
TRI-FED-RKD: Integrating Forward-Reverse Distillation
with SNN and CNN within Federated Learning using Tri
Layer Hierarchical Aggregation based Architecture.

by

Md. Mohiuzzaman
20301361

Ahmad Abrar Abedin
20201080

Shadab Afnan Rahman
21101076

Shafaq Arefin Chowdhury
21101064

Shahadat Ahmed
20301481

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
October 2024

© 2024. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Md. Mohiuzzaman

20301361

Ahmed Abrar Abedin

20201080

Shadab Afnan Rahman

21101076

Shafaq Arefin Chowdhury

21101064

Shahadat Ahmed

20301481

i

Approval

The thesis/project titled “TRI-FED-RKD: Integrating Forward-Reverse Distillation
with SNN and CNN within Federated Learning using Tri Layer Hierarchical Aggre-
gation based Architecture.” submitted by

1. Md. Mohiuzzaman (20301361)

2. Ahmad Abrar Abedin (20201080)

3. Shadab Afnan Rahman (21101076)

4. Shafaq Arefin Chowdhury (21101064)

5. Shahadat Ahmed (20301481)

Of Summer, 2024 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on October 17, 2024.

Examining Committee:

Supervisor:
(Member)

Dr. Md. Golam Rabiul Alam

Professor
Department of Computer Science and Engineering

Brac University

Co Supervisor:
(Member)

Dr. Muhammad Iqbal Hossain

Asssociate Professor
Department of Computer Science and Engineering

Brac University

ii

Thesis Coordinator:
(Member)

Dr. Md. Golam Rabiul Alam

Professor
Department of Computer Science and Engineering

Brac University

Head of Department:
(Chair)

Dr. Sadia Hamid Kazi

Chairperson and Associate Professor
Department of Computer Science and Engineering

Brac University

iii

Abstract

Federated Learning (FL) is a decentralized machine learning paradigm that enables
training a global model across numerous edge devices while preserving data privacy.
However, FL faces significant challenges, particularly in environments with hetero-
geneous hardware capabilities, communication burdens, and constrained resources.
In this paper, we introduce a novel framework, TRI-FED-RKD, which incorpo-
rates forward and reverse knowledge distillation (RKD) along with FedAvg using
a hybrid architecture of convolutional neural networks (CNNs) and spiking neural
networks (SNNs). Our approach employs a tri-layer hierarchical aggregation-based
architecture consisting of client devices, intermediate (middle) servers, and a global
server. We compared two federated architectures: standard federated learning and
federated learning with forward and reverse distillation in a hierarchical setting
(TRI-FED-RKD). The same model is used across several datasets to evaluate the
architectures, not the model performance. Depending on the use case, the network
administrator can pick their own teacher and student models. The teacher model
can also be different for each client if needed. This means that our architecture can
deal with model heterogeneity when it comes to teacher models. We evaluate TRI-
FED-RKD on neuromorphic datasets such as DVS Gesture and NMNIST. We also
tested it using non-neuromorphic datasets such as MNIST, EMNIST, and CIFAR10.
Furthermore, we have shown that using forward and reverse knowledge distillation
in federated learning can lead to much better performance than federated learning
without knowledge distillation for non-neuromorphic datasets.

Keywords: Federated learning, Tri-Layer Architecture, Knowledge Distillation,
Spiking Neural Networks (SNNs), Neuromorphic datasets, Dynamic Vision Sen-
sor(DVS).

iv

Acknowledgement

• Firstly, all praise to the Great Allah for whom our thesis have been completed
without any major interruption.

• Secondly, to our supervisor Dr. Md. Golam Rabiul Alam sir for his kind sup-
port and advice in our work. He helped us whenever we needed help.

• And finally to our parents without their throughout support it may not be
possible. With their kind support and prayer we are now on the verge of our
graduation.

v

Table of Contents

Declaration i

Approval ii

Abstract iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables 1

1 Introduction 2
1.1 Research Background . 2
1.2 Research Scope . 3
1.3 Research Objectives . 3
1.4 Research Contributions . 5
1.5 Research Outline . 5

2 Literature review 6
2.1 Federated Learning . 6
2.2 Knowledge Distillation . 6
2.3 CNNs in Federated Averaging for Image Classification 7
2.4 Feature Extraction in CNNs for Federated Learning and ResNet-18 . 7
2.5 Spiking Neural Networks (SNNs) . 8
2.6 Federated Learning with spiking neural networks 9

3 Methodology 10
3.1 Work Flow . 10
3.2 Dataset Description . 11

3.2.1 EMNIST . 11
3.2.2 CIFAR10 . 11
3.2.3 MNIST . 11
3.2.4 DVS128 Gesture . 11
3.2.5 NMNIST . 11

3.3 Dataset Pre-Processing . 12
3.4 Proposed Federated Architectures . 15
3.5 Models we used in our experiment . 18

vi

4 Result and Analysis 22
4.1 Non Neuromorphic Datasets . 22
4.2 Neuromorphic Datasets . 26
4.3 Result Analysis Based on FLOPs, Parameters, and Size 28
4.4 Server Aggregation Time . 29

5 31
5.1 Conclusion . 31
5.2 Future work . 31

Bibliography 33

vii

List of Figures

3.1.1 Workflow . 10
3.3.6 Framing samples for NMNIST digit ”0” 14
3.4.1 Proposed TRI Layer Federated Learning Architecture with Forward-

Reverse KD . 15
3.4.2 BI Layer Federated Learning Architecture with Forward-Reverse KD 16
3.4.3 Knowledge Distillation Setup . 17
3.5.1 Teacher Model for Non-Neuromorphic dataset using CNN and CNN+SNN 18
3.5.2 Student Model for Non-Neuromorphic dataset using CNN and CNN+SNN 18
3.5.3 Neuromorphic Dataset Student Model using CNN+SNN 19
3.5.4 Neuromorphic Dataset Student Model using CNN 19
3.5.5 Neuromorphic Dataset Teacher Model using CNN 20
3.5.6 Neuromorphic Dataset Teacher Model using CNN+SNN 20

4.1.2 Accuracy comparisons of MNIST . 23
4.1.3 Loss comparisons of MNIST . 23
4.1.4 Accuracy comparisons of EMNIST 24
4.1.5 Loss comparisons of EMNIST . 24
4.1.6 Accuracy comparisons of CIFAR 10 25
4.1.7 Loss comparisons of CIFAR10 . 25
4.2.2 Accuracy comparisons of DVS Gesture 26
4.2.3 Loss comparisons of DVS Gesture . 27
4.2.4 Accuracy comparisons of NMNIST 27
4.2.5 Loss comparisons of NMNIST . 28
4.4.1 BI layer vs TRI layer Aggregation time in CNN 29
4.4.2 BI layer vs TRI layer Aggregation time in CNN+SNN 30

viii

List of Tables

3.3.1 Data Pre-Processing For Non-Neuromorphic Dataset 12
3.3.2 Hyperparameters for Non-Neuromorphic Dataset 13
3.3.3 Data Pre-Processing for Neuromorphic Dataset 13
3.3.4 Hyperparameters for Neuromorphic Dataset 14
3.3.5 Dataset Distribution . 14

