
A GAN-Based Model for Single Image Super-Resolution on
Consumer-Grade GPUs: Comprehensive Analysis and

Development of MSRGAN

by

Istiaq Ahmad
20301056

Labib Sadman Azam
21301643

Moinul Hossain Bhuiyan
20301002

Abdullah Al Mamun
20301062

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
October 2024

© 2024. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Abdullah Al Mamun

20301062

Labib Sadman Azam

21301643

Moinul Hossain Bhuiyan

20301002

Istiaq Ahmad

20301056

i

Approval

The thesis titled “A GAN-Based Model for Single Image Super-Resolution on Consumer-
Grade GPUs: Comprehensive Analysis and Development of MSRGAN” submitted
by

1. Istiaq Ahmad (20301056)

2. Labib Sadman Azam (21301643)

3. Moinul Hossain Bhuiyan (20301002)

4. Abdullah Al Mamun (20301062)

Of Summer, 2024 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on October 17th, 2024.

Examining Committee:

Supervisor:
(Member)

Dr. Muhammad Iqbal Hossain

Associate Professor
Department of Computer Science and Engineering

BRAC University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD

Chairperson and Associate Professor
Department of Computer Science and Engineering

BRAC University

ii

Abstract

In a world where visual content plays a crucial role in anything imaginable, the need
for sharper, more detailed images has never been more important. This research
paper explores innovative approaches to improve the quality of single images through
the application of Deep Learning techniques, specifically GAN architectures. The
research focuses on developing an efficient and feasible model that can be trained
in a consumer-grade GPU. Among various architectures, the research focused on
the RRDB model for further development. With the modification of the RRDB
model and the implementation of activation functions combination and proper loss
functions, this research seeks to achieve enhanced performance and effectiveness.
Finally, the proposed model MSRGAN was developed which was capable of training
on a consumer-grade GPU with an average amount of video RAM. The model
possesses the capability for 4x upscaling. For testing the performance, the research
used PSNR and SSIM evaluation metrics where the MSRGAN has outperformed
the basic SRGAN and ESRGAN.

Keywords: Single Image Super Resolution (SISR), Super Resolution Generative
Adversarial Networks (SRGAN), Residual-in Residual Dense Enhanced Super Reso-
lution (RRDB), Generative Adversarial Networks (ESRGAN), Modified Super Res-
olution Generative Adversarial Networks (MSRGAN).

iii

Table of Contents

Declaration i

Approval ii

Abstract iii

Table of Contents iv

List of Figures vi

Nomenclature vii

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 1
1.3 Research Objectives . 2
1.4 Thesis Outline . 2

2 Background 4
2.1 Literature Review . 4
2.2 Neural Network (NN) . 9
2.3 Generative Adversarial Network (GAN) 10
2.4 Convolutional Neural Network (CNN) 11
2.5 Activation Functions . 13
2.6 Loss Functions . 16
2.7 Fine Tuning . 17
2.8 Evaluation Metrics . 19
2.9 Some Existing Models . 20

3 Dataset Extraction 22
3.1 Dataset Description . 22
3.2 Dataset Splitting . 23
3.3 Dataset Preprocessing . 25

4 Model Implementation 27
4.1 Experimental Framework . 27
4.2 Proposed Model: MSRGAN . 30
4.3 Development of SRGAN & ESRGAN 33

iv

5 Result Analysis 35
5.1 Inspecting Loss Curves . 35
5.2 Evaluation Metric Result . 37
5.3 Generated Image Visual Comparison 40

6 Conclusion 42
6.1 Limitation . 42
6.2 Future Works . 43
6.3 Conclusion . 43

Bibliography 48

v

List of Figures

2.1 Working Mechanism of Neural Network. 9
2.2 Working Mechanism of GAN. 10
2.3 The working mechanism of CNN . 12
2.4 Graph of a ReLU activation function. 13
2.5 Graph of a LReLU activation function. 14
2.6 Graph of a PReLU activation function. 15
2.7 Graph of a Sigmoid activation function. 15

3.1 Versatile category based dataset description. 23
3.2 The process of splitting the dataset. 24
3.3 Versatile category dataset splitting for train & test. 24
3.4 Single category dataset splitting for train & test. 25
3.5 Down-scaling the dataset to 4x LR. 26

4.1 UserBenchmark testing result for GPUs utilized on the thesis. 28
4.2 MSRGAN with Modified RRDB activation functions. 30
4.3 SR for higher resolution images with MSRGAN 32

5.1 Train and Validation curves on versatile dataset. 35
5.2 Train and Validation curves on single category dataset. 36
5.3 PSNR and SSIM result on versatilele category dataset. 38
5.4 PSNR and SSIM result on single category dataset. 39
5.5 Versatile category super resolution result example. 40
5.6 Visualization of SRGAN, ESRGAN and MSRGAN results. 41

vi

Nomenclature

The symbols & abbreviation used within this thesis paper is described in the list.

BSRNET Blind Super-Resolution Network

CNN Convolutional Neural Network

DNN Deep Neural Network

EGAN Enhanced Generative Adversarial Network

ESRGAN Enhanced Super-Resolution Generative Adversarial Network

GAN Generative Adversarial Network

GT Ground Truth

HR High Resolution

LR Low Resolution

LReLU Leaky Rectified Linear Unit

MSRGAN Modified Super-Resolution Generative Adversarial Network

NAD Noise Aware Discriminator

PReLU Parametric Rectified Linear Unit

PSNR Peak Signal-to-Noise Ratio

RDB Residual Dense Block

ReLU Rectified Linear Unit

RRDB Residual-in Residual Dense Block

SISR Single Image Super Resolution

SR Super Resolution

SRGAN Super-Resolution Generative Adversarial Network

SSIM Structural Similarity Index Measure

SSL Structured Sparsity Learning

vii

Chapter 1

Introduction

1.1 Background

In a world filled with visual content, the desire for crisper, more colorful high-
resolution pictures has become a fundamental component of an individual’s digital
experience. The target of SISR is to enhance the LR images into HR images. Deep
learning methods, especially through GAN architecture, have become more and
more effective than traditional methods like bicubic interpolation which struggles
to preserve the details. GAN-based SISR models have two parts, the generator
creates better-quality images, and the discriminator verifies the difference between
the generated and the original image. It helps the generator to improve over time.
The SRGAN is a popular model. It focuses on making images look more realistic
and natural, leaving the older methods to the dust. But the caveat is that these
models can be very demanding on computer resources, needing industry-grade GPUs
to work well. It makes it difficult for people who are using regular consumer-grade
hardware.

1.2 Problem Statement

SISR models aim to reconstruct HR images from LR inputs. However, the computa-
tional complexity of state-of-the-art models poses significant challenges in real-world
application deployment especially on consumer-grade hardware. Making it a chal-
lenge for the users who want to pursue this field of image super-resolution, without
the industry-level equipment. Image upscaling enhances the quality and detail of
LR images. Making them suitable for those tasks where HR images need to be
the benchmark point. It also allows old, low-resolution images to be revitalized for
modern use without losing clarity. All of the GAN-based models that are used are
resource-intensive. To run these models the researchers need access to industry-
level GPUs, thus a normal user can not develop these GAN-based models on their
consumer-grade GPUs. The image-upscaling tools which are available on the inter-
net, can not be modified according to one’s need. This is an issue for most people
aspiring to work in the field of image super-resolution.

1

1.3 Research Objectives

In this research paper, the purpose is to build an efficient GAN based model which
can 4x upscale a low-resolution image on a customer grade GPU. This paper’s main
goal is to investigate and advance the application of deep learning techniques and
architecture of the model, in the field of single image super-resolution. The following
are the study goals for this paper:

• Investigate the effectiveness of different GAN models, where the resolution and
quality of single images are enhanced.

• Evaluate the capabilities of selected models to improve the super-resolution.

• Examine the generator part, discriminator part, activation function and loss
calculation methods used in those models.

• Explore various combinations and possible changes in the architecture for op-
timal solutions in different scenarios.

• Developing versatile and single category based datasets which are appropriate
for the GAN models.

• Constructing a GAN model which has unique specifications and can perform
better than existing models.

• Compare the models with multiple evaluation metrics

By addressing these goals, this paper will contribute to the evolution of technology
that can improve the visual quality of photos, making them sharper, more detailed,
and acceptable for a broad variety of real-world applications. Also, it will inspire the
people who are interested in ML with limited resources to go through the experience
of training his/her own dataset with this model.

1.4 Thesis Outline

• In chapter 2, this paper studies previous works related to deep learning based
SISR methods that are being implemented over the years. Besides there is
information about the traditional GAN architectures, convolutional neural
networks, activation functions, loss functions, dataset fine tuning and measure
metrics.

• In chapter 3, there is a detailed description of dataset extraction. It further
explores how datasets have been split and how the datasets were preprocessed.
This section also studies how datasets are being scaled down and how the
images from datasets are being denoised.

• In chapter 4, the experimental framework and how the modified version of SR-
GAN was implemented is discussed. Firstly there is a brief description about
the types of configurations that were used to develop and test the model. Then
which type of IDEs and what type libraries used in this MSRGAN context was

2

explained. Then this chapter further discusses the methodology of developing
the MSRGAN, SRGAN and ESRGAN.

• In chapter 5, this thesis focuses on the result analysis of the newly implemented
model called MSRGAN. This chapter consists of the loss curve inspections,
the evaluation of the metric results and lastly the generated image visual
comparisons.

• Chapter 6, includes the limitations of the existing SISR based GAN models.
Then the chapter extends by including the future works with this newly de-
veloped MSRGAN model. Lastly this chapter concludes the whole thesis with
general remarks.

3

Chapter 2

Background

2.1 Literature Review

In the paper titled “Photo-Realistic Single Image Super-Resolution Using a Gen-
erative Adversarial Network” a generative adversarial network (GAN) for image
super-resolution (SR) called SRGAN is introduced. It tackles the problem of recov-
ering finer texture information at large upscaling factors, which is still a big problem
even with convolutional neural network developments[1]. The following model uses
the PReLUn as its activation function.

This specific SRGAN includes a perceptual loss function which consists of two loss
functions, an adversarial loss and a content loss[1]. This model is different from
previous approaches that primarily concentrated on reducing mean squared recon-
struction error.

Then “A Super Resolution Algorithm Based on Attention Mechanism and SRGAN
Network” focuses on the GAN model and the SRGAN model[2]. The primary ob-
jective of the paper is to attain high-resolution images by inputting low-resolution
images. It introduces three main changes. First of all, the author added a Ca (chan-
nel attentiveness) module to SRGAN to improve the expression of high-frequency
features. To properly collect minute details, this makes the model even deeper. The
authors of the paper removed the initial BN layer to improve network efficiency.
Making the changes helps to maintain small details in the reconstructed image and
probably lowers the chance of over-smoothing. For the activation function, the pa-
per proposed the Leaky ReLU model. This model helps to attain better results and
in the case of the loss function the paper proposed the combination of the L1 model
and MSE model[2]. These changes helped to attain some good results where their
PSNR and SSIM scores were better than others.

