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Abstract

Deep learning models are important in efficiently identifying different pulmonary
diseases from Chest X-ray Images (CXRs). Pneumonia is one of the most common
lung diseases that cause death. Especially, stage 4 pneumonia can become the rea-
son for an untimely death. Moreover, COVID-19 is still killing a lot of people all
around the world. Scientists, doctors, and institutions are working on inventing the
most effective way of detecting these diseases. Accurate and early detection of these
diseases is essential, otherwise, they can be deadly. In this work, we will detect dif-
ferent pulmonary diseases like COVID-19, and Pneumonia from chest X-ray images.
There are many deep learning models like CNNs, RNNs, GANs, and so on. Among
them, CNN models are the best for image classification. For example, ResNet18,
ResNet50, InceptionV3, VGG19, DenseNet201 and so on. However, we have not
used these models. We have used models that have the highest accuracy, Recall,
precision, and F1 score. The CNN models generally perform well with image data.
So, we used models that are not traditional CNN models. Rather, they essentially
rely on transformer architectures or a combination of transformers and CNNs. So,
we have used a Swin Transformer, Vision Transformer (ViT), VoLO-D1, FocalNet,
and VITamin. Transformers rely on self-attention mechanisms to determine the
similarities across an image. On the other hand, CNNs use convolutional layers to
extract features locally from an image. Our proposed model is a customized CNN
model and it is time and cost-efficient as it provides higher accuracy faster than other
models. It is deploy-friendly as the size of the model is 257 MB. Other transformer
based model are bigger in size. Moreover, it has a transformer-based ecosystem and
benefits. The accuracy of our customized CNN model is 98 percent and learning
rate is 0.001. We have built an automated lung disease detection system to make the
detection less time-consuming, cost-efficient, and error-free for developing countries.

Keywords: Pulmonary diseases; Deep learning; Chest X-ray Images; Biomedical

image processing; COVID-19; Pneumonia; Swin Transformer; Vision Transformer
(ViT); VOLO-D1; FocalNet; and VITamin.
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Chapter 1

Introduction

1.1 Introduction

Thousands of people are being infected each year with pulmonary diseases such as
COVID-19, Pneumonia, Tuberculosis, and so on [21]. Specifically, the outbreak of
COVID-19 as a pandemic has been taking many lives away for the last three years.
Moreover, Tuberculosis(TB) is the fifth leading cause of death throughout the world
having 10 million new cases and 1.5 million deaths per year [9]. In fact, most pul-
monary diseases being contagious, have been extremely dreadful for human beings.
The major challenge in predicting these diseases is that all of them have almost the
same symptoms. Hence identifying these diseases with automated systems has be-
come a priority for the healthcare system. Earlier, such automated systems used to
be proposed and built based on Machine Learning algorithms. However, traditional
machine-learning algorithms are data-dependent [26]. As a result, only data similar
to the dataset can be recognized and identified accurately.

On the other hand, deep learning methods can automatically extract the needed
features to identify an illness from the available dataset. Therefore, in recent times,
deep learning models are considered to be more efficient than those models based
on machine learning algorithms. Some of the recent works on our topic have also
used different types of CNN models. For example, in paper [6], CNN models like
LeNet, AlexNet, VGGNet, GooleNet, ResNet, DenseNet, and R-CNN were used to
compare the error rate of each model to solve this problem.

In some papers, they have used some image enhancement algorithms to get better
results. Different studies have used different classifiers. Some of them have used
SVM classifiers and some of them have used decision trees. In some papers, authors
have used the RNN model. Even in some papers, authors have used ANN models.
Each model has a different approach to solving a problem. However, we wanted to
choose our model in a way that it will extract only the necessary features and then
it would process those features.

Firstly, models like the Swin Transformer integrate attention mechanisms and CNN



layers. Moreover, the Swin transformer model uses selective attention to extract
the feature efficiently across images. It not only balances accuracy but also reduces
computational cost. Secondly, ViT (Vision Transformer) processes images by split-
ting them into different patches and then by applying self-attention. It effectively
captures global dependencies. However, it requires large datasets to perform well.
Now, VoLo-D1 incorporates local and global attention through bottleneck layers and
extract features. However, this method increases the complexity. FocalNet improves
attention and focuses on only the image regions that are critical. This allows this
model to perform efficiently and accurately on large datasets. However, it requires
a large amount of tuning and a fair amount of computational resources. VITamin
incorporates CNN and transformer layers and merges local feature extraction and
global attention together. As a result, this model is versatile among different types
of dataset sizes and image resolutions. However, this model has a large number of
architectural complexity and higher computational resources.

In our proposed method, we have used a customized CNN model that is faster
than other CNN models and has an accuracy of 98 percent. Our customized model
performs better than the Swin Transformer, Vision Transformer (ViT), VoLO-D1
(Vision Outlooker), FocalNet, and VITamin models. Our proposed model is small
and that’s why it is time and space efficient. Moreover, due to its size, our customized
CNN model is deploy-friendly. We have ensured that our model is solving the
problems that other researchers found while detecting pulmonary diseases. Through
this work, we intend to propose a Deep Learning network that can identify as well
as classify pulmonary diseases as accurately as possible by analyzing chest X-ray
images. Our model accurately detects pulmonary diseases. Through our customized
model, we have successfully classified pneumonia X-rays, COVID-19 X-rays, and
normal X-rays. And we are confident that we can detect any pulmonary disease
using our model.

1.2 Problem Statement

According to the American Lung Association [9], approximately 38 million people
are suffering from different types of lung diseases all across the United States. Now, if
one of the most developed countries of the world has this many cases of respiratory
patients then we can not even imagine the situation of the developing countries.
It has been estimated that in 2015, approximately 1.8 million people died due to
Pneumonia and the majority of them were from developing countries [9].

Over the period of time, this number has increased. However, many of the deaths
could have been prevented, if we could detect the disease earlier. In many cases,
diseases were not even detected properly meaning patients knew that they were
suffering from lung diseases but did not know the exact disease they were suffering
from. Moreover, in developing countries, it is hard to have trained clinical officers
all across the country.



As a result, many patients died without proper diagnosis and treatment. Further-
more, the detection of TB, Pneumonia, COVID-19, and lung cancer can be tough
and time-consuming. And most of the time clinicians can not detect the disease on
time and these diseases get worse. To solve these problems, we have proposed an
automated lung disease detection system that will make the detection process easier
and more efficient. Now, among different pulmonary diseases, there are some stages
of diseases. For example, Pneumonia has four stages. They are-

Pneumonia has four stages. They are-

e Congestion
e Red Hepatization
e Grey Hepatization
e Resolution

In addition, other lung diseases like COVID and lung cancer often get confused with
the different stages of TB and Pneumonia as some of them have similar symptoms.
To solve this problem, we wanted to build a customized model that could detect at
least pneumonia and COVID-19. Both of these diseases have similar symptoms. As
a result, often doctors confuse these diseases with each other. We wanted to assemble
a customized CNN model that will differentiate pneumonia and covid COVID-19
chest X-ray images as accurately as possible.

Moreover, our goal was to build a cost-effective model so that we could help devel-
oping countries and rural areas. For our proposed model, we have used a customized
CNN model that provides us with the highest accuracy, sensitivity, specificity, and
F1 score. For this, we have not chosen a model randomly. We have researched the
previous works and the ambiguity of those papers and based on our experiment we
have chosen the best model that will give us the highest accuracy and AUC from
an image dataset like CXRs.

Now, we have used CXR images since it is easier to detect abnormalities and lesions
in the lung. Also, X-rays are inexpensive and that’s why patients mostly opt for
X-rays rather than CT-Scan and MRIs. Moreover, clinicians also prefer X-rays as it
is easier to perform X-rays than CT-Scan and MRI. As a result, we found a variety
of datasets related to X-rays.

e Diagnosing lung diseases early is difficult, especially for developing countries.
e Developing countries do not have enough trained doctors and medical officers.

e Since different lung diseases have similar symptoms, this often leads to incor-
rect diagnoses of lung diseases. As a result, it sometimes becomes deadly for
the patients.

e Many automated systems for pulmonary disease detection exist, but most work
with CT scans and MRIs.



e CT scans and MRIs are not accessible to many people who live in rural areas.

e As per our knowledge, there are limited automated tools to diagnose lung
diseases quickly and accurately. Especially in developing countries, there are
no automated systems.

e Detection of any pulmonary disease becomes not only expensive but also time-
consuming for developing countries and rural areas.

e Available datasets are mostly smaller in size, making it difficult to build a
reliable system.

1.3 Research Objectives

Achieving high accuracy in detecting various lung diseases from chest X-ray image
datasets was the prime approach to take for this research work. We have trained a
dataset with a variety of chest X-ray images so that our model can successfully per-
form the classification of different lung diseases from the dataset. Also, we wanted
to pursue as much accuracy as possible in detecting these diseases. Our main ob-
jective is to make the disease detection process easier for the clinician as detecting
different lung diseases can be time-consuming and tough. Sometimes many clini-
cians make mistakes while detecting a particular disease as multiple diseases have
the same symptoms and conditions.

Moreover, in many developing countries, properly trained clinicians are not available.
An automated detection system can reduce mistakes and time and it can increase
the accuracy rate to detect diseases. Our main objectives are-

e We wanted to learn knowledge about various Machine Learning models, Deep
Learning models, and Image processing architecture and models.

e We tried to find the accuracy of each model and the loopholes of each model.
In addition, we have tried to find a suitable model for our automated detection
system and tried to keep the accuracy level as high as possible.

e In this paper, we have only worked with two lung diseases: pneumonia and
COVID-19. In the future, we will try to incorporate more lung diseases such
as TB, Lung cancer, etc.

e We wanted to build a cost-effective system to detect different lung diseases
using chest X-ray images.

e We wanted to create a model that can accurately classify pneumonia, COVID-
19, and Normal CXRs.

e We planned to build a model that is smaller in size.

e We increased the accuracy, F1 score, recall, and parameters for pulmonary
disease detection.



e We wanted to construct a model that would be able to handle large datasets.
e We planned to build an automated detection system for resource-limited areas.

e Lastly, we will find weaknesses in our model and improve it to get the highest
accuracy rate.