4.1.1 Performance Comparison across Non Neuromorphic Datasets with
KD and without KD . 22

4.2.1 Performance Comparison across DVS Gesture and N-MNIST Datasets
with KD and without KD . 26

4.3.1 Comparison between Teacher and Student models in terms of FLOPs,
Parameters, and Size across different datasets. 28

1

Chapter 1

Introduction

1.1 Research Background

In today’s digital world, along with technologically significant advancements, mobile
devices made their way to almost everyone. Because of edge devices, mostly in the
form of mobile phones, wearables, and internet of things (IoT) devices, trillions of
data are needed to be managed, enabling them to support huge varieties of appli-
cations. The challenge, however, is rooted in the fact that edge devices are also
decentralized, and so is the data, meaning that managing data from each device
poses significant challenges [19].

The conventional machine learning approach is highly centralized, which means that
the decentralized datasets that are the case in terms of modern devices are sent to
a central server for processing and model training. Because of this, there are a mul-
titude of issues that failed to address privacy requirements, which are data leakage,
as the data from a decentralized device is getting out of that particular device into
a common sphere, which is the centralized server, leading to the need for privacy-
enhancing machine learning methodologies [19].

To tackle these challenges, a decentralized machine-learning approach known as Fed-
erated Learning (FL) emerged as a promising solution. Federated learning enables
the training of machine learning models locally, without transmitting raw client data
to the global central server. This approach maintains privacy by sending only model
updates for global aggregation ensuring sensitive data remains on the local devices.
As a result, it not only mitigates privacy concerns by keeping sensitive data on local
devices but also enhances data security by minimizing the risk of data violations that
are common in centralized systems. The decentralized nature of Federated Learning
aligns well with the distributed topology of edge computing. It also enables devices
to collaboratively learn a shared model that benefits from diverse data sources while
maintaining user privacy.

However, despite its advantages, Federated Learning faces significant issues in real-
world deployment, particularly in terms of communication, computational efficiency,

2

and device heterogeneity. Communication in FL is very much resource-intensive.
Frequent rounds of communication between client devices and the global server are
required to exchange desired model updates. However, with the growing number
of participating devices, aggregating model updates at a central server becomes a
resource-intensive task that results in communication delays and high energy con-
sumption, especially for devices with limited computational and battery resources
such as IoT devices and embedded systems. Moreover, devices in FL environments
are heterogeneous in processing power, memory power, and energy capacity.

In view of these challenges, the combination of Spiking Neural Networks (SNNs)
and traditional Convolutional Neural Networks (CNNs) can be the solution. SNNs
which are based on the human brain methodology of information processing are de-
signed to be more energy efficient than typical Artificial Neural Networks (ANNs).
Due to the fact that SNN relies on discrete spikes rather than continuous activation,
SNNs only fire spike from the neuron when it crosses a certain threshold (Grunig
et al 2014), leading to very low energy consumption and this gives huge benefits for
our resource-constrained devices.

In our research, we introduce a federated learning framework called the TRI-FED-
RKD. This framework integrates forward reverse knowledge distillation (FRKD)
architecture within a tri-layer hierarchical aggregation system. This ensures model
scalability making it suitable for diverse real-world applications.

1.2 Research Scope

As far as we have studied, the prior works on the classification of dynamic vision
sensors (DVS) datasets using federated learning with spiking neural networks and
knowledge distillation combined are rare. In [20] they successfully incorporated fed-
erated learning with SNN but did not perform classification tasks on DVS datasets.
In [23] the SNN alongside knowledge distillation was incorporated too, but here we
saw no DVS datasets being used. Therefore, dynamic vision datasets still need to
be worked on using CNN+SNN hybridized federated learning using forward and
reverse knowledge distillation in those datasets and alongside that, we also tried to
better the accuracies in MNIST, EMNIST, and CIFAR 10 datasets following our
algorithm.

1.3 Research Objectives

The emergence of federated learning has posed significant advantages in the sphere
of decentralized machine learning, but with rewards came challenges too. Therefore,
we tried to address the challenges of federated learning by experimenting with state-
of-the-art techniques like knowledge distillation and also neuromorphic computing
in order to tackle some of the crucial challenges.

3

Our research compares two federated architectures: federated learning and federated
learning using forward and reverse distillation in a hierarchical setting. The focus
here is not on the models themselves, as we have used the same model across several
datasets. The reason for this consistency is to evaluate the federated learning archi-
tecture based on their own merits rather than the performance of hyperparameter-
tuned models. The architecture allows for flexible model selection, meaning that
depending on the use case, the network administrator can choose their own models
for the roles of teacher and/or student.

One of the objectives is to reduce the communication overhead in the global server,
due to that we tried to introduce a hierarchical architecture in federated learning
by introducing middlemen in the form of middle servers between the global server
and the clients. The middle servers handle clusters of clients among them equally
which reduces the burden of aggregating large batches of weights in a single server
helping in reducing the communication burden.

Moreover, we tried to implement forward and reverse knowledge distillation among
the client devices, as knowledge distillation ensures better smaller models due to
distillation of knowledge from bigger models[5]. The edge devices are provided with
a larger complex teacher model and a smaller simpler student model. Here the in-
tegration of the student model in low-powered devices is to implement an efficient
model with the teacher model being the mentor to the student model, as it trains
much more accurately and converges fast due to having significantly higher param-
eters than the student model. After the teacher model is done training, it transfers
its knowledge to the student model, which is not capable of handling complex data
before learning from its mentor, the teacher model, but after learning the parame-
ters, it becomes capable of handling challenging datasets. The updated parameters
in the student model are then sent to the global servers for aggregation. However,
in most cases, the student model is the one that is being used for predictions in
the client, but when the need arises or during training complex datasets, the client
can switch to the teacher model for training and send the knowledge to the student
models. We implemented reverse knowledge distillation here as well. The student
model is the one running mostly and is regularly updated with the global model
updates. Hence, it transfers the knowledge to the teacher using reverse distillation
so that both models are trained for maximizing accurate predictions.