The paper is titled as “ESRGAN: Enhanced Super-Resolution Generative Adver-
sarial Networks”. For single-image super-resolution, Enhanced SRGAN (ESRGAN)
is superior to SRGAN[3]. The problem of unpleasant artifacts accompanying hal-
lucinated details is addressed with ESRGAN. Three essential SRGAN components
are examined in detail and improved. For network architecture, the use of the
RRDB model makes most sense[3]. In this architecture model batch normalization

4

is not being used and Leaky ReLU is used as its building block. This works as
the activation function. For the loss function, two types of loss functions are used
very commonly which are adversarial loss and perceptual loss. By deploying these
things in a SR model, the chances of getting a better result and better performance
increases drastically.

As different experiments are done with neural networking, deep neural network-
ing “Activation functions” hold a quite significant role in the context of image SR
models. There are various kinds of activation functions. The paper titled “Activa-
tion Functions: Comparison of Trends in Practice and Research for Deep Learning”
demonstrated the importance of the activation functions. It introduces non-linearity
into neural networks and influences their performance. Due to these various per-
formances, the experiment brings different outcomes. Although the functions that
were used earlier such as tanh and sigmoid, had some barriers[4]. The introduction
of the ReLU function has brought more optimization and convergence. But even so,
ReLU has its drawbacks, which is the Dying ReLU issue and the domain of non-
differentiability. Hence, many activation functions have been developed, including
leaky ReLU, PReLU, ELU, GELU, SELU, Swish, Mish, and others. Amongst them,
Leaky ReLU, SELU, Softplus, and LiSHT had greater effects[5].

There are many kinds and types of loss functions available to satisfy different sce-
narios. The loss function is commonly known as the cost function. It measures the
difference between the generated output of the machine learning or fake HR outputs
and the ground truth or real HR inputs. The loss functions determine how close the
generated output is to the ground truth. The most commonly used loss functions
are the Mean Absolute Errors (MAE), also known as the L1 error[6]. Then the Mean
Squared Error (MSE), also known as the L2 error[6]. expectation loss, regularised
expectation loss, Chebyshev loss, and log (cross-entropy) loss, etc. Common loss
functions used in classification problems are hinge loss for support vector machines,
softmax loss for multiclass classification using softmax activation, and cross-entropy
loss for binary or multiclass classification. Mean absolute error (MAE) loss and
mean squared error (MSE) loss are frequently employed in regression tasks. All
things considered, loss functions are essential for directing machine learning models’
learning process and helping them become more proficient at the task at hand.

The strategy to improve the quality and speed of single-image super-resolution us-
ing deep neural networks is always a challenging task. Current techniques upscale
LR images before improving them, which is ineffective and resource hungry. The
authors of the paper titled as “Real-Time Single Image and Video Super-Resolution
Using an Efficient Sub-Pixel Convolutional Neural Network” provide a revolution-
ary CNN architecture that works directly with low-resolution data and employs a
smart upscaling method[7]. In this paper, the authors focus on the task of SISR
and they used ReLU as their activation function. The whole purpose of SISR is
to estimate an HR image I [SR] given an LR image I [LR] downscaled from the cor-
responding original HR image IHR. The downsampling operation is deterministic
and known to produce I [LR] from I [HR]. Basically at first it convolves I [HR] using a
Gaussian filter.The main idea of this research paper is to highlight the importance
of SR in digital image processing, where the goal is to enhance the performance

5

and resolution of LR photos. It highlights that SR has practical applications in nu-
merous areas including HDTV, medical imaging, satellite imaging, face recognition,
and surveillance. The research paper analyzes the problems of SR, including the
loss of high-frequency information during the LR-to-HR transition and the inherent
uncertainty in the representation from LR to HR space. It additionally provides
two main kinds of SR methods: multi-image SR, which depends on numerous LR
photographs of the same scene, and SISR, which intends to retrieve HR informa-
tion from a single LR instance exploiting implicit redundancy discovered in natural
data. Both methods have to deal with the ill-posed nature of the issue and need
restrictions or previous information to guide the reconstruction process.

Moving on to the paper titled as “Generative Adversarial Networks for Image and
Video Synthesis: Algorithms and Applications” provides the importance of GANs
as a potent framework for image synthesis, both unconditionally and with input
conditions[8]. GANs have changed the development of high-resolution and photore-
alistic visuals, a task previously believed tough or unachievable. The emergence of
GAN has prompted various unique applications in deep learning approaches. This
paper presents an overview of GANs, highlighting their algorithms and applica-
tions in visual synthesis. It dives into critical strategies geared at stabilizing the
famously hard GAN training process. Additionally, it covers GAN applications in
image translation, image processing, and neural rendering. This paper addresses
the fundamental concept of Generative Adversarial Networks (GANs) in the area of
deep learning and its major impact on several aspects of visual content synthesis.
GANs comprise a generator and discriminator network engaged in a competitive
training process, resulting in the development of synthetic data that resembles ac-
tual data. GANs have successfully replaced hand-designed artworks in computer
vision pipelines, especially for generation tasks. It derives objective functions from
training data. However, GANs are tough to train because of the changing nature
of the generator’s output distribution, which demands careful control of training
dynamics. Various ways have been proposed to stabilize GAN training over time.
It is also important to differentiate between unconditional and conditional GAN
frameworks where conditional GAN utilizes control signals for more precise gener-
ation tasks[8]. This major development has led us to various exciting applications
in semantic picture creation, image-to-image translation, image processing, neural
rendering etc. The overall topic is that GANs have become an essential tool in
the area of computer vision, allowing numerous creative visual content-generating
applications. The paper uses perceptual loss as the loss function. GANs comprise
a generator and discriminator network engaged in a competitive training process,
resulting in the development of synthetic data that resembles actual data. GANs
have successfully replaced hand-designed components in computer vision pipelines,
especially for generation tasks, by deriving objective functions from training data.

A new single-image upscaling method that improves picture quality and efficiency
was studied in the work “Image and Video Upscaling from Local Self-examples”.
This approach emphasizes local self-similarity in the picture as opposed to other
approaches that rely on external datasets. It reduces search time while maintaining
the quality by extracting patches from small, localized portions of the input picture.
This method is particularly effective for lesser scaling factors. It applies specialized

6

filters for these small scalings, providing high-resolution outcomes compatible with
the original picture. The algorithm is basic, efficient, and can be implemented in
parallel on a GPU. It shows high-quality resolution enhancements, works perfectly
with several image sequences, and is capable of real-time enhancement of LR images
into HR images. It is important to address the difficulties of image upscaling as it
is a fundamental image-enhancing procedure. It highlights the limits of traditional
upscaling approaches, which frequently result in artifacts and image abnormalities.
It presents an innovative method that uses local scale invariance in real images,
concentrating on small, localized patches in order to improve the accuracy and effi-
ciency of upscaling[9]. This creative method works better for small scaling factors
and includes multiple upscaling steps employing specific filter banks to accomplish
high-quality resolution enhancement. Additionally, it demonstrates the advantages
of the proposed technique for image sequences, along with its efficient implementa-
tion on GPUs for real-time performance.

Besides, the research offers an enhanced version of SRGAN (Super-Resolution Gen-
erative Adversarial Network) by including Residual-in-Residual Dense (RRDB) blocks
and eliminating batch normalization layers[9]. These modifications seek to enhance
training efficiency and shorten the time necessary for super-resolution. These mod-
ifications seek to enhance training efficiency and shorten the time necessary for
superresolution. The authors also underline the need to keep internal textures and
improve visual quality in the super-resolved images. Additionally, the study de-
scribes adjustments made to the discriminator architecture, proposing the idea of
a Realistic Average GAN to improve the comparison of visual and realistic quality
in images. The suggested method is claimed to provide better textures and im-
prove the frame generation rate compared to SRGAN. Furthermore, ESRGAN en-
hances realism by prioritizing the preservation of critical visual characteristics using
VGGNet-19 for perceptual loss[9]. It generates super-resolution images that mimic
real high-resolution content and appear sharper. ESRGAN considers various upscal-
ing factors, increasing its versatility in handling different scaling requirements. It
outperforms SRGAN by implementing a sophisticated RRDB architecture, improv-
ing perceptual loss functions, and showcasing adaptability while managing various
upscaling factors. Moreover, It is important to consider the method’s performance
using multiple quality evaluation measures such as PSNR, and SSIM while noting
that training GANs consumes significant time and suggests powerful hardware for
quicker frame generation. SISR models can benefit significantly via modifications in
neural networks architecture to generate high-quality and super-resolved images. It
also analyzes the difference between SISR emphasizing the necessity to utilize tem-
poral correlations between low-resolution images. Traditional SISR methods may
often require computational costs that are higher and struggle with large scaling
factors. ESRGAN considers various upscaling factors, increasing its versatility in
handling different scaling requirements. It outperforms SRGAN by implementing
a sophisticated RRDB architecture, improving perceptual loss functions, and show-
casing adaptability while managing various up-scaling factors[10].

As this research paper stated before, the GAN is a framework that is set against
the generator and discriminator against each other. In any kind of SR model, the
generator is a neural network that creates HR images from LR inputs. Its objective

7

is to produce images that are realistic and almost identical to actual HR images.
This HR output is designed to fool the discriminator which often tries to differentiate
between real and generated images. In the current GAN framework, the generator
learns continuously through adversarial training. This continuous training then
improves the quality of the generator to produce high-quality images. Then comes
the concept of the discriminator. The discriminator is a neural network that checks
and evaluates whether an image is real from the actual dataset or fake as generated
by the Generator. It works just like a judge in a reality show. It pushes the generator
to its limits to improve the overall image quality generated by the generator. Now
there might be a situation where the generated image has too much noise. Then
Noise Aware Discriminator or NAD is being deployed to handle noise from different
stages of the image generator. This also helps the discriminator to be more robust
across a variety of noise levels. The generator and the discriminator are always
trained together in an adversarial manner.

The Introduction of a new model named the “Distillation Free One Step Diffusion
model” is very crucial for image SISR methods. Its generator performs a single
denoising step to recover the unused high-resolution image from low-resolution in-
puts. In the context of GAN architecture, this also introduces the very same NAD
or Noise Aware Discriminator described before. It basically Enhances the authen-
ticity of the generated images by leveraging information from a pre-trained Stable
Diffusion UNet mode. NAD tries to process Noisy Intermediate unused features
and helps improve the model’s performance across various noise levels[11]. In this
specific paper, in the generator part, the Distillation One Step Diffusion model uses
the diffusion principle to progressively denoise and reconstruct HR images from LR
inputs in one step. It also bypasses the need for multi-step diffusion sampling. Then
the NAD discriminator helps maintain the realism and authenticity of the generated
images. It ensures whether the picture that has been generated by the generator is
satisfiable or not.