Chapter 2

Related Work

2.1 Detailed Literature Review

The following are some of the previous works we have reviewed to assess and enrich
our ideas for this research work.

Santosh et al. (2022) reviewed the past 5 years of machine learning and deep learning
models to refer to the lackings of ML models and highlight the reason for the rising
DL models over ML models [26]. The paper also evaluates DL models by analyzing
various datasets. Some of them are as follows:

Serial no. Datasets
1. Montgomery County Dataset (MC, USA) I
National Institute of Tuberculosis and Respiratory Diseases Dataset (NITRD, India)2
Japanese Society of Radiological Technology Dataset (JSRT, Japan)3

Belarus Tuberculosis Dataset (Belarus)®
Shenzhen Hospital Dataset (SH, China)®
Radiological Society of North America Dataset (RSNA, USA)°
Chest X-ray$ - NIH (MD, USA)’
Mendeley Dataset (UK)®

Sl el A Al ol R

Table 2.1: Available Datasets used for comparison [26]

These datasets were analyzed and visualized by a variety of methods individually to
ensure the accuracy of the built models/networks over 80%. Some of the methods
used are- CNN, GoogLenet, AlexNet, ResNet, CheXNet, CAD4TB, CAD4TBV3.07,
VGG (having different numbers of layers), DenseNet, etc. This review paper also
shows by comparison that using different methods for the same data collection results
in different accuracy levels. Hence assessed the existing DL models in terms of
efficiency. Moreover, through the review of 54 research articles published during
2016-2020, this paper also presented the evolution of DL models used in research
activities from binary DL-based algorithms to models that improve the individual
processes of a network like visualization, segmentation, augmentation, etc.



Similarly, in the article published in 2021, Murali Krishna Puttagunta and S. Ravi
have shown the increment in the use of CAD(computer-aided diagnostic) systems
for early-stage TB detection [17]. This system helps to improve detection by DL-
based CNN models during the screening process. With the help of various available
datasets, this article also compares the error rate of proposed variations of CNN
models such as LeNet, AlexNet, VGGNet, GoogleNet, ResNet, DenseNet, and R-
CNN.

Likewise, Rajaraman et al. worked with the goal of improving the segmentation
process for datasets that might have images with weak localization [18]. To ensure
the work can achieve the needed accuracy, the authors have followed a specific
sequence of tasks to process the input data through the proposed network. In
this paper, we have seen works on the knowledge transfer topic, localization and
statistical analysis, and so on.

Bhandari et al. have proposed an XAl-based single CNN model to detect and classify
some of the lung diseases that are possible to detect from chest X-Ray images [21].
Compared to other research and datasets, this work is evaluated in terms of efficiency
and accuracy. This work has achieved an accuracy of more than 90%. The goal of
this research is to introduce categorizing diseases within image processing with the
help of trained datasets. The following Table 2.2 presents some cases from the paper
[21] which shows the possibility of classifying the images for different cases.

The article by Liu et al.(2017) designed a CNN model to detect and classify TB
manifestations in X-ray images [5]. By revising the AlexNet and GoogLeNet ar-
chitectures for image Classification, the proposed model in this work is designed to
improve the accuracy of the outcome. Moreover, this work is open to unbalanced
datasets by applying the shuffle sampling technique in the augmentation of data.

The research work by Rahman et al.(2020) classifies TB and normal chest X-Ray
images automatically by different CNN models and compares their efficiency [13].
This research shows that CNN models with segmentation techniques have better
accuracy levels than those which do not apply segmentation to the input data while
processing. Moreover, to utilize the outcome of segmentation Score-CAM visualiza-
tion technique is used for visualizing the output in this particular work.

The architecture used in the article by Pasa et al. (2019) to detect Tuberculosis
from chest X-Ray, basically consists of 5 convolutional blocks. To process the input
into more precise output, the network of the architecture contains one global aver-
age pooling layer and another fully-connected softmax layer [9]. To randomize and
generate the most possible accurate result, the network takes preprocessed data as
input from a dataset trained with batch normalization. Moreover, as an aid to the
visualization factor, two techniques called saliency maps and gradient class activa-
tion maps (grad-CAM) were used on the output of the system.



Cases Class Methods Accuracy (%)
B = 4248 2 Transfer learning with AlexNet and Googl.eNet 85.68
Normal = 453 .
Normal = 8851
COVID-19 = 180 3 Ensemble of Xception and ResNet50 91.40
Pneumonia = 6054
Normal = 310
ﬁﬁiﬁfﬁgﬁizﬁ _ 32(7] 4 CNN-based CoroNet 89.60
COVID-19 = 284
Normal = 1583
COVID-19 = 576
Pneumonia = 4273 4 Custom CNN 94.53
TB = 155
Normal = 310
EEEEEEESS ; 32(7) 4 Attention-based VGG 85.43
COVID-19 = 284
Normal = 1341
COVID-19 = 864 3 Inception V3 with Transfer learning 93.00
Pneumonia = 1345
Normal = 439
COVID-19 = 435
PneumoniaB = 439 5 Transfer learning with Resnet18 91.60
PneumoniaV = 439
TB = 434
Normal = 1583
PCnStYnIl](?r-lilg? ; 227763 4 Custom CNN and GoogLeNet 95.94
TB = 700

Table 2.2: Comparison of various methods and their accuracy for lung disease clas-
sification.



In the research work by the U.K. Lopes and J.F. Valiati (2017), three different meth-
ods had been shown for the detection of TB using pre-trained Convolutional Neural
Networks [6]. For using pre-trained CNNs for TB detection three approaches are
described. The CNNs were trained in ImageNet and performed decently while the
detection of this disease. In several cases, pre-trained CNNs were performing better
than the finely adjusted CNNs. In this paper, for feature extraction, they have used
three separate architectures of pre-trained CNNs such as GoogLenet, ResNet, and
VggNet. Moreover, they used an SVM classifier to identify whether or not the im-
ages contained TB. Furthermore, in proposal 1, they have done simple CNN feature
extraction. Here, proposal 1 has a loophole as the lung images were being resized
to fit in the CNN input layer, it was losing a lot of information and that was also
reducing the chances of detecting TB correctly. And to solve this problem, they
introduced the second proposal and this proposal suggests the three CNN architec-
tures that were mentioned above, were used as feature extractors. Still, this time
they did not resize the CRs. In addition, they divided the CRs into subdomains
and the sizes of the CRs were equal to the network layer. In the third proposal,
they suggested an ensemble classifier for better results with higher accuracy. In
this proposal, they created ensemble classifiers by merging the SVMs which were
trained with the features that were extracted from the three architectures of CNNs
that they mentioned earlier. For proposals 1 & 3, the accuracy and the AUC of the
Shenzhen dataset were higher than the Montgomery dataset. For proposal 2, the
AUC for Montgomery dataset was 0.908 and the AUC for Shenzhen dataset was
0.926. One of the problems of this paper was ensembles were created using a simple
voting scheme. However, there is no information about the changes that will occur
after using different voting methods and CNN architecture.

In the article by Rajaraman et al., it is determined that the effectiveness of knowl-
edge transfer had been gained by combining several modality-specific deep learning
models together to improve the process of Tuberculosis detection [14]. A customized
CNN model and a few pre-trained CNNs were trained to learn the modality-specific
features from various large-scale CXR datasets. The predictions or the results of the
best-performing models were combined using various ensemble methods to determine
the improved performance of the models in classifying the TB-infected CXRs and
the non-TB-infected CXRs. The models were assessed through 5 cross-validations
to reduce overfitting and improve robustness, and generalization. In this paper, they
have shown that the accuracy and AUC of the ensemble of the top 3 pre-trained
models both are 95%. However, one limitation of this paper is that these ensembles
were evaluated with a small dataset.

From the work by Urooj et al. (2022), we can summarize that sometimes TB
gets misclassified with other diseases due to similar symptoms and similar radio-
graphic patterns of CXR images and this leads to false treatment [28]. The current
Computer-Aided Detection had some limitations as those were only evaluated by
non-deep learning models. In this paper, the authors proposed a method to develop
a reliable TB detection system depending on stochastic learning with an artificial
neural network (ANN) model with some random variations using the CXR dataset.
In this proposed method, the model learns features from CXR images and collects
the parameters of an ANN model, and here they randomly mix the training dataset



before every iteration. As this method focuses on randomness, it achieves higher
accuracy. The reason for this proposed method was to detect changes in CXR
and identify the different levels of TB just by extracting deep geometric contexts
like shape, size, etc from the CXR. The proposed method of this paper performed
better compared to other methods. The accuracy of the proposed method is 98.45%.

In the article by Munadi et al.(2020), the authors suggested a different approach
to detecting Tuberculosis [11]. Deep learning needs a huge number of high-quality
images to diagnose TB efficiently. However, many CXRs have low contrast issues.
Moreover, most of the time, the images are not high quality at all. As a result, it
affects the diagnosis. This paper suggested that if they increase the quality of the
images, they would be able to upgrade the performance of deep learning models.
Additionally, the paper by Afzali et al.(2019), also mentioned three image enhance-
ment algorithms, and those algorithms are Unsharp Masking, High-Frequency Em-
phasis Filtering, and Contrast Limited Adaptive Histogram Equalization [8]. The
enhanced CXR images were given to the pre-trained models like ResNet and Effi-
cientNet models for transfer learning. The accuracy and AUC both were 89.92%
and 94.8% respectively.

