
Decentralized Access Control using Hyperledger Fabric

by

Jubayer Hossain
24341112

Mehedi Hasan Nabil
21101203

Farhan Labib Jahin
21101204

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
October 2024

© 2024. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Jubayer Hossain
24341112

Mehedi Hasan Nabil
21101203

Farhan Labib Jahin
21101204

i

Approval

The thesis titled “Decentralized Access Control using Hyperledger Fabric” submitted
by

1. Jubayer Hossain (24341112)

2. Mehedi Hasan Nabil (21101203)

3. Farhan Labib Jahin (21101204)

Of Summer, 2024 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on October 22, 2024.

Examining Committee:

Supervisor:
(Member)

Dr. Md Sadek Ferdous

Professor
Department of Computer Science and Engineering

BRAC University

Head of Department:
(Chair)

Dr. Sadia Hamid Kazi

Chairperson and Associate Professor
Department of Computer Science and Engineering

BRAC University

ii

Abstract

In traditional access control systems, all the access control mechanisms are centrally
managed which is seriously vulnerable. It is susceptible to a single point of failure
due to its centralized architecture. As the system security breaks down due to the
compromised central authority, it will be a huge risk, opening the door for data
breaches, illegal access, and exploitation of private data. This research mitigates
these risks by suggesting the decentralized control of access control systems using
Extensible Access Control Markup Language (XACML). It is appropriate to use
XACML for this task because XACML is flexible, open source, and works well in
compliance with many access control models. This research focuses on decentralizing
the four components of XACML: Policy Enforcement Point, Policy Decision Point,
Policy Administration Point and Policy Information Point via the incorporation
of Hyperledger Fabric (HF), a permissioned blockchain system. In the proposed
architecture, the access control is distributed by smart contracts or chaincodes in
multiple nodes of the network eliminating the single point of failure. To evaluate the
feasibility of implementation, the development of the system following the proposed
architecture is also done using chaincode. The results from the test evaluation
show that decentralized implementation of the four XACML components with the
Hyperledger Fabric eliminates single point of failure, scalability issues, and data
integrity in distributed systems. The decentralization of the XACML components
will help to create a secure and decentralized access control architecture. This
research lays the foundation for future investigation of strategic blockchain-based
decentralized access control systems.

Keywords: Access Control; Decentralization; Hyperledger Fabric; XACML; Blockchain;
Security; Single Point of Failure (SPOF); Smart Contracts; Chaincodes

iii

Acknowledgement

Firstly, all praise to the Great Allah for whom our thesis have been completed
without any major interruption.
Secondly, to our advisor Dr. Md Sadek Ferdous for his kind support and advice in
our work. He helped us whenever we needed help.
And finally to our parents without their throughout support it may not be possible.
With their kind support and prayer we are now on the verge of our graduation.

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgement iv

Table of Contents v

List of Figures vii

List of Tables viii

List of Acronyms x

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Objectives . 2
1.4 Report Structure . 4

2 Background 5
2.1 Access control and types . 5

2.1.1 RBAC . 5
2.1.2 ABAC . 6

2.2 XML . 6
2.3 XACML . 6
2.4 SAML . 8
2.5 Blockchain . 9

2.5.1 Hyperledger Fabric . 10
2.5.2 Smart Contract . 10
2.5.3 Chaincode . 10
2.5.4 Decentralization . 10

3 Literature Review 11
3.1 Comparative Analysis . 15

4 Proposal 17

v

4.1 Proposed Model . 17
4.2 Methodology . 17
4.3 Threat Modelling . 19
4.4 Requirement Analysis . 20

5 Architecture, Use-Case and Protocol Flow 22
5.1 Architecture Design . 22
5.2 Use-Case and Protocol Flow . 24

6 Implementation and Performance Analysis 32
6.1 Environment Setup . 32
6.2 Tools and Technologies . 33
6.3 System Overview . 34

6.3.1 Development . 34
6.4 Steps to Implementation . 35
6.5 Performance Analysis . 35
6.6 Testing Scenarios . 36
6.7 Test Plan . 36
6.8 Metrics Evaluation . 37
6.9 Observations . 37

7 Discussion 40
7.1 Functional Requirement Analysis . 40
7.2 Security Requirement Analysis: . 41
7.3 Research Objective Analysis: . 41
7.4 Advantages . 42
7.5 Challenges And Limitations . 42
7.6 Future Works . 44

8 Conclusion 45

Bibliography 48

vi

List of Figures

1.1 Percentage of people who feels these as obstacles when using digital
assets globally . 1

1.2 A decentralized XACML model . 3

2.1 XACML Data Flow and Architecture 8
2.2 SAML Model . 9

4.1 Methodology Flow Diagram . 18

5.1 Proposed Architecture . 23

6.1 Throughput . 38
6.2 Average Response Time . 38
6.3 Average Latency . 39

vii

List of Tables

3.1 Comparative Analysis . 16

5.1 Cryptographic Notations . 25
5.2 Data Model . 25
5.3 Data Flow Table 1 . 30
5.4 Data Flow Table 2 . 31

viii

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ABAC Attribute-Based Access Control

ACL Access Control Lists

ART Average Response Time

BP Business Process

BRTA Bangladesh Road Transport Authority

DDos Distributed Denial-of-Service

DESCO Dhaka Electric Supply Company Limited

DoS Denial of Service

DSR Design Science Research

FR Functional Requirements

IdP Identity Provider

IoT Internet of Things

NGAC Next Generation Access Control

PAP Policy Administration Point

PDP Policy Decision Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

RBAC Role-Based Access Control

RPC Remote Procedure Call

SAML Security Assertion Markup Language

SPOF Single Point of Failure

SR Security Requirements

SSO Single Sign-On

ix

TEE Trusted Execution Environment

XACML Extensible Access Control Markup Language

XML eXtensible Markup Language

XXE XML External Entitites

x

Chapter 1

Introduction

1.1 Motivation

In today’s modern world, our daily life is becoming more and more inextricably
connected to technology. Almost everything is connected and operating using some
kind of technological development. We can not think of a day without taking help
from it. For ensuring seamless operation of such systems, it needs a lot of data
to process and generate very specific profiles for each individual which brings us
to a very vital concern; security. Security issues include personal details about an
individual, banking details, business details, and many more. Anyone with some
particular set of skills and knowledge can try and cause security breaches on any
available system, whether that be private or public. According to Deloitte’s global
survey, cybersecurity is the top concern among people using digital assets or services
shown in the graph Figure 1.1 below [17]. These security breaches can be intentional
attacks by anyone inside or outside the network. It can also be due to some uninten-
tional vulnerabilities of any particular node with authorized access to the system.
Either way, it is a violation of human rights as everyone has their own privacy, and
putting trust in a system that is vulnerable to such things is also morally unethical.

Figure 1.1: Percentage of people who feels these as obstacles when using digital
assets globally

1

According to a news article by the Daily Star, last year in March alone, 4 different
data breaches took place, including attacks on law enforcement, government agen-
cies, and security forces [30]. These incidents leaked a massive amount of private
data along with some confidential data too. Also last year in November, a huge
amount of money was hacked from BRTA and DESCO where the hackers claimed
to gain access to the servers without authorizing through the payment gateways and
changed certain vehicle numbers illegally [29]. Hackers use different techniques to
gain access to any system and it is even easier when there is a single point of failure.
There are a lot of attacks that hackers can use in order to gain unauthorized access.

1.2 Problem Statement

Centralized access control models are commonly used in different types of systems
and organizations. For various reasons using these models is very important but due
to the centralization, it faces many challenges. A single point of failure can happen
because of a centralized access control system. Access control might be completely
blocked if the central authority is breached. Also, unwanted access can be granted
because of this single authority. If the policy administration point (PAP), a com-
ponent of XACML, is down for some reason, the central component policy decision
point (PDP) will also be unresponsive which may break down the whole system. If
the central authority is attacked, the organization will be at risk and there will be
unwanted access which can lead to data leaks and more. Though single points of
failure are one of the main problems of centralized models, there are other prob-
lems like scalability issues, performance issues, security problems, and dependency.
Unauthorized accesses are not only the major problem here in some organizations
but also authorized access can abuse their power and this can happen because of
centralized structure. If the control was divided into multiple nodes instead of a
central one, the attacker would have a much harder time breaching the system.
However, we can solve this centralization problem by making it decentralized. A
blockchain-based decentralized control system can solve this problem by implement-
ing chaincode of the PEP, PDP, PAP and PIP which will spread access control all
over the network and it will remove single points of failure. On the other hand, it
may improve scalability, flexibility and transparency. We illustrated the theory in
Figure 1.2. Though there are many benefits of using blockchain and access control
models together, we have to face some challenges also. Consensus, private key man-
agement and scalability are the main challenges if we want to combine blockchain
and access control models.

1.3 Research Objectives

In this contemporary era, data security has become exceptionally important and is
considered the gold of this era. Despite access control models’ dependability and
significant contribution to the evolution of data security and authorized access, they
are not impervious to the potential risks associated with a single point of failure
(SPOF).

• Research Objective 1 (RO1): Explaining the problem that arises
from using a centralized system for access control and looking for

2

an option that will decentralize this problem. The first objective is a
critical analysis of the disadvantages of the centralized models and the threats
including SPOF. From these vulnerabilities, the aim is to make a decentralized
control system that will prevent those vulnerabilities.

• Research Objective 2 (RO2): Propose a decentralized model that
uses Hyperledger Fabric to solve security concerns like a single point
of failure in conventional centralized access control systems. The
objective is to solve the security issues described in RO1, and it is achieved
through decentralizing control and preventing any node from having all power.

• Research Objective 3 (RO3): Securing and improving the visibility
of access control policies by implementing chaincode. The third goal
is therefore to improve the dependability of the access control policies by inte-
grating all the chaincodes of the PEP, the PDP, the PAP, and the PIP. These
components should be disaggregated across these nodes.

• Research Objective 4 (RO4): The performance and scalability anal-
ysis of actual implementations under different conditions for real-
world applicability of the proposed architecture. The last one is to
evaluate the applicability and performance of this decentralized model and its
scalability for big-scale applications.

While it may not guarantee a system that cannot be easily fooled, it is still advan-
tages over any other current system. This research aims to achieve a new standard
of access control by taking advantage of Hyperledger Fabric overcoming SPOF.

Process
PDP

Chaincode

PAP
Chaincode

PIP
Chaincode

PEP
Chaincode

HyperLedger Fabric

Additional AttributesManage Policies

GrantPermission

Access Request

Approve / Deny

Users

Figure 1.2: A decentralized XACML model

3

1.4 Report Structure

In this section, we will discuss about the structure of our report.

• Chapter 1 : Introduction
This chapter provides an overview of the research motivation, problem state-
ment, research objectives and report structure.

• Chapter 2 : Background
In this chapter, there is a detailed explanation of different types of access
control systems and different technologies related to this research.

• Chapter 3 : Literature Review
The literature review describes previous research papers that are related to
this topic.

• Chapter 4 : Proposal
This chapter presents the system proposal, methodology, threat modelling and
requirement analysis.

• Chapter 5 : Architecture, Use-Case and Protocol Flow
This chapter contains the architecture of the proposed system along with the
use-case and protocol flow.

• Chapter 6 : Implementation and Performance Analysis
This chapter presents the process of implementing the proposed system along
with its performance evaluation.

• Chapter 7 : Discussion
In this chapter, the functional and security requirements are analysed. Re-
search objectives are assessed along with the discussion of advantages, chal-
lenges or limitations and future works.

• Chapter 8 : Conclusion
This chapter highlights the main outcomes and provides final thoughts on the
significance of this research.

4

Chapter 2

Background

2.1 Access control and types

Access control is a procedure to check if a person should get access or not in a
specific data or area. This whole procedure works depending on different systems
and policies. A user can get access depending on different systems such as role,
attribute, and rules. There are mainly four parts of this whole mechanism.

• Identification: Identifying the user responsible for performing actions

• Subject Authentication: Refers to checking the identity of the user behold-
ing certain roles

• Authorization: Checking if the user has the given authority to perform
certain actions related to their role

• Access Decision: Determines whether to accept or reject the request

When we make an access control system depending on the role called Role-Based
Access Control (RBAC) which is a widely used system and there are also other
access control systems like Attribute-Based Access Control (ABAC). There are a lot
of access control systems around the world that are used based on their use cases
and advantages.

2.1.1 RBAC

Role-Based Access Control is referred to as RBAC. It is a security model that limits
authorized users’ access to the system. According to RBAC, users are assigned
to roles that correspond with their access permissions [1]. Rather than giving users
explicit permissions, access is given according to a user’s roles within an organization.
So when a user tries to access any data the system will check if the user has that role
which is mandatory to preview that data and if the user has that role the system
will grant him permission otherwise it will reject his request. That’s how RBAC
works in different organizations. For RBAC there are three primary rules which are
role assignment, role authorization, and permission authorization.