In addition to the integrations above, we have tested CNN-SNN hybrid models in
our architecture. The key benefits of CNN-SNN hybridization are that CNNs, as we
know are excellent for extracting features from the dataset aside from being good
at extracting features, CNNs are energy-intensive neural networks; therefore we are
using convolution and pooling layers for the feature extraction part but for the fully-
connected layers we will use SNNs. This gives us the benefit of handling temporal
data alongside static data as the CNNs greatly process spatial features while the
SNNs, due to their event-driven architecture [4] process temporal data effectively.
This enhances learning in edge computing as the CNNs handle the heavy-lifting

4

feature extraction while the SNNs handle decision-making tasks in edge computing.

1.4 Research Contributions

• We used neuromorphic datasets like DVS datasets in Federated Learning Ar-
chitecture with forward and reverse knowledge distillation

• We improved the student model accuracies by incorporating forward distilla-
tion.

• We are updating the teacher model parameters by applying reverse distillation
after the global updates.

• We have observed a reduction in server aggregation time by incorporating tri-
layer concept into the FL architecture.

1.5 Research Outline

The rest of the paper is divided into a literature review in Chapter 2, proposed
methodology in Chapter 3, results and analysis in Chapter 4, and conclusions and
future work in Chapter 5, respectively.

5

Chapter 2

Literature review

2.1 Federated Learning

Federated Learning (FL) has emerged as a robust approach to decentralized machine
learning where multiple clients collaborate to train a shared global model without
sharing their raw data [11]. This technique is very helpful in addressing concerns
related to privacy, as data from local devices is not being shared with the global
model because a local model is being trained on the local device. However, there are
some challenges in FL. In federated learning, the need to share the models frequently
between the clients and the servers poses communication bottlenecks [14].

2.2 Knowledge Distillation

Knowledge distillation (KD) is a robust model compression technique where the
smaller model, also called the student model, tries to mimic a larger model, also
known as the teacher model [5]. The motive behind this was to reduce the com-
plexity of deep neural networks without sacrificing their performance. KD works by
transferring the soft predictions of the teacher model, which often contains valuable
information for the student model, allowing the student to achieve higher efficiency
with fewer parameters.

In the context of federated learning, KD has been introduced to tackle some major
challenges, which are heterogeneity in local models and inefficiency in communica-
tion. Many studies have demonstrated that KD can be used to transfer knowledge
between the clients and the server in a more compressed form, reducing commu-
nication costs [24]. Moreover, KD can also be used to overcome problems in FL
by ensuring that each client model distills and shares meaningful global knowledge
without the need to converge to a single model structure [22]. The combination of
FedAvg and knowledge distillation has been shown to yield superior results in vari-
ous datasets. For instance, in a paper, they proposed a federated learning approach
that employs knowledge distillation, achieving state-of-the-art results on both FEM-
NIST and CIFAR10 datasets [15]. Despite the success of KD in conventional neural
networks, the application of KD in the field of spiking neural networks is very much
unexplored. This allows an opportunity to explore and use KD for federated learning
environments where SNNs are employed.

6

2.3 CNNs in Federated Averaging for Image Clas-

sification

Applying CNNs to FedAvg has shown promising results in various image classifi-
cation tasks across datasets like CIFAR10, EMNIST, and MNIST. This serves as
a benchmark for evaluating CNN architectures in federated learning settings [3].
In a study, it was demonstrated that FedAvg could achieve competitive results on
CIFAR10, but it faced challenges related to communication efficiency [13], 2018.
To address these challenges, various strategies have been proposed, including the
development of more efficient communication protocols and adaptive aggregation
techniques. The EMNIST dataset, an extension of the MNIST dataset that in-
cludes handwritten letters, adds complexity to the classification task due to the
increased variety in the data. Research highlights the importance of optimizing
federated learning for diverse datasets like EMNIST, with a focus on improving ac-
curacy and reducing communication overhead [12]. When the FedAvg approach is
applied to CNNs, it continues to demonstrate its effectiveness in federated learning,
particularly in achieving a balance between accuracy and resource efficiency.

2.4 Feature Extraction in CNNs for Federated

Learning and ResNet-18

Feature extraction is a crucial aspect of CNNs that allows for effective representa-
tion learning from raw data. In a paper, they investigate the role of CNN-based
feature extraction in federated learning, focusing on ResNet-18 to enhance classifi-
cation accuracy. The authors employ a method where features are extracted locally
on the client side and then aggregated at the server to construct a global model [26].
By leveraging the depth and residual connections of ResNet-18, they demonstrate
its ability to capture detailed, hierarchical features, which leads to improved model
performance.

The paper also reports that ResNet-18 contributes significantly to better classifica-
tion accuracy on datasets such as CIFAR10 and EMNIST. This improvement stems
from its architecture, which enables more effective feature extraction, enhancing
the model’s prediction capabilities. Moreover, [26] address the challenge of commu-
nication overhead by aggregating feature representations rather than full models,
thereby reducing the communication burden on the central server, a key consider-
ation in federated learning systems. Their approach maintains high accuracy while
minimising communication costs, demonstrating an efficient balance between per-
formance and resource use. However, the overhead remained relatively high due to
the bi-layer architecture employed in their method [26].

7

2.5 Spiking Neural Networks (SNNs)

Spiking neural networks (SNNs) represent a third-generation neural network model
inspired by biological neurons that communicate via discrete spikes and action po-
tentials [1]. Spiking neural network is a network architecture where various encoding
methods, rate coding and temporal coding, are popularly used in inputting infor-
mation in the form of spike per time period instead of continuous values used in
artificial neural networks. For instance, let us say there is an input image. The
pixels correspond to a value in an artificial neural network architecture. However,
in the spike neural network architecture, things are a bit different. The pixel value is
converted to spikes per time stamps [4]. The pixel value is proportional to the spike
rate and the higher the value of the pixel the higher the number of spikes within the
time stamps for rate coding. This is a motivation from the original neural functions
where physiological neurons tend to fire more often to significant or stronger stimuli
[17].

In terms of neural functionality the leaky integrate and fire neuron models are used
more often. To be more precise, as an activation function, we use ‘membrane po-
tential’ where we usually use RELU in the artificial neural network. This is also
motivated by the fact that when a neurotransmitter diffuses into a postsynaptic neu-
ron, it affects the membrane potential of the neuron by increasing the membrane
potential and in absence of new inputs, the membrane potential leaks away [17]. As
the values are converted into spikes, the presence of the spike at a certain time step
causes the membrane function to integrate at the time step and subsequently if there
is an absence the membrane potential disintegrates or leaks. There is a user-defined
threshold Vthresh, and when the membrane function crosses the threshold there is a
spike in the output of the neuron [4]. When one spike is generated after crossing the
threshold, the membrane potential returns to a refractory period. SNNs are very
useful when it comes to resource-constrained environments such as edge devices and
they are well suited for real-time applications as SNNs can leverage temporal infor-
mation unlike conventional artificial neural networks that process inputs statically
[18].