In the paper Verma [15], the authors tried to find the optimal feature vectors for
TB detection from Chest X-ray images or CXR images. This paper mainly focuses
on the contour-based shape descriptors and Two Dimensional Principal Component
Analysis meaning this paper had taken a different approach in selecting features
from CXRs for TB detection. Other prior studies have worked with texture-based
features for TB detection instead of contour-based features. They achieved 92.86%
accuracy and 91.67% AUC.

From the research of the American Lung Association, the authors suggested a frame-
work to classify pulmonary Tuberculosis, Bacterial pneumonia, and Viral Pneumo-
nia from CXR images (n.d.) [33]. This analysis was performed by using a neural
network classifier. Several data augmentation methods were used to pre-process the
data and these methods improved the classification accuracy of the suggested model.
In this paper, it is visible that the proposed framework was able to efficiently classify
different pulmonary infections and the accuracy of this proposed model is 99.01%.

The paper by Haq et al. (2022) presented an approach for diagnosing TB from CT
scan images [23]. Large volumes of pathology and radiology data can be processed
using machine learning algorithms, which allows for quicker decision-making. This
approach provides more accuracy and efficiency for detecting and identifying dis-
eases and significantly reduces both cost and time. For the research 100 abnormal
(TB infected) and 100 normal CT scan images of lungs were acquired from the De-
partment of Radiology, Bahawal Victoria Hospital, Bahawalpur, Punjab, Pakistan.
Classification between normal and infected TB images was done using multiple su-
pervised learning classifiers. Their accuracy is more than 95%.

The study by Li et al. (2020) served the purpose of establishing and validating a

deep learning system that produces quantitative C'T scan reports for the recogni-
tion of pulmonary tuberculosis [16]. The dataset used in this study included 501
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CT imaging files from 223 patients with active PTB as well as 501 datasets used
as negative samples that were drawn from a healthy population. For the inspec-
tion of the images four 3D convolutions neural network (CNN) models were trained
and evaluated. The 3D CNN model was used to identify the lesion region. After
that, the infection probability was calculated using the Noisy-Or Bayesian function.
The study concluded that this new method might serve as an effective reference
for decision-making by clinical doctors. However, a specific limitation of the study
model might be less sensitivity to trivial PTB lesions. The doctors still needed to
review the full CT scan to confirm the result.

The paper by Venkataramana et al. (2022) shows how COVID-19, TB and pneumo-
nia can be classified using deep learning [29]. Though lung diseases can be detected
from CXRs. The X-rays will be then classified into pneumonia, tuberculosis, or
COVID-19 groups. The paper claims that their model is cost-effective and can per-
form faster and more accurately, and can be used efficiently for mass screening to

detect COVID-19 in people.

The article by Kaila et al.(2007) has acknowledged that MRI can detect asymp-
tomatic lesions as symptoms of spine TB even if it may not be the most cost-effective
measure and might be unable to identify multiple-level noncontiguous TB. This test
confirms the higher presence of multiple-level noncontiguous TB breaking away from
previous beliefs [3].

The article by Zacharia et al.(2003) determines the role of MRI in detecting ankle
tuberculosis, which is extremely rare when occurring by itself without involvement
in any other body parts. On a 0.5 T scanner, the findings showed various irregular-
ities in the case of ankle TB, symptoms not usually found in other cases that were
successfully detected by MRI, unlike CT scans [2].

The article by Desai(1994) tests the results of the MRI of 24 routinely tested patients
with possible spinal Tuberculosis that were treated accordingly. Results showed that
all patients but one responded to the treatment provided, showing the high effective-
ness of MRI and confirming a nearly 100-year-old quote by Massart and Ducroquet
made in 1926, where they stated that Pott’s disease abscesses are not hidden to
X-ray and similar imaging [1].

The article by Rizzi et al.(2011) sets out to compare MR imaging to the apparent
gold standard for assessing morphological changes in the lungs. The study found
that the CT scan and the MRI had little differences in their assessments, with the
MRI being able to detect finer details of the irregularities due to the higher resolu-
tion, minus the radiation inflicted on the patient by the CT scan [4].

The article by Jianbing et al. (2019) explores the uses of MRI with advanced motion
correction to detect lung tissue changes and TB-induced lesions. Using the Multi-
Vane technique on 63 TB subject samples resulted in a 100% detection of TB with

satisfactory quality, albeit it was less effective at identifying calcified lesions [10].

The article by Yusuf et al.(2022) has shown a high rate of success, removing the
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need for unnecessary and complicated processes such as biopsy. It also makes the
diagnosis of TB spondylitis much less complicated, as the previous absence of any
symptoms in the lungs would make it challenging to detect spondylitis [31].

The study of the article by Khokhar et al.(2022) is aimed to determine the diag-
nostic accuracy of MRI for the detection of spinal tuberculosis (TB) [24]. This
cross-sectional study was conducted from January 2020 to August 2020 on 150 pa-
tients with suspected spinal tuberculosis. Patients underwent MRI scans of the
entire spine. For the diagnosis of spinal tuberculosis, MRI was performed using 1.5
Tesla MR. According to MRI accuracy, there were 83 true positives (55.3%), 10 false
positives (6.67%), 8 false negatives (5.33%), and 49 true negatives (32.67%). The
sensitivity and specificity were 91.2% and 83.1% respectively.

In paper [19], Tripathi et al.(2021) have proposed a model that had convolutional
layers, ReLLU activations, pooling layers, and a fully connected layer. The layer
meaning the fully connected layer has 15 output units. According to the author, ev-
ery unit will predict the prospect of getting any of these 15 diseases. Their datasets
consist of fifteen different classes named Atelectasis, Cardiomegaly, Effusion, Infil-
tration, Mass, Nodule, Pneumonia, Pneumothorax, Consolidation, Edema, Emphy-
sema, Fibrosis, Pleural Thickening, Hernia, and No Finding images used to train
this model. This model has a decent average accuracy for multiclassification which
is approximately 89.77%.

In paper [32], Alshmrani et al.(2023) have suggested a deep learning model that will
perform a multi-class classification of diseases like pneumonia, lung cancer, TB, and
so on. They have used 5 classes. They have used CXR images as their dataset.
Firstly, the authors have resized all the images then they have normalized them.
Lastly, they randomly split the images to get fitted into Deep learning requirements.
For the classification, the authors have used VGG 19 which is a pre-trained model,
and for feature extraction, they have used 3 blocks of CNN and a fully connected
layer. So, the accuracy of the VGG19 + CNN model is 96.48%. The F1 score is
also 95.62% and the AUC is 99.82%.

Ref Dataset and Source Code Performance Category
Accuracy (%):
1) VGG16: 96.88
2) VGG19: 95.31
3) Inception ResnetV2: 89.06
4) Xception: 95.31 Transfer Learning - Fine-tuning
5) InceptionV3: 92.66
6) MobileNet: 89.06
7) DenseNet121: 92
8) Ensemble: 98

Datasets:
Chest X-ray images: 1) 146 images of COVID-19 from (32]
2) 420 images of pneumonia from [33]
Source code: Not available.

31)

Datasets:
Chest X-ray images: 1) A publicly available dataset of pneumonia cases [33]
2) Kaggle dataset
3) A publicly available dataset of pneumonia
and COVID-19 cases
Source code: Not available.

[34]

Accuracy: 97% Transfer Learning - Feature extraction

Datasets:

Accuracy: 99.2% Training from scratch - Single Model
3) Pneumonia cas
Source code: Not available.

Results for two-class classification:

Datasets:
Chest X-ray images from two publicly available datasets: 1) 127 COVID-19 positive cases from [33]
2) 1000 images selected randomly from [7] Results for three-clas if
for two classes: no findings and pneumonia. Accuracy: 87.02%
Fl-score: 87.37%

Training from scratch - Multiple Models

Table 2.3: Summary of reviewed Datasets.[20]
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Chapter 3

Prediction Modeling using
Decision Tree

3.1 Description of the Data

As we have discussed before, we have explored various datasets. Among them, we
have chosen a dataset named “COVID19+PNEUMONIA+NORMAL Chest X-Ray
Image Dataset”[27][25]. This dataset has three classes. The classes are Pneumonia,
COVID-19 and Normal. Here we have used Chest X-Ray or CXR images as our
dataset as they are quite available compared to MRI or CT-scans.

In this dataset, there were no distinctions for age and sex or the severity of any
diseases. This dataset only has CXRs of patients who are suffering from lung dis-
eases like Pneumonia and COVID-19. Moreover, this dataset also contains CXR
images of normal lungs which means unafftected /healthy lungs. The dimension of
each image in the dataset is (256*256) and the format of each image is PNG.

Class Number of Images (per class)
Covid 1626

Pneumonia 1800
Normal 1802

Table 3.1: Number of images per class in the dataset

In our existing dataset, there are a total of 1626 CXR images for COVID19 1300
of which is used to train the model, 163 of them are used for testing purpose and
163 of them are used to validate the model. Similarly, the dataset has total 1802
images of normal CXRs with healthy lungs and 1800 images of Pneumonia affected
CXRs. It is necessary to mention that from the total normal CXR images 1442
are for training, 180 are for testing and rest of the 180 images are for validation
purpose. Moreover, all the Pneumonia CXR images are divided into train, test
and validation by 1440, 180 and 180 respectively. To summarize, the dataset we
are using for our research work does not have noteworthy imbalance which helps in
efficient and prompt detection of the disease.
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3.2 Data Partitioning

Category | Train Data | Test Data | Validation Data | Total
Covid 1300 163 163 1626
Pneumonia 1440 180 180 1800
Normal 1442 180 180 1802

Table 3.2: Distribution of Train, Test, and Validation Data per Category

It is necessary to mention that from the total normal CXR images 1442 are for
training, 180 are for testing and the rest of the 180 images are for validation purposes.
Moreover, all the Pneumonia CXR images are divided into train, test, and validation
by 1440, 180, and 180 respectively. To summarize, the dataset we are using for our
research work does not have a noteworthy imbalance which helps in the efficient and
prompt detection of the disease.