Role Assignment: A person can only exercise permission if they have been given
the appropriate role.

5

Role Authorization: The person has to have authorization to play an active role.
This rule, together with rule 1 above, guarantees that users can only assume roles
for which they are authorized.

Permission Authorization: A person may only exercise permission if it is autho-
rized for the person’s active role. With rules 1 and 2, this rule guarantees that users
can only exercise permissions for which they have been authorized.

RBAC also has a concept of hierarchies in which higher-level roles inherit the per-
missions of lower-level roles.

2.1.2 ABAC

Attribute-based access Control also prevents unauthorized access but instead of us-
ing roles it uses different types of attributes to check permission. This model is very
useful for a complex environment. different organizations can use this model select-
ing different attributes for their system and data [25]. ABAC can be customized
using several attributes to establish access control policies in various environments.
Unlike RBAC, which provides roles with defined privileges and topics, ABAC can
describe complicated rule sets that evaluate multiple attributes.

2.2 XML

XML, also known as Extensible Markup Language, is a widely used markup lan-
guage intended for presenting structured data in a format that is both human and
machine-readable [34]. It was designed to be used as a standard for data inter-
change between humans and machines. XML is also a platform independent, it is
that we can use it in any software and hardware environments. It is extensively
used for transmitting data over the internet, specifically, in the development of Web
services for which it provides an underlying basis of some of the protocols such as
Simple Object Access Protocol. In addition, XML plays an important role within
application as configuration data store, XML configuration files and data exchange
format like,Office Application XML, RSS parsing and many more. Due to its ability
of storing data in more than one dimension they are suitable for use in fields with
basic as well as complex data structure such as financial and health.

2.3 XACML

Extensible Access Control Markup Language or XACML is a standard access control
framework that specifies a language for expressing access requests in connection with
policies as well as a processing model. It is intended especially for authorization and
access control in computer systems and applications. There are four core components
of XACML:

• Policy Enforcement Point (PEP): The interceptor between PDP and end
user. This component Just receives request from the user and forward them
to PDP.

6

• Policy Decision Point (PDP): The component decides whether a user
should be allowed or denied based on the policies and attributes of PAP and
PIP.

• Policy Administration Point (PAP): The authority that creates, manages,
and updates the access control policies.

• Policy Information Point (PIP): The component that provides the neces-
sary information, such as user attributes or roles to help the PDP make access
decisions.

Figure 2.1 shows the Extensible Access Control Markup Language (XACML) archi-
tecture and data flow. The XACML model will work in the following steps:

i Define Policies: Policy Administration Point is responsible for managing poli-
cies and giving them to PDP when requested. These policies contain the deci-
sions for a particular user according to the attributes and resources.

ii User Request: A user sends an access request to the PEP.

iii Initiate Request: PEP forwards the request to the Context Handler in native
format. This format may include any attributes or the role, resource, action, or
environment.

iv Create Context & Send to PDP: An XML format of the request is made
by the context handler and sent to the PDP.

v Request Additional Data: The PDP asks for additional data or information
from the context handler such as additional attributes, subjects, or actions.

vi Retrieve Characteristics: The context handler requests additional data from
PIP.

vii Retrieve Data: PIP retrieves the additional information from subjects, re-
sources and environment.

viii Return Characteristics: The data flows from PIP to the Context handler.

ix Update Context: Optionally, the context handler puts the information in the
context.

x Send to PDP: The context handler sends the required characteristics asked by
the PDP initially.

xi Evaluate Policy, Return Decision: The PDP reviews the policy and then
returns the response along with the decision to the Context Handler.

xii Convert Decision, Send to PEP: The response from the PDP is converted
back to the native response format and returned to the PEP.

xiii Allow/Deny Access: If access is allowed then the PEP allows access to the
resource otherwise it denies access. The PEP usually fulfills the obligations, for
both cases.

7

Policy
Enforcement
Point (PEP)

User
Objection
Service

Context Holder

Policy
Decision

Point
(PDP)

Resource

Subjects
Policy

Administration
Point (PAP)

Environment

Policy
Information
Point (PIP)

1.Define
Policy

2. Request Resource

3.
Forward
Request

4. Notify Request

5. Query Attribute

6. Inquire
attribute

7. Collect Attributes from subject,
resource, environment

8. Return
Attribute
from PIP

9. Include Resource

10. Return attributes

11. Send Response

12.
Response to

resource
Request

13. Accepted/ Rejected
Request

Figure 2.1: XACML Data Flow and Architecture

2.4 SAML

The Security Assertion Markup Language or SAML, is an open standard language
that relies on Extensible Markup Language XML and is designed to facilitate a
fluid yet secured authentication and authorization data among parties [32]. It works
especially between the identity provider (IdP) and the service provider (SP). SAML
uses SSO which allows the users to access multiple files or applications with a single
sign-in.

• Identity Provider (IDP): The identity provider is responsible for verifying
the identity and fetching the corresponding details of the providing services
for a particular user [16].

• Single Sign-On (SSO): SAML uses SSO which enables users to sign in just
a single time with the credentials and access multiple service providers without
the necessity to log in for each application individually [33].

8

Figure 2.2 illustrates the architecture of SAML. This architecture model shows the
steps in a SAML authentication flow. Here is a brief overview of each step

i SAML Request: The requestor/user sends the SAML request to the SAML
Authority/IdP and this instantly initiates the requestor’s authentication.

ii SAML Response with Assertions: The authority after validating the re-
quest, sends the requestor a SAML response containing an assertion.

iii Send Assertions: The Requestor/User sends the assertions to the web server.

iv Validating the Assertions: Then the web server forwards the assertion to the
SAML authority/IdP for authenticating them

v Confirmation/Rejection Assertion: The authority sends back the authen-
tication result to the web server. Before giving the user permission to access the
web server, this statement will be taken into account

Based on the result the user will be granted access or rejected access in the web
server. By doing this sequence of operations, SAML provides a strong foundation for
secure interaction, allowing smooth authorization and authentication across different
systems in a web-based SSO environment.

SAML
Authority/

IdP

Web
Server

2. SAML Response with Assertions

3. Send Assertions

4. Validating the
Assertion

5. Confirmation/Rejection
Assertion

1. SAML Request
User

Figure 2.2: SAML Model

2.5 Blockchain

Blockchain is a distributed, decentralized ledger made up of blocks representing
transactions [31]. Every member of a blockchain independently updates the dis-
tributed ledger. Every blockchain node is made up of miners and users. Users carry
out transactions, and miners produce, verify, and reject blocks. On a blockchain,
data ownership details, award histories, payment records, and contracts may be

9

kept. In a blockchain, every “block” provides a hash of the block before it. If a
block is altered even slightly, the chain could be broken due to mismatched hashes.
The longer chain is deemed to be the real one, and the shorter one is removed.
Block hashes are generated using cryptographic hash functions. The function takes
in input and outputs a distinct outcome.

2.5.1 Hyperledger Fabric

Hyperledger Fabric is basically a blockchain framework that is modular. It is uti-
lized as the base foundation in any kind of blockchain based product or application
development. It is open source distributed ledger technology launched by the Linux
Foundation [8]. Later a newer version of this was released with features including
faster transactions processing, better smart contract technology and more. Tradi-
tional blockchain networks usually don’t allow private transactions or confidential
contracts that are essential for private enterprises or businesses. Verifying identity
being one of the primary requirements for such private industries, hyperledger fabric
comes into play by being one step ahead of traditional blockchain in this regard.
Hyperledger fabric supports authorization based on certain permissions. All the
members trying to access the system must be identified by the security system be-
forehand in order to gain access. The modularity of this allows it to be used in
different business sectors including healthcare sectors.

2.5.2 Smart Contract

A smart contract is an automatic contract that has its conditions written directly
into code. It is a program that works on a blockchain and also fulfills different
requirements and automatically upholds and brings out the terms of a contract.
The main concepts of blockchain, including transparency, decentralization, and im-
mutability, support the workings of smart contracts [22].

2.5.3 Chaincode

In Hyperledger Fabric, Chaincode prescribes how business transactions are to be
enacted on a blockchain. It is either written in Go, Node.js or Java and it operates
with the ledger for the purpose of executing logic. Chaincode, when deployed to
function, executes within a docker container, making its operation independent and
protected from other parts of the system [18]. The main function of chaincode is to
receive proposals from the client, read or update the ledger, and provide the result
of these activities to the clients.

2.5.4 Decentralization

Decentralization is a method of distributing power, control, and decisions within
an organization instead of depending on a single authority. No one has full control
over the network in a decentralized system. rather, different nodes or people share
authority. There are many benefits in decentralization. First of all it prevents a
single point of failure. On the other hand there are some challenges also. The main
problem of decentralization is consensus.

10

Chapter 3

Literature Review

Cras et al. [26] explores the potential of implementing RBAC standards in a de-
centralized fashion enabled by blockchain. The traditional RBAC does not come
up with the decentralization method of blockchain. It relies on a single authority
called Policy Decision Point (PDP), posing a risk of single point of failure (SPOF).
The research proposes a strategy that merges numerous roles and versatile RBAC
policies within the smart contracts. This approach implies assigning each role some
unique permission policy set. Altering those permissions needs the consent of se-
lected groups which leads to decentralization. A prototype implementation of the
Ethereum blockchain is also shown in the article. Even though the RBAC approach
in this study is decentralized, problems with the policy decision point still exist
because it is still vulnerable to a single point of failure.

According to R. Bagchi [6] the strategies for secure control of IoT devices in a non-
centralized fashion, utilizing blockchain technology to avoid dependence on main
entities. It demonstrates the practicality of applying IoT device control on a world-
wide scale via blockchain, highlighting its ability to confirm device identity, safeguard
data, manage access, and conduct transactions in a distributed method. The bene-
fits of using blockchain in IoT encompass equal participation by users, transparency,
privacy, non-rejection, integrity, non-centralization, trustlessness, and unchangeabil-
ity. The study emphasizes the importance of the clear yet confidential characteristic
of blockchain, guaranteeing secure transactions and data reliability. Nevertheless, is-
sues like scalability, power consumption, and storage scalability are recognized, with
suggested remedies including Simplified Payment Verification nodes, block pruning,
and sharding. Scalable blockchain procedures such as BitcoinNG, Lightning Net-
work, and BigchainDB are brought forward as potential solutions. In conclusion,
this study offers crucial perspectives on decentralized IoT management, underlin-
ing the game-changing capacity of blockchain technology and offering remedies to
confront associated difficulties.

Similar to this, Cruz J.P. et al. [9] presents RBAC-SC which is a platform that ad-
dresses cross-organizational Role-Based Access Control issues by using Ethereum’s
smart contract. Through its use of blockchain technology and smart contracts,
RBAC-SC aims to protect RBAC architectures from malicious exploitation and al-
low small organizations to get involved by utilizing a challenge-response verification
method. The study performs a performance analysis and investigates the RBAC-

11

SC framework which includes the use of smart contracts and the challenge-response
method. Their implemented application is publicly available and their goal is to
increase security and flexibility in cross-organizational RBAC scenarios. It is imple-
mented on Ethereum’s Testnet blockchain.

In Business Process (BP) management Viriyasitavat et al. [28] shows how blockchain
is used to make the system more modern and efficient. Blockchain records everything
in a way that someone can not change it easily and this system makes it more trust-
worthy in Business Process operations. Blockchain also decrease different conflicts
and make their operations more reliable. This study talked about different bene-
fits and challenges that can be achieved and faced if blockchain is used in Business
Process (BP) management. it talked about the difficulties because of working with
different technology together. In Short blockchain can make the whole operation
more smoothly but there are some points which should be solved to make it work in
every situation. Importantly, the review centers on methodological frameworks and
technologies for Blockchain’s adoption in business cycles, underscoring the need for
a thorough investigation of challenges in infrastructure, standards, models, methods
and algorithms.

Li et al. [21] talked about how permissions are given to users according to their
roles throughout the organization in the traditional RBAC access control model. It
assures effective control of access rights, decreasing the possibility of unauthorized
entry while upholding an organized security system. But because of the complexities
and vulnerabilities of modern networks, researchers are looking into decentralized
options for RBAC. In this paper they talked about a smart way to solve all the
problems and keep all information safe in the internet of things. To protect data
and privacy this paper suggests combining two technologies which are blockchain and
Role based access control. where RBAC can manage who can access the system and
who can not and blockchain can make the whole system decentralized. To make
the privacy more strong this paper suggests a tool which is a trusted execution
environment (TEE). With the help of this tool transaction information can be kept
more safely and it can protect different details like roles.

