inal dataset. In the confusion matrix, class 0 represents normal knee X-Ray images,
and class 1 represents osteoporosis knee X-Ray images. The EfficientNetB0 cor-
rectly classifies 28 normal knee X-Ray images while misclassifying nine normal knee
X-Ray images as osteoporosis images. Additionally, the model correctly classifies
29 osteoporosis knee X-Ray images and misclassifies eight osteoporosis knee X-Ray
images as normal knee X-Ray images.
Fig. 4.1b. represents the confusion matrix for the proposed dataset. Here, Effi-
cientNetB0 correctly classifies 35 normal knee X-Ray images (compared to 28 in the
original test set) and misdiagnoses only two normal knee X-Ray images as osteo-
porosis (compared to nine in the original test set). Additionally, the model correctly
classifies 34 osteoporosis knee X-Ray images and misclassifies three osteoporosis knee
X-Ray images as normal knee X-Ray images (compared to 29 and eight, respectively,
in the original test set).

(a) Confusion matrix of EfficientNetB0 on
original dataset

(b) Confusion matrix of EfficientNetB0 on
proposed dataset

Figure 4.1: Confusion matrix of EfficientNetB0.

Fig. 4.2a. shows the confusion matrix for MobileNet V3 applied to the original
dataset. In this matrix, class 0 corresponds to normal knee X-Ray images, while
class 1 corresponds to osteoporosis knee X-Ray images. The MobileNet V3 correctly
identifies 23 normal knee X-Ray images but misclassifies 14 normal images as os-
teoporosis. Furthermore, the model accurately classifies 34 osteoporosis knee X-Ray
images, with only three being incorrectly identified as normal.
Fig. 4.2b. illustrates the confusion matrix for the proposed dataset. For the pro-
posed dataset, MobileNet V3 correctly classifies 32 normal knee X-Ray images (up
from 23 in the original test set) and misclassifies only five normal knee X-Ray images
as osteoporosis (compared to 14 in the original test set). Additionally, the model
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correctly identifies 29 osteoporosis knee X-Ray images and misclassifies eight osteo-
porosis images as normal (compared to 34 correct and three incorrect classifications
in the original test set).

(a) Confusion matrix of MobileNet V3 on
original dataset

(b) Confusion matrix of MobileNet V3 on
proposed dataset

Figure 4.2: Confusion matrix of MobileNet V3.

In conclusion, while both MobileNet v3 and EfficientNetB0 exhibited competent
performance on the original dataset, the refined dataset allowed both models to
achieve better results. EfficientNetB0 demonstrated superior performance across
all metrics, making it the preferable choice for this classification task. These find-
ings underscore the importance of both model selection and data preprocessing in
enhancing the performance of deep learning models in medical imaging tasks.
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Chapter 5

Consclusion

This study presented a comparative analysis of two deep learning models—MobileNet
V3 and EfficientNet B0—for detecting osteoporosis from knee X-ray images. While
both models exhibited satisfactory performance on the original dataset, the results
significantly improved when evaluated on a refined dataset highlighting key fea-
tures using XAI. EfficientNet B0 outperformed MobileNet V3 across all metrics,
particularly excelling in precision, recall, and F1 score. The enhanced performance
of EfficientNet B0 underscores its ability to capture intricate patterns within the
dataset, making it a superior choice for this classification task. These findings high-
light the importance of advanced deep learning architectures and feature-focused
data preprocessing in improving the accuracy of medical image classification. The
implementation of such AI-driven diagnostic tools can offer more reliable, efficient,
and consistent osteoporosis detection, ultimately enhancing patient care by reducing
human error and improving early diagnosis.
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