3.3 Preliminary Analysis

Preliminary analysis on the raw image dataset is a necessary step for prediction
through computer vision. Pre-processing of image data helps in increasing efficiency,
time and computational complexity of the classification model. Moreover, it can help
in transforming the input data for the classification model into a standard format
and can be used to handle corrupted and imbalanced data. To ensure the efficiency
of our dataset and standardize the data, we have utilized the following pre-processing
methods:-

1. Resize and Rescale: Resizing and rescaling is required for a dataset which has
images of different shapes or sizes. Generally, the computer vision based classifica-
tion models support input data of consistent shape. Therefore, the model cannot
function with a dataset having images of various shapes. Moreover, resizing all the
images of a dataset to exclude redundant information reduces time and space com-
plexity for the dataset which results in increased model efficiency. For our dataset,
we have used an annotation tool called "Roboflow” in order to adjust the dimension
of all the images of our dataset to 512*512 for getting better performance during
the training phase of the model. Before loading the 512*512 images, we have again
resized the images to 224*224. The pixel values of all the images of the dataset
are also normalized to ensure faster convergence of the image dataset into having a
uniform and standard dimension as well as to avoid biased training.

2. Data Augmentation: Data augmentation is a pre-processing technique which
brings more variation to an image dataset upon implementation. It helps the clas-
sification model to perform better while making a prediction for random unseen
images. Data augmentation can be achieved by rotating, flipping or cropping the
already existing images of a dataset. Here, we have implemented cropping the im-
ages and horizontal flipping on our dataset for augmentation purpose.
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Thus the image dataset we have used, transforms into a consistent, structured and
standard format. As a result, the classification model does not have to interpret
the raw, imbalanced and poor quality data and can perform training and image
processing effectively.

3.4 Description of the Model

In this study, we have proposed a model that will detect pulmonary diseases with
higher accuracy, time and cost efficiency. In our proposed method, we have used a
custom CNN model for classifying the biomedical images of our dataset. We have
implemented other pre-trained models such as- Vision Transformer, Swin Trans-
former, VOLO-D1, FocalNet and Vitamin. These models will be transfer learning
based models. Now, we know that in transfer learning, a model is already trained
on large datasets like ImageNet. After implementing a pre-trained model on our
dataset, the model achieves a certain level of accuracy in prediction. However, we
have achieved better accuracy for the pre-trained models by utilizing fine tuning
process.

3.4.1 Proposed Model(Custom CNN)

Convolutional Neural Networks (CNNs) are widely used in image analysis for tasks
like classification. They automatically learn features such as edges, textures, and
complex patterns through convolutional layers. This study used a custom CNN for
chest disease classification using X-ray images, achieving 99.61% training accuracy
and 97.97% testing accuracy in just 20 epochs. The custom CNN’s architecture
balances computational efficiency and accuracy, making it effective in medical image
classification.

Figure 3.1: Training and Validation Accuracy

Custom CNN Architecture

The custom CNN uses a traditional architecture with enhancements for performance
and overfitting prevention.

e Convolutional Layers:
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Figure 3.2: Training and Validation Loss

— First Block: Uses 64 filters (3x3) for basic feature detection like edges
in X-rays. Batch normalization and ReLU activation improve learning.
Max pooling downsamples feature maps.

— Second and Third Blocks: With 128 and 256 filters, respectively, these
layers identify complex patterns like lung abnormalities. Max pooling
ensures that critical features are retained.

e Fully Connected Layers:

— First Layer: 256 neurons with 20% dropout for overfitting prevention.

— Second Layer: 128 neurons with 10% dropout for further regularization.

e Output Layer: A softmax layer with three neurons (healthy, pneumonia,
tuberculosis).

e Activation and Regularization: ReLU for non-linearity, batch normaliza-
tion for training stability, and dropout to prevent overfitting.

Figure 3.3: Custom CNN model workflow
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Why Custom CNN Outperformed Other Models

Fewer Epochs, Higher Accuracy:
Achieving 99.61% training and 97.97% testing accuracy in just 20 epochs,
faster than transformer-based models requiring over 50 epochs.

Localized Feature Extraction:
CNNs excel at capturing local features like small lesions in X-rays, while trans-
formers often miss these details.

Efficient Computation:
CNNs are computationally efficient, handling high-resolution images faster
with fewer resources.

Robust to Overfitting:
Dropout layers and batch normalization help prevent overfitting, with the
model generalizing well to unseen data.

Balanced Architecture:
The custom CNN’s three convolutional blocks efficiently capture essential de-
tails without adding complexity.

Locality Bias:
CNNs prioritize nearby pixels, beneficial for chest disease classification where
abnormalities are localized.

Data Efficiency:
CNNs perform well with smaller datasets, unlike transformers that need more
data.

Layer (type) output Shape Param #
convzd (Conv2D) { , 256, 256, 64) 1,792 |
batch_normalization { y 256, 256, 64) 256 |
(Batchnormalization)

max_pooling2d (MaxPocling2D) { » 128, 128, &4) @ |
conv2d_1 (Conv2D}) { , 128, 1238, 128) 73,856 |
batch_normalization_1 { , 128, 128, 128) 512 |
{BatchNormalization)

max_pooling2d_1 (MaxPooling2D} { y B4, 54, 128) 2 |
conv2d_2 (ConvaD) ( , 64, 64, 258) 295,168 |
batch_normalization_2 ( , 64, B4, 256) 1,824 |

(Batchnormalization)

max_pooling2d_2 (MaxPooling2D) { y 32, 32, 256} a |
flatten (Flatten} { s 252144} 8
dense (Dense) ( , 258) 67,109,128
dropout (Dropout) ( y 258) 2
dense_1 {Dense) { y 128) 32,89
dropout_1 (Dropout) { , 128) 2
dense_2 (Dense) { , 3 187

Figure 3.4: Custom CNN model visual

17



Figure 3.5: Confusion Matrix of custom CNN model

Training Process of Custom CNN

e Dataset Preparation: X-rays were resized to 256x256 pixels, with data aug-
mentation like flipping and brightness adjustments to improve generalization.

e Training Parameters: Adam optimizer (learning rate le-4) with a batch
size of 32. A learning rate scheduler reduced the rate when validation loss
plateaued.

e Training Epochs and Early Stopping: The custom CNN achieved peak
performance in 20 epochs, with early stopping to avoid overfitting.

Why our model is better?

We have used Data augmentation and rescaling as it helped the model to generalize
data better. Moreover, data augmentation and rescaling controls overfitting as it
automatically increases the variety of data. Then we applied multiple convolution
layers. Multiple convolutional layers increase the chance of the model to extract
complex features from the input image. Furthermore, we have used batch normal-
ization which assists in training faster and helps to stabilize the learning process.
It normalizes the input of each layer. So, it normalizes the inputs of each convolu-
tional layer. After that max-pooling helped us to reduce the spatial dimensions. As
a result, it reduces the computational complexity without reducing any key feature
from the input.
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Cost Efficient

Our solution highlights our custom CNN model as a cheaper alternative, with a clear
cost advantage over other models like Vision Transformer (ViT), Swin Transformer,
VoLo-D1, FocalNet, and VITamin. The CNN model is notably smaller (just 267
MB) compared to others (2.5 GB to 3.8 GB), allowing it to be trained in only 20
epochs, while the others require 50 or more. Additionally, the custom CNN model
has lower computational complexity and memory usage, making it computationally
efficient and well-suited for deployment in resource-limited environments. Despite
being smaller and faster, it maintains competitive accuracy, balancing efficiency
and accuracy for real-time medical applications. This overhead efficiency makes
your CNN model ideal for embedded systems with limited hardware and poor area
connectivity.

Model Size Epochs | Training Time | Complexity | Memory Usage
Custom CNN 267 MB 20 Faster Low Low
Vision Transformer (ViT) | 3.6 GB 50 Slower High High

Swin Transformer 3.8 GB 50 Slower Medium Medium
VoLo-D1 2.5 GB 50 Moderate Medium High
FocalNet 3.2 GB 50 Moderate High High
Vitamin 2.7 GB 50 Slower Medium Medium

Table 3.3: Comparison of Model Sizes, Training Times, and Complexity

Then the Relu activation function helped to accelerate the learning process. It also
enabled the model to learn different composite patterns. L2 regularization helped
the model reduce the overfitting in dense layers as it penalized large weights. In
addition, the dropout layers reduce the risk of overfitting as they drop the neurons
while training and add regularization. Then the flattened layer converts the two-
dimensional feature map into a one-dimensional feature vector. Lastly, the softmax
activation was done as it effectively performs multi-class classification. Our model’s
architecture is flexible and we can edit and expand it further. By adding additional
layers and filters, we can make our model enable to classify different image classifying
tasks. Our future goal is to make this model efficient in classifying different stages
of Pneumonia and TB.