Vasishta et al. [25] introduces a decentralized structure for controlling access in
multi-user online service applications by exploiting Hyperledger Fabric and Attribute
Based Access Control (ABAC). An all-inclusive system design is presented by the
authors, involving essential operations such as subject incorporation, object addi-
tion, rule establishment, and access request management. Interestingly, the plan’s
intent is to manage situations where the access verification required attributes are
spread amongst numerous authorities. Hyperledger Fabric is used for its capabilities
to offer transparent permission, unchangeable credentials and secure authority inter-
actions. With a prototype implementation featured, the authors verify the system’s
performance under diverse parameters. This study adds value to blockchain-based
access management, posing a possible solution to decentralized authorization related
issues. Still, the article would gain from a more straightforward presentation, ex-
plicit contrasts with current solutions, and extra analysis of practical applications.
Overall, it sheds meaningful light on integrating Hyperledger Fabric with ABAC for
decentralized access control in multiple authority situations.

Hu [27] talks about Blockchain which is a distributed ledger system also very reliable

12

and safe. Blockchain is a good choice to make ABAC decentralized because it has
distributed, transparent and immutable features. If blockchain is used ro make
ABAC decentralized not only the drawbacks of centralized ABAC will be solved but
also we will get many more benefits and it will improve the whole ABAC system.
This paper basically shows different features of blockchain that can be helpful in the
ABAC system. They use XACML and NGAC to the system. mainly they focused
on XACML and they discussed how the elements of XACML can be converted into
blockchain access control.

Steichen M. et al. [10] here the authors stated that on a blockchain, large files
cannot be stored efficiently. Within the blockchain network, where data needs to be
propagated, the blockchain becomes distended, and for sharing files, a lot of space is
required. IPFS is a system where people can share their files more efficiently. Even
large files can also be shared through this system. It depends on the cryptographic
hashes. This system doesn’t permit users to share files with selected parties, which
is necessary for personal or sensitive data. This paper showed an updated version of
the InterPlanetary Filesystem (IPFS) that was built using Ethereum smart contracts
to provide file sharing that is access-controlled. That smart contract was used to
observe the list of access controls. So to maintain access control perfectly, whenever
a file is uploaded, downloaded, or transferred, it interacts with the smart contracts.

Rashid A. et al. [23] shows RC-AAM as a decentralized method for role-based
authentication and access control, which is very important to enhance security and
reduce administrative work. The system has been made without depending on a
single authority, and they used different types of security features that are provided
by the blockchain and cryptography. In their system, they have role verification
and also role validation. They have implemented their RC-AAM prototype on the
Ethereum test network. It was challenging to make an efficient system that would
be centralized for distributed applications, but after their implementation, they
found that their method could handle access control effectively and make distributed
environments better. Their performance is also better than most of the advanced
role-based access control systems that are available.

Xu R. et al. [11] presents BlendCAC, which is a decentralized capability-based ac-
cess control for IOT security that is achieved by blockchain technology. BlendCAC
aims to deliver an effective access control system for large-scale Internet of Things
systems. A capability transfer system was suggested for the propagation of access
control based on the blockchain network. In their system, they have a capability
for token management that is identity-based. They used smart contracts to allow
authorization, propagation, registration, and revocation. Instead of the central au-
thority, IOT devices can manage their resources with the help of the BlendCAC
schema. They conducted an experiment on a local blockchain network and showed
it offers a decentralized and fine-grained access control solution to IOT systems.

Ihle et al. [14] examines if distributed ledger-based authorization systems can assist
corporate systems. They take advantage of the blockchain system to implement
their smart contract-based role management system. In their system, they didn’t
sacrifice the advantages of central authorization methods. According to the paper
on a decentralized prototype, one of the main advantages is that it can be applied
as a basis for additional decentralized company advancements. The main topic of

13

this paper is the validation and implementation of blockchain-based access control
systems for different types of decentralized applications. They used RBAC, which is
a role-based access control system, for their examination. Using a distributed ledger
platform they prove this is a chain solution for RBAC.

Li Q. et al. [2] present a unique role-based access control model for decentralized
and distributed systems. They also propose a decentralized management mode
as one of the main efforts to address management problems in traditional RBAC
systems. Their model can be applied to flexible tasks in collaborative applications,
where the flexible tasks are usually managed by local administrators. This allows
multiple administrative duties for many applications to be allocated among many
local administrators, leading to the development of a smooth RBAC administration
model based on different types of local administrative policies. According to their
paper, they developed a secure spread prototype to serve as evidence of the concept
method based on their proposed model and to show its feasibility in real-world
applications.

Tamassia R. et al. [3] introduce an independently verified delegation mechanism that
enables delegation authentication to be verified without involving domain adminis-
trators. They proposed a simple and efficient protocol for cross-domain transfer of
authority that they call role-based cascaded delegation (RBCD). According to their
model, a role member can make delegations via RBCD, considering the current re-
quirements and needs of collaboration. So anyone may verify an authorization chain
without involving the role administrators. They also showed a practical implemen-
tation of role-based cascaded delegation with aggregate signatures.

Markus I. et al. [15] present a new decentralized ledger access control system that is
cryptography-based. This new system is compatible and adaptable with a variety of
storage systems with different types of high-level privacy. According to the authors,
this new system has a verification system for end users to locate malicious nodes in
the decentralized ledger. They implemented the schema with Hyperledger Fabric.
They also analyze its performance to show its usefulness in real-world situations.

According to Jamsrandorj U. [7], a substantial amount of research has been done
and is available in much of the literature on centralized access control within the
framework of a single organization. But there is a shortage of research on decen-
tralized access control in collaborative settings. They developed a prototype for a
decentralized access control system using Java, RESTful web services, and multi-
chain blockchain, and the system supports auditability, immutability, equality, and
transparency in a collaborative setting for more research in this field. The mean
response time and efficiency were the main two outcomes that the prototype was
created to evaluate. They executed many experiments in which they measured the
metrics on both local area networks (LANs) and Amazon Web services. There was
a minor performance difference between the LAN and AWS when more servers were
running.

Zhang Y. et al. [24] suggests a decentralized and reliable access control system
for smart cities by creating an attribute-based access control (ABAC) model com-
bined with the smart contract technology of blockchain. In this system, they use
one contract to handle different ABAC policies, one contract for the attributes of
the subject and one for the attributes of objects, and one contract to manage ac-

14

cess control. They implemented a local system with Ethereum blockchain and four
smart contracts to evaluate the financial cost and compare the proposed system with
the existing systems. The experimental results showed that the proposed schema
requires a higher initial investment than the ACL-based schema and pays lower
expenses during system administration, especially for large-scale smart cities.

3.1 Comparative Analysis

In Table 3.1, we have compared ten research works based on some key points, which
are their decentralization level, access control model, performance, scalability, secu-
rity measurement, implementation, protocol flow, and threat modeling. Analyzing
those papers, we found that RBAC-SC Paper (Cruz J. P. et al.) [9] and Attribute-
Based Access Control for Smart Cities (Zhang Y. et al.) [24] have a high decen-
tralization level. In the first paper, they used RBAC as their access control model,
while the second paper used ABAC as their access control model, but there is no
threat modeling or protocol flow in their paper. Between Smart Contract-Based
Role Management on the Blockchain (Ihle et al.) [14] and DAcc (Markus I. et al.)
[15], the first paper has a high decentralization level but DAcc is partially decentral-
ized. DAcc used a protocol flow in their paper. Another paper uses a protocol flow
called independently verifiable decentralized role-based delegation (Tamassia R. et
al.) [3]. They also implemented their research but they didn’t mention any metric
to mention their decentralization level. After analyzing carefully, we find out that
most of the papers use RBAC as their access control. If we talk about the perfor-
mance analysis, most of the papers have done their performance analysis based on
different matrices. In the table, we have a security measure field by which we can
analyze the security measurement of their systems. Most of the papers didn’t give
any security measurements but some have very high security, like blockchain security
mechanisms, Java security, BLS short signatures, MIRACL libraries, digital signa-
tures, etc. After analyzing the whole table, we can say most of them do not have
any threat modeling or protocol flow but most of them have a high decentralization
level and performance analysis. But then again, most of them do not have security
measures. If we talk about the implementation, most of them implemented their
proposed ideas. If we compare the four papers that used Ethereum or Hyperledger
Fabric, we find that all of them use RBAC or ABAC as their access control models.
So we can say ABAC and RBAC are the most famous access control models. In those
four papers, three of them have a high decentralization level. In our paper we are
using RBAC as our Access Control Model with a high level of decentralization using
Hyperledger fabric. To evaluate the feasibility of our research, we implemented our
idea in a real-life application and also ran different tests to analyze the performance
of our proposed model. We find out the system is scalable enough and also we have
blockchain security. We also include a protocol flow and threat model to understand
the system and its security requirements better.

15

T
a
b
le

3
.1
:
C
om

p
ar
at
iv
e
A
n
al
y
si
s

R
e
se
a
rc
h

W
o
rk

s
D
e
ce

n
tr
a
li
za

ti
o
n

L
e
v
e
l

A
cc

e
ss

C
o
n
tr
o
l
M

o
d
e
l

P
e
rf
o
rm

a
n
ce

A
n
a
ly
si
s

S
ca

la
b
il
it
y

S
e
cu

ri
ty

M
e
a
su

re
s

Im
p
le
m
e
n
ta
ti
o
n

T
h
re
a
t

M
o
d
e
l

P
ro

to
co

l

F
lo
w

R
B
A
C
-S
C

(C
ru
z
J
.P
.
et

al
.)

[9
]

H
ig
h

R
B
A
C

✓
-

-
✓

✗
✗

B
lo
ck
ch
ai
n
-B

as
ed
,

D
ec
en
tr
al
iz
ed

A
cc
es
s
C
on

tr
ol

fo
r
IP

F
S
(S
te
ic
h
en

M
.
et

al
.)

[1
0]

H
ig
h

A
C
L

✗

D
ep

en
d
s
on

E
th
er
eu
m

n
et
w
or
k

sc
al
ab

il
it
y

-
✓

✗
✗

(R
C
-A

A
M

(R
as
h
id

A
.
et

al
.)

[2
3]

-

D
ec
en
tr
al
iz
ed

ro
le
-b
as
ed

au
th
en
ti
ca
ti
on

an
d

ac
ce
ss

m
an

ag
em

en
t

u
si
n
g
b
lo
ck
ch
ai
n

✓
S
ca
la
b
le

(P
2P

n
et
w
or
k
)

D
ig
it
al

si
gn

at
u
re

✓
✗

✗

B
le
n
d
C
A
C

(X
u
R
.
et

al
.)

[1
1]

H
ig
h

C
ap

ab
il
it
y
-b
as
ed

✓

S
ca
la
b
le

(d
ev
ic
e-
to
-d
ev
ic
e

co
m
m
u
n
ic
at
io
n
)

B
lo
ck
ch
ai
n
se
cu
ri
ty

✓
✗

✗

S
m
ar
t
C
on

tr
ac
t-
B
as
ed

R
ol
e
M
an

ag
em

en
t
on

th
e
B
lo
ck
ch
ai
n
(I
h
le

et
al
.)

[1
4]

H
ig
h

R
B
A
C

-
-

S
m
ar
t
C
on

tr
ac
ts

se
cu
ri
ty

✓
✗

✗

T
ow

ar
d
s
a
gr
ou

p
b
as
ed

R
B
A
C

M
o
d
el

an
d

D
ec
en
tr
al
iz
ed

u
se
r-
ro
le

ad
m
in
is
tr
at
io
n
(L
i
Q
.
et

al
.)

[2
]

-
G
ro
u
p
-B

as
ed

R
B
A
C

(G
B
-R

B
A
C
)

✓
L
im

it
ed

S
es
si
on

M
an

ag
em

en
t,

A
cc
es
s
C
on

tr
ol

P
ol
ic
ie
s

✓
✗

✗

In
d
ep

en
d
en
tl
y
ve
ri
fi
ab

le

d
ec
en
tr
al
iz
ed

ro
le
-b
as
ed

d
el
eg
at
io
n
(T

am
as
si
a
R
.
et

al
.)

[3
]

-
R
B
A
C

✓
L
im

it
ed

J
a v
a
S
ec
u
ri
ty
,

B
L
S
S
h
or
t
S
ig
n
at
u
re
,

M
IR

A
C
L
L
ib
ra
ry

✓
✗

✓

D
A
cc

(M
ar
k
u
s
I.
et

al
.)