After analyzing the paper titled “Signal Processing: Image Communication”, one
can give valid reasoning for using LReLU as a Generator and Discriminator function.
LReLU is often used in terms of image super-resolution. According to the paper
by Masoumeh :ReLU was employed with a slope of 0.02 to handle issues like dying
ReLU units[12]. Dying ReLU can occur during training datasets. It usually occurs
in deeper layers. Leaky Relu allows a small and non-zero gradient which we will
discuss in this paper further. The use of ReLU activations in the generators except
for the output layer supports the learning of vast sets of HR images. Also, ReLU
contributes in retaining positive activations while keeping the processes efficient. In
image SR models, Leaky ReLU is employed in deeper layers to prevent the vanish-
ing gradient problem. After tackling the vanishing gradient problems the LReLU
ensures that the negative inputs will not lead to inactive neurons. These inactive
neurons could hinder the generation of producing realistic HR images. LReLU could
also be employed as a discriminator. As stated before, to implement SR models,
the authors employed LReLU with a slope of 0.2. This is being applied in the dis-
criminator network to enable it to effectively discriminate between real HR images
and generated HR images. Also, it prevents the neurons from dying by allowing a
small gradient when the input is negative. This maintains the learning, effective-

8

ness, and enhancement of gradient flow. This is important to ensure the stability
of adversarial training[12]. LeLU also helps the discriminator to refine its ability to
inspect the quality of images generated by the generator network. The fact is that
the use of Leaky ReLU is consistent with its widespread adoption in Various GAN
architectures because LRelu helps improve the gradient flow and mitigates vanishing
gradient issues. And Leaky ReLU also tackles the Dying ReLU problem. These all
beneficiary factors help the generator to generate higher-quality images during the
super-resolution process.

2.2 Neural Network (NN)

Neural networks are computational models inspired by biological neurons in the
human brain, consisting of interconnected nodes organized into layers: input, hid-
den, and output. These layers process input data, learn complex patterns through
weighted connections, and produce the final output.

Input
Layer

Hidden Layer

Output
Layer

Figure 2.1: Working Mechanism of Neural Network.

Neural networks are computational models inspired by biological neurons in the hu-
man brain, consisting of interconnected nodes organized into layers: input, hidden,
and output (2.1). These layers process input data, learn complex patterns through
weighted connections, and produce the final output.

Deep learning is a subset of machine learning and it uses neural networks with
multiple layers to model and solve complex problems. Deep learning automatically
extracts useful information from photos and performs end-to-end learning, allow-
ing networks to learn from raw data and tasks. It scales with data, unlike shallow
learning, which converges when additional instances and training data are added.
Deep learning’s ”deep” layers allow the network to learn hierarchical features and
their representation, making it successful in natural language processing, reinforce-
ment learning, and computer vision [13]. However, it requires substantial labeled
data and computational resources, and the interpretability of complex models can
be a challenge. Despite these limitations, neural networks remain the basic build-

9

ing blocks for deep learning, enabling more powerful and automated learning from
trained data.

2.3 Generative Adversarial Network (GAN)

The discipline of generative modeling has seen a change because of the revolutionary
class of machine learning models known as GAN. A new approach for producing
fresh data instances that closely mimic an existing dataset is provided by GANs.
The interaction between the generator and discriminator neural networks, which are
involved in a competitive learning process, is the fundamental concept of GANs.

In this architecture, there are two sectors. One is the “Generator” and the other
one is the “Discriminator”. In the GAN architecture, the ”Generator” acts as a
creative element. The job of the “Generator” is to take in random noise and convert
it into data instances that, as closely as possible, resemble the patterns found in the
training data[14]. On the other hand, the ”Discriminator” undertakes the position
of a critic. Its job is to differentiate between instances of actual data from the
training set and artificial data generated by the generator (2.2).

HR Dataset
Comparison

Data

Synthetic Data

Discriminator Loss

Generator Loss

LR Dataset
Generator

Discriminator Accuracy Result

Real LR Generated Output

Data
Preprocessing

Figure 2.2: Working Mechanism of GAN.

The generator and discriminator engage continuously back-and-forth throughout
the GAN training process. The ”Discriminator” wants to improve their ability to
discriminate between actual and fake cases, while the ”Generator” wants to create
data that is identical to real examples. Due to the competitive dynamic created by
this adversarial training, both networks are constantly improving and challenging
one another to achieve greater performance levels[15]. The generator aims to maxi-
mize the likelihood that its generated samples would be mistakenly classified as real
by the discriminator. On the other hand, the discriminator aims to maximize the

10

accuracy of its distinction between authentic and fraudulent data. This antagonis-
tic goal creates a delicate balance, and careful parametric adjustment is frequently
necessary for GAN training to be effective.

minGmaxDV (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1 −D(G(z)))]

G is a neural network that generates synthetic data, attempting to mimic the real
data distribution. D is another neural network that acts as a binary classifier. It
takes input data and tries to distinguish between real data (x) and fake/generated
data (G(z)). P(Sub)Data(x) represents the distribution set of real data. The gener-
ator tries to generate data that is similar to this distribution. Pz(z) represents the
distribution of the noise that is fed into the generator. It’s a source of randomness
that allows the generator to produce diverse outputs. The GAN’s objective is formu-
lated as a minimax game between the generator and the discriminator. The goal is to
minimize the generator’s loss while simultaneously maximizing the discriminator’s
loss.

The expected value of the log probability that the discriminator assigns to the pro-
duced data is represented by the second term, Ex∼Pdata(x)[logD(x)]. In order to
increase the likelihood that created data will be seen as authentic by the discrimi-
nator, the generator aims to reduce this.

The second term Ez∼Pz(z)[log(1 − D(G(z)))] represents the expected value of the
log probability that the discriminator assigns to the generated data. The generator
wants to minimize this, making generated data more likely to be classified as real
by the discriminator.

2.4 Convolutional Neural Network (CNN)

The artificial intelligence technique known as a convolutional neural network (CNN)
is made specifically for tasks involving images and visual input. It can be viewed as
an intelligent system with the ability to see and comprehend images.

For making a computer to identify an object in a picture this CNN architecture
is important. A CNN consists of layers, and each layer has a distinct function
(2.3). It is possible for the first layer to identify basic objects like edges and col-
ors. Deeper layers integrate these basic characteristics to comprehend increasingly
intricate pat- terns, such as textures and forms. Each layer gives a unique value.
These values of each segment add up and in the end, tell a computer what it is. The
concept of applying filters or tiny grids that move over the image is where the word
”convolutional” originates[16]. These filters assist the network in learning relevant
data and concentrating on particular details. CNNs use a technique called pooling,
which minimizes the amount of data they must evaluate while maintaining crucial
features, to make this func- tion effective[17]. The multidimensional output of the
following layer in Convolutional Neural Networks (CNNs) is transformed into a one-
dimensional array using a flat– ten layer. Then using the fully connected layer the

11

model gives the probability of an object.CNN can identify brand-new, unidentified
photographs after it has been trained[18][19].

Input Pooling Pooling Pooling

Convolution
+

ReLU
Convolution

+
ReLU

Convolution
+

ReLU

Flatten
Layer

Fully
Connected

LayerFeature Maps

0.3

0.7

0.2

SoftMax
Activation
Function

Zebra

Cat

Tiger

Output

Feature Extraction Classification Probability

Figure 2.3: The working mechanism of CNN

To sum up, CNNs are similar to visual investigators. They deconstruct images into
their more basic components, develop their ability to spot patterns and apply these
skills to comprehend and categorize new images.

ResNet

A kind of convolutional neural network (CNN) used for tasks involving images is
called a residual network, or ResNet. The usage of residual blocks, which are in-
tended to aid in the training of extremely deep neural networks, is one of its dis-
tinguishing features. A quick connection is used in a residual block to merge the
input and output of a layer. The network can concentrate on acquiring residual
information, that is, the variation between a layer’s input and output thanks to this
connection. The goal is to facilitate the network’s ability to recognize and maximize
an image’s essential characteristics. These shortcut connections solve a common
problem in deep networks that is referred to as vanishing gradients. Gradients in
deep architectures may decrease during backpropagation as the network gets more
complicated, which makes learning more difficult. By giving gradient flow a direct
path via the residual connections, training very deep networks is possible without
losing crucial data. In ResNet, every residual block picks up unique picture fea-
tures[20]. The network can recognize and comprehend progressively complex pat-
terns in the data by stacking these blocks. As the network gets deeper, performance
deterioration is avoided because of this architecture, which encourages information
to go through the network smoothly[21]. In image identification tasks, ResNet has
proven remarkably successful, attaining state-of-the-art performance on multiple
benchmarks.

12

2.5 Activation Functions

Every neural network model has criteria to understand whether the neural networks
should be activated or not. The function that determines the activation of a net-
work is called an activation function. By doing this, it introduces non-linearity to
the model, enabling the network to learn complex patterns[22]. There are many
activation functions in the realm of neural networks. Some of them are described
below.

ReLU

ReLU stands for rectified Linear Unit. It is generally used as an activation func-
tion in neural networks. This activation function transforms the weighted input
from a node of the neural network into the node’s output. It is a piecewise linear
function that outputs the input directly if it’s positive and if not, it gives output
zero. ReLU introduces non-linearity in existing neural network activation functions.
ReLU overcomes the known Vanishing Gradient Problem which exists on other acti-
vation functions such as Hyperbolic and Sigmoid tangent functions[23]. ReLU also
enables faster learning and better performance.

ReLU increases non-linearity in images which is crucial for this research as images
inherently contain non-linear features (e.g. pixel transitions, borders, colors). The
ReLU activation function is defined as:

f(x) = max(0, x)

This function takes an input value denoting x and outputs the maximum of 0 and
x. When the input value is positive the activation function outputs x otherwise it
gives 0 as an output. Which can be seen as well in the figure (2.4).

Figure 2.4: Graph of a ReLU activation function.

Leaky ReLU

In the standard ReLU activation function, the training of large data suffers from a
problem that is addressed as “Dying ReLU”. In this particular problem, neurons

13

can get stuck with a “0” Output. To counter this “Dying ReLU” problem, a new ac-
tivation function is being used which is called Leaky ReLU. Leaky ReLU introduces
a small slope for negative inputs[24].

The LReLU is different from the standard ReLU activation function. Theoretically,
it is more advanced than the standard ReLU activation function[25]. The standard
equation for LReLU is:

f(x) =

{
x if x ≥ 0

αx if x < 0

Where x stands for the input. The main change in the function is the value of .
is a small positive constant which is usually around 0.01. In the context of LReLU,
when x is negative, unlike standard ReLU, Leaky allows a small gradient to flow
which can be seen in the figure (2.5). It helps prevent neurons from getting stuck.

Figure 2.5: Graph of a LReLU activation function.