Our customized CNN model achieved the same level of accuracy in just 20 epochs
while other models took at least 50 epochs to reach similar accuracy. This proves
that our model is faster and provides better results within less time. As our model
takes less time to perform, we may use this model with a large dataset or with limited
resources. Moreover, as fewer epochs are needed, it means our model converges faster
than other models. Also, it takes less time to train. It means we can work with
larger datasets and we may get higher accuracy with larger datasets as well. We
can use this model in any real-time situation as it takes a shorter time to train and
needs minimum resources. Our model has elements like Batch Normalization, L2
Regularization, and Dropout and this helped the model to converge faster without
disturbing the accuracy and performance.
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Criterion Custom CNN Vision Trans- | Swin Trans- | VoLo
former (ViT) former
Convergence 20 epochs for peak | 50+ epochs for con- | 50+ epochs for con- | 50+ epochs for con-
Speed accuracy vergence vergence vergence
Training Time Faster due to fewer | Slower due to | Slower due to at- | Slower due to lo-
epochs complex attention | tention windows cal and global at-
mechanisms tention
Computational | Low, convolutional | High, due  to | Medium, hybrid | Medium, combin-
Complexity layers focus on local | self-attention of convolution and | ing local and global
features mechanisms self-attention attention
Model Size Small and deploy- | Large, requires sig- | Medium, hierar- | Larger than CNN,
friendly nificant resources chical structure | combines CNN
reduces size and transformer
features

Memory Usage

Low memory usage

High memory usage

Medium, reduced
memory compared

High, due to combi-
nation of CNN and

to ViT transformer
Suitability for | Excellent Poor, needs large | Medium, performs | Medium, bet-
Small Datasets datasets better with small | ter with larger
datasets than ViT datasets
Table 3.4: Comparison of Custom CNN with ViT, Swin Transformer, and VolLo
(Part 1)
Criterion Custom CNN Vision Trans- | Swin Trans- | FocalNet
former (ViT) former
Local Feature | Excellent, localized | Medium, focuses on | Good, windowed | Excellent, focuses
Extraction feature extraction global features attention captures | on critical image re-
local features gions
Global Feature | Limited Excellent, self- | Good, hierarchical | Excellent, focuses
Extraction attention captures | structure captures | on critical regions
global dependen- | global features globally
cies
Overfitting Pre- | Efficient with | Prone to overfit- | Balanced, win- | Moderate, needs
vention dropout and batch | ting, requires regu- | dowed attention | tuning to prevent
normalization larization reduces irrelevant | overfitting
focus
Training Re- | High, fewer re- | Low, requires sig- | Medium, more effi- | Medium, requires
source Effi- | sources needed nificant resources cient than ViT significant compu-
ciency tational resources
Deployment Excellent, small | Poor, large and | Medium, smaller | Medium, large
Feasibility and easy to deploy | complex than ViT resources required

for effective perfor-
mance

Table 3.5: Comparison of Custom CNN with ViT, Swin Transformer, and FocalNet

(Part 2)

20




Reason for certain Misclassifications

COVID-19 Misclassified as Pneumonia

e Ground-glass opacities are found in both diseases.

e Diffused opacity patterns are common in COVID-19 and pneumonia.

e Lung lesions have similar shapes and locations.
Pneumonia Misclassified as COVID-19

e Overlapping lung infiltrates are typical in both conditions.

e Peripheral lung involvement is frequent in both.

e Patterns of lung consolidations and opacities appear similar.
Normal Misclassified as Pneumonia

e Minor anomalies or noise in normal X-rays are interpreted as disease.

e Image artifacts or postural variations are misinterpreted as infections.

e Oversensitivity to small changes, likely due to model bias or noise.
Pneumonia Misclassified as Normal

e Early-stage pneumonia presents with subtle or faint features.

e Small, localized lesions are missed by the model.

e Weak contrast in X-ray images leads to missed abnormalities.
COVID-19 Misclassified as Normal

e Mild or atypical presentations with minimal lung changes.

e Poor-quality images or preprocessing lose important information.

e Subtle opacities or abnormal patterns aren’t emphasized enough by the model.

3.5 Vision Transformer

The Vision Transformer (ViT) represents a significant shift in vision computing,
utilizing transformers, originally designed for natural language processing (NLP), to
tackle image understanding tasks. Unlike traditional convolutional neural networks
(CNNs), which focus on specific regions of an image, ViT decomposes the input
image into uniform-sized patches and treats them as tokens—similar to words in
a sentence—using self-attention mechanisms. Researchers have demonstrated ex-
cellent performance in various image classification tasks using ViT, especially with
large dataset training. For this study, ViT introduces a novel approach to chest
disease classification via X-ray images, allowing for better global feature extraction
combined with contextual relations.
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Figure 3.6: Accuracy and Loss graph for ViT

3.5.1 ViT Architecture

The main novelty of ViT lies in how it processes images. Instead of relying on
convolutions, transformer layers are used to capture relationships between different
image components.

Image Patch Embedding

e Patch Splitting: The input image is split into patches. For example, a
256x256 X-ray image can be divided into 16x16 sub-regions.

e Linear Projection: The patches are linearly mapped to a fixed-size embed-
ding (e.g., 768 for base ViT). This process converts the 2D image patches into
1D patch embeddings.

Positional Encoding

Each patch embedding is further enriched with positional encoding to maintain spa-
tial information. The transformer encoder then processes the sequence of patches
through multi-head self-attention (MHSA) and feedforward neural networks. MHSA
captures both local and global features, helping the model understand interconnec-
tions between patches in X-ray images.
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Figure 3.7: ViT Architecture

Transformer Encoder Layers

The image patches, combined with positional encodings, are processed through sev-
eral transformer encoder layers. Each encoder layer consists of:

e Multi-head Self-Attention (MHSA): Allows the model to focus on dif-
ferent regions of the image simultaneously, identifying both local and global
patterns.

e Feedforward Neural Networks: After applying self-attention, fully con-
nected feedforward networks capture more complex image representations.

e Layer Normalization and Residual Connections: These mechanisms
stabilize training and ensure a consistent flow of gradients.
Classification Head

The classification head in ViT aggregates global information from all patch embed-
dings using a CLS token, which is then processed by fully connected layers to predict
the class (e.g., healthy, pneumonia, or tuberculosis).
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Pretraining and Fine-tuning

ViT benefits significantly from pretraining on large-scale datasets such as ImageNet.
In this study, the ViT model was pretrained and then fine-tuned on chest X-ray
datasets to adapt to the specific patterns of medical images, enabling the model to
detect small deviations indicative of disease.

3.5.2 Training Process of ViT on Chest X-ray Dataset

The X-ray images were resized to 256x256 pixels and divided into 16x16 patches.
These patches were normalized into 768-dimensional vectors, with positional encod-
ing added to retain spatial information. The model was trained using the AdamW
optimizer, with a warm-up rate to prevent overfitting. A batch size of 32 was selected
to optimize GPU utilization without consuming excessive memory.

Figure 3.8: Workflow of ViT [35]
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3.5.3 Performance of ViT on Chest Disease Classification

ViT achieved a training accuracy of 98.72%, demonstrating its ability to learn both
global and regional features from X-ray images, including fine details such as small
tissues and abnormalities. The test accuracy was 96.4%, reflecting the model’s
capacity to generalize well to unseen data, even with challenging image quality.

Figure 3.9: Confusion Matrix of ViT

3.5.4 Generalization and Overfitting

ViT maintained a high training accuracy throughout, with minimal overfitting.
Techniques such as data augmentation and dropout were applied during training
to prevent overfitting. The small gap between training and testing accuracy (2%)
indicates the model’s robustness, though further fine-tuning could potentially im-
prove performance.

3.5.5 Strengths of Vision Transformer (ViT)

ViT’s attention mechanism significantly improves the detection of long-range spatial
information in images, which is particularly beneficial for medical imaging tasks
like chest X-ray analysis, where diseases may not be immediately visible. Unlike
CNNs, which focus on specific regions, ViT captures both local and global features,
resulting in a comprehensive understanding of the image. Pretraining enhances the
model’s performance by leveraging knowledge from large image datasets, which can
be especially useful when medical data is limited. Additionally, ViT’s self-attention
mechanism provides interpretability by generating attention maps, which can help
clinicians understand the model’s decision-making process.
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3.6 Swin Transformer

The Swin Transformer (Shifted Window Transformer) is a hierarchical vision trans-
former specifically designed for large-scale image analysis. Previous work on the
Vision Transformer (ViT) demonstrated impressive performance by using attention
mechanisms for image classification, but its quadratic complexity limited its use on
large-scale images. The Swin Transformer addresses this limitation by incorporating
a local attention mechanism through the window shift operation, which allows for
better feature extraction both locally and globally, while being more computationally
efficient. Swin Transformer is well-suited for classifying chest diseases from X-ray
images, with the ability to capture multi-scale features and process high-resolution
images efficiently, similar to convolutional neural networks (CNNs). In this study,

the Swin Transformer achieved a training accuracy of 98.66% and a testing accuracy
of 97.2%.

Although Swin Transformer is a new model design, it builds on top of the trans-
former network by incorporating inductive biases that enable efficient training and
near state-of-the-art performance on high-resolution medical image data, such as
X-rays. Unlike ViT, which treats images as flat structures, Swin Transformer pro-
cesses images hierarchically, making it more aligned with CNNs in terms of capturing
multi-scale features. Patch merging layers downsample the feature map at each level
of the hierarchy, increasing the channel dimension recursively along a deep convo-
lutional stage. This allows the model to effectively capture both local and global
features in the image.

3.6.1 Swin Transformer Architecture

The Swin Transformer improves upon the traditional transformer architecture by
making it more scalable and flexible, especially for high-resolution tasks like X-ray
image analysis. Unlike ViT’s flat structure, Swin Transformer processes images at
multiple resolutions to capture multi-scale features. At each stage of the hierarchy,
patch merging layers downsample the feature maps, reducing spatial resolution but
increasing the channel dimension to capture more global information. A key innova-
tion is its window-based multi-head self-attention (W-MSA), where self-attention is
applied within non-overlapping local windows, reducing the computational complex-
ity from quadratic to linear. To enable information flow between windows, shifted
windows are used between layers.