SNNs have several advantages over conventional artificial neural networks, which
include reduced power consumption, energy efficiency, and the ability to process
spatiotemporal data. These characteristics make them a very good candidate for
neuromorphic computing and lower-powered edge devices. However, as the neuron
spiking function in SNNs is not continuous, backpropagation is challenging in SNNs
due to their non-differentiable nature [16], but recent advancements like surrogate
gradient descent have enabled gradient-based learning, making them much more
qualified for use in FL [21]. In terms of federated learning, the use of SNNs is quite
rare, but due to edge devices being key components in FL, the incorporation of SNN
can reap serious benefits in terms of efficiency and real-time processing. However,
the integration of SNNs into federated learning frameworks requires solutions for
both training and communication.

8

2.6 Federated Learning with spiking neural net-

works

Recent studies on edge devices explored the potential of SNNs to operate efficiently
in distributed environments [18]. SNNs can be explored within federated learning
because of their energy efficiency and event-driving nature. They are capable of
reducing communication load in FL, especially on resource-constrained devices [18].
Although the literature on federated learning with spiking neural networks is still
sparse, there have been notable efforts. Some papers showed the implementation of
SNN with federated learning. A paper used the CIFAR 10 and CIFAR 100 datasets
to train SNN-incorporated federated learning [20], and another one was quite suc-
cessful in reducing communication overheads, but the accuracy could have been im-
proved. For example, in another paper [25], algorithms such as Federated Learning
with Top- Sparsification (FLTS) and Federated Learning with Dynamic- Reduction
(FLDR) were successful in reducing communication overheads, but accuracy could
be improved.

9

Chapter 3

Methodology

3.1 Work Flow

Figure 3.1.1: Workflow

10

Here Figure 3.1.1, we have primarily worked on two types of datasets, namely neuro-
morphic and non-neuromorphic datasets. The data goes through the augmentation
steps. Then they are trained using CNN, CNN+SNN in Tri and Bi layer architec-
tures. Finally, the results are evaluated using train accuracy, F1 score, Precision,
and Recall. Finally, the results are compared.

3.2 Dataset Description

3.2.1 EMNIST

EMNIST is a dataset containing handwritten letters and digits. It has 131,600
images. Dimensions of 28 x 28 and are grayscale images. [9].

3.2.2 CIFAR10

CIFAR10 is a colorful image dataset. Contains 10 classes, which also include cars,
animals, birds, etc. There are a total of 60,000 images. Dimensions are 32x32 with
3 RGB color channels, giving a dimension of 32x32x3 [3]

3.2.3 MNIST

Contains handwritten digit images from range 0 to 9. Dimensions are 28x28 and are
grayscale images. It consists of a total of 70,000 images and 10 classes. It is part of
the larger NIST Special Database 3 and 1. They consist of images of digits that are
monochrome and written by hand [2].

3.2.4 DVS128 Gesture

The DVS128 Hand Gesture dataset is a group of hand gesture recordings and was
recorded using the DVS128 event-based camera. It has a total of 11 different kinds
of hand gestures performed under 3 varying lighting conditions, with a total of 1342
gestures. Instead of using traditional frames in video recordings, the camera is able
to detect changes in pixel values when capturing the movement and also the position
at which the change occurred in the x, and y axes, the time that it occurred, and
polarity which is +1 if there is an increase in pixel intensity and -1 if decrease in
pixel intensity [8].

3.2.5 NMNIST

Neuromorphic MNIST, in short N-MNIST, is where the MNIST dataset is converted
into a spiking neural net version. It consists of a total of 70,000 images. It is done
by using an ATIS sensor, which was held in place by a motorized pan-tilt system.
It was then able to capture MNIST static images moving on an LCD screen. All of
these are converted into a stream of events [6].

11

3.3 Dataset Pre-Processing

Processing Type Dataset Details
Resize CIFAR-10 Resize to 32x32 pixels

MNIST Resize to 28x28 pixels
EMNIST Resize to 28x28 pixels

Grayscale MNIST Convert images to grayscale
EMNIST Convert images to grayscale

ToTensor CIFAR-10 Convert to PyTorch tensors
MNIST Convert to PyTorch tensors
EMNIST Convert to PyTorch tensors

Normalize CIFAR-10 Normalize pixel values to mean
and std of 0.5

MNIST Normalize pixel values to mean
and std of 0

EMNIST Normalize pixel values to mean
and std of 0

Table 3.3.1: Data Pre-Processing For Non-Neuromorphic Dataset

This table 3.3.1 describes various preprocessing techniques applied to three datasets:
CIFAR-10, MNIST, and EMNIST. These techniques help prepare the image data
for training machine learning models.

Resize: The images in the CIFAR-10 dataset are resized to 32x32 pixels. Both
MNIST and EMNIST datasets are resized to 28x28 pixels. Resizing helps standard-
ize the image dimensions across datasets for consistency during model training.

Grayscale: For MNIST and EMNIST, the images are converted into grayscale.
This means the color information is removed, and the image data is simplified to a
single channel (black and white), which is typical for these datasets, as they repre-
sent digit or character recognition tasks.

To Tensor: The images in CIFAR-10, MNIST, and EMNIST are transformed into
PyTorch tensors. Converting the data to tensors allows for efficient computation
within the PyTorch framework, making it easier to perform operations on the data
during training.

Normalize: In all three datasets, the pixel values are normalized to have a mean
and standard deviation (sd) of 0. For CIFAR-10, the values are normalized with
a mean of 0 and a standard deviation of 0.5. Normalization ensures that the pixel
values are on a consistent scale, improving the stability and performance of the
model during training.

12

Parameter Value
Number of Clients 15
Number of Epochs 5
Batch Size 32
Number of Middle Servers 3
Number of Global Rounds 25
Number of Local Rounds 1
Learning Rate 0.001
Beta 0.9
Gradient Function Autograd
Loss Function Cross Entropy Loss

Table 3.3.2: Hyperparameters for Non-Neuromorphic Dataset

Processing Type Dataset Details
Denoise DVS Gesture Removes isolated events (10 ms)

NMNIST Removes isolated events (10 ms)
Downsample DVS Gesture Downsamples to 32x32

NMNIST Downsamples to 28x28
ToFrame DVS Gesture Creates frames (n frames=32)

NMNIST Creates frames (n frames=32)
One Hot Encoding DVS Gesture Categories converted to Binary

Vectors
NMNIST Categories converted to Binary

Vectors

Table 3.3.3: Data Pre-Processing for Neuromorphic Dataset

This table 3.3.3 outlines four different types of data processing techniques applied
to two datasets: DVS Gesture and NMNIST.

Denoising: Both datasets undergo a process where isolated events lasting 10 mil-
liseconds are removed. This step helps reduce noise in the data, making it cleaner
for further analysis or model training.