[1
5]

P
ar
ti
al

R
B
A
C

au
gm

en
te
d
w
it
h

d
ec
en
tr
al
iz
ed

le
d
ge
r

-
S
ca
la
b
le

C
ry
p
to
gr
ap

h
y

✓
✗

✓

D
ec
en
tr
al
iz
ed

A
cc
es
s
C
on

tr
ol

U
si
n
g
B
lo
ck
ch
ai
n
(J
am

sr
an

d
or
j
U
.)
[7
]

H
ig
h

-
✓

S
ca
la
b
le

-
-

✗
✗

A
tt
ri
b
u
te
-B

as
ed

A
cc
es
s
C
on

tr
ol

fo
r

S
m
ar
t
C
it
ie
s
(Z
h
an

g
Y
.
et

al
.)

[2
4]

H
ig
h

R
B
A
C

✓
-

-
-

✗
✗

O
u
r
W
or
k

H
ig
h

R
B
A
C

✓
S
ca
la
b
le

B
lo
ck
ch
ai
n
S
ec
u
ri
ty

✓
✓

✓

16

Chapter 4

Proposal

4.1 Proposed Model

The most significant drawback of having a centralized system in operation is the
existence of central authority that creates a dependency along with the risk of single
point of failure. To prevent this, our research paper proposes a decentralized access
control solution that applies the principles of blockchain technology more precisely
Hyperledger Fabric for the access control. Decentralizing all of the four components
of XACML will distribute the decision making authority to every available node in
the system resulting in a more robust and secure system. As demonstrated in the
system architecture, each of the nodes will have all four components of the XACML
in chaincodes. This way even if one or more nodes get compromised, as long as
even one node is active, the system will respond with accurate decisions according
to the policies and attributes. Along with our authorization, our research paper also
proposes a SAML authentication for identifying users using SAML Assertion. This
will allow users to share their security credentials across all available services under
a domain more widely known as Single Sign-On (SSO). According to I. Alom et al.,
identity provider can be decentralized using hyperledger fabric [19]. If our proposed
model is combined with a decentralized SAML identity provider, it will result in
a complete decentralized access control system but our research focuses solely on
decentralizing authorization. The proposed solution of a decentralized system is not
bound to any specific industry making it scalable and possibly further usable across
all environments.

4.2 Methodology

To complete our research in a structured approach we adopted Design Science Re-
search (DSR) methodology to develop and evaluate our Hyperledger Fabric-based
decentralized access control system. This is one of the methodologies that provides
an approach to developing and proving solutions. That is beneficial to the researcher
in constructing solutions and hypotheses in areas of interest such as business, sci-
ence and technology [5]. Every phase of the approach made sure we have complete
knowledge of the topic and development of the system, with options for iterative
approach depending on results and problems faced at every level:

17

Relevant Study

Threat Model

Requirement Analysis

Architecture

Implementation

Problem Identification
and Motivation

Update From New
Findings

Iterate Based on
Needs

Adjust Design
Iteratively

Discussion

Refine Through
Test Evaluation

Integrate New
Threat Insights

Figure 4.1: Methodology Flow Diagram

1. Problem Identification and Motivation: In this phase, we determined the
fundamental problems with current access control systems in terms of security.
After observing numerous security breaches, we found our motivation to come
up with a solution.

2. Relevant Study in Depth: In order to have a better understanding of
current security on access control systems, a comprehensive review of related
research has been done to have an idea of what should or should not be done.
The results of this review have helped identify current technology gaps and
serve as the basis for system design.

3. Threat Model: In this phase a security model is chosen to follow which is
enough to address the security risks inherent to the access control systems.
Other than the model we also considered various attacks such as internal
threats and external breaches to make sure the proposed system is secure.

4. Requirements Analysis: Here the functional and security requirements
analysis has been done in great detail. Reviews of previous research are useful

18

to identify the requirements to make the system secure and scalable.

5. Architecture: The architecture of the proposed system is flexible and scal-
able because it uses blockchain technology in order to decentralize the access
control system. The architecture is clear and explains chaincodes, blockchain
networks, and interfaces. Because of a clear structure, changes are easy while
maintaining good performance.

6. Implementation: In the implementation phase, the system employs Hyper-
ledger Fabric to build chaincode that manages the proposed extended access
control mechanism. This stage involves writing the chaincode and configura-
tion of the blockchain such that when deployed it operates to the optimum and
securely. Also, the system is integrated with the current IT environment to
understand the real-world scenario. This detailed process allows the creation
of a safe and stable solution that will meet certain access control requirements.

7. Discussion: In this phase a discussion and assessment of the previous require-
ments have been done. Fulfillment of the functional and security requirements
has been identified along with research objectives.

In each step of the proposed methodology shown in Figure 4.1, if there are issues
that indicate the need to go back to the previous level, then looping back to any
previous level is possible. This looping back makes it an iterative process that
enables continuous improvement and problem-solving of the system. For example,
if during the discussion phase risks are found, the system may have to go back to
the Architecture or Implementation phase for corrections. Then, it can be done.
So, new requirements that might be discovered during usability tests could refer
to Requirement Analysis or even Relevant Study to cover the needs of making this
research successful.

4.3 Threat Modelling

In this section, we try to identify the possible security and privacy-compromising
scenarios that can take place while implementing an XACML based system. Each of
these parameters can be taken care of individually while implementing the system.
To be very specific, we will be focusing on an established threat model known as
STRIDE [4]. STRIDE is a security threats which are given below:

T1. Spoofing Identity: This threat is the consequence of an intruder pretending
to be someone else for the purpose of gaining access to the network by getting
the user’s information during verification. An attacker might pretend to be the
real user in an XACML access control system. This system can be bypassed
by using this information to get sensitive information without permission.

T2. Tampering with Data: By impersonating a verified attribute, a hacker can
alter data that is very important to the system or network. Also, a hacker
with elevated authority can alter features, roles, and even authorization in
an XACML security control system. After alteration, a hacker can change
the system’s decisions regarding access control and get unauthorized access to
important information.

19

T3. Repudiation: Refers to the capability of developed entities, in keeping with
regulations, to reject specific acts that are illegal. Someone can try to change
an action in the XACML access control system and then state that they were
not involved there. They might achieve this by taking advantage of holes in
the implementation of policies and not enough policies. As needed by the
XACML policies, it will become harder to perfectly link actions to specific
entities.

T4. Information Disclosure: The unintentional disclosure of confidential data
by an aspiring hacker is information disclosure. For instance, a mistake in
establishing control may inadvertently provide broad access to distinct roles.
and these mistakes might enable unauthorized outsiders to get confidential
information, which may lead to data leaks and dangers.

T5. Denial of Service (DoS): A DoS attack can be utilized to accomplish an
unauthorized set of services. A hacker may launch a DoS attack by rushing
the servers with excessive requests and eliciting information at once, making
them uneffective. and thus this can render the system unstable, leaving the
valuable assets exposed to unauthorized entry and prohibiting them from fully
imposing authorization policies.

T6. Elevation of Privilege: The utilization of further actions to boost one’s
likelihood of obtaining access to system or network resources is the elevation
of privilege. For example, if the attacker gains initial access via a low-privileged
user, they can potentially take advantage of the weaknesses of the system to
increase their privileges by obtaining around XACML constraints and gaining
unauthorized access to the resources.

Additionally, an additional risk, which is very essential for the security of the ser-
vices, has been addressed.

T7. Replay Attack: Replay attacks require an attacker trying to capture the
data packets that users give to the server throughout the session. Afterwards,
he tries to send those packets again to fool the server into thinking that the
requests are authentic. In cases where private information is sent, it might
give rise to data manipulation and unauthorized access.

T8. XML External Entities (XXE): A web security flaw that allows an attacker
to manipulate how it processes its XML Data and even inject additional XML
data. An attacker might inject malicious XML data including external entities.
Through this manipulation, an attacker can easily access sensitive data such
as passwords, emails, and configuration files stored in the server by changing
policies. This might compromise the entire system.

4.4 Requirement Analysis

In this section, we specify multiple functional, security, and privacy requirements.
Functional Requirements describe the basic tasks that the system must perform.
On the other hand, security and privacy requirements will ensure the mitigation of
possible threats to the system.

20

Functional Requirements (FR): The functional requirements required for out
report are presented below:

FR1. The system must have the ability to define and enforce access control policies
and, the capability to manage user attributes and permissions.

FR2. A blockchain-based access control system should be integrated to ensure de-
centralized access control.

FR3. The system must make the right access control decision through chaincodes.

FR4. The system should work with a legacy system to show its applicability

FR5. The system must be scalable to support increasing user bases and access con-
trol demands.

Security Requirements (SR): The security requirements for the report are pre-
sented below:

SR1. A reliable authentication system must be implemented to mitigate the T1
threat.

SR2. Different types of hashing mechanisms must be utilized to protect data in-
tegrity and prevent tampering which will mitigate the T2 threat

SR3. Digital signatures must be used to ensure the non-repudiation of actions and
mitigation of threat T3

SR4. Implementation of access control measures to prevent unauthorized informa-
tion disclosure Also the data must be stored and transmitted in an encrypted
manner through networks. It might mitigate the threat T4

SR5. The system must implement different measures to identify and mitigate Denial
of Service (DoS) attacks

SR6. To mitigate the T6 danger, the system will use access control mechanisms such
as RBAC [1] to prevent attackers from elevating their privileges.

SR7. The system must take protective measures such as signature-based authenti-
cation, token, and data encryption to prevent T7.

SR8. Implementation of input validation and safe parsing algorithms to avoid XML
External Entities (XXE) attacks and mitigate T8.

21

Chapter 5

Architecture, Use-Case and
Protocol Flow

5.1 Architecture Design

The architecture of the decentralized access control system using Hyperledger Fabric
is intended to mitigate the vulnerabilities that are inherited from centralized access
control systems. This system aims to lower the risks related to unauthorized access.
To meet our research objective, the architecture must be configured in a way that
the resource control is distributed among the network nodes, which implies redun-
dancy, fault tolerance, and consensus-based trust. To make sure all the nodes have
the necessary features, blockchain technology will be integrated. It should use Smart
Contracts or chaincodes to encode access control policies making them transparent
and secure at the same time. Furthermore, the architecture must allow for the de-
ployment of multiple controlling nodes. Each node will be independent of managing
access control decisions. It will improve the scalability, and flexibility, and ensure
the transparency of the structure. The decentralized nature of the architecture is
to prioritize the visibility and immutability of access rights. Such features can be
achieved by utilizing the features of Hyperledger Fabric to ensure a secure as well
as resilient access control system.

XACML and SAML cooperate beautifully. While SAML makes it certain that the
person is who they claim to be, it allows them to interchange data. This often merges
into B2B applications because SAML will allow single sign-on, while XACML will
allow more fine-grained access control. At least one Identity Provider (IdP) needs to
be available that supports SAML. Figure 5.1 presents a compatibility architecture
of SAML and XACML.

In the proposed architecture, we intend to use the Hyperledger Fabric Blockchain
technology to make sure to strengthen our access control mechanism. We need to
implement the chaincodes of PIP, PAP, PEP and PDP into the blockchain. The
aim is to attach these components to the blockchain to guarantee the transparency,
immutability, and decentralized governance of the access control. This approach fits
very well with the decentralized nature of blockchain technology, bringing greater
security and trust into our decentralized applications.

22

G
at

ew
ay

G
at

ew
ay

User

1.Trying to
access DApp

SAML
Authority/

IdP

2. Trying to get

validated

3. Is
sue SAML

Validation Assertio
n

4. Requesting
Access with SAML

Assertion

5.
 V

al
id

at
e

SAM
L

Ass
er

tio
n

Process

PDP
Chaincode

PAP
Chaincode

PIP
Chaincode

PEP
Chaincode

9. Retrieve
Attributes

HyperLedger Fabric

Additional AttributesManage Policies

Grant Permission

Ledger

Restricted
Resources

6.
 F

or
w

ar
d

R
eq

ue
st

13
. F

or
w

ar
d

D
ec

is
io

n

14. Access /
Deny

7. Access Request

8. Request
Attributes

10. Request Policies

11. Retrieve
Policies

12. Forward Decision

Figure 5.1: Proposed Architecture

The flow of this architecture is given below:

i Trying to access DApp: A user is trying to access a decentralized application.

ii Trying to get validated: The user is seeking validation from the SAML Au-
thority or IdP.

23

iii Issue SAML Assertion: The SAML Authority such as IdP issues SAML
Assertion to the user. An assertion is an XML document that is signed using
the private key of the IdP and contains information of the user.

iv Request Access with SAML Assertion: The user requests access to the
DApp with the SAML assertion.

v Validate SAML Assertion: Before making the decision regarding access the
DApp decrypts the assertion to validate the IdP to validate it.

vi Forward Request: Based on the authentication, if allowed access, users can
request resources or services to PEP who is responsible for authorization deci-
sions.

vii Access Request: The PEP forwards the access request to the PDP which is
responsible for evaluating the access control policies and make decisions.

viii Retrieving attribute from PIP: The PDP requests and receives attributes
from the PIP which is stored in the ledger of hyperledger fabric.

ix Retrieving policies from PAP: The PDP requests and receives policies from
the PAP which is also stored in the ledger of hyperledger fabric.

x Access Response: After evaluating, PDP sends an Access Response to PEP.

xi Permit/Deny: The PEP forwards the decision to the system.