PReLU

Now there is an advanced version of Leaky ReLU currently available to be explored.
It is called PReLU.It is a more advanced variation of LReLU. LReLU uses a fixed
predefined slope = 0.01x for negative values whereas the slope in PReLU is a learn-
able parameter[26]. The equation for PReLU:

f(x) =

{
x if x ≥ 0

αx if x < 0

Here (2.6) the slope is adapted during training. Allowing each neuron to learn the
most appropriate slope. This adaptability enhances the model’s capacity to capture
complex patterns.

Basically, PReLU is a more powerful and advanced activation function than both of
the standard ReLU and Leaky ReLU[26]. PReLU adapts data and helps improve
image upscaling tasks by enhancing feature representations and reducing dead neu-
rons.

14

Figure 2.6: Graph of a PReLU activation function.

Sigmoid

A sigmoid function is a mathematical function with an S-shaped curve. It is com-
monly used in various fields of artificial neural networks. One well-known function
that denotes the sigmoid function is called “The Logistic Function”. It maps real
numbers to a range between 0 and 1. It’s commonly used in binary classification
tasks where we need to predict probabilities. However, it tends to saturate (ap-
proach 0 or 1) for large or small inputs leading to a vanishing point gradient during
training[27] (2.7). Previously we focused on the ReLU, Leaky ReLU, and PReLU
functions. Those functions are for hidden layers due to their efficiency and gradient
propagation whereas sigmoid remains relevant for output layers in binary classifica-
tion.

σ(x) =
1

1 + e−x
(2.1)

Figure 2.7: Graph of a Sigmoid activation function.

In the Neural Network, sigmoid functions serve as activation functions for artificial
neurons. Allowing them to model complex architectures by doing binary classifica-
tion, while ReLU excels in efficiency and scalability for deep learning tasks.

15

2.6 Loss Functions

A loss function in machine learning quantifies the difference between the predicted
output of a model and the actual target value. The purpose of the loss function
is to serve the model as a guide for the optimization process, helping the mode
to adjust its weights during training[28]. There are many loss functions available.
Among those most common loss functions include Mean Absolute Error (MAE),
Mean Squared Error (MSE), Perceptual loss, and so on. The lesser the loss value
indicates better model performance. The choice of loss function depends on the
specific problem and the model architecture.

MAE Loss Functions

In the field of image super-resolution, the MAE loss function is most commonly used,
which can be seen in some GAN architecture. This function is used to measure the
difference between the produced high-quality image and the ground truth. The
MAE loss function is also known as the L1 loss function. It helps to compute and
average the absolute gap/differences between the pixels generated by the model and
the pixels in the ground truth pictures. The mathematical equation is :

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.2)

MSE Loss Functions

In SRGAN the Mean Squared Error (MSE) is most commonly used. It is used in
the generator’s loss function comparing the truth image and the high resolutions
output pixel by pixel. Because of the process where it is squaring, it discourages
significant errors more severely, which incentivizes the generator to produce images
with precise pixel values[28]. This method is comparatively straightforward and
easy to use, which is why it is widely accepted. The mathematical term would be:

lSRMSE =
1

r2WH

rW∑
x=1

rH∑
y=1

(
IHR
x,y −GθG

(
ILR

)
x,y

)2

The MAE and MSE, both loss functions are quite similar. It depends on the user
which one to use. If the user wants a loss function that handles all the errors equally,
is easy to interpret and use, also which would be robust to outliers then the MAE
loss function would be useful.

But if the user desires a loss function that would be differentiable everywhere, con-
verges more quickly during training, and stresses big errors, then MSE would be the
way to go.

16

Perceptual Loss

Perceptual loss is a type of loss function that is used to measure the gap between the
ground truth and the image that is generated. It compares the high-level features
taken from models trained by CNNs.

These loss functions intend to capture variations in perception that may not be
visible at the pixel level. The produced picture is urged to match the style of a
reference image and retain the content of the target image by minimizing perceptual
loss[3].

VGG19

Introduced in the Perceptual Losses for Super-Resolution. VGG Loss is a sort of
content loss. VGG Loss is an alternative to pixel-wise losses. The goal is to approx-
imate perceptual similarity more closely. The pre-trained 19-layer VGG network’s
ReLU activation layers work as the foundation for the VGG loss. With i,j we indi-
cate the feature map obtained by the j-th convolution (after activation) before the
i-th maxpooling layer within the VGG19 network, which is considered given[1]. The
equation would be:

lSRV GG/i,j =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(
ϕi,j(I

HR)x,y − ϕi,j(GθG(ILR))x,y
)2

Binary Cross-Entropy (BCE)

The Binary Cross-Entropy (BCE) is a type of loss function that is commonly used
for binary classification tasks. Its job is to measure the difference between two
probability distributions: the predicted probability (output of the model) and the
actual binary label (0 or 1)[29]. The formula of the BCE loss is:

BCE(y, ŷ) = − 1

N

N∑
i=1

(yi log(ŷi) + (1 − yi) log(1 − ŷi))

2.7 Fine Tuning

The dataset we have selected needs to be pre-processed. By pre-processing the whole
dataset we will be able to feed the research model with the appropriate information
and try to bring out the most optimal output.

17

Optimizer

Adam Optimizer stands for Adaptive Moment Estimation. An optimizer is an algo-
rithm used to adjust the weights of a neural network to minimize the loss function.
It is relatively better than other Optimizers like SGD, AdaGrad, and RMSProp[30].
Amongst them all, Adam is often preferred for SISR-related tasks due to its fast
convergence and robust performance with minimal tuning. Adam optimizers han-
dle noisy gradients well [31]. Unlike SGD which is slower. SGD sometimes might
offer better Generalization but it is slower compared to ADAM optimizer. Then
AdaGRAD can be a useful choice in SISR tasks with its sparse gradient update
capability but it may become inefficient for longer training runs. Lastly RMSProp
can be a better alternative than SGD and ADAGrad but it is sensitive to initial
learning rate[30]. Adam optimizer helps by efficiently navigating the parameter

space over several iterations or epochs to find the optimal values that minimize the
loss function. As training progresses through multiple iterations or epochs, Adam
optimizer automatically adjusts the learning rates based on how the gradients are
changing[31]. Allowing the model to settle into more optimal weights. Furthermore
it provides stable convergence specially in deeper neural networks where traditional
optimizers might oscillate or get stuck in local minima.

Gaussian Blur

By adding random changes to data, Gaussian Blur noise produces a realistic unpre-
dictability that resembles uncertainty found in the actual world. It has a standard
deviation and mean, which are often zero. It also has a Gaussian distribution.
Images are processed using Gaussian noise to mimic real-world uncertainties such
as sensor noise and ambient conditions. Image processing methods are tested for
robustness, ensuring performance in a range of situations, by adding this mathemat-
ically well-defined noise[32]. It helps assess and improve noise reduction methods,
which are essential for improving image quality.

G(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
The ”Gaussian noise” facilitates standardized statistical analysis, which aids in the
creation of efficient image-processing techniques for computer vision applications.

Early Stopping

Early stopping is a technique in machine learning where it is used for regularization.
It is designed to prevent both overfitting and underfitting during the model training
process. The model’s initial job is to find the underlying patterns in the test dataset.
The reason for overfitting is when a model captures not only the underlying patterns
in the training data but also the noise and minor variations as well[33].This results
in excellent training performance but poor generalization to unseen data. On the
other hand, underfitting happens when the model is too simplistic or hasn’t learned
enough that causes it to perform poorly on both training and validation sets. Early

18

stopping helps to eliminate these issues by monitoring the model’s performance. It
does that on a separate validation set during the dataset training[34]. Once the
performance on the validation set ceases to improve for a predetermined number of
iterations which is also known as ”patience”, training is halted. This step does not
let the model learn unnecessary details from the training data while also ensuring
it has been trained sufficiently to capture the essential patterns.

2.8 Evaluation Metrics

In the realm of image super-resolution, different metrics functions are used to eval-
uate the quality of the high-resolution images that are generated compared to the
ground truths. These functions help the user quantify the performance of the super-
resolution models by measuring the similarities or differences between the predicted
image and the actual high-resolution image. To measure the outcome the most
common metrics are PSNR and SSIM.

Peak Signal-to-Noise Ratio (PSNR)

Starting with the PSNR, it stands for Peak Signal to Noise Ratio. PSNR is one
of the widely used metrics in the field of signal processing, specifically in the field
of Image and comparison. It serves as a quantitative measure where it compares
the signal of a compressed signal quality against its original quality[35]. The PSNR
is computed by dividing the maximum strength of a signal by the power of noise
that tampers with the signal’s ability to be represented accurately. The formula for
PSNR is defined as follows and is commonly represented in a logarithmic scale:

PSNR = 10 · log10

(
MAX2

MSE

)
Typically decibel (dB) is used to express the resulting PSNR value. Higher PSNR
values indicate the fidelity is greater or that it shows the generated signal reflects
the original with little noise or distortion.

Structural Similarity Index (SSIM)

Then comes the SSIM. It is another metric that is commonly and widely used. The
PSNR concentrates on pixel by pixel. But for SSIM it takes a different approach.
The SSIM concentrates on the perceived structure information as well as the lumi-
nance comparison between the generated image and the ground truth. The SSIM is
more closely designed to align with human vision[36]. SSIM has three components.

The luminance similarity, the contrast similarity, and the structure similarity. ALL

19

three components are combined to produce an overall SSIM index. It ranges between
-1 and 1, where 1 indicates perfect similarity. The formula for SSIM is:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

The SSIM has advantages over PSNR, as SSIM can come close to the human vision
system.

2.9 Some Existing Models

SRGAN

SRGAN is a type of GAN architecture which is one of the first and most efficient
techniques that allows the model to achieve an upscaling factor of almost 4x for
most image visuals[37]. The SRGAN model consists of two main components. One
is a generator and the other is a discriminator. The generator upscales the low-
resolution images while the discriminator tries to differentiate between the super-
resolved images generated by the generator and the original high-resolution images.
The discriminator in SRGAN is a binary classifier that helps to differentiate between
high-resolution output generated by the generator and original high-resolution im-
ages[1]. This model uses a perceptual loss function which consists of an adversarial
loss and a content loss. The adversarial loss pushes the solution to the natural im-
age variations, making the super-resolved images more similar to the natural images.
The content loss is motivated by perceptual similarity instead of pixel space simi-
larity[38]. Actually, the perceptual loss in SRGAN is a key component of the SISR
model that helps it generate high-resolution images that are perceptually similar to
the original images.
Afterward, the activation function PReLU is used between the convolutional layers.
The data is often normalized to ensure that the pixel values fall within a certain
range, Typically between 0 and 1. This helps improve the stability and performance
of the training set of processes. Lastly, the data is divided into batches which are
used to train the model. Using batches of data instead of individual samples can
make the training process more efficient[39].

ESRGAN

ESRGAN goes beyond SRGAN’s introduction of the idea of perceptual loss to im-
prove realism. ESRGAN improves perceptual loss functions by prioritizing the
preservation of critical visual characteristics more strongly[10]. For the perceptual
loss, VGGNet-19 is used. ESRGAN generates super-resolved images that closely
mimic real high-resolution content while also appearing sharper thanks to its more
efficient use of perceptual loss, which results in a more organic and beautiful final
product.