Downsampling: For the DVS Gesture dataset, the event data is downsampled to
a resolution of 32x32 pixels. Similarly, for the NMNIST dataset, the resolution is
reduced to 28x28 pixels. This resizing reduces the computational load while retain-
ing essential features for recognition tasks.

Frame Generation:The asynchronous stream of events over time is captured by
the DVS sensor. For example the events occurring between T=1 and T=2, the total
events detected within this time interval are equally divided into frames with time
intervals (in our case we used 32 frames). This is done as Spiking Neural Networks

13

work with time-based data.

Parameter Value
Number of Clients 6
Number of Epochs (NMNIST) 3
Number of Epochs (DVS Gesture) 20
Batch Size 64
Number of Middle Servers 3
Number of Global Rounds 25
Number of Local Rounds 1
Learning Rate 0.002
Beta 0.5
Gradient Function fast sigmoid(slope=25)
Loss Function Mean Square Error

Table 3.3.4: Hyperparameters for Neuromorphic Dataset

Dataset Train Test
EMNIST (Balanced) 112,800 18,800

MNIST 60,000 10,000
CIFAR-10 50,000 10,000

DVS128 Gesture 1,078 264
NMNIST 6,000 500

Table 3.3.5: Dataset Distribution

Dataset Distribution: In our Federated Learning Architecture, all clients received
an equal number of data from the datasets used. Also, all clients had equal propor-
tions of the dataset classes for even distribution.

Figure 3.3.6: Framing samples for NMNIST digit ”0”

14

3.4 Proposed Federated Architectures

Figure 3.4.1: Proposed TRI Layer Federated Learning Architecture with Forward-
Reverse KD

In Figure 3.4.1 the Global Student model weights are initialized. The middle layer
student model and The client student model is initialized with the global student
model weights. Each client student model has their own private dataset. In each
global round, the Client teacher model trains on the associated client’s local dataset.
The teacher model distills its knowledge to the client student model. In knowledge
distillation, the predicted output or soft labels of the teacher are shared with a
student model, which then tries to match the teacher’s predictions but also tries
to classify the data based on the actual label. After knowledge distillation from
the teacher model to the student model, the updated parameters of each client stu-
dent models are sent to their assigned middle server model for aggregation. Each
middle server aggregates the student model of K number of assigned clients. All
the middle servers then pass the aggregated middle student model parameters to
the global server for final aggregation. The global server then passes the updated
global student model parameters to the middle layer models, and also to the client’s
student models. After that, the client student model uses the process of reverse

15

distillation, where it distills its knowledge back to the client teacher model. This
allows the teacher model to have knowledge about global updates, which improves
its performance. Again in the next global round the above steps are repeated.

Figure 3.4.2: BI Layer Federated Learning Architecture with Forward-Reverse KD

In Figure 3.4.2 the global model is initialized along with the client model. All
clients have their private datasets. In each global round, the more capable and
larger teacher model trains on the associated client’s local dataset. The teacher
model distills its knowledge to the client’s student model, which the client con-
tains. In knowledge distillation, the predicted output or soft labels of the teacher
are shared with a student model, which then tries to match the teacher’s predictions
but also tries to classify the data based on the actual label. After knowledge distil-
lation from the teacher model to the student model, the updated model parameters
of each client are sent to the global model for aggregation. After this, the global
updates are sent back to each client. Once the client student model receives the
updated global parameters, it uses the process of reverse distillation, where it dis-
tills back its knowledge to the teacher model. This allows the teacher model to have
partial knowledge of updated global knowledge, which helps to improve performance
in the next global round.

16

Figure 3.4.3: Knowledge Distillation Setup

KLD = T 2 ·
(

1

N

)
·

N∑
i=1

pT (i) · (log(pT (i))− pS(i))

From Figure 3.4.3, we can see the teacher-client model is being saved using the
client’s dataset. The teacher model here is a powerful, well-performing model that
is trained using large datasets using conventional methods. The student model is
typically a smaller, less complex model which is trying to mimic the teacher model.
The loss function in the student model is usually categorical cross-entropy loss but
for DVS datasets the loss function is mean squared error and the loss functions here
compare the student model’s predictions with the actual predictions.

After training, the output from the teacher model is processed through a softmax
function, which converts raw output scores to probabilities, but it uses a temper-
ature coefficient T. This is the case for the student model as well when reverse
distillation happens. The temperature coefficient is very crucial because it creates a
smooth probability distribution over the output classes. As the teacher model’s out-
put is processed through a softmax with a temperature factor T, a high T makes the
output probabilities smoother, highlighting less confident predictions. This learning
also happens inversely when the student model becomes the teacher and the teacher
model becomes the student[5].

The knowledge distillation loss LossKD is calculated using the Kullback-Leibler Dis-
tribution (KLD), which measures the difference between probability distributions
from the teacher model (PT) and the student model (PS). LossTotal is the summa-
tion of LossKD + LossCE or LossKD + LossMSE and it ensures that the student

17

model learns from the teacher model’s generalized knowledge as well as learns to
correctly predict the true labels from the dataset [5].

3.5 Models we used in our experiment

Figure 3.5.1: Teacher Model for Non-Neuromorphic dataset using CNN and
CNN+SNN

Figure 3.5.2: Student Model for Non-Neuromorphic dataset using CNN and
CNN+SNN

18

Figure 3.5.3: Neuromorphic Dataset Student Model using CNN+SNN

Figure 3.5.4: Neuromorphic Dataset Student Model using CNN

19

Figure 3.5.5: Neuromorphic Dataset Teacher Model using CNN

Figure 3.5.6: Neuromorphic Dataset Teacher Model using CNN+SNN

Non Neuromorphic Teacher-Student Model:
We used two types of architecture for our deep learning models. Each client node
consisted of a larger teacher model and a smaller student model.

We used a modified Resnet-18 feature extractor for the teacher model trained on
non-neuromorphic dataset in Figure 3.5.1. The use of ResNet-18 is significant for ef-
ficient feature extraction through its deep architecture, allowing effective handling of
complex datasets. Its residual connections, such as skip connections, enhance train-
ing stability and mitigate vanishing gradient issues. ResNet-18 has proven strong

20

performance on image datasets like MNIST, CIFAR-10, and EMNIST, and demon-
strates good generalization, making it ideal for transferring knowledge in distillation
[7][10]. We adapted the first convolutional layer of the Resnet-18 to the dimensions
of the specific dataset used. For example, the EMNIST dataset, which is a grayscale
image, was modified to accept one color channel instead of 3. Then we replaced the
last layer with our output layer for classification for the specific dataset and its total
number of classes.