This architecture describes a way to combine SAML and XACML to achieve se-
cure access control for decentralized services. SAML is used for authentication and
XACML for authorization.

5.2 Use-Case and Protocol Flow

In this part of the paper, we will present a use-case along with protocol flow to
show how hyperledger fabric helps us decentralize the access control system using
XACML. At first we present our mathematical notations shown in Table 5.1 which
is self-explanatory. Secondly, our data model is shown in Table 5.2 and a clear
overview of this table is explained Data Model section.

Data Model: All the user action in the system can be combined as a request,
denoted as req in Table 5.2. A req can be of 5 types: spMetaURL, idpMetaURL,
type, data, and SAML. These requests consist of asking for data the function needs
to do its functional jobs. In the algorithm section, we will talk more about why the
function needs those data. The responses are denoted as resp, and there are 3 types
of responses: HTTP , URL, and assertion. Just like req, resp is also responsible
for outputting a specific data type which might be needed for other functionalities
or features of the system. Next, we will use loginData, It will be a combination of
username and password. Email can also be used instead of username but data data
type have to be unique here. And the login credentials need to be in pairs. Then we
have redirect, denoted as redirect in the table. It works as a function and it takes
two parameters. The first one is the URL to redirect to and the second one is what
it will take. Assertion could be a good example of with because we will be judging
the assertion as the identity card of the U, so it needs to be taken with us wherever

24

Table 5.1: Cryptographic Notations

Notations Description

SP Service Provider

U User

KSP
U Public key of U for SP

KU
SP Public key of SP for U

K
−1/U
SP Private key of SP to be used for U

K
−1/SP
U Private key of U to be used for SP

Ni A fresh nonce

CC Chaincode

CCPEP Chaincode of PEP

CCPDP Chaincode of PDP

CCPIP Chaincode of PIP

CCPAP Chaincode of PAP

H(M) SHA-256 hashing operation of message M

K−1/IdP Private key of IdP

[...]https Communication over secure https channel

[...]RPC Communication over a RPC channel

{}KU
SP

Encryption operation using public key of SP for U

we go in the system. Then we have a certificate, which we will get from IdP and
its call the X509 Certificate. After that we have some data denoted as DATA in the
respective table. Then we have the sign method. It takes two parameters: document
and key. We sign the document with the key to avoid its forging. Then at last we
have decrypt which takes M , Message, and a key to decrypt with.

Table 5.2: Data Model

req ≜ ⟨ SPMetaURL, IdPMetaURL, type, data, SAML ⟩

resp ≜ ⟨HTTP, url, assertion⟩

loginData ≜ ⟨ username, password ⟩

redirect ≜ ⟨ url, with ⟩

certificate ≜ ⟨ X509 Certificate ⟩

DATA ≜ ⟨ MetaData ⟩

sign ≜ ⟨ document, key ⟩

decrypt ≜ ⟨ M. key ⟩

25

Algorithms: Firstly we need to initialize and configure the IdP and SP for data
transaction. If a system decides to rely on a IdP for the authentication of the users,
the SP and IdP need to exchange the metadata. Metadata is an XML format
document that contains many things such as where to redirect after redirect, what
to do if authentication fails, what to do for an unauthorized or authorized user, and
some other requirements. After the metadata exchange between IdP and SP , they
both use this metadata for future communication.

Both SP and IdP has cryptographic trust. Additionally included in the transmitted
information are the public and certificated keys for signing and encrypting. All
message transit between SP and IdP is thereafter secured using these.

When the SP sends the users and the authentication request to the IdP jointly. It
generally autographs it. It does so for the matching key in the metadata using its
private key. The IdP checks the signature with the public key in the metadata that
the SP previously delivered when it receives the used authentication request.

Algorithm 1: Algorithm snippet for Setting Up IdP

Input: req
Output: None

1 Start
2 function exchangeMetadata(req)
3 SPMetadata := fetchMetadata(req, SPMetaURL);
4 IdPMetadata := fetchMetadata(req, IdPMetaURL);
5 storeMetadata(‘SPMetadata’, SPMetadata);
6 storeMetadata(‘IdPMetadata’, IdPMetadata);
7 return;

8 function fetchMetadata(url)
9 resp := HTTP.getURL;

10 return resp;

11 function parseMetadata(req)
12 DATA := { entityID := req.data.entityID,
13 .
14 .
15 certificate }
16 function storeMetadata(DATA)
17 database.store(DATA);
18 return;

19 End

In Algorithm 1, we go through how we handled the metadata exchange between SP
and IdP which includes the fetching of the metadata, parsing it storing the necessary
information from the metadata. The main function takes two URLs over a secure
HTTP channel one is idpMetadataURL and the other one is spMetadataURL. In
exchangeMetadata we first fetch the metadata of IdP and SP using a secure HTTPS
channel. Then we parse the metadata and extract all the necessary information
or data we need to make sure a secure a safe communication between IdP and

26

SP. The necessary data includes the certificates and public keys of both IdP and
SP. Information also includes data like spEntityID, acsURL, sloURL, spCertificate.
storeMetadata function is used to store the metadata and parsed information from
the metadata. It saves the information as an object that holds information like
entityID, ssoURL, sloURL, and certificate. SP will store the metadata of IdP and
IdP will store the metadata of the SP. Certificates are very important key of trust
between IdP and SP. By exchanging the certificates a trust is built within the IdP
and SP and this trust will be used in the future to authenticate the users.

After setting up the metadata for both IdP and SP. Now we will see how the asser-
tions are exchanged between these two entities while both of the entities have each
other’s public keys. Now we will see how the assertion is exchanged between the
user, IdP and SP.

Algorithm 2: Algorithm snippet for Sending SAML Assertion

Input: req → recievedSAMLRequest
Output: resp → SAMLAssertion

1 Start
2 function processSAMLRequest(req)
3 valid := validateSAMLReq(req.SAML);
4 if valid then
5 assertion := sign(req.SAML. K−1/IdP);
6 redirect(U.url, {assertion}

KSP
U

;

7 else
8 sendErrorResponse(“Invalid SAML Request”);

9 return

10 function SendAssertion(resp)
11 resp := resp.assertion;
12 redirect(SP.url, resp.assertion);
13 return;

14 End

In Algorithm 2, the SAML request is validated and the proceedings are done to
create, sign, and send the assertion if they are validated. This function is activated
when the SP redirects the user to the IdP for authentication. This function will take
loginData which is generally username/email and password. In this function we take
validateSAMLRequest functions help to function properly. The function takes the
loginData as its parameter and checks if the user is who he is claiming to be. In that
function, we will have to put a proper logic in order to build our criteria of a valid
SAML assertion. Otherwise the attackers might bypass the authentication process.
Generally, they come up with verified certification like X509Certificate or it may

27

have to sign with proper entities public keys or private keys. We will talk about
it more in the implementation section. After that, IdP will generate the assertion
for the user. This generated assertion carries the user information like username,
full name, age, and other necessary information required by the service providers.
Then the next step would be signing the assertion with IdP’s private key. After
validating and signing the assertion, we redirect the user to the service provider
along with the assertion. The user carries this assertion with him until a certain
time passes. There is a Time Limit Exceed (TLE) parameter in the assertion, after
that particular time user needs to get validated again. Generally the assertion stays
in the browser cookies.

Now, the SP knows that this assertion is from the trusted IdP depends on the
signature. In the next algorithm, we show how the SP verifies it.

Algorithm 3: Algorithm snippet for SAML Assertion Validation

Input: req → receivedSAMLAssertion
Output: validationStatus → “V alid”or“Invalid”

1 Start
2 function validateSAMLAssertion(req)
3 assertion := req.assertion;
4 valid := verifySignature(assertion);
5 if valid then
6 return “Valid”;
7 else
8 return “Invalid”;

9 function verifySignature(assertion)
10 M := assertion;

11 DecryptResp := decrypt(M, K
−1/SP
SP);

12 IdPSign := DecryptResp.Sign;
13 if IdPSign == KIdP then
14 return true;
15 else
16 return false;

17 End

Here in Algorithm 3, we validate the SAML assertion inside the SP so that the SP
would know if the assertion is valid and which resources is this U authorized to see
and use. Here we decrypt the SAML response using the private key of the SP then
extract the assertion. Then we verify the signature of the assertion. We will decrypt
the response in the decryptResponse function using the SP private key. Because
it was encrypted using the public key of the SP by IdP. Then from the decrypted
assertion we extract the signature then using the verifySignature function we verify
it. the verifySignature function is defined to check the validity of the signature. It
loads the IdP’s public key and then verifies the hash of the assertion data against
the extracted signature using the public key of the IdP. This pseudocode gives an
overview of how the SP retrieves, validates, and decrypts the SAML response to
guarantee integrity and validity.

28

Algorithm 4: Algorithm snippet for Chaincode PDP
Input: req → jsonObject
Output: Decision → “Permit”or“Deny”

1 Start
2 function evaluate(req)
3 req := Parse(req);
4 subject := req.subject;
5 action := req.action;
6 resource := req.resource;
7 policies := invokeChaincode(‘PAPChaincode’, ‘getAllPolicies’);
8 policies := Parse(policies);
9 decision := ‘Deny’;

10 for policy of policies do
11 parsedPolicy := Parse(policy);
12 result := evaluatePolicy(parsedPolicy, req);
13 if result := ‘Permit’ then
14 decision := ‘Permit’;
15 break;

16 return decision;

17 function evaluatePolicy(policy, req)
18 rules := policy.Policy.Rule;
19 for rule of rules do
20 if matchRule(policy.Policy, rule, req) then
21 return rule.$.Effect;

22 return ‘Deny’;

23 function matchRule(policy, rule, req)
24 subject := req.subject;
25 action := req.action;
26 resource := req.resource;
27 roles := invokeChaincode(‘ChaincodePIP’, ‘getRoles’);
28 subjectMatches := rule.Target[0].Subjects[0].Subject[0].SubjectMatch;
29 actionMatches := rule.Target[0].Actions[0].Action[0].ActionMatch;
30 resourceMatches := rule.Target[0].Resources[0].Resource[0].ResourceMatch;
31 subjectMatch := subjectMatches.some(sm →

roles.includes(sm.AttributeValue[0].));
32 actionMatch := actionMatches.some(am → action === am.AttributeValue[0].);
33 resourceMatch := resourceMatches.some(rm → resource ===

rm.AttributeValue[0].);
34 if (not subjectMatch) or (not actionMatch) or (not resourceMatch) then
35 return False;

36 return rule.$.Effect == ‘Permit’;

37 End

Algorithm 4 specifies whether or not a particular user is permitted to use a service or
to see a resource in our system. The ‘evaluate’ function is the heart of the algorithm
that takes JSON requests which should contain information about the subject (the
username), the action the user wants to take, and the resource on which the action
is to be taken. The system then calls for all the policies by invoking a chaincode

29

known as “PAPChaincode”. It stores it on a variable “policies”, and then the
system parses it to do later operations. Initially, it sets the decision variable to
“Deny,” and then it goes through all the policies through a loop, for each policy it
calls a function “evaluatePolicy()” which in turn evaluates each policy in detail. It
takes each policy at a time and again parses it and passes it to a function named
“matchRule”. This function compares the given request with the requirement of a
particular rule in order to see if the rule can be implemented. It retrieves the subject,
action, and resource from the request, and the roles of the subject by invoking the
PIPChaincode. After that, it checks if the subject, action, and resource are present
in the rule using SubjectMatch, ActionMatch, and ResourceMatch. This is done by
making a comparison of the value with the values in the rule set against the values
in the request. If the rule was matched to the request by the user, the action and
resource of this function will return True. If the rules do not find any matches, the
function returns False. The boolean return will then propagate back to the evaluate
function. Depending on the result, the user gets either a “Permit” or “Deny”.

Protocol Flow: In the protocol flow we have shown how IdP authenticates a user
and the functionalities of XACML in Table 5.3 and Table 5.4 respectively.