20

ESRGAN works by estimating and generating a high-resolution image from a low-
resolution image. It uses deep neural networks to do this. ESRGAN consists of
content loss and adversarial loss. The content loss ensures that the upscaled image
is similar to the original HR image[40]. Meanwhile, the adversarial loss ensures the
fact that the upscaled images are indistinguishable from real HR images.

The generator in ESRGAN is designed to create high-resolution images from low-
resolution inputs. ESRGAN uses RRDB as a generator which combines multi-level
residual network and dense connections. RRDB’s main focus is to introduce model
modification such that the training is efficient and less complex. Afterward, the
discriminator in ESRGAN is designed to differentiate between the actual HR image
and the generated super-resolved image. It cross-checks whether the upscaled images
are real or fake[41]. The discriminator or ESRGAN is a multi-scale attention U-net
architecture. It tries to predict the probability that a real image is relatively more
realistic than a fake one. These two components work together to create an efficient
ESRGAN architecture[42]. One of the benefit ESRGAN’s has that it can be trained

with a large number of data and it results in proper output. During training im-
ages are artificially corrupted to emulate real-world degradation[40]. The ESRGAN
model is then trained to recover the original image or upscale the image. In conclu-
sion, ESRGAN outperforms SRGAN by implementing a more sophisticated RRDB
architecture, improving perceptual loss functions, and showcasing adaptability while
managing various upscaling factors.

BSRNET

Then comes BSRNET. It stands for Blind Super-Resolution Network and it is a
model used for image super-resolution tasks. In the context of image super- reso-
lution, BSRNet might improve the quality of low-resolution contents. However, the
actual functioning method of BSRNet in image super-resolution may vary depending
on the specific implementation and nature of the content data. The primary concept
underlying super-resolution models such as BSRNet is to develop a mapping from
low-resolution inputs to high-resolution outputs. This is often accomplished using
a deep learning framework that employs vast quantities of training data to learn
this mapping. The trained model may then be applied to improve the resolution
of previously unnoticed low-quality photos. However, the main problem of imple-
menting BSRNET in video upscaling tasks is, that BSRNET is best suited to image
upscaling tasks. To use BSRNET in the context of image upscaling tasks, much
computational data may be needed[43].

21

Chapter 3

Dataset Extraction

3.1 Dataset Description

The dataset “130k Images (128x128) - Universal Image Embeddings” by Rohit
Singh, one of the lead engineers at Samsung R&D has been selected for the the-
sis. The usability rating of the dataset is 8.24 by Kaggle. The database consists of
11 categories with a total of 130k images. From where 6 categories were selected
to generate a versatile dataset, the details shown in the chart (3.1). For the train-
ing purpose 2, 400 images were selected and for the testing purpose to evaluate the
model 600 images were selected. So, in total the dataset stands for 3, 000 images.

The artwork has been selected because this category contains human paintings and
designs. In this category, the research papers published on different GAN models
have got some satisfactory results. These artworks would help the research to un-
derstand how much of an improvement the model can provide in terms of sharpness
and details. The apparel category contains pictures of humans and clothing. This
will help the research to determine how the model performs on human faces, and
how much of an improvement it can provide by upscaling these sorts of images. The
clothing in this category can also help to understand how the model may perform in
multi-colored objects or clothes. A car is an object that can be easily identified by
different generative models. As it has a specific structure it would be a bit easier to
feed the model and try to get a more effective upscaling image. The furniture cate-
gory has different types of chairs, tables, beds, etc. These are selected because the
furniture has sharp edges. It would be easier for the model to identify the edges and
upscale it. Thus, it would provide refined output. That is the reason why this cate-
gory was picked. In the case of illustration, it contains different images of cartoons,
anime characters, and graffiti. In the papers that were found on GAN architecture,
different types of cartoon images were used in the dataset and those researchers got
quite favorable results. That is why this category has been chosen. The landmark
category was chosen to facilitate more practical real-world implementations. People
often take photos of nature. Those pictures may come out blurry or in low-end
mobile phones may not take good photos. To address this problem this model has
chosen a landmark category which is filled with different famous places and scenar-
ios. By training with this many places pictures the model of this paper would be

22

able to provide some improved pictures. At first, the thesis focused on running the

GAN models on a versatile dataset of three thousand images. Amongst them, for
training, 2400 images were used and the model was tested using the remaining six
hundred images. Here, after each epoch for validation randomly selected ten percent
images from the training images were used which were three hundred of randomly
selected images.

500

500

500500

500

500

Landmark
16.7%

Illustrations
16.7%

Furniture
16.7%

Artwork
16.7%

Apparel
16.7%

Car
16.7%

Versatile Dataset Description

Figure 3.1: Versatile category based dataset description.

From the massive dataset of 130, 000 pictures, that has been taken from Kaggle.
Among 10488 images of furniture only 2000 images have been taken. This time the
model is working on a single category. The purpose of working with a single category
is to test the model and to determine how well it can perform on a dataset of just a
single category. The 2000 images that have been selected are of types of furniture.
The training dataset contains 1600 pictures from the selective dataset. After every

epoch, the model calculates generation loss, discrimination loss, and validation loss.
For the validation, the model is using 10% of the training data, which is on 160
images. These 160 images that are being used for validation are randomly selected
after every epoch. And, finally, for testing purposes, the research paper has used
400 of the images in this category. These 400 images have been kept blind from the
model. In order to get proper results.

3.2 Dataset Splitting

The whole dataset has been splitted into train and test. Here (3.2) the ratio for this
has been 80:20. For training the model 80% dataset was selected and for testing
the rest 20%. The 20% for testing the dataset was kept blind from the model while
training. Moreover, for validation, 10% of the test dataset was selected randomly.

23

We have scrambled the data, which suggests that we have mixed up the sequence in
each batch, for our model to understand the pattern. This is done to prevent bias
in the trained model. Because the model may begin to memorize the same labeled
image and fail to train properly if it is shown repeatedly for an extended length of
time. When an epoch has ended, the task of the model is to validate. It is essential
for calculating the accuracy. So, to put it in numbers where we had 3000 images
in total. From that 2400 of them had been used for the training section. Again
from the 2400 images randomly selected 240 images were used for validation. The
remaining 600 images were used for testing the model and finally evaluating the
results. And for the single-category dataset, 2000 images of furniture were selected.
This dataset was also split into an 80:20 ratio. So, for testing the amount of images
was 1600. Among them, randomly selected 200 images were used for validation.
Finally, 400 images were used in the testing part. And the performance of the
model was evaluated by these 400 images where the model has learned about only
a specified category.

Preprocessed Dataset
100%

Train Data
80%

Test Data
20%R

an
do

m
Se

le
ct

io
n

Validation
Data 10%

Figure 3.2: The process of splitting the dataset.

2,400

600

TEST

20.0%

TRAIN

80.0%

Versatile Dataset

Figure 3.3: Versatile category dataset splitting for train & test.

24

1,600

400

TEST

20.0%

TRAIN

80.0%

Single Catagory Dataset

Figure 3.4: Single category dataset splitting for train & test.

3.3 Dataset Preprocessing

Down-scaling the Dataset

Deep learning models require a set of pair images for training purposes. The first
dataset is made up of HR pictures, which are able to be regarded as the ground
truth (GT). In order to train the model, a LR set of the data is required. To achieve
the LR images OpenCV library was used to convert the main dataset into a 4×
LR dataset (3.5). In this process, the whole dataset was taken in a single folder
to take as the input path for the code used in downscaling. The downscaler code
works based on OpenCV and OS library where it resized the each data into a 4×
lower resolution. The result is kept in a different folder as the training LR where
each data was named exactly the same as its input name. So, this process produced
exact same pair of datasets among which one was the base HR set and another was
the 4× LR dataset.

Image Denoising

There are many Image Denoising methods. But for this research purpose, we have
chosen the “Gaussian Noise” method. By adding random changes to data, Gaussian
noise produces a realistic unpredictability that resembles uncertainty found in the
actual world. It has a standard deviation and mean, which are often zero, and it has
a Gaussian distribution. Images are processed using Gaussian noise to mimic real-
world uncertainties such as sensor noise and ambient conditions. Image processing
methods are tested for robustness, ensuring performance in a range of situations,
by adding this mathematically well-defined noise. It helps assess and improve noise
reduction in images. It is essential for improving the image quality. The ”Gaus-
sian noise” facilitates standardized statistical analysis, which aids in the creation of
efficient image-processing techniques for computer vision applications.

25

128 pixel 32 pixel

128 pixel
128 pixel

32 pixel
32 pixel

32 pixel
32 pixel

32 pixel

32 pixel

����������������� ���������
	������� �����������

Figure 3.5: Down-scaling the dataset to 4x LR.

26

Chapter 4

Model Implementation

4.1 Experimental Framework

Hardware Specification

The research is based on a model which is applicable for training on consumer grade
GPUs. For this purpose the investigation started from the top level of consumer
grade GPUs and eventually by optimization, the model was able to run on an average
consumer grade GPU. Until October 2024 the best performing consumer grade GPUs
that were available in the market was the NVIDIA GeForce RTX4090 which has 24
GB of vram. As a result the initial research started with the best performing GPU
to make sure the proper development of the GAN models. Also to avoid bottleneck
issues the processor’s computational power was also considered. By using Intel Core
i9 13900K, the bottleneck issues will be solved. Also the system had 64 GB ram
configured in dual channel mode. To combine the whole setup Gigabyte Z790 UD
AX DDR5 motherboard was used with sufficient power supply. After successful
generation and results the models were optimized to shift on an average to high
level GPU named the NVIDIA GeForce RTX3060 Ti. This GPU had a 8 GB vram
variant. Eventually the models were fitted to train on this configuration. Lastly an
average GPU NVIDIA GeForce GTX 1660 was used to test which had a 6 GB of
vram. On this GPU the model took a comparatively higher time but was able to
complete the training and testing which was the primary objective of this thesis. It
had to develop a balance trade off with the resolution and the hardware limitation.
The GPU used in the research was examined properly and the benchmark tested
from trustable websites. The result of the benchmark test is given below (4.1).
Benchmark testing is based on some factors like the computational power, synthetic
or 3D rendering, probable frame per second generation capability etc. The current
baseline of the benchmark test is RTX 3060 Ti which is being considered as the 100%
on the average performance. Where RTX 4090 has a comparative 370% average
performance and GTX 1660 has a 68.3% average performance.

27

NVIDIA GeForce RTX 4090
(24GB v-ram variant)

NVIDIA GeForce GTX 1660
(6GB v-ram variant)

NVIDIA GeForce RTX 3060 Ti
(8GB v-ram variant)

UserBenchmark
https://gpu.userbenchmark.com/

Figure 4.1: UserBenchmark testing result for GPUs utilized on the thesis.