For student models, we use a custom feature extractor model that is lightweight and
better suited for student models that have power and device constraints. Both archi-
tectures used the models defined in Figure 3.5.2. Here we first used a convolutional
layer of 32 filters, followed by 64 filters, and then finally 128 filters. Kernel Size was
3X3 Dimension and used a padding and stride value of 1. After each convolution,
we used maxpool with a dimension of 2x2 with stride and padding set to 2 and
0, respectively. We did batch normalization after flattening and replaced the fully
connected layer with a spiking neural network in CNN+SNN and with an Artificial
artificial neural network in CNN. Here, The first hidden layer has 256 neurons. Fol-
lowed by the output layer. The number of neurons in the output layer is the number
of classes the dataset is trained on.

Neuromorphic Teacher-Student Model:
Figures 3.5.5 and 3.5.6 illustrate the teacher model using CNN and CNN+SNN,
respectively. Figures 3.5.3 and 3.5.4 illustrate the student models using CNN+SNN
and CNN respectively. Teacher models have a first-layer convolution with 12 filters
with 5x5 dimensions. This is followed by a convolution of 32 filters with 5x5 dimen-
sions again. For student models, we have 12 filters followed by 24 filters with 5x5
dimensions. We used a 2x2 max pool after every convolution. For CNN+SNN we
used Leaky, and for CNN we used the Relu function.

After feature extraction, the models use a flattening layer to convert 2D feature
maps into 1D vectors, which are passed to the fully connected layer. This final layer
maps features to output neurons representing the dataset’s classes. Both models
apply SNN concepts to process data and generate predictions.

21

Chapter 4

Result and Analysis

4.1 Non Neuromorphic Datasets

Dataset KD / Not Architecture Model Type F1-Score Precision Recall Accuracy (%)

MNIST

Without KD
BI

CNN 0.99276 0.99297 0.99260 99.27
CNN+SNN 0.99261 0.99278 0.99249 99.26

TRI
CNN 0.99303 0.99321 0.99289 99.30

CNN+SNN 0.99311 0.99328 0.99296 99.31

KD
BI

CNN 0.99670 0.99671 0.99670 99.67
CNN+SNN 0.99556 0.99561 0.99552 99.56

TRI
CNN 0.99630 0.99630 0.99630 99.10

CNN+SNN 0.99594 0.99599 0.99589 99.60

CIFAR10

Without KD
BI

CNN 0.75775 0.75788 0.75970 75.97
CNN+SNN 0.75628 0.75943 0.75730 75.73

TRI
CNN 0.74574 0.74867 0.74790 74.79

CNN+SNN 0.73880 0.74338 0.73880 73.88

KD
BI

CNN 0.77813 0.77908 0.77840 77.80
CNN+SNN 0.76907 0.77039 0.76990 76.99

TRI
CNN 0.77756 0.77816 0.77820 77.80

CNN+SNN 0.77140 0.77150 0.77190 77.19

EMNIST

Without KD
BI

CNN 0.88231 0.88621 0.88330 88.33
CNN+SNN 0.88505 0.88703 0.88703 88.57

TRI
CNN 0.88114 0.88431 0.88170 88.17

CNN+SNN 0.88380 0.88616 0.88436 88.44

KD
BI

CNN 0.89049 0.89103 0.89128 89.13
CNN+SNN 0.89049 0.89050 0.89106 89.11

TRI
CNN 0.89261 0.89289 0.89293 89.29

CNN+SNN 0.88947 0.89040 0.88989 88.99

Table 4.1.1: Performance Comparison across Non Neuromorphic Datasets with KD
and without KD

Here Table 4.1.1 we got results on some non-neuromorphic datasets in terms of Pre-
cision, Recall, F1-score, and Accuracy. For MNIST, there is a negligible difference
between distillation and no distillation. For Cifar 10, knowledge distillation outper-
forms without knowledge distillation. This applies to both CNN and CNN+SNN
(bi and tri layers). For EMNIST, knowledge distillation again outperforms with-
out knowledge distillation for both CNN and CNN+SNN. When compared between
CNN and CNN+SNN, CNN comes out on top multiple times. Now let’s analyze
deeper. As we said earlier, we got comparatively negligible difference in results for
the MNIST dataset. So we are not considering these results so much. Now let’s talk
about the CIFAR10 dataset. For only CNN, the Bi-layer with distillation performs

22

the same as the Tri-layer with distillation. But for the CNN+SNN, the Tri-layer with
distillation outperforms the Bi-layer with distillation. Now let’s discuss the EMNIST
dataset. For only CNN, the Tri-layer with distillation outperforms the Bi-layer with
distillation. But for the CNN+SNN, the Bi-layer with distillation outperforms the
Tri-layer with distillation. So overall we can say that for non-neuromorphic datasets,
using knowledge distillation has achieved better results.

Figure 4.1.2: Accuracy comparisons of MNIST

Figure 4.1.3: Loss comparisons of MNIST

All the architectures here performed well with very high accuracy compared to
other datasets. The CNN+SNN in both models initially had higher loss compared
to CNNs, but their losses dropped quickly, and all of them converged.

23

Figure 4.1.4: Accuracy comparisons of EMNIST

Figure 4.1.5: Loss comparisons of EMNIST

All models performed similarly as shown in Figure 4.1.4, with relatively higher ac-
curacy but less overall accuracy than MNIST. Both models with distillation initially
report higher losses in Figure 4.1.5 compared to those without distillation. On the
other hand, no distillation has lower loss values and learns slowly, while distillation
models learn fast and all converge.

24

Figure 4.1.6: Accuracy comparisons of CIFAR 10

Figure 4.1.7: Loss comparisons of CIFAR10

In Figure 4.1.6 CNN with Distillation and CNN+SNN with Distillation perform
better than CNN+SNN Without Distillation and CNN Without Distillation. This
can be attributed to knowledge distillation, where the larger, more capable teacher
model distill its knowledge and the student model improves its accuracy. Moreover,
CNN+SNN models always perform similar or lesser than CNN here. This may be
due to spiking neural networks being more suited to learning from event-based data.

Loss is high for both distillation models in Figure 4.1.7 regardless of the architecture
used, compared to without distillation. But CNN+SNN models for both cases show
higher loss values compared to CNN models.