Swin Transformer divides input images into patches (e.g., a 256x256 X-ray image is
divided into 4x4 windows of 16x16 patches) and applies self-attention within these
regions. Patch merging performs pooling-like operations at each stage, reducing spa-
tial dimensions and increasing the number of channels, similar to CNNs. Each set of
windows is processed with standard multi-head self-attention (MHSA), followed by
feedforward layers and normalization, enabling efficient processing of high-resolution
images. The feature maps are then passed to a supervised head, consisting of fully
connected layers and a softmax function, to predict image classes (e.g., healthy,
pneumonia, tuberculosis). Pretraining on large datasets like ImageNet, followed
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Figure 3.10: Accuracy and Loss graph for Swin Transformer

by fine-tuning on the X-ray dataset, allows the model to generalize and adapt to
medical features, such as lung opacity or masses.

In this study, chest X-ray images were resized to 256x256 pixels, and Swin Trans-
former processed them by decomposing them into local windows of patches. Each
patch was processed locally within its window, while window shifts between layers
enabled cross-window dependencies. Data augmentations, such as horizontal flip-
ping, random cropping, and brightness correction, were applied during training to
prevent overfitting. The AdamW optimizer was used to update the model’s param-
eters, starting with a learning rate of le-4 and using a cosine annealing schedule
following a warm-up phase. A batch size of 32 was chosen to balance memory
optimization and training speed. The model was trained for 50 epochs, achieving
convergence with a training accuracy of 98.66%. Checkpoints were saved after each
epoch, with early stopping checks performed every five epochs. Despite its reduced
complexity in the final layers, Swin Transformer’s multi-scale nature consumed sig-
nificant computational resources.
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Figure 3.11: Swin Transformer Architecture

3.6.2 Training Process of Swin Transformer on Chest X-ray
Dataset

In this study, the chest X-ray images were resized to 256 x 256 pixels, and Swin
Transformer decomposed them into local windows of patches, processing each patch
within its window locally while allowing cross-window dependencies through win-
dow shifts between layers. During training, data augmentations such as horizontal
flipping, random cropping, and brightness correction were applied to address overfit-
ting. The model’s parameters were updated using the AdamW optimizer, starting
with a le-4 learning rate using a cosine annealing schedule following a warm-up
phase. A batch size of 32 was chosen to balance memory optimization and training
speed. Swin Transformer was trained for 50 epochs, achieving convergence with
a training accuracy of 98.66%, with checkpoints saved after each epoch and early
stopping checks every five epochs. The complete 50 epochs were necessary to reach
optimal performance, leveraging its hierarchical design and window-based atten-
tion. Despite its reduced complexity in final layers, its multi-scale nature consumed
significant computational resources.

3.6.3 Performance of Swin Transformer on Chest Disease
Classification

Swin Transformer achieved a training accuracy of 98.66%, demonstrating its effec-
tiveness in learning both local and global features from chest X-ray images, making
it highly suitable for medical classification tasks. The testing accuracy of 97.2%
reflects the model’s strong generalization ability. The small gap between training
and testing accuracies indicates that overfitting was avoided. The window-based at-
tention mechanism allowed the model to focus on critical regions of the X-ray, such
as the lungs and heart, while filtering out irrelevant background noise, contributing
to its robust performance on unseen data.

3.6.4 Strengths of Swin Transformer

Swin Transformer’s window-based attention mechanism significantly reduces com-
putational complexity compared to ViT, making it particularly efficient for handling
high-resolution medical images like chest X-rays, where processing detailed informa-
tion is crucial. Its ability to extract multi-scale features allows the model to capture
both local features, such as small lesions, and global features, such as the overall
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Figure 3.12: Workflow of Swin Transformer [22]

lung structure. This is vital for medical imaging tasks where subtle changes in small
regions can indicate disease, but understanding the overall context is equally im-
portant. The shifted window attention mechanism enables the model to capture
cross-window dependencies, allowing it to process both local and global contexts,
which is especially beneficial in medical image analysis where abnormalities may
span across multiple regions of the X-ray. Pretraining on large datasets allows Swin
Transformer to transfer its general knowledge from tasks like image classification to
more specialized tasks, such as chest disease detection. Fine-tuning on the X-ray
dataset helps the model adapt to specific medical features, such as lung opacity or
abnormal tissue structures. Its high testing accuracy reflects the model’s robustness
to variations in X-ray images, including differences in angles, lighting, and patient
demographics. Data augmentation during training further enhanced the model’s
robustness, making it highly reliable for clinical applications.

3.7 Volo (Vision Outlooker) for Chest Disease Clas-
sification

3.7.1 Introduction to Volo

Volo, or Vision Outlooker, is a vision model designed to bridge the gap between
traditional convolutional neural networks (CNNs) and modern transformer-based
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Figure 3.13: Confusion Matrix of Swin Transformer

architectures. It introduces a novel outlook attention mechanism that effectively
captures both local and global features. By combining CNNs’ proficiency in low-
level feature extraction with transformers’ ability to capture global context, Volo
provides a comprehensive approach to image analysis.

In this study, Volo demonstrated impressive performance in chest disease classifi-
cation using X-ray images, achieving a training accuracy of 98.43% and a testing
accuracy of 98.0%. This makes Volo one of the top-performing models, showcasing
its capability to handle the complex challenges of medical image classification with
precision.

3.7.2 Volo Architecture

Volo introduces an innovative architecture that combines convolutional operations
and transformer-like attention mechanisms to address key challenges in vision tasks,
such as capturing long-range dependencies while maintaining computational effi-
ciency.

Outlook Attention Mechanism

e Outlook Attention: Volo’s core innovation is the outlook attention mecha-
nism, which extracts both local and global features from input images. This
mechanism enables the model to focus on critical areas of the image, akin to
traditional attention mechanisms in transformers, but with improved compu-
tational efficiency.

e Spatial aggregation is performed over local patches, which are then combined
into global feature representations. This design allows the model to capture
detailed, fine-grained features, such as small lesions in chest X-rays, while also
comprehending the broader image structure.
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Figure 3.14: Accuracy and Loss graph for VOLO-D1

Patch Embedding

e Similar to ViT, Volo divides the input image into patches, treating each as a
token. These patches are then flattened and linearly embedded into vectors,
which are processed by the outlook attention layers. This approach enables
efficient handling of high-resolution medical images like chest X-rays.

e For example, a 256x256 pixel X-ray image can be divided into 16x16 patches,
with each patch embedded into a 768-dimensional vector.

Multi-stage Processing

e Volo’s architecture is divided into multiple stages, with each stage processing
the input image at different levels of abstraction. In the initial stages, the
model focuses on low-level features like edges and textures, while later stages
capture higher-level semantic information, such as lung structure or disease
indicators.

e Stage 1 processes patches through outlook attention layers, capturing local
details and relationships between neighboring patches.

e In stages 2 and beyond, multi-head self-attention and feedforward layers refine
the feature maps and learn complex patterns, such as lung opacity or abnormal
tissue structures in X-rays.
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Transformer-like Encoder

e In addition to the outlook attention mechanism, Volo retains traditional trans-
former encoder components, including multi-head self-attention and feedfor-
ward layers. These enable the model to capture long-range dependencies be-
tween different regions of the image, essential in medical imaging where ab-
normalities can span multiple areas.

Layer Normalization and Residual Connections: These mechanisms are
employed after each attention and feedforward layer to ensure stable training
and smooth gradient flow.

Classification Head

e After processing through multiple outlook and self-attention layers, the final
output is passed through a classification head consisting of fully connected lay-
ers. A softmax layer produces a probability distribution over possible classes,
such as healthy, pneumonia, or tuberculosis.

In this study, the classification head was fine-tuned to distinguish between
various chest diseases using X-ray images, leveraging both the global context
and local features extracted by previous layers.

Figure 3.15: VOLO-D1 Architecture

3.7.3 Training Process of Volo on Chest X-ray Dataset

Dataset Preparation

e Resizing and Patch Division: Chest X-ray images were resized to 256x256
pixels and divided into 16x16 patches. These patches were then embedded
into high-dimensional vectors for processing by the outlook attention layers.

e Data Augmentation: Techniques such as rotation, brightness adjustments,
and random cropping were applied during training to enhance the model’s
generalization. These augmentations helped improve robustness against real-
world variations in medical imaging data.
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Training Parameters

e Optimizer: The AdamW optimizer was used for parameter updates, pro-
viding a balance between speed and stability, especially in transformer-based
architectures like Volo.

e Learning Rate: A learning rate of le-4 was employed, along with a cosine
annealing schedule to gradually reduce the learning rate during training.

e Batch Size: A batch size of 32 was selected to optimize GPU usage while
preventing memory overload.

Training Epochs

e Number of Epochs: Volo was trained for 50 epochs, achieving a training
accuracy of 98.43% and a testing accuracy of 98.0%. This extensive training
period allowed the model to converge to high accuracy while avoiding overfit-
ting.

e Early Stopping: Early stopping was implemented to halt training when no
improvement in validation accuracy was observed over several epochs.
Training Efficiency

e Volo’s outlook attention mechanism significantly improved training efficiency
by reducing the complexity typically associated with self-attention mecha-
nisms. This allowed the model to achieve high accuracy without the heavy
computational demands of models like ViT.