28

Software Environment Setup

To run the models, Jupyter Notebook was chosen as the development environment.
Jupyter Notebook is a flexible and user-friendly interface, at the same time it is
good for deep learning training and testing. The models were developed in Python
language where the research used Python version 3.12.4 and the software Jupyter
Notebook version was 7.0.8. The language Python has rich deep-learning libraries
and frameworks. At the same time, it has an active community and the developing
team is updating the language regularly.
There are several benefits of using the Jupyter Notebook. It provides both cod-
ing and documentation at the same time on its platform. As a result, the codes
can be marked down alongside the real-time code execution. Moreover, the cell-
based execution system of Jupyter Notebook gives a huge advantage compared to
the traditional IDEs like Visual Studio Code, PyCharm, etc. Cell-based execution
systems enable the execution of specific parts of the code whenever needed from a
single .ipynb file. Furthermore, this software is highly compatible to combine the
GPU-powered environments like Google Colab, Kaggle. But it runs on an offline
environment enabling specific hardware using opportunity. Finally the visualization
and analysis ability through different libraries like matplotlib integrates seamlessly.
This helps to have a proper visualization of training curves and results.

Library Overview and Functional Roles

The main training process was based on the PyTorch library where from han-
dling the tensors to optimizing the result different libraries were used. To have
a depth view the libraries and their functionalities on the MSRGAN are explained
in this part.At the very beginning the existence of the computational device was
tested by torch.device library. Where by using the torch.cuda.is available the de-
tected device(GPU’s) availability was ensured. To develop the neural network the
torch.nn library was utilized. Where nn.Module was the base class of neural net-
work modules. The 2D convolutional layers were built by nn.Conv2d. For ac-
tivation functions nn.LeakyReLU, nn.PReLU was introduced. Moreover the loss
functions like nn.BCEWithLogitsLoss for binary classification were also part of
the torch.nn library. Furthermore nn.Sequential was used for combining layers to
modify the ResNet. Then for optimizing the parameters during the training op-
tim.Adam function was used to utilize Adam optimizer. To load the dataset cus-
tomly torch,utils.data library was used. Also, the os library helped to combine the
paths or directory of the dataset. For applying the downsampling, a library named
open CV was being used to trace the images as read and save them as required
format. Resizing and adding Gaussian blur was also part of this library. For ran-
domizing the validation dataset the random function was imported. To evaluate the
results skimage.metrics were used for PSNR and SSIM evaluation metric calcula-
tions. Also for representing the execution progress tqdm library used. Lastly, besides
some basic functions like numpy, the matplotlib.pyplot was utilized to observe the
training curves.

29

4.2 Proposed Model: MSRGAN

The final goal of implementing the expected model was a modified version of SR-
GAN. As a result the thesis focused on a step by step approach to initially develop
the SRGAN then the RRDB model based Enhanced-SRGAN and finally the MSR-
GAN. The process would help the research to have a balanced development of these
GAN models and the result analysis could compare the accuracy with these models.

The Generator class consists of a residual dense block, which was the building block
of the RRDB module. It consisted of five convolutional layers with LeakyReLU and
PReLU activations[44] (4.2). These convolutional layers were designed to extract
features from the input image. The Leaky ReLU activation function applied non-
linearity to the output. By using LeakyReLU and PReLU in an alternating manner,
a hierarchical feature extraction process was created. The concatenation of features
from different layers allowed for feature fusion, which combined the strengths of
both activation functions.

Figure 4.2: MSRGAN with Modified RRDB activation functions.

In the figure (4.2) the RRDB combined multilevel residual networks, where residual
learning was used at different levels[45]. Dense blocks were also used in the main
path for increasing the network’s capacity. The RRDB module featured a residual-
in-residual architecture, where each residual dense block was encapsulated within
an additional residual connection. It was designed to learn residual functions that
can be added to the input of the block to produce the output. The output of each
residual block was linked with the input of the next residual block, creating a dense
connection between the blocks[46].

The discriminator also used the combination of LReLU and PReLU which created
a more robust and flexible process[44]. It consisted of eight convolutional layers

30

with LeakyReLU and PReLU activations followed by two fully connected layers with
PReLU and lastly Sigmoid activation functions for output. The convolutional layers
extracted features and downsampled the image through stride-2 convolutions. The
data was prepared for the fully connected layers as the output feature maps were
flattened into a single vector. The fully connected layers produced a probability
value indicating the authenticity of the input image. The LeakyReLU activation
function introduced nonlinearity and the PReLU activation function was used in the
first fully connected layer to adaptively learn the activation function. The sigmoid
activation function was used to produce a probability value between 0 and 1.

The perceptual similarity between the generated HR image and the GT image was
ensured by content loss. Rather than pixel wise comparison this model compared
features extracted from a pretrained Resnet-18 model. Both the generated image
and HR image are passed through the resnet model for feature extraction from the
layers before the fully connected layer. The L1 loss computed the absolute contrast
between these feature maps to ensure quality in a perceptual sense[28].

The adversarial loss encouraged the generator to produce authentic, high-resolution
images that can trick the discriminator. This loss enabled the model to produce
images with greater details and better quality. The derived HR image is sent to
the discriminator, which returns a probability indicating whether it was real or not.
The adversarial loss was estimated using binary cross-entropy with logits[29].

The total generator loss included both the content loss and adversarial loss. By
balancing these two aspects, the generator could create high-resolution images that
were both visually appealing and structurally and detail-wise similar to the GT
images in terms of structure and details. The total loss for the generator was a
weighted summation of the content loss and the adversarial loss. In this case, the
adversarial loss is weighted by 0.01, emphasizing the content loss.

The discriminator’s loss was a combination of both real and fake prediction losses.
The discriminator’s task was to differentiate between real high-resolution images and
the generated fake images. Its loss was computed by comparing the real and fake
predictions with the corresponding GT. For real images, the discriminator predicts
probabilities using binary cross-entropy, with real images labeled as 1. For fake
images generated by the generator, the target is 0[29].

SR for higher resolution inputs utilizing MSRGAN

The model MSRGAN initially capable of upsampling a 32x32 pixel image into a
128x128 pixel image. But in real life almost all images have higher resolutions. So,
to upscale a higher resolution image a splitting and part by part upscaling trick
was tested on MSRGAN. For example a 512x512 pixel image was first downsampled
into a 128x128 pixel image as the initial LR input against the 512x512 GT. Then
that 128x128 pixel image was splitted into 16 smaller 32x32 pixel images. Each
of the images were upsampled 4x to 128x128 pixel images by the model. Lastly
these 16 generated HR images were merged together sequentially to have the final

31

512x512 pixel output. This technique of splitting and separately upscaling can give
the model the capability to upscale any resolution of images.

128 pixel

512 pixel

32 pixel

128 pixel

512 pixel

32 pixel

Ground Truth

4x Down sample

Splitting

128 pixel

128 pixel

512 pixel

512 pixel

Generated High Resolution Image

Figure 4.3: SR for higher resolution images with MSRGAN

32

4.3 Development of SRGAN & ESRGAN

To compare the result of MSRGAN with the existing models the research needed
to implement some existing models for having a proper evaluation. Here the initial
SR model of SRGAN and the RRDB based and upgraded version ESRGAN was
implemented.

SRGAN

The purpose of SRGAN was to enhance the resolution of LR images by utilizing
deep neural networks. The SRGAN model consisted of two main segments. The
first part was the generator and the second was the discriminator. LR images were
upscaled in generator part while the discriminator tried to differentiate between the
generated fake HR images and the ground truth which was the original HR images[1]

The Generator class for this model had five convolutional layers. These layers were
followed by the ReLU activation function. The initial convolutional layer started
with 64 feature maps, a kernel size of 9x9. This layer extracted low-level features
from the images. Subsequent convolutional layers maintained the equal number of
feature maps (64) and kernel size 3x3. The final layer had 3 feature maps represent-
ing the number of color channels, with a kernel size of 9x9. After each convolutional
layer, A ReLU activation function (self.relu) is applied element wise to introduce
nonlinearity into the network. The forward method passed forward through the
network. It was sequentially applied in each layer for passing the result through
ReLU activations.

The primary role of the discriminator was to differentiate between HR images and
those generated fake images by the generator. The architecture consisted of a series
of convolutional layers followed by fully linked layers, and it used nonlinear activa-
tions to learn complicated discriminative features. The discriminator class consisted
of eight convolutional layers followed by ReLU activation functions. The initial con-
volutional layer took a 3-channel input image (RGB) including 64 feature maps and
a kernel size of 3x3. From the second to eight convolutional layers the depth of
feature maps was increased while the spatial dimensions were reduced through a
combination of stride 2 and padding 1. Each of these 8 convolutional layers was
followed by a ReLU activation for addressing the vanishing gradient problem and
introduces non-linearity. After that, the data was prepared for the fully connected
layers as the output feature maps are flattened into a single vector. Then the flat-
tened feature vector was transformed into a 1024 dimensional representation by the
first fully connected layer again followed by a ReLU activation. Lastly, the final
fully connected layer was reduced dimensionality to a single scalar representing the
input image is real. In the forward method the input image wass sequentially passed
through every convolutional layer, followed by ReLU activations and culminating in
a single output value.

The perceptual loss function was critical for evaluating the performance of the gen-
erator network. Mainly, the perpetual loss function contains content loss and ad-
versarial loss. Here, mean squared error loss was used to calculate content loss.

33

MSELoss was mainly utilized for regression tasks where the network output should
be consistently similar to the goal values. It computed the average of the squared
differences between the projected outcomes and the genuine target value. Again,
Binary Cross-Entropy Loss and the sigmoid layer were combined for calculating ad-
versarial loss. By making a combination of these operations into a single layer, the
model had the advantage of the log-sum-exp for numerical stability[1].

ESRGAN

The methodology for ESRGAN comprises a modified network architecture, a rela-
tivistic discriminator, and a perceptual loss function. For the generator, the network
architecture was based on SRResNet where the majority of the computations were
done in low-resolution feature space. The generator was constructed by striking out
the BN layers and replacing the basic block with RRDB of the SRGAN model. The
BN layers were removed because they introduced undesirable artifacts and com-
promised the generation ability when trained under a GAN network. This action
improved the generalization ability and reduced memory utilization and computa-
tional complexity. The RRDB combines multilevel residual networks in which resid-
ual learning is implemented at different levels . Dense blocks were also employed
along the main path to increase the network’s capacity[3]

Each residual block in the RRDB consists of 5 convolutional layers. These convo-
lutional layers were constructed to derive features from the input image, and they
are followed by activation functions ReLU. The activation function will apply leaky
ReLU non-linearity to the output of each convolutional layer, with a negative slope
of 0.2. The RRDB module was designed to have a residual-in-residual structure.
RRDB’s each residual dense block was nested inside another residual connection.
It was designed to learn residual functions, which are functions that can be added
to the input of the block to produce the output. The output of each residual block
was linked with the input of the next residual block, creating a dense connection
between the blocks[3].