Table 5.3: Data Flow Table 1

M1 U → SP : [N1, serviceReq(urlsp)]https

M2 SP → U : [N1, redirect(urlidp)]https

M3 U → IdP : [N2, serviceReq(url, IdP)]https

M4 IdP → U : [N2, CredentialRequest]https

M5 U → IdP : [N2, LoginData]https

M6 IdP → U : [N2, redirect(urlsp, [SAMLAssertion]k−1/IdP)]https

M7 U → SP : [N3, serviceReq(urlsp, [SAMLAssertion]k/IdP)]https

i The user submits a request to SP and try to use its services at urlSP .

ii SP returns Welcome Page to the user and redirects the U to urlIdP for authen-
tication as a U via M2 in Table 5.3.

iii As the U is redirected to the IdP , it asks for login credentials to validate the U

iv The user submits LoginData to initiate the login process with the IdP .

v IdP will verify the user and generate an SAML Assertion. The assertion contains
many information or attributes like entityId, username etc. It also contains the
certificates, authentication status and some additional attributes such as roles,
permissions, email etc. Finally the assertion is digitally signed by Private key of
the IdP (K−1/IdP), step M5 of Table 5.3.

vi IdP redirects the U to urlSP , The U carries the SAML Assertion in its browser.

vii After getting to the SP with the assertion, the SP validates the assertion by
decrypting the assertion using the public key of IdP and checking the certification
of the assertion.

30

Table 5.4: Data Flow Table 2

M1 U → CCPEP : [N3, DATAReq]https

M2 CCPEP → CCPDP : [N3, CCPDP (DATAReq)]RPC

M3 CCPDP → CCPIP : [N3, attrReqU]RPC

M4 CCPIP → CCPDP : [N3, attrRespU]RPC

M5 CCPDP → CCPAP : [N3, policyReqU]RPC

M6 CCPAP → CCPDP : [N3, policyRespU]RPC

M7 CCPDP → CCPEP : [N3, resp]RPC

M8 CCPEP → SP : [N4, resp]https

M9 SP → U : [N5, DATA]https

Table 5.4 represents the data flow of the functionalities of XACML. The data flow
explanation is discussed below:

i After all the validation, the U then finally be able to request any DATA or
Resources.

ii The request have to go through the PEP. The CCPEP handles the request and
forward it to the PDP through a RPC channel.

iii After receiving the request CCPDP requests for additional information on the
user to verify if the U is authorized to have or use the DATA to PIP through
the RPC channel.

iv CCPIP responds with that request and sends all attributes and optional data of
that user to PDP using a RPC channel.

v CCPDP then checks all the policies and verifies if the U is authorized or not

vi PDP then forwards the decision of the authorization of the U which is denoted
as resp.

vii Finally if the validation id successful and the U is authorized to have the DATA,
SP sends the DATA to the U .

The protocol flow that is presented effectively illustrates how SAML-based SSO
allows safe and easy user authentication across many services. Then PEP, PDP,
and PIP access control techniques are included into the system to guarantee that
users not only authenticate successfully but also get the right access to resources
depending on specified policies and user roles.

31

Chapter 6

Implementation and Performance
Analysis

The approach that we are proposing in this paper utilizes XACML, SAML, and Hy-
perledger Fabric for decentralized access control. In our case, we chose RBAC as our
access control model. We opted to implement the whole idea into an enterprise-like
web service. The purpose of this implementation is to decentralize the manage-
ment of access control, remove single-point points of failure, and increase security
by applying hyperledger blockchain technology. We built an Event management
web service where there will be multiple roles, each role will have access to certain
resources, and every time the resources are tried to access, the evaluation will hap-
pen in the chain codes. This ensures that any resources that are locked up by this
system can only be opened by users with certain privileges, such as an administrator
or an admin.

6.1 Environment Setup

To implement the proposed system in a real-world enterprise like a web service, the
following environment was set up:

• OS: Ubuntu 24.04 LTS was selected as the operating system because of its
reliability, stability, security, and compatibility with the tools and libraries

• Blockchain: Hyperledger Fabric version 2.5.9, used for distributed ledger
management and chaincode execution. It is the core component which decen-
tralizes the whole access control.

• SAML SSO: WSO2 Identity Server (WSO2 IS) version 7.0.0 is used for
SAML-based authentication and single sign-on (SSO) features. It also provides
the necessary information for a user which helps to manage users efficiently
[32].

• Node.js: Version 16.x is used to build the front-end part of the application and
for the interactions with the Hyperledger Fabric. The Node.js environment also
supports chaincodes and API that allows decentralized access to the blockchain
system [40].

32

• Go: Version 1.16.x was used because it is one of the prerequisites of hyper-
ledger fabric technology [37].

• cURL: During application setup commonly used for downloading binaries and
interacting with different REST APIs cURL was installed for downloading
the required scripts and packages including Hyperledger Fabric binaries from
official repositories [36].

• Git: When it comes to version control, Git was used for cloning repositories
and chaincode and other Hyperledger Fabric related artifacts’ source code and
binaries. Git also guarantees that the development process is both orderly and
coordinated [13].

• Python: Version 2.7 was installed because certain pieces of Fabric tools de-
pend on Python for scripts and automation through the setup process. Though
Python 3.9 is the latest one but we went for the older version because in prac-
tice hyperledger fabric is not updated to support newer versions of Python
[41].

6.2 Tools and Technologies

To facilitate the system integration and just the way it works overall, we used several
tools:

• WSO2 Identity Server (IS): For SAML-based authentication and identity
service [35].

• Hyperledger Fabric: For the distributed ledger management and chaincode
to be able to make authorization decisions prospects. It is very much suitable
for enterprises who want to pursue blockchain as their security environment
[38]

• Blockchain Explorer: Version 2.0.0 to visualize and observe the network of
Hyperledger Fabric. It helped with the monitoring of transactions and blocks
[20]

• Docker and Docker Compose: Versions 20.10.7 and 1.29.2 respectively for
containerization and orchestration of services. It is also necessary for hyper-
ledger fabric because Services were deployed in Docker containers to enforce
the isolation of execution environments of peers, orderers, and CAs. Docker
Compose was used to solve the problem of running multiple services at once
[12].

• XACML: For defining the access control policies and to measure the access
control requests.

• Visual Studio Code: The Development Environment that was used in the
development process in writing, editing, designing, compiling both the chain-
codes and front-end backend codes, and testing the system [42]

• JMeter: Version 5.6.3 to conduct load testing and evaluate the performance
and capacity of the system. It helped us determine if our system was able to
support large enterprise loads without being slow [39].

33

6.3 System Overview

We are implementing a solution that utilizes blockchain technology more specifically
Hyperledger Fabric for the access control.

6.3.1 Development

In order to build a simplified decentralized secure system, we have implemented two
peers, and two organizations with one orderer and one channel network architecture
using Hyperledger Fabric. Each of the peers is part of a different organization, shar-
ing the same distributed ledger and executing chaincodes for access control. The
orderer also guarantees that the transaction is ordered properly and propagated
to the nodes of the network. In this architecture, the system attains decentral-
ization because both peers share the control of the system. If one peer is offline,
the other peer keeps on handling requests and confirming the transaction to ensure
uninterrupted access control. Also, a round-robin algorithm was implemented that
alternates between all the peers distributing the load equally among them. This
round-robin technique ensures that every peer participates in each task so that the
system gets better performance. The resilience and fault tolerance of the system
increases with the increasing number of peers engaged in the network to ensure the
continuous availability of access control services. This integration is essential to
avoid any possibilities of SPOF. Since no one peer or organization can dominate
the system, there is no single point where all the access decisions are made. Both
peers are active members of the network and all of the access control policies are
mirrored about them. As long as there is at least one peer available, the system
is operational, can validate the user’s requests, and make the access decision based
on the XACML policies stored in the blockchain which improves the security and
decentralization of the access control system.

The system architecture uses the WSO2 Identity Server as the primary SAML-based
Identity Provider (IdP) to handle all the authentication and authorization needs,
while Hyperledger Fabric handles both the distributed ledger and chaincode oper-
ation for managing access control on the distributed ledger. SSO is also supported
through SAML 2.0 assertions which means that once a user has logged in to an
application, he can access all the other related resources without having to enter
a username and password again. Concurrently, Hyperledger fabric keeps access
control policies decentralized and only allows the user to access them by invoking
chaincodes. Access control decisions are decentralized across the blockchain net-
work to mitigate SPOF. WSO2 Identity Server provides necessary information of
a user which the SP needs but the roles of each user are saved on the distributed
ledger through the chaincode of PIP of Hyperledger fabric for enhanced security.
The policies will also be stored in the distributed ledger through the chaincode of
PAP, as policies are the most sensitive security concern of access management. As
mentioned in the paper, the proposed architecture decentralizes the access control
model, in our case RBAC, and improves security, trust, and robustness by using
blockchain to make authorization choices throughout the network.

34

6.4 Steps to Implementation

The implementation of the system was executed in four key phases: WSO2 Iden-
tity Server (WSO2 IS) configuration, Hyperledger Fabric configuration, XACML
and SAML Configuration as well as chaincode implementation. Initially, WSO2 IS
was deployed on a Ubuntu 24.04 LTS and a new SP was created to use SAML for
authentication and SSO features. The Assertion Consumer Service (ACS) URLs
and metadata were then set to allow secure connections between the client applica-
tion and the identity server. Following this, a Hyperledger Fabric network was set
up through Docker and Docker Compose for the transaction ordering service, peer
nodes, as well as the CA to handle network identity. Then chain codes of PEP, PDP,
PAP, and PIP were developed to decentralize the access control management. In
the next phase, role based access control was implemented by combining XACML
and SAML technologies. SAML was used to authenticate users and PIP to get the
user’s roles while the PDP was made responsible for deciding the access for a certain
resource based on policies given stored in the PAP of the XACML. Then, chaincode
development was initiated and done very carefully as it will be the pillar of the
access control system. The PEP is the interceptor between the users and the PDP
service and it is responsible for sending the access requests to the PDP and giving
access results back to the users based on the evaluation of the PDP. The PEP was
to intercept access requests which were to be processed by the PDP based on the
roles and policies that were stored in PIP and PAP respectively. The PIP and PAP
retrieved the role attributes and policies required from the blockchain, to provide
decentralized, secure management of roles and policies. This implementation did
not require a specific database to store the user roles and permissions, instead, it
leveraged the Hyperledger Fabric blockchain distributed ledger to manage user roles
and policies securely.

6.5 Performance Analysis

To compare the results under varying loads and stress we have recorded the total
sample count, average response time, error, throughput and latency after each test
cycle. And after the completion of each test cycle, the data derived from different
configurations were aggregated in order to get an assumption of the system per-
formance under different circumstances. Consequently, the results were analyzed
thoroughly to understand how the performances were varying. Figure 6.1, Fig-
ure 6.2 and Figure 6.3 show the comparative analysis of the test scenarios. Device
Configuration:

• Processor: AMD Ryzen 9

• Memory: 16GB RAM

• Graphics: NVIDIA GeForce RTX 3060

• Storage: 1TB SSD

35

6.6 Testing Scenarios

In this testing process, two key metrics are used to evaluate the performance of the
’enforce’ function in different scenarios. Both metrics call for the ‘enforce’ function,
which is the system’s most complicated and core function of our research. The
function calls the PEP of the chaincode which then makes an inter-chaincode call
to PAP and PIP for policies and roles of the user.

• One-Peer Fallback: In this case, one peer is in charge of the incoming
requests and forwards the responses. In case that peer fails or falls the other
peer will take responsibility for the incoming requests. This is decentralized
in the sense that there is a fallback to restore control over the system. If we
ignore the fallback section, this metric can also be compared to a centralized
system as only one peer is working.

• Round-Robin Load balancing: In this setup, both peers are equally re-
sponsible for the access requests. Every peer takes turns taking requests to
ensure that each peer does not carry the burden of many requests beyond a
particular limit. It helps to prevent any peer from being overloaded. Also,
they will work much faster as they divide the requests between nodes.

6.7 Test Plan

To evaluate the performance we executed the following test plan

• Using 100 threads to start and step up by 100 to 2000 threads to understand
how the system performs when the number of concurrent users increases and
to have an insight at what point the system begins to struggle.

• Implemented a ramp-up time of 5 seconds and loop count of 5 for each test to
allow controlled testing with less traffic to more traffic by time. The sudden
traffic also gives us an insight into how the system handles sudden spikes of
concurrent users.

• Used 5 https requests all to the same endpoint but with different json body
where 4 of them were expected permit and 1 deny to test both access control
decisions as the system might encounter them in its practical application. In
our assumption, eighty percent of requests will be permitted while the other
twenty will be unauthorized or denied.

• Every test case was run three times and then the average was taken for more
accuracy. This ensures that the sudden changes in behaviors were taken into
account and the average provided more reliable and consistent results.

• Tried to identify the saturation point where the performance starts to decrease
as the load increases. This is to understand the limitations of the system and
identify how much load it can handle without falling apart.