Figure 3.16: Workflow for VOLO-D1 [30]

33



3.7.4 Performance of Volo on Chest Disease Classification
Training Accuracy

Volo achieved a training accuracy of 98.43%, demonstrating its ability to effectively
learn patterns from the training dataset. The model’s capability to capture both
local features, such as small lesions, and global structures, like lung opacity, con-
tributed to this high accuracy.

Testing Accuracy

Volo achieved a testing accuracy of 98.0%, demonstrating strong generalization to
unseen X-ray images. The small gap between training and testing accuracies sug-
gests the model avoided overfitting, allowing it to accurately predict outcomes on
new images, even those with subtle disease patterns.

Figure 3.17: Confusion Matrix of VOLO-D1

3.7.5 Strengths of Volo
Efficient Attention Mechanism

Volo’s outlook attention mechanism balances attention across local and global re-
gions of the image, allowing the model to capture important features while main-
taining computational efficiency. This makes it suitable for high-resolution X-ray
images without excessive resource consumption.

Multi-scale Feature Extraction

Volo’s multi-stage architecture enables the extraction of multi-scale features, a crit-
ical requirement for medical image analysis. It captures small abnormalities while
understanding the larger structure of the lungs, making it highly effective for chest
disease classification tasks.
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Pretraining and Fine-tuning

Pretraining on large datasets like ImageNet provides Volo with a foundation of
general image features, which are fine-tuned for chest X-ray patterns. This process
enhances the model’s ability to identify disease markers in medical images.

Attention Mechanism for Explainability

Volo’s outlook attention mechanism offers a degree of explainability by highlighting
the regions of the image the model focuses on during prediction. This is valuable in
medical applications where understanding the model’s reasoning can provide addi-
tional insights for clinicians.

3.7.6 Limitations of Volo
Computational Complexity

Although Volo is more efficient than many transformer-based models, it still de-
mands significant computational resources compared to simpler CNN architectures.
The inclusion of both outlook attention and transformer-like layers increases overall
complexity, making deployment in resource-limited environments challenging.

Data Dependency

Volo, like most transformer-based models, requires access to a large dataset to reach
optimal performance. While fine-tuning on chest X-ray data enhanced its accuracy,
the model’s full potential may only be realized with even larger datasets.

Window Size and Attention Sensitivity

Volo’s performance can be highly sensitive to the size of the image patches and
attention mechanism configuration. Tuning these hyperparameters requires careful
experimentation, and incorrect settings could lead to suboptimal performance.

3.8 FocalNet (Focal Modulated Network) for Chest
Disease Classification

3.8.1 Introduction to FocalNet

Focal Modulated Network (FocalNet) is a transformer-based architecture designed
to improve feature extraction at different scales without compromising computa-
tional efficiency. FocalNet introduces a lightweight focal modulation mechanism
that enables the model to focus on both local and global features simultaneously.
This is especially beneficial for tasks like chest disease classification using X-ray
images, where fine-grained details and global context are equally important for ac-
curate diagnosis. In this study, FocalNet achieved 99.43% training accuracy and
97.60% testing accuracy, making it one of the top-performing models with strong
learning and generalization capabilities.
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Figure 3.18: Accuracy and Loss graph for FocalNet

3.8.2 FocalNet Architecture

FocalNet’s architecture builds on transformer-like models while introducing focal
modulation layers that allow for efficient multi-scale feature extraction. This design
enables the model to capture important details in medical images while keeping
computational costs manageable.

Focal Modulation Mechanism

e Focal Modulation: The key innovation in FocalNet is its focal modulation
mechanism, which models both local and global representations in a depth-wise
manner. This operates similarly to transformers but is more computationally
efficient.

e Local and Global Focus: In early layers, FocalNet extracts local textures
(e.g., edges) from X-ray images, which are essential for detecting small lesions
or nodules. As the network deepens, FocalNet captures global information
(e.g., overall lung structure or opacity), providing a broader context for diag-
nosis.
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e Multi-scale Representation: Focal modulation layers operate across mul-
tiple scales, allowing the model to capture fine-grained details and global pat-
terns simultaneously.

Patch-based Input

e Like ViT and Swin Transformer, FocalNet divides the input image into patches,
treating each patch as a token that passes through focal modulation layers.
This approach is efficient for high-resolution images like chest X-rays.

e For example, a 256x256 pixel X-ray image can be divided into 16x16 patches,
each embedded into high-dimensional vectors, which are processed by focal
modulation layers.

Hierarchical Design

FocalNet employs a hierarchical design similar to CNNs, progressively reducing the
spatial resolution of feature maps while increasing the number of channels. This
design is crucial for capturing multi-scale features, which are important for accurate
chest disease classification.

e Stage 1 (Local Feature Extraction): FocalNet starts by focusing on ex-
tracting local features through convolutional layers. These features are passed
to focal modulation layers to aggregate local information.

e Stage 2 (Global Feature Integration): In later stages, the model inte-
grates global information from different regions of the image, capturing high-
level features like lung structure or diffuse opacity in chest X-rays.

Transformer-like Encoder

e FocalNet retains key elements of transformers, such as multi-head self-attention
(in a modified form) and feedforward layers. These components help capture
long-range dependencies between different parts of the image, which is essen-
tial for tasks like chest disease classification.

Classification Head

e The final output from the focal modulation layers is passed through a classi-
fication head, consisting of fully connected layers followed by a softmax func-
tion. This outputs probabilities for each class (e.g., healthy, pneumonia, tu-
berculosis). The classification head is fine-tuned specifically for chest disease
diagnosis.

Pretraining and Fine-tuning

e FocalNet benefits from pretraining on large image datasets like ImageNet to
learn general visual features. It is then fine-tuned on the chest X-ray dataset
to adapt to specific medical patterns, such as abnormal lung textures, masses,
or pleural effusion.
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Figure 3.19: FocalNet Architecture

3.8.3 Training Process of FocalNet on Chest X-ray Dataset
Dataset Preparation

e Image Resizing: Chest X-ray images were resized to 256x256 pixels and
divided into patches that served as input to the focal modulation layers.

e Data Augmentation: Techniques like random rotations, brightness adjust-
ments, and flipping were applied during training to improve the model’s gen-
eralization ability, which is critical for medical imaging tasks where variations
in patient positioning or image quality can affect performance.

Training Parameters

e Optimizer: AdamW was used for stable and efficient training, well-suited
for transformer-based models due to its ability to handle sparse gradients and
weight decay effectively.

e Learning Rate: The learning rate was set to le-4, with a cosine annealing
schedule to gradually reduce the learning rate, ensuring smooth convergence
and avoiding overshooting.

e Batch Size: A batch size of 32 was used to balance memory efficiency with
training speed.
Training Epochs

e FocalNet was trained for 50 epochs, ensuring the model converged and reached
peak performance. Validation loss was monitored, and early stopping was
implemented to avoid overfitting.
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Training Efficiency

e Despite its complex architecture, FocalNet’s focal modulation mechanism made
it more efficient than traditional transformers by avoiding the quadratic com-
plexity of global self-attention, allowing it to achieve strong performance with-
out excessive computational demands.

Figure 3.20: Workflow for FocalNet [34]

3.8.4 Performance of FocalNet on Chest Disease Classifica-
tion
Training Accuracy

FocalNet achieved a remarkable 99.43% training accuracy, indicating that the model
effectively learned the patterns in the chest X-ray dataset. This high accuracy
demonstrates FocalNet’s ability to capture both local and global features, such as
small lesions, lung opacity, and tissue structures.

Testing Accuracy

FocalNet achieved a 97.60% testing accuracy, reflecting strong generalization. The
minimal gap between training and testing accuracy suggests that FocalNet did not
overfit and can accurately predict outcomes on unseen X-ray images. This is crucial
for medical imaging tasks where reliable generalization is essential for real-world
deployment.

3.8.5 Strengths of FocalNet
Efficient Multi-scale Feature Extraction

The focal modulation mechanism in FocalNet allows for efficient multi-scale feature
extraction, enabling the model to focus on fine-grained details (e.g., small lesions)
and broader patterns (e.g., lung opacity) without the computational costs of tradi-
tional self-attention mechanisms.

39



Figure 3.21: Confusion Matrix of FocalNet

Strong Generalization

FocalNet’s high testing accuracy demonstrates its ability to generalize well to unseen
data, making it ideal for medical imaging tasks where generalization across different
patient populations and imaging conditions is critical for clinical use.

Pretraining and Fine-tuning

Like other transformer-based models, FocalNet benefits from pretraining on large
datasets to learn general image features. Fine-tuning on the chest X-ray dataset
helps the model specialize in patterns relevant to chest disease classification, boosting
its performance on medical imagery.

Efficient Use of Attention

FocalNet’s attention mechanism is more efficient than traditional self-attention,
avoiding the quadratic complexity of transformers. This allows the model to han-
dle high-resolution images like chest X-rays without the computational demands of
models like ViT or Swin Transformer.

Robustness to Data Variations

FocalNet’s performance on the chest X-ray dataset shows its robustness to data vari-
ations such as different image resolutions, patient positioning, and imaging condi-
tions. Data augmentation techniques during training improved the model’s resilience
to these variations.
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3.8.6 Limitations of FocalNet
Complexity

While FocalNet is more efficient than traditional transformers, it remains more
complex than CNN-based models. The focal modulation layers, though efficient,
add computational overhead compared to simpler architectures like custom CNNs,
limiting FocalNet’s use in settings with limited computational resources.

Data Dependency

Like most transformer-based models, FocalNet requires large amounts of data to
perform optimally. While fine-tuning mitigated this limitation, the model’s full
potential can only be realized with access to large datasets, which can be a challenge
in medical environments with limited data.