The discriminator was enhanced based on the Relativistic GAN, which predicted
the probability of relativity between a real image and a fake one[47]. This approach
encouraged the generator to retrieve more realistic texture details. The RaD dis-
criminator works by taking the generated image and the real image as inputs. A
convolutional neural network was used to extract features from the input images.
Then the extracted features were passed through a series of fully connected layers
to produce a probability distribution over the possible outputs. The discriminator’s
output was a probability value that indicated the likelihood of the generated image
being more realistic than the real image.

The perceptual loss function was developed more effectively by applying constraints
on features before activation instead of after, as commonly practiced in SRGAN.
This approach overcame sparse activation and inconsistent reconstructed brightness
of the original design. A variant of perceptual loss using a fine-tuned VGG19 network
for material recognition was used[3].

34

Chapter 5

Result Analysis

5.1 Inspecting Loss Curves

Result on Versatile Category Dataset

Figure 5.1: Train and Validation curves on versatile dataset.

The training curves (5.1) in the versatile dataset for the models ESRGAN and
MSRGAN shows a balanced learning process. Where SRGAN trained for 25 epoch,
ESRGAN had 115 epoch and MSRGAN runned for 197 epoch. For both the model
early stopping was applied to by utilizing a patience of 5 epoch. So, when the

35

learning accuracy was a continuous downgrade for more than five epochs ythe model
would stop and consider the best value. At the same time, the patience level would
help the models to overcome local minima to ensure a balance of learning and
avoiding under-fitting. As a result the research could have proper models which
were free from the under-fitting or over-fitting issue.

Result on Single Category Dataset

Figure 5.2: Train and Validation curves on single category dataset.

The training progress for the models on the single category dataset was better than
the versatile dataset. A total of 13 epochs were spent training SRGAN, 152 epochs
were spent training ESRGAN, and 123 epochs were spent training MSRGAN (5.2).
The patience was 5 for early stopping to avoid the over fitting issue. Here SRGAN
learned faster as it was a basic model and complexity was less as well as the feature
extraction from both ESRGAN and MSRGAN. The model MSRGAN and ESRGAN
might have local minima problems. So, for the better result and for avoiding any
local minima the patience count was increased from 5 to 20 for both ESRGAN
and MSRGAN. So, the under-fitting or overfitting was handled carefully. Also, the
complex models of ESRGAN and MSRGAN was optimized with Adam for faster
learning. Over all, according to the loss curve, the models were trained in a proper
way.

36

5.2 Evaluation Metric Result

Result on Versatile Category Dataset

The testing results of the model were compared by two evaluation metrics. The
metrics were PSNR and SSIM. At first for the versatile dataset the test dataset gave
a result which was almost similar to each other. As we can see in the figure (5.3)
the PSNR result for SRGAN was 15.85, for ESRGAN was 16.55 and for MSRGAN
was 16.97. So, the proposed model MSRGAN performed slightly better than both
ESRGAN and SRGAN. On the other side the result matrix (5.3) shows the SSIM
where SRGAN was 0.2468, ESRGAN was 0.3638 and MSRGAN was 0.4820. So in
the SSIM the proposed model also performed better. Here MSRGAN’s generated
images has a 48.2% similarity with the ground truth where both the SRGAN and
ESRGAN has less than 40% similarity. But the result was not good enough to
satisfy human eye as a super resolved image.

Result on Single Category Dataset

The metrics (5.4) showed the fluctuated values of SSIM and PSNR for images from
the test dataset. Here for SRGAN the max PSNR crossed 32.5 which was really
good but the lowest result crossed 12.5 which was not optimal. As a result the model
SRGAN generated an imbalance result with an average PSNR of 17.84. Then the
model ESRGAN had a slightly better performance with highest PSNR of 30 and
lowesr PSNR of 13 and an average of 18.73. Finally the model developed in the
thesis performed an optimal and balanced result compared with the SRGAN and
ESRGAN with an average result of 19.17. Where the highest PSNR was near 29
and lowest PSNR was around 14. Next in the SSIM metric, MSRGAN also outper-
formed the ESRGAN and SRGAN model with the average similarity index of 0.6731
where SRGAN had 0.6271 and ESRGAN had 0.6184. So, the generated images in
MSRGAN had a 67.31% similarity with the ground truth. As the models are based
on very small sized images the models struggle to generate better outcomes. With-
out any additional enhancing libraries or features the results were really good where
MSRGAN performed better in terms of both SSIM and PSNR metrics.

37

Figure 5.3: PSNR and SSIM result on versatilele category dataset.

38

Figure 5.4: PSNR and SSIM result on single category dataset.

39

5.3 Generated Image Visual Comparison

Result on Versatile Category Dataset

The result of the versatile category test dataset for all the models performed below
average. The main reason behind that was the size of the image and the category
variation. For an example in the figure (5.5) shown image was one of the images
from the apparel category where the LR was barely understandable as a human face.
The super resolved image developed the outer shape but was unable to detect the
details as the LR was too pixelated. So, the versatile category result was less than
expected and the thesis next experimented on the single category dataset.

Figure 5.5: Versatile category super resolution result example.

Result on Single Category Dataset

After training the model from the test dataset some of the generated images were
shown in the figure (5.6) to visualize the dissimilarity and variations between the
models output. The ground truth was the main dataset’s HR images of 128x128
pixels. Those ground truth images were downsampled 4x and converted into 32x32
pixels which were used as the low resolution input for the generator of the models.
From each model that is being trained, the generator generated fake HR images
which were the output of the model. Below some of the generated images with their
HR and LR has been shown. From the comparison the MSRGAN also outperformed
the ESRGAN’s and SRGAN’s images with better visualization experience. The
output of the SRGAN was blurry and noisy, where ESRGAN was sharper than
natural and lastly the MSRGAN’s generated image was better in terms of both the
color balance and accuracy.

40

Ground Truth
128*128 pixel

LR
32*32 pixel

SRGAN
128*128 pixel

ESRGAN
128*128 pixel

MSRGAN
128*128 pixel

Figure 5.6: Visualization of SRGAN, ESRGAN and MSRGAN results.

41

Chapter 6

Conclusion

6.1 Limitation

For the research, the model uses a consumer-grade GPU. Because of this, the ground
truth images we have selected were 128x128 pixels. The average user who has
a minimum 6GB Visual RAM, can train and test the model with this particular
resolution. This model is capable of 4x upscaling. So, a person can provide a 32*32
pixel low-resolution image and will have a 128*128 enhanced high-resolution image.
Based on these 128x128 pixels images we are getting this sort of output. If we want
to get an enhanced output we have to deliver a better input set. Which is not
possible with the current state-of-the-art consumer-grade GPU. So as a result, we
have to use professional-grade GPUs such as NVIDIA RTX A6000, NVIDIA Quadro
RTX 8000, etc. If those kinds of GPUs are used the model would be able to work
with 1080p-4K images.

The consumer grade GPUs selected to train and test the models were chosen in a way
that an average person would be capable of going through the experience. At first
the research used the highest consumer grade GPU till October 2024 RTX 4090 (24
GB variant) where the model performed really well and the time to train the model
was comparatively much faster. At the same time the model had the capability of
handling a comparative higher pixel LR as the usable visual memory was 24 GB.
But the same model with the same type of LR inputs failed on a RTX 3060 (8GB
variant) due to the lack of visual-ram. As a result the further research targeted a
low-resolution dataset as ground truth. After many attempts and combinations the
research developed a way to make the model executable on an average consumer
grade GPU with a minimum 4 to 6 GB visual ram. At the same time the method
of splitting and generating overcomes this problem in a simpler way.

In the case of the model used in this research, incorporating additional internal
blocks or layers significantly increases the time required to generate the output.
The extended processing time, relative to the quality of the output, diminishes
the model’s comprehensive efficiency. It is crucial to strike a balance between the
number of layers and the depth of feature extraction as it will help to enhance the
time efficiency. It will ensure that the model remains both computationally feasible

42

and effective in producing the desired results.

6.2 Future Works

This model we have developed has potential. But at this point, the model needs
some refining. In order to make the model better the paper suggests some pointers.
It would help the model to achieve far higher heights.

• Incorporate attention mechanisms to focus on certain portions of the image,
which could lead to greater performance and lower processing requirements.

• Investigate the feasibility of extending the MSRGAN model to include multi-
scale super-resolution, for more flexible and efficient image upscaling.

• Explore the use of knowledge distillation techniques to transfer knowledge
from a more extensive pre-trained model to the MSRGAN model, for reducing
training duration and processing requirements.

By implementing these things the model would be better. At the moment it can
not be implemented due to resource and time constraints. But the model has merit
where it can help in the field of image super resolution.

6.3 Conclusion

In this thesis a custom GAN model named MSRGAN was developed and evaluated
against the established models for image super resolution under the condition of
customer Grade GPUs. These models included the basic SRGAN and ESRGAN
models. Compared to those models the proposed model does perform superior.
In the context of image super-resolution, the MSRGAN model has done a great
job. In this research one of the major objectives was to develop a super-resolution
model that is capable of running on the consumer grade GPU. This model is not
computational power hungry as the typical model’s require. Yet it has produced a
better performance. As this model works with a specific pixel based 4x upscaling it
does not require a heavy computational power so a person with a consumer grade
GPU can also run to train and test the model. One can even customize the model as
he/she likes. For young students and researchers interested in computer vision, this
creates new opportunities without requiring industry grade hardwares. The hurdle
which was so high to leap once, can be easily surpassed.

So in conclusion the MSRGAN model is a very capable image super-resolution model
where it can surpass the basic SRGAN, ESRAN models. On top of that it is more
computational power efficient compared to other existing models. Thus, this model

43

may serve as a stepping stone for the development in the field of image super-
resolution.

44

Bibliography

[1] C. Ledig, L. Theis, F. Huszar, et al., “Photo-realistic single image super-
resolution using a generative adversarial network,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017.

[2] B. Liu and J. Chen, “A super resolution algorithm based on attention mecha-
nism and srgan network,” IEEE Access, vol. 9, pp. 139 138–139 145, 2021. doi:
10.1109/ACCESS.2021.3100069.

[3] X. Wang, K. Yu, S. Wu, et al., “Esrgan: Enhanced super-resolution generative
adversarial networks,” in Proceedings of the European Conference on Computer
Vision (ECCV) Workshops, Sep. 2018.

[4] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, Activation functions:
Comparison of trends in practice and research for deep learning, 2018. arXiv:
1811.03378 [cs.LG]. [Online]. Available: https://arxiv.org/abs/1811.03378.

[5] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, Activation functions in deep
learning: A comprehensive survey and benchmark, 2022. arXiv: 2109 .14545
[cs.LG]. [Online]. Available: https://arxiv.org/abs/2109.14545.

[6] K. Janocha and W. M. Czarnecki, On loss functions for deep neural networks
in classification, 2017. arXiv: 1702.05659 [cs.LG]. [Online]. Available: https:
//arxiv.org/abs/1702.05659.