36

6.8 Metrics Evaluation

In our tests we used some of the output metrics to judge the performance capability
of our system. They are briefly explained down below:

i Throughput: Within a second the number of successful queries on the ledger
can be handled. And, much better performance can be achieved by a higher
throughput mostly if there is a high load. Throughput was chosen because it
describes the system’s capacity to grow and manage many transactions at once,
which is crucial in distributed systems with high loads.

ii Latency: The significant time that is required to complete whole queries and
operations. We chose latency because it gives the level of performance that a
system can offer. Less latency means a higher processing power which is essential
in quick decision making in a decentralized network.

iii Error Rate: The percentage of unsuccessful transactions and queries. A low er-
ror rate denotes that the system is more trustworthy and is capable of managing
more requests. The reason why error rate was chosen is because it illustrates the
stability and reliability of a system. A small error rate is important for raising
transaction volumes to go through the system without leading to system failure
while high error rates do the opposite.

iv Response Time: This test evaluates time taken for the system to give a re-
sponse to the request from the time it was sent. The reason it was chosen because
it directly affects the user experience. A lower response time means a quicker
and more efficient system, which enhances a better or improved user experience
with the system.

6.9 Observations

After testing thoroughly, we analyzed the results, and came up with the following
observations:

• Throughput Comparison: Figure 6.1 compares the throughput of both
one-peer fallback and Round-Robin scenarios. The Round-Robin consistently
outperforms One-Peers fallback with the throughput increasing steadily from
around 150 to nearly 180 requests per second as the number of loads increases.
On the other hand, the One Peer Fallback configuration begins at a compa-
rable point and trends up to about 150-160 requests per second after which it
hardly scales up regardless of the amount of load it receives. This shows that
the Round Robin which distributes the load equally among peers, is much
more efficient at handling large loads than One Peer Fallback which sacri-
fices performance for stability. That’s why Round Robin is more suitable for
scenarios that require high scalability.

37

Figure 6.1: Throughput

• ART Comparison: Figure 6.2 compares the response time of both one-peer
fallback and Round-Robin scenarios. In both scenarios, the response time
grows as the number of users increase. The One Peer Fallback shows reliably
higher response times than the Round Robin and the difference increases with
each additional user level. This graph indicates that the One Peer Fallback
performs less efficiently under heavier loads than the Round Robin does and
shows lower than average response times throughout its request handling.

Figure 6.2: Average Response Time

38

• Latency Comparison: Figure 6.3 illustrates the average latency between
One-Peer fallback and Round-Robin scenarios where both of them have high-
level latency as the number of users grows with increasing number of requests.
The Round-Robin shows lower latency than one peer fallback in all scenarios.

Figure 6.3: Average Latency

• Overall Performance: The response time, throughput, and latency rates
show that the Round Robin configuration is better than the One Peer Fallback
in the higher request volume. Balancing load between multiple peers across
the network to distribute the load can mitigate bottlenecks and vulnerability
to DoS attacks. This scalability and redundancy allow for the management
of traffic loads to be more efficient which in turn makes Round Robin more
capable of handling the effects of DoS attacks.

39

Chapter 7

Discussion

In this chapter, the functional and security requirements are analyzed. Research
objectives are assessed along with the discussion of advantages, challenges or limi-
tations and future works.

7.1 Functional Requirement Analysis

This section evaluates how the implemented decentralized access control system
meets each of the defined functional requirements:

FR1. The system successfully fulfills the overall objective of integrating chaincodes
in defining the access control policies and also to easily enforce them in the
blockchain network. This keeps policy application consistent across the system
while eliminating the need for a control center to monitor the access controls,
thus satisfying the concerns of needing strong access control mechanisms.

FR2. This requirement was also fulfilled as Hyperledger fabric establishes a highly
decentralized model of decision-making on access control by distributing the
responsibilities among multiple nodes. Besides decentralizing the access con-
trol, the integration of this process also uses blockchain security characteristics
that improve the overall stability of the system.

FR3. We have developed chaincodes for all the XACML components for decision-
making in access control to be accurate and deployed them inside the Hy-
perledger Fabric network. This capability enables the organization to meet
automatic and accurate access control decisions.

FR4. We implemented our theory system in an event management service which
proves its viability in legacy systems. This practical implementation demon-
strates the function of the system and how decentralized access control can be
easily integrated into existing organizational structures.

FR5. Due to the design of the architecture, the scalability can be increased with
increasing the amount of peers involved. The modular scalability approach
fulfills this requirement. It also proves that the system’s performance and
reliability improves with the network size which makes it suitable for many
organizations.

40

7.2 Security Requirement Analysis:

In this section we assessed how the implemented decentralized access control system
satisfies each of the security requirements that have been outlined:

SR1. Authentication in this system is made secure by SAML authentication using
the WSO2 Identity Server which uses digital certificates for identification. The
use of this setup allows for proper and secure validation of user identities within
the network to meet the condition of strong authentication.

SR2. The integration of the WSO2 Identity Server fulfills this requirement, as it
applies hashing mechanisms for securely storing user data.

SR3. Non-repudiation is achieved with the help of the digital signatures used by
each peer of Hyperledger Fabric. This setup makes it possible for actions that
take place within the system to be proven and no one can deny it after the
event.

SR4. Chaincode-based access control decisions and transaction confirmation mean
that the system restricts access to the data and prevents unauthorized infor-
mation leakage.

SR5. Since the system is decentralized, it will be relatively easier to defend against
DoS attacks. This security can be improved by adding more peers as attacking
one peer will not affect the whole system. More peers will give more security.

SR6. Our access control mechanism is strong enough to prevent attackers from el-
evating their privileges. One would have to bypass many security layers such
as the digital certificates of peers and WSO2IS to gain this control.

SR7. Handled effectively by the digital signature mechanisms within the WSO2
Identity Server.

SR8. In this research, we are not focused on counteracting S8 as it is out of our
research scope. S8 refers to an XML External Entity, which deals with vul-
nerabilities in how XML parsers process external entities and our research is
solely on decentralizing authorization engine.

7.3 Research Objective Analysis:

In this section, we analyzed if the implemented decentralized access control system
fulfills our research objectives:

RO1. The objective was fulfilled as the system proposed to decentralize the access
control model to distribute the access decision and policy management across
multiple nodes in a blockchain network after analyzing the vulnerabilities of
the centralized access control system.

RO2. It was also successfully fulfilled as in the Architecture section we have proposed
a decentralized model for XACML which uses Hyperledger Fabric which later
in implementation proved to solve SPOF.

41

RO3. Fulfilled this objective by developing chaincodes of PEP, PDP, PAP, and PIP
and deployed them in Hyperledger Fabric to propagate it among multiple peers
to achieve decentralization.

RO4. Based on performance results obtained under higher loads, the system can be
scalable so this objective was also achieved. Also according to our evaluation,
the scalability can be increased by adding more nodes to the network.

7.4 Advantages

Incorporating decentralized access control system in access control models provide
a number of advantages which are discussed below:

• In this system, the decision-making process is distributed among multiple
peers. Thus it does not depend on any single node. So if any nodes go offline
other nodes will make up. So it eliminates the multiple threats.

• With the implementation of Hyperledger Fabric, the access requests can be
propagated across several peers. This is helpful in terms of handling more
requests simultaneously, which makes the response time better.

• We have deployed the XACML components (PIP, PDP, PEP and PAP) as
chaincode in Hyperledger Fabric. Once these components are deployed their
functionality cannot be modified which ensures the security and reliability of
the access control decisions. While the chaincode can be upgraded if necessary,
the access control logic stays consistent and temper-proof after each deploy-
ment layer. Thus, the integrity of access control decisions is served within the
system.

• Since we are working with Hyperledger Fabric, the roles and policies are set
within the distributed ledger. If there is a modification, it will be transparent
within the distributed ledger.

• We have also added SAML for authentication as an extra layer of security and
SSO functionality. Using this also allowed having other necessary information
for each user.

7.5 Challenges And Limitations

Along with all its advantages decentralized access control systems also come with
many challenges and limitations on its own that are discussed next:

• Since the number of users and policies increases gradually, the management
of such users and policies becomes challenging, and this slows down policy
evaluation and decision-making processes.

• The performance of the system decreases with high loads due to the time
required for the inter-chaincode communication. This is especially felt during
load testing.

• To get better scalability, we have to increase the number of peers, which makes
it more expensive in real-life scenarios.

42

• The use of WSO2 for authentication creates a new dependency external to
the system. Any problem related to WSO2 could result in compromising the
performance or the availability of the system.

43

7.6 Future Works

In future, we intend to work on the following:

1. We intend to work on dynamic node management. For decentralizing access
control, multiple nodes might need to be managed according to the needs of
organizations. Handling those nodes dynamically would make the system less
dependent on raw manpower making it more efficient.

2. We intend to optimize the chaincode more for better scalability. In our limited
research scope, we developed the chaincodes to serve the functionality but
we felt it could be more optimized for better scalability. Thus, Scalability
considerations are taken into account.

3. We would like to combine our implementation with other access control sys-
tems like ABAC, ACL, and some others. Analyzing how these systems can
take advantage of the decentralization of the blockchain could reveal opportu-
nities for managing security in a more adaptive, sensitive manner.

44

Chapter 8

Conclusion

Authorization in almost every model is mostly done using a centralized system which
makes it vulnerable to many security threats. Centralized authorization models
constantly leave enterprises open to large hacks and data branches. Anyone who
is putting their trust in technology with little to no knowledge is being harassed
without even knowing the mistake. This research highlights that blockchain can
transform the current access control system from a centralized to a decentralized
model. This also not only has a positive impact on security by eliminating the
SPOF but also on scale and transparency. In this paper, we have discussed how
XACML can be completely decentralized using Hyperledger Fabric and shown that
blockchain offers a reliable and fault-tolerant approach for the management of access
control that can be applied widely. Our findings and theories are also implemented
in a real-world enterprise-like service which confirms the practical application and
effectiveness of our decentralized access control. As our system is decentralized the
control is distributed throughout the network, which makes the system more redun-
dant and safe from the risks of a centralized model. The practical implementation of
our proposed system for handling dynamic access control has provided evidence that
it works effectively and keeps integrity and confidentiality while producing correct
authorization decisions. In the future, We intend to work on the efficiency of our
system. Additionally, Future studies could be about how a more sophisticated con-
sensus mechanism could be implemented into the system to enhance performance
and security. Furthermore, we can also research how it can be implemented in
emerging technologies such as AI, machine learning, and the Internet of Things and
how our findings could help them to have stronger security and faster responses.

Thus, our work can be regarded as a valuable contribution to the further enhance-
ment of decentralized applications as it offers a scalable and secure access control
solution.

45

Bibliography

[1] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-based access control
models,” Computer, vol. 29, no. 2, pp. 38–47, 1996. doi: 10.1109/2.485845.

[2] Q. Li, M. Xu, and X. Zhang, “Towards a group-based rbac model and de-
centralized user-role administration,” in 2008 The 28th International Confer-
ence on Distributed Computing Systems Workshops, 2008, pp. 441–446. doi:
10.1109/ICDCS.Workshops.2008.26.

[3] R. Tamassia, D. Yao, and W. H. Winsborough, “Independently verifiable de-
centralized role-based delegation,” IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 40, no. 6, pp. 1206–1219,
2010. doi: 10.1109/TSMCA.2010.2045118.

[4] A. Shostack, Threat Modeling: Designing for Security. Wiley, 2014, isbn: 9781118809990.
[Online]. Available: https://books.google.com.bd/books?id=asPDAgAAQBAJ.

[5] A. Dresch, D. P. Lacerda, and J. A. V. Antunes Jr, Design Science Research.
Cham: Springer International Publishing, 2015, isbn: 9783319073736. doi:
https://doi.org/10.1007/978-3-319-07374-3.

[6] R. Bagchi. May 2017. [Online]. Available: https://core.ac.uk/reader/132491552.
[7] U. Jamsrandorj, “Decentralized access control using blockchain,” Ph.D. dis-

sertation, University of Saskatchewan, 2017.
[8] E. Androulaki, A. Barger, V. Bortnikov, et al., “Hyperledger fabric: A dis-

tributed operating system for permissioned blockchains,” in Proceedings of the
Thirteenth EuroSys Conference, ser. EuroSys ’18, Porto, Portugal: Association
for Computing Machinery, 2018, isbn: 9781450355841. doi: 10.1145/3190508.
3190538. [Online]. Available: https://doi.org/10.1145/3190508.3190538.

[9] J. P. Cruz, Y. Kaji, and N. Yanai, “Rbac-sc: Role-based access control using
smart contract,” IEEE Access, vol. PP, pp. 1–1, Mar. 2018. doi: 10.1109/
ACCESS.2018.2812844.