25

4.2 Neuromorphic Datasets

Dataset KD / Not Architecture Model Type F1-Score Precision Recall Accuracy (%)

DVS Gesture

Without KD
BI

CNN 0.8234 0.8473 0.8242 79.3
CNN+SNN 0.8694 0.8816 0.8711 87.11

TRI
CNN 0.7481 0.8087 0.7656 75.0

CNN+SNN 0.8799 0.9018 0.8788 87.88

KD
BI

CNN 0.7562 0.8008 0.7656 75.78
CNN+SNN 0.9097 0.9165 0.9129 91.29

TRI
CNN 0.7458 0.7865 0.7656 75.39

CNN+SNN 0.8666 0.8869 0.8674 86.74

N-MNIST

Without KD
BI

CNN 0.9498 0.9547 0.9464 94.2
CNN+SNN 0.9699 0.9705 0.9700 97.0

TRI
CNN 0.9526 0.9532 0.9527 94.61

CNN+SNN 0.9556 0.9564 0.9560 95.6

KD
BI

CNN 0.9538 0.9545 0.9538 94.74
CNN+SNN 0.9659 0.9668 0.9660 96.6

TRI
CNN 0.9440 0.9450 0.9440 93.57

CNN+SNN 0.9638 0.9645 0.9640 96.4

Table 4.2.1: Performance Comparison across DVS Gesture and N-MNIST Datasets
with KD and without KD

In Table 4.2.1 we can see the results in the DVS Gesture and NMNIST dataset,
based on precision, recall, F1-score, and accuracy, that the combination of CNN
and SNN outperforms the standard CNN. In the DVS Gesture dataset, only CNN
in the Bi-layer setup without distillation performs better than the Bi-layer with
distillation. And Tri-layer with distillation performs better than Tri-layer without
distillation. For CNN+SNN, the Bi-layer with distillation performs better than the
Bi-layer without distillation. And Tri-layer without distillation performs better than
Tri-layer with distillation. In NMNIST dataset, only CNN in the Bi-layer setup with
distillation performs better than Bi-layer without distillation. And Tri-layer without
distillation performs better than Tri-layer with distillation. For CNN+SNN, Bi-layer
without distillation performs better than Bi-layer with distillation. And Tri-layer
with distillation performs better than Tri-layer without distillation.

Figure 4.2.2: Accuracy comparisons of DVS Gesture

26

Figure 4.2.3: Loss comparisons of DVS Gesture

Here Figure 4.2.2 CNN+SNN with both distillation and without Distillation Per-
formed better than CNN with Distillation and without Distillation. As DVS Gesture
is converted into frames, Spiking Neural Networks work best with event-based data.
So it can learn more efficiently. On the other hand, ANN works best with contin-
uous input, so as a result, it takes the 32 frames as 32 static images as input, and
then, in the final layer, based on the learned parameters, associates a classification
probability for them. But it does not take into consideration the time like SNNs can.

From the Figure 4.2.3 we can see that CNN+SNN models have shown higher loss
compared to CNN, as MSE count loss used in CNN+SNN to measure spike loss
instead of using basic mean square error loss.

Figure 4.2.4: Accuracy comparisons of NMNIST

27

Figure 4.2.5: Loss comparisons of NMNIST

Here in Figure 4.2.4 CNN+SNN with and without distillation perform better than
CNN models in both Bi and Tri Layer.This can be attributed to the SNNs capability
of processing spikes over time and working better with event based data compared
to CNNs. Although losses in Figure 4.2.5 may be high for CNN+SNN compared to
only CNN, it converges fast as it learns fast.

4.3 Result Analysis Based on FLOPs, Parame-

ters, and Size

Datasets Shape Teacher
Model

Flops
G

Params
M

Size
MB

Student
Model

Flops
G

Params
M

Size
MB

MNIST
Input = 1 x 28 x
28

ResNet18 0.458 G 11.173 M 42.7 MB
Custom
Model

0.008 G 0.818 M 3.1 MB

Output = 10

CIFAR10
Input = 3 x 32 x
32

ResNet18 0.558 G 11.174 M 42.7 MB
Custom
Model

0.012 G 1.277 M 4.9 MB

Output = 10

EMNIST
Input = 1 x 28 x
28

ResNet18 .458 G 11.192 M 42.8 MB
Custom
Model

0.008 G 0.827 M 3.2 MB

Output = 47

DVS Gesture
Input = 2 x 32 x
32

Custom (32
x 5 x 5)

0.046 G 0.019 M 83.1 KB
Custom (24
x 5 x 5)

0.038 G 0.014 M 63 KB

N frame = 32,
Output = 11

DVS NMNIST
Input = 2 x 32 x
32

Custom (32
x 5 x 5)

0.046 G 0.018 M 75.3 KB
Custom (24
x 5 x 5)

0.038 G 0.014 M 58 KB

N frame = 32,
Output = 10

Table 4.3.1: Comparison between Teacher and Student models in terms of FLOPs,
Parameters, and Size across different datasets.

28

4.4 Server Aggregation Time

Figure 4.4.1: BI layer vs TRI layer Aggregation time in CNN

29

Figure 4.4.2: BI layer vs TRI layer Aggregation time in CNN+SNN

Here we can see the two graphs of server aggregation time. One for standard CNN
Figure 4.4.1, and another for the combination of CNN and SNN Figure 4.4.2 models.
Both graphs highlight the comparison between the bi-layer and the tri-layer. When
considering 6 clients, the aggregation time is comparatively negligible difference
between bi-layer and tri-layer. But when the client counts increased, the comparative
result was highlighted. Like when we are dealing with 150 clients, the tri-layer takes
less aggregation time than the bi-layer. Continuously, when our client count is 1500,
the tri-layer takes approximately 3 times less aggregation time than the bi-layer.
This is because the global server aggregates the updates parallelly across multiple
middle servers and each middle server is connected with clients.

30

Chapter 5

5.1 Conclusion

In this work, we proposed TRI-FED-RKD, a novel framework for federated learning
that leverages a tri-layer hierarchical aggregation-based Federated architecture. We
integrated forward and reverse knowledge distillation within CNN and CNN-SNN
model. Our approach effectively improves accuracy for non-neuromorphic datasets
using CNN in both teacher and student models. Experimental evaluations on neu-
romorphic datasets, such as DVS Gesture and NMNIST, demonstrate the superior
performance of the combination of CNN and SNN models over traditional CNN.

While one of the primary goals was to improve the energy efficiency of TRI-FED-
RKD, we were unable to directly measure real power consumption due to the lack of
access to neuromorphic chip devices. Neuromorphic chips are specifically designed
to efficiently handle spiking neural networks (SNNs). SNN operates using dynamic
spikes and timestamps. As our research employs these SNNs and deals with dy-
namic neuromorphic datasets, running experiments on conventional GPUs, which
do not replicate the behavior of neuromorphic hardware. This limited our ability to
report accurate energy consumption figures. Nonetheless, we remain confident that
our proposed architecture, utilizing SNNs, would significantly reduce energy con-
sumption on neuromorphic hardware, as SNNs are inherently well-suited for such
dynamic datasets.