3.9 Vitamin (CNN-based Architecture with At-
tention Mechanisms) for Chest Disease Clas-
sification

3.9.1 Introduction to Vitamin

Vitamin is a modified version of CNN with attention mechanisms, replacing the
block convolution (blockev) module with a Vecoder attention-based backbone to
focus on important parts of an image. While recent Vision Transformers use at-
tention mechanisms exclusively, Vitamin combines CNN for local feature extraction
with attention layers to capture more meaningful relationships within the image.
This model was designed to leverage both approaches for tasks like chest disease
classification using X-ray images. However, in this study, Vitamin underperformed
compared to other models, achieving 86.20% training accuracy and 82.73% testing
accuracy.

3.9.2 Vitamin Architecture

The network architecture is similar to traditional CNN-based approaches but in-
cludes additional layers to incorporate attention mechanisms, allowing the model
to focus on regions likely to indicate abnormalities while ensuring computational
efficiency from CNNs.

Convolutional Layers

e Local Feature Extraction: Like standard CNNs, Vitamin begins by extract-
ing local features through convolutional layers. These layers detect low-level
features such as edges, textures, and shapes, crucial for identifying abnormal-
ities in X-ray images like lesions, nodules, or lung opacity.

e ReLU Activation: After each convolution, a ReLU (Rectified Linear Unit)
activation function is applied to introduce non-linearity, enabling the model
to learn more complex patterns in the data.
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Figure 3.22: Accuracy and Loss graph for ViTamin

Attention Mechanisms

e Vitamin employs attention layers between convolutional layers, allowing the
model to focus on regions of the X-ray image likely to indicate disease, similar
to how people inspect X-rays—focusing on suspicious areas while ignoring
irrelevant ones.

e Self-attention: While transformers use self-attention, Vitamin simplifies this
mechanism. FEach pixel in the feature map evaluates neighboring pixels to
determine which are relevant, enabling the model to focus on regions exhibiting
disease-like patterns.

e Channel Attention: Vitamin also integrates channel attention, which pri-
oritizes the most informative feature channels, ensuring the model does not
waste capacity on irrelevant or redundant features.
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Pooling Layers

e Max Pooling: After each convolutional layer, max pooling reduces the size
of feature maps, downsampling the image while retaining important features.
Max pooling helps the model become translation invariant, enabling it to rec-
ognize features (like a tumor) regardless of location in the image.

Fully Connected Layers

After the convolution and attention layers, the features are flattened into a vector
and passed through fully connected (dense) layers to make a prediction. Dropout
layers are used between fully connected layers to prevent overfitting. Dropout ran-
domly deactivates a portion of neurons during training, forcing the model to learn
more robust, generalized features.

Classification Head

The final layer of Vitamin is a softmax layer that outputs probabilities for each
class. In this study, the classes likely corresponded to chest diseases like pneumonia,
tuberculosis, and healthy conditions, with the model predicting the condition based
on the X-ray.

Figure 3.23: ViTamin Architecture

3.9.3 Training Process of Vitamin on Chest X-ray Dataset
Dataset Preparation

¢ Image Resizing: Chest X-rays were resized to 256x256 pixels to standardize
inputs across all models, including Vitamin, and to fit within memory con-
straints during training.

e Data Augmentation: Various augmentation techniques, such as rotation,
horizontal flipping, and brightness adjustments, were applied to make the
model more robust to real-world variations in medical images.
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Training Parameters

e Optimizer: The Adam optimizer, well-suited for deep learning models, was
used, helping Vitamin converge faster compared to simple stochastic gradient
descent (SGD).

e Learning Rate: A learning rate of le-4 was chosen for balancing training
speed and stability, with a scheduler to reduce the learning rate if validation
accuracy plateaued.

e Batch Size: A batch size of 32 was used, optimizing GPU resources without
overwhelming memory limits.

Training Epochs

Vitamin was trained for 50 epochs, but it failed to achieve the high performance
seen in models like ViT or Swin Transformer.

Figure 3.24: Workflow for ViTamin

Challenges in Training

Despite extensive training, Vitamin struggled to reach the desired accuracy levels.
The model had difficulty distinguishing between disease types, likely contributing
to its lower accuracy compared to other models. This could be due to the attention
mechanism not being strong enough to compensate for the loss of global information
when using convolutional layers.

3.9.4 Performance of Vitamin on Chest Disease Classifica-
tion
Training Accuracy

Vitamin achieved 86.20% training accuracy after 50 epochs. While this is acceptable
for many tasks, it is lower compared to other models tested in this study. This lower
accuracy may stem from Vitamin’s limited ability to capture both local and global
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features in X-ray images, which is critical for distinguishing between different chest
diseases.

Testing Accuracy

The model’s testing accuracy was 82.73%, reflecting its generalization ability. How-
ever, this result indicates that the model struggled to generalize to unseen X-ray
images, likely due to overfitting and a failure to learn the broader patterns necessary
to classify chest diseases correctly across diverse images.

Figure 3.25: Confusion Matrix of ViTamin

3.9.5 Strengths of Vitamin
Integration of Attention Mechanisms

Vitamin incorporated attention mechanisms within a CNN framework for the first
time, allowing it to localize critical regions in X-ray images. This helped the model
focus on relevant areas, such as potential disease zones, while filtering out irrelevant
sections like the background.

Efficient Local Feature Extraction

The CNN-based architecture enabled Vitamin to quickly capture essential local fea-
tures, important for detecting small abnormalities in X-rays. However, this local
focus was insufficient for capturing global features, limiting the model’s overall per-
formance.

Computational Efficiency

Vitamin required significantly less computational power and memory compared to
transformer models like ViT and Swin Transformer. This made it more suitable
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for environments with limited resources, such as smaller clinics or hospitals without

high-end GPUs.

Flexibility and Simplicity

The simplicity of Vitamin’s CNN architecture made it easy to train and fine-tune.
Its flexible design allowed for experimentation with various attention mechanisms
and regularization techniques, making it adaptable for a wide range of image clas-
sification tasks.

3.10 Result Analysis

The Custom CNN model exhibited performance similar to transformer-based mod-
els, despite its simpler architecture. Its results were comparable to models like ViT,
Swin Transformer, and FocalNet, showing that the CNN architecture was effective
at distinguishing between chest diseases in this dataset. The model’s strong perfor-
mance with fewer epochs also suggested that the Custom CNN was computationally
efficient.

Model COVID Precision | COVID Recall | COVID F1-Score | NORMAL Precision | NORMAL Recall | NORMAL F1-Score | PNEUMONIA Precision | PNEUMONIA Recall | PNEUMONIA F1-Score
ViT 0.98 0.98 0.98 0.95 0.95 0.95 0.96 0.97 0.96
Swin 0.99 0.98 0.99 0.95 0.96 0.96 0.97 0.97 0.97
Vitamin 0.93 0.93 0.93 0.78 0.90 0.84 0.88 0.76 081
Volo 0.99 0.99 0.99 0.99 0.96 0.97 0.97 0.99 0.98
FocalNet 0.99 0.99 0.99 0.94 0.99 0.96 0.99 0.96 0.97
CNN 0.97 0.97 0.97 0.95 0.95 0.95 0.96 0.97 0.96

Table 3.6: Performance comparison of different models on chest disease classification

Figure 3.26: Model Comparison
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3.10.1 Summary Insights
Top Performers

Volo and FocalNet achieved near-optimal scores in precision, recall, and F1-score,
making them highly effective for classifying chest diseases. These models excelled
by capturing both local features (e.g., small lesions) and global features (e.g., overall
lung structure).

CNN vs Transformers

The Custom CNN performed well compared to transformer-based models, even
though it required fewer epochs. However, pre-trained transformers like Swin Trans-
former and ViT excelled when fine-tuned on larger datasets, especially in recognizing
more complex image patterns and fine-tuning tasks.

Lower Performer

Vitamin struggled, particularly in classifying NORMAL and PNEUMONIA cases.
Its lower precision and recall suggest that it was less effective in identifying subtle
features in the X-rays, which are critical for differentiating between these diseases.

Pretraining

Models such as ViT, Swin Transformer, and Volo benefited significantly from pre-
training on large image datasets. This gave them a strong foundation for transfer
learning on the chest X-ray dataset. Fine-tuning allowed these models to adapt to
the specific patterns of chest diseases, improving their classification accuracy.

3.10.2 Insight Conclusion

Transformer-based models like Volo, Swin Transformer, and FocalNet demonstrated
exceptional performance in classifying chest diseases due to their advanced atten-
tion mechanisms and multi-scale feature extraction capabilities. The Custom CNN
also performed very well, proving that CNNs remain competitive for medical image
classification tasks. On the other hand, Vitamin underperformed, highlighting the
importance of model choice when addressing medical imaging challenges.
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Chapter 4

Conclusion

Detecting lung diseases at the right time can save someone’s life. In Low and
Middle-Income Countries, it is extremely difficult to detect these pulmonary diseases
due to the socio-economic condition of those countries and the limited number of
healthcare professionals. To solve this problem and to achieve satisfactory efficiency,
our automated lung disease detection can play a vital role. Our proposed method
uses a customized CNN model to differentiate between pneumonia, COVID-19, and
normal CXRs. With the help of our model, we can create an effective and error-
free network. Disease detection will become effortless and less time-consuming. This
model can be implemented in all kind of pulmonary disease detection along with their
variants as well stages. For this model to detect more and more pulmonary diseases,
the model just have to be trained on the diseases” CXR images. Therefore, it would
be possible for this model to detect any disease in near future. Lastly, bypassing our
data through our customized CNN model we think we have developed an effective
model that is capable of detecting different lung diseases with the highest accuracy
and makes health care better for developing countries so that they can easily detect
diseases even without the help of health professionals and prevent any untimely

death.
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