[10] M. Steichen, B. Fiz, R. Norvill, W. Shbair, and R. State, “Blockchain-based,
decentralized access control for ipfs,” in 2018 IEEE International Confer-
ence on Internet of Things (iThings) and IEEE Green Computing and Com-
munications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), 2018, pp. 1499–1506. doi:
10.1109/Cybermatics 2018.2018.00253.

[11] R. Xu, Y. Chen, E. Blasch, and G. Chen, “Blendcac: A blockchain-enabled
decentralized capability-based access control for iots,” in 2018 IEEE Interna-
tional Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Com-
puting (CPSCom) and IEEE Smart Data (SmartData), 2018, pp. 1027–1034.
doi: 10.1109/Cybermatics 2018.2018.00191.

46

https://doi.org/10.1109/2.485845
https://doi.org/10.1109/ICDCS.Workshops.2008.26
https://doi.org/10.1109/TSMCA.2010.2045118
https://books.google.com.bd/books?id=asPDAgAAQBAJ
https://doi.org/https://doi.org/10.1007/978-3-319-07374-3
https://core.ac.uk/reader/132491552
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/ACCESS.2018.2812844
https://doi.org/10.1109/ACCESS.2018.2812844
https://doi.org/10.1109/Cybermatics_2018.2018.00253
https://doi.org/10.1109/Cybermatics_2018.2018.00191

[12] Docker, Docker documentation, Oct. 2019. [Online]. Available: https://docs.
docker.com/.

[13] Git, Git - documentation, 2019. [Online]. Available: https://git-scm.com/doc.
[14] C. Ihle and O. Sanchez, “Smart contract-based role management on the blockchain,”

in Business Information Systems Workshops, W. Abramowicz and A. Paschke,
Eds., Cham: Springer International Publishing, 2019, pp. 335–343, isbn: 978-
3-030-04849-5. doi: 10.1007/978-3-030-04849-5 30.

[15] I. Markus, L. Xu, I. Subhod, and N. Nayab, “Dacc: Decentralized ledger based
access control for enterprise applications,” in 2019 IEEE International Con-
ference on Blockchain and Cryptocurrency (ICBC), 2019, pp. 345–351. doi:
10.1109/BLOC.2019.8751479.

[16] S. Michael and Z. J. Anna, “An identity provider as a service platform for the
edugain research and education community,” in 2019 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM), 2019, pp. 739–740.

[17] L. Pawczuk, B. Hansen, R. Massey, and J. Holdowsky, Deloitte’s 2020 global
blockchain survey, 2020. [Online]. Available: https : / /www2 .deloitte . com/
content / dam/ insights / us / articles / 6608 2020 - global - blockchain - survey /
DI CIR%202020%20global%20blockchain%20survey.pdf.

[18] M. Shen, L. Zhu, and K. Xu, “Blockchain and data sharing,” in Blockchain:
Empowering Secure Data Sharing. Singapore: Springer Singapore, 2020, pp. 15–
27, isbn: 978-981-15-5939-6. doi: 10 .1007/978- 981- 15- 5939- 6 2. [Online].
Available: https://doi.org/10.1007/978-981-15-5939-6 2.

[19] I. Alom, R. M. Eshita, A. Ibna Harun, et al., “Dynamic management of iden-
tity federations using blockchain,” in 2021 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), 2021, pp. 1–9. doi: 10 . 1109 /
ICBC51069.2021.9461128.

[20] Hyperledger explorer screens — hyperledger explorer documentation2021, 2021.
[Online]. Available: https://blockchain- explorer .readthedocs . io/en/main/
presentation/index.html.

[21] X. Li, J. Yang, S. Gao, Z. Shi, J. Li, and X. Fu, “Dbs: Blockchain-based
privacy-preserving rbac in iot,” in Nov. 2021, pp. 94–110, isbn: 978-3-030-
91423-3. doi: 10.1007/978-3-030-91424-0 6.

[22] P. Mukherjee and C. Pradhan, “Blockchain 1.0 to blockchain 4.0—the evo-
lutionary transformation of blockchain technology,” in May 2021, pp. 29–49,
isbn: 978-3-030-69394-7. doi: 10.1007/978-3-030-69395-4 3.

[23] A. Rashid, A. Masood, and A. u. R. Khan, “Rc-aam: Blockchain-enabled de-
centralized role-centric authentication and access management for distributed
organizations,” Cluster Computing, vol. 24, no. 4, pp. 3551–3571, Dec. 2021,
issn: 1386-7857. doi: 10.1007/s10586-021-03352-x. [Online]. Available: https:
//doi.org/10.1007/s10586-021-03352-x.

[24] Y. Zhang, M. Yutaka, M. Sasabe, and S. Kasahara, “Attribute-based access
control for smart cities: A smart-contract-driven framework,” IEEE Internet
of Things Journal, vol. 8, no. 8, pp. 6372–6384, 2021. doi: 10.1109/JIOT.
2020.3033434.

[25] M. V. Akhil Vasishta, B. Palanisamy, and S. Sural, “Decentralized autho-
rization using hyperledger fabric,” in 2022 IEEE International Conference on
Blockchain (Blockchain), 2022, pp. 238–243. doi: 10.1109/Blockchain55522.
2022.00040.

47

https://docs.docker.com/
https://docs.docker.com/
https://git-scm.com/doc
https://doi.org/10.1007/978-3-030-04849-5_30
https://doi.org/10.1109/BLOC.2019.8751479
https://www2.deloitte.com/content/dam/insights/us/articles/6608_2020-global-blockchain-survey/DI_CIR%202020%20global%20blockchain%20survey.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/6608_2020-global-blockchain-survey/DI_CIR%202020%20global%20blockchain%20survey.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/6608_2020-global-blockchain-survey/DI_CIR%202020%20global%20blockchain%20survey.pdf
https://doi.org/10.1007/978-981-15-5939-6_2
https://doi.org/10.1007/978-981-15-5939-6_2
https://doi.org/10.1109/ICBC51069.2021.9461128
https://doi.org/10.1109/ICBC51069.2021.9461128
https://blockchain-explorer.readthedocs.io/en/main/presentation/index.html
https://blockchain-explorer.readthedocs.io/en/main/presentation/index.html
https://doi.org/10.1007/978-3-030-91424-0_6
https://doi.org/10.1007/978-3-030-69395-4_3
https://doi.org/10.1007/s10586-021-03352-x
https://doi.org/10.1007/s10586-021-03352-x
https://doi.org/10.1007/s10586-021-03352-x
https://doi.org/10.1109/JIOT.2020.3033434
https://doi.org/10.1109/JIOT.2020.3033434
https://doi.org/10.1109/Blockchain55522.2022.00040
https://doi.org/10.1109/Blockchain55522.2022.00040

[26] S. Craß, A. Lackner, N. Begic, S. A. M. Mirhosseini, and N. Kirchmayr, “Col-
laborative administration of role-based access control in smart contracts,”
in 2022 4th Conference on Blockchain Research & Applications for Inno-
vative Networks and Services (BRAINS), 2022, pp. 87–94. doi: 10 . 1109 /
BRAINS55737.2022.9909116.

[27] V. C. Hu, Blockchain for access control systems, en, May 2022. doi: https:
//doi.org/10.6028/NIST.IR.8403. [Online]. Available: https://tsapps.nist.
gov/publication/get pdf.cfm?pub id=934417.

[28] W. Viriyasitavat, L. D. Xu, D. Niyato, Z. Bi, and D. Hoonsopon, “Applications
of blockchain in business processes: A comprehensive review,” IEEE Access,
vol. 10, pp. 118 900–118 925, 2022. doi: 10.1109/ACCESS.2022.3217794.

[29] bdnews24, May 2023. [Online]. Available: https://bdnews24.com/bangladesh/
dnc2b2cvhp.

[30] Z. Islam, S. Rahman, and Z. Faiaz, “Hackers feast on government sites,” The
Daily Star, Jul. 2023. [Online]. Available: https://www.thedailystar.net/news/
bangladesh/crime-justice/news/hackers-feast-government-sites-3364261.

[31] Wikipedia, Blockchain —Wikipedia, the free encyclopedia, http://en.wikipedia.
org/w/index.php?title=Blockchain&oldid=1195541539, [Online; accessed 24-
January-2024], 2024.

[32] Wikipedia, Security Assertion Markup Language — Wikipedia, the free ency-
clopedia, http://en.wikipedia.org/w/index.php?title=Security%20Assertion%
20Markup%20Language&oldid=1189552494, [Online; accessed 24-January-
2024], 2024.

[33] Wikipedia, Single sign-on — Wikipedia, the free encyclopedia, http : / / en .
wikipedia .org/w/index.php?title=Single%20sign- on&oldid=1193816139,
[Online; accessed 24-January-2024], 2024.

[34] Wikipedia, XML — Wikipedia, the free encyclopedia, http://en.wikipedia.org/
w/index.php?title=XML&oldid=1196753148, [Online; accessed 24-January-
2024], 2024.

[35] WSO2, Home - wso2 identity server, 2024. [Online]. Available: https :// is .
docs.wso2.com/en/latest/.

[36] Curl - documentation overview. [Online]. Available: https://curl.se/docs/.
[37] Documentation - the go programming language. [Online]. Available: https://

go.dev/doc/.
[38] A blockchain platform for the enterprise — hyperledger-fabricdocs main docu-

mentation. [Online]. Available: https://hyperledger-fabric.readthedocs.io/en/
release-2.5/.

[39] Apache jmeter-user’s manual2019, 2019. [Online]. Available: https://jmeter.
apache.org/usermanual/index.html.

[40] Introduction to node.js. [Online]. Available: https ://nodejs .org/en/ learn/
getting-started/introduction-to-nodejs.

[41] P. S. Foundation, Welcome to python.org, 2019. [Online]. Available: https :
//www.python.org/doc/.

[42] V. S. Code, Documentation for visual studio code, 2023. [Online]. Available:
https://code.visualstudio.com/docs.

48

https://doi.org/10.1109/BRAINS55737.2022.9909116
https://doi.org/10.1109/BRAINS55737.2022.9909116
https://doi.org/https://doi.org/10.6028/NIST.IR.8403
https://doi.org/https://doi.org/10.6028/NIST.IR.8403
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934417
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=934417
https://doi.org/10.1109/ACCESS.2022.3217794
https://bdnews24.com/bangladesh/dnc2b2cvhp
https://bdnews24.com/bangladesh/dnc2b2cvhp
https://www.thedailystar.net/news/bangladesh/crime-justice/news/hackers-feast-government-sites-3364261
https://www.thedailystar.net/news/bangladesh/crime-justice/news/hackers-feast-government-sites-3364261
http://en.wikipedia.org/w/index.php?title=Blockchain&oldid=1195541539
http://en.wikipedia.org/w/index.php?title=Blockchain&oldid=1195541539
http://en.wikipedia.org/w/index.php?title=Security%20Assertion%20Markup%20Language&oldid=1189552494
http://en.wikipedia.org/w/index.php?title=Security%20Assertion%20Markup%20Language&oldid=1189552494
http://en.wikipedia.org/w/index.php?title=Single%20sign-on&oldid=1193816139
http://en.wikipedia.org/w/index.php?title=Single%20sign-on&oldid=1193816139
http://en.wikipedia.org/w/index.php?title=XML&oldid=1196753148
http://en.wikipedia.org/w/index.php?title=XML&oldid=1196753148
https://is.docs.wso2.com/en/latest/
https://is.docs.wso2.com/en/latest/
https://curl.se/docs/
https://go.dev/doc/
https://go.dev/doc/
https://hyperledger-fabric.readthedocs.io/en/release-2.5/
https://hyperledger-fabric.readthedocs.io/en/release-2.5/
https://jmeter.apache.org/usermanual/index.html
https://jmeter.apache.org/usermanual/index.html
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs
https://www.python.org/doc/
https://www.python.org/doc/
https://code.visualstudio.com/docs

	Declaration
	Approval
	Abstract
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Problem Statement
	Research Objectives
	Report Structure

	Background
	Access control and types
	RBAC
	ABAC

	XML
	XACML
	SAML
	Blockchain
	Hyperledger Fabric
	Smart Contract
	Chaincode
	Decentralization

	Literature Review
	Comparative Analysis

	Proposal
	Proposed Model
	Methodology
	Threat Modelling
	Requirement Analysis

	Architecture, Use-Case and Protocol Flow
	Architecture Design
	Use-Case and Protocol Flow

	Implementation and Performance Analysis
	Environment Setup
	Tools and Technologies
	System Overview
	Development

	Steps to Implementation
	Performance Analysis
	Testing Scenarios
	Test Plan
	Metrics Evaluation
	Observations

	Discussion
	Functional Requirement Analysis
	Security Requirement Analysis:
	Research Objective Analysis:
	Advantages
	Challenges And Limitations
	Future Works

	Conclusion
	Bibliography