5.2 Future work

In future work, we aim to extend our research by evaluating TRI-FED-RKD on
actual neuromorphic chip devices to validate our expectations regarding energy ef-
ficiency. By conducting experiments on these specialized chips, we will be able to
more accurately assess power consumption and further refine our model for optimal
performance in real-world edge environments. This step will not only establish our
architecture’s practical applicability in power-constrained scenarios but also enable
more comprehensive comparisons of energy efficiency between the combination of
CNN and SNN models and the traditional CNN model.

31

Bibliography

[1] W. Maass, “Networks of spiking neurons: The third generation of neural net-
work models,” Electronic Colloquium on Computational Complexity, Tech.
Rep. TR96, 1996.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[3] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny
images,” University of Toronto, Tech. Rep., 2009.

[4] A. Grüning and S. M. Bohte, “Spiking neural networks: Principles and chal-
lenges,” in Proceedings of the 22nd European Symposium on Artificial Neural
Networks (ESANN 2014), Bruges, 2014.

[5] G. Hinton, O. Vinyals, and J. Dean, “Distilling knowledge in a neural net-
work,” arXiv, 2015. [Online]. Available: https://arxiv.org/abs/1503.02531.

[6] G. Orchard, G. Cohen, A. Jayawant, and N. Thakor, “Converting static im-
age datasets to spiking neuromorphic datasets using saccades,” Frontiers in
Neuroscience, vol. 9, no. 437, 2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 2016, pp. 770–778. doi: 10.1109/CVPR.
2016.90.

[8] A. Amir, B. Taba, D. R. Berg, et al., “A low-power, fully event-based gesture
recognition system,” in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2017, pp. 7243–7252.

[9] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: An extension of
mnist to handwritten letters,” arXiv, 2017. [Online]. Available: http://arxiv.
org/abs/1702.05373.

[10] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. doi: 10.1109/cvpr.2017.243.

[11] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas, “Communication-
efficient learning of deep networks from decentralized data,” in Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics
(AISTATS), 2017.

[12] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Expanding the
reach of federated learning by reducing client resource requirements,” arXiv.org,
Dec. 2018. [Online]. Available: https://arxiv.org/abs/1812.07210.

32

https://arxiv.org/abs/1503.02531
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1702.05373
http://arxiv.org/abs/1702.05373
https://doi.org/10.1109/cvpr.2017.243
https://arxiv.org/abs/1812.07210

[13] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning
with non-iid data,” arXiv, 2018. eprint: 1806.00582.

[14] P. Kairouz, H. B. McMahan, B. Avent, et al., “Advances and open problems
in federated learning,” arXiv, 2019. eprint: 1912.04977.

[15] D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model dis-
tillation,” arXiv preprint arXiv:1910.03581, 2019. [Online]. Available: https:
//arxiv.org/abs/1910.03581.

[16] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking
neural networks,” IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 51–63,
2019. doi: 10.1109/MSP.2019.2931595.

[17] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine intelligence
with neuromorphic computing,” Nature, vol. 575, no. 7784, pp. 607–617, 2019.
doi: 10.1038/s41586-019-1677-2.

[18] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida,
“Deep learning in spiking neural networks,” Neural Networks, vol. 111, pp. 47–
63, 2019. doi: 10.1016/j.neunet.2018.12.002.

[19] K. M. J. Rahman, M. S. Hossain, B. M. Alzahrani, M. A. Mahmud, and A. Ali,
“Challenges, applications and design aspects of federated learning: A survey,”
IEEE Access, vol. 9, pp. 124 682–124 700, 2021. doi: 10.1109/ACCESS.2021.
3111118.

[20] Y. Venkatesha, Y. Kim, L. Tassiulas, and P. Panda, “Federated learning with
spiking neural networks,” IEEE Transactions on Signal Processing, vol. 69,
pp. 6183–6194, 2021. doi: 10.1109/TSP.2021.3121632.

[21] F. Zenke and T. P. Vogels, “The remarkable robustness of surrogate gradient
learning for instilling complex function in spiking neural networks,” Neural
computation, vol. 33, no. 4, pp. 899–925, 2021. doi: 10.1162/neco a 01363.

[22] Z. Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation for heteroge-
neous federated learning,” in Proceedings of the International Conference on
Machine Learning (ICML), PMLR, Jul. 2021, pp. 12 878–12 889.

[23] Z. Liu, Q. Zhan, X. Xie, B. Wang, and G. Liu, “Federal snn distillation:
A low-communication-cost federated learning framework for spiking neural
networks,” Journal of Physics: Conference Series, vol. 2216, no. 1, p. 012 078,
2022. doi: 10.1088/1742-6596/2216/1/012078.

[24] H. Wen, Y. Wu, J. Hu, Z. Wang, H. Duan, and G. Min, “Communication-
efficient federated learning on non-iid data using two-step knowledge distil-
lation,” IEEE Internet of Things Journal, vol. 10, no. 19, pp. 17 307–17 322,
2023. doi: 10.1109/JIOT.2023.3276865.

[25] Y. Zhao and J. Chu, “The robustness of spiking neural networks in commu-
nication and its application towards network efficiency in federated learning,”
arXiv, 2023. doi: 10.48550/arXiv.2409.12769.

[26] F. Wang, M. C. Gursoy, and S. Velipasalar, “Feature-based federated transfer
learning: Communication efficiency, robustness and privacy,” arXiv.org, May
2024. [Online]. Available: https://arxiv.org/abs/2405.09014.

33

1806.00582
1912.04977
https://arxiv.org/abs/1910.03581
https://arxiv.org/abs/1910.03581
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1109/ACCESS.2021.3111118
https://doi.org/10.1109/ACCESS.2021.3111118
https://doi.org/10.1109/TSP.2021.3121632
https://doi.org/10.1162/neco_a_01363
https://doi.org/10.1088/1742-6596/2216/1/012078
https://doi.org/10.1109/JIOT.2023.3276865
https://doi.org/10.48550/arXiv.2409.12769
https://arxiv.org/abs/2405.09014

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Research Background
	Research Scope
	Research Objectives
	Research Contributions
	Research Outline

	Literature review
	Federated Learning
	Knowledge Distillation
	CNNs in Federated Averaging for Image Classification
	Feature Extraction in CNNs for Federated Learning and ResNet-18
	Spiking Neural Networks (SNNs)
	Federated Learning with spiking neural networks

	Methodology
	Work Flow
	Dataset Description
	EMNIST
	CIFAR10
	MNIST
	DVS128 Gesture
	NMNIST

	Dataset Pre-Processing
	Proposed Federated Architectures
	Models we used in our experiment

	Result and Analysis
	Non Neuromorphic Datasets
	Neuromorphic Datasets
	Result Analysis Based on FLOPs, Parameters, and Size
	Server Aggregation Time

	
	Conclusion
	Future work

	Bibliography