[7] W. Shi, J. Caballero, F. Huszar, et al., “Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), Jun. 2016.

[8] M.-Y. Liu, X. Huang, J. Yu, T.-C. Wang, and A. Mallya, “Generative adver-
sarial networks for image and video synthesis: Algorithms and applications,”
Proceedings of the IEEE, vol. 109, no. 5, pp. 839–862, 2021. doi: 10.1109/
JPROC.2021.3049196.

[9] G. Freedman and R. Fattal, “Image and video upscaling from local self-
examples,” ACM Trans. Graph., vol. 30, no. 2, Apr. 2011, issn: 0730-0301.
doi: 10.1145/1944846.1944852. [Online]. Available: https://doi.org/10.1145/
1944846.1944852.

[10] X. Xiang, Y. Tian, V. Rengarajan, L. D. Young, B. Zhu, and R. Ranjan,
“Learning spatio-temporal downsampling for effective video upscaling,” in Eu-
ropean Conference on Computer Vision, Springer, 2022, pp. 162–181.

[11] J. Li, J. Cao, Z. Zou, et al., Distillation-free one-step diffusion for real-world
image super-resolution, 2024. arXiv: 2410.04224 [cs.CV]. [Online]. Available:
https://arxiv.org/abs/2410.04224.

45

https://doi.org/10.1109/ACCESS.2021.3100069
https://arxiv.org/abs/1811.03378
https://arxiv.org/abs/1811.03378
https://arxiv.org/abs/2109.14545
https://arxiv.org/abs/2109.14545
https://arxiv.org/abs/2109.14545
https://arxiv.org/abs/1702.05659
https://arxiv.org/abs/1702.05659
https://arxiv.org/abs/1702.05659
https://doi.org/10.1109/JPROC.2021.3049196
https://doi.org/10.1109/JPROC.2021.3049196
https://doi.org/10.1145/1944846.1944852
https://doi.org/10.1145/1944846.1944852
https://doi.org/10.1145/1944846.1944852
https://arxiv.org/abs/2410.04224
https://arxiv.org/abs/2410.04224

[12] M. Zareapoor, M. E. Celebi, and J. Yang, “Diverse adversarial network for
image super-resolution,” Signal Processing: Image Communication, vol. 74,
pp. 191–200, 2019, issn: 0923-5965. doi: 10 . 1016 / j . image . 2019 . 02 . 008.
[Online]. Available: https : / / www . sciencedirect . com / science / article / pii /
S0923596518309937.

[13] A. Dongare, R. Kharde, A. D. Kachare, et al., “Introduction to artificial neu-
ral network,” International Journal of Engineering and Innovative Technology
(IJEIT), vol. 2, no. 1, pp. 189–194, 2012.

[14] B. Zhang, S. Gu, B. Zhang, et al., “Styleswin: Transformer-based gan for high-
resolution image generation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2022, pp. 11 304–
11 314.

[15] T. Arora and R. Soni, “A review of techniques to detect the gan-generated
fake images,” Generative Adversarial Networks for Image-to-Image Transla-
tion, pp. 125–159, 2021.

[16] J. Wu, “Introduction to convolutional neural networks,” National Key Lab for
Novel Software Technology. Nanjing University. China, vol. 5, no. 23, p. 495,
2017.

[17] DataDrivenInvestor, Introduction to how cnns work, https://medium.datadriveninvestor.
com/introduction- to- how- cnns- work- 77e0e4cde99b, Accessed: 2024-10-14,
2019.

[18] L. Alzubaidi, J. Zhang, A. J. Humaidi, et al., “Review of deep learning: Con-
cepts, cnn architectures, challenges, applications, future directions,” Journal
of big Data, vol. 8, pp. 1–74, 2021.

[19] Á. Zarándy, C. Rekeczky, P. Szolgay, and L. O. Chua, “Overview of cnn
research: 25 years history and the current trends,” in 2015 IEEE International
Symposium on Circuits and Systems (ISCAS), 2015, pp. 401–404. doi: 10 .
1109/ISCAS.2015.7168655.

[20] C. Zhang, P. Benz, D. M. Argaw, et al., “Resnet or densenet? introducing dense
shortcuts to resnet,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), Jan. 2021, pp. 3550–3559.

[21] J. Liang, “Image classification based on resnet,” in Journal of Physics: Con-
ference Series, IOP Publishing, vol. 1634, 2020, p. 012 110.

[22] T. Szanda la, “Review and comparison of commonly used activation functions
for deep neural networks,” in Bio-inspired Neurocomputing, A. K. Bhoi, P. K.
Mallick, C.-M. Liu, and V. E. Balas, Eds. Singapore: Springer Singapore, 2021,
pp. 203–224, isbn: 978-981-15-5495-7. doi: 10.1007/978-981-15-5495-7 11.
[Online]. Available: https://doi.org/10.1007/978-981-15-5495-7 11.

[23] J. Brownlee, Rectified linear activation function for deep learning neural net-
works, https : / / machinelearningmastery . com / rectified - linear - activation -
function-for-deep-learning-neural-networks/, Accessed: 2024-10-14, 2019.

[24] Y. Guo, S. Li, and G. Lerman, The effect of leaky relus on the training and gen-
eralization of overparameterized networks, 2024. arXiv: 2402.11942 [cs.LG].
[Online]. Available: https://arxiv.org/abs/2402.11942.

46

https://doi.org/10.1016/j.image.2019.02.008
https://www.sciencedirect.com/science/article/pii/S0923596518309937
https://www.sciencedirect.com/science/article/pii/S0923596518309937
https://medium.datadriveninvestor.com/introduction-to-how-cnns-work-77e0e4cde99b
https://medium.datadriveninvestor.com/introduction-to-how-cnns-work-77e0e4cde99b
https://doi.org/10.1109/ISCAS.2015.7168655
https://doi.org/10.1109/ISCAS.2015.7168655
https://doi.org/10.1007/978-981-15-5495-7_11
https://doi.org/10.1007/978-981-15-5495-7_11
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://arxiv.org/abs/2402.11942
https://arxiv.org/abs/2402.11942

[25] T. D. Science, Comparison of activation functions for deep neural networks,
https : // towardsdatascience . com/comparison - of - activation - functions - for -
deep-neural-networks-706ac4284c8a, Accessed: 2024-10-14, 2019.

[26] S. M. A. Bashir, Y. Wang, M. Khan, and Y. Niu, “A comprehensive review of
deep learning-based single image super-resolution,” PeerJ Computer Science,
vol. 7, e621, 2021.

[27] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural net-
works,” Towards Data Sci, vol. 6, no. 12, pp. 310–316, 2017.

[28] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for neural networks
for image processing,” arXiv preprint arXiv:1511.08861, 2015.

[29] U. Ruby and V. Yendapalli, “Binary cross entropy with deep learning tech-
nique for image classification,” Int. J. Adv. Trends Comput. Sci. Eng, vol. 9,
no. 10, 2020.

[30] T. Lin and C. Lin, “Single hyperspectral image super-resolution using admm-
adam theory,” English, in IGARSS 2022 - 2022 IEEE International Geoscience
and Remote Sensing Symposium, ser. International Geoscience and Remote
Sensing Symposium (IGARSS), Funding Information: This study was sup-
ported partly by the Einstein Program (Young Scholar Fellowship Program)
of Ministry of Science and Technology (MOST), Taiwan, under Grant MOST
110-2636-E-006-026; and partly by the Higher Education Sprout Project of
Ministry of Education (MOE) to the Headquarters of University Advance-
ment at National Cheng Kung University (NCKU). Publisher Copyright: ©
2022 IEEE.; 2022 IEEE International Geoscience and Remote Sensing Sympo-
sium, IGARSS 2022 ; Conference date: 17-07-2022 Through 22-07-2022, United
States: Institute of Electrical and Electronics Engineers Inc., 2022, pp. 1756–
1759. doi: 10.1109/IGARSS46834.2022.9883334.

[31] M. Lee and J.-P. Heo, Noise-free optimization in early training steps for image
super-resolution, 2023. arXiv: 2312.17526 [cs.CV]. [Online]. Available: https:
//arxiv.org/abs/2312.17526.

[32] J. Flusser, S. Farokhi, C. Höschl, T. Suk, B. Zitová, and M. Pedone, “Recog-
nition of images degraded by gaussian blur,” IEEE Transactions on Image
Processing, vol. 25, no. 2, pp. 790–806, 2016. doi: 10.1109/TIP.2015.2512108.

[33] J. Bai and L. Shi, “Truncated kernel stochastic gradient descent on spheres,”
arXiv preprint arXiv:2410.01570, 2024.

[34] L. Prechelt, “Early stopping - but when?” In Neural Networks: Tricks of the
Trade, G. B. Orr and K.-R. Müller, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1998, pp. 55–69, isbn: 978-3-540-49430-0. doi: 10.1007/3-540-
49430-8 3. [Online]. Available: https://doi.org/10.1007/3-540-49430-8 3.

[35] A. Horé and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th
International Conference on Pattern Recognition, 2010, pp. 2366–2369. doi:
10.1109/ICPR.2010.579.

[36] D. R. I. M. Setiadi, “Psnr vs ssim: Imperceptibility quality assessment for
image steganography,” Multimedia Tools and Applications, vol. 80, no. 6,
pp. 8423–8444, 2021.

47

https://towardsdatascience.com/comparison-of-activation-functions-for-deep-neural-networks-706ac4284c8a
https://towardsdatascience.com/comparison-of-activation-functions-for-deep-neural-networks-706ac4284c8a
https://doi.org/10.1109/IGARSS46834.2022.9883334
https://arxiv.org/abs/2312.17526
https://arxiv.org/abs/2312.17526
https://arxiv.org/abs/2312.17526
https://doi.org/10.1109/TIP.2015.2512108
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.1109/ICPR.2010.579

[37] DigitalOcean, Super resolution generative adversarial networks, https://www.
digitalocean.com/community/tutorials/super-resolution-generative-adversarial-
networks, Accessed: 2024-10-14, 2021.

[38] M. Vasamsetti, P. Kaja, S. Putta, and R. Kumar, “Combining super-resolution
gan and dc gan for enhancing medical image generation: A study on improving
cnn model performance,” in GANs for Data Augmentation in Healthcare, A.
Solanki and M. Naved, Eds. Cham: Springer International Publishing, 2023,
pp. 187–205, isbn: 978-3-031-43205-7. doi: 10.1007/978-3-031-43205-7 11.
[Online]. Available: https://doi.org/10.1007/978-3-031-43205-7 11.

[39] GeeksforGeeks, Super resolution gan (srgan), https://www.geeksforgeeks.org/
super-resolution-gan-srgan/, Accessed: 2024-10-14, 2021.

[40] Y. Yao, Z. Cui, D. Wang, and M. Zhang, “Efrg-srgan: Combining augmented
features for real-world super-resolution,” Signal, Image and Video Processing,
pp. 1–15, 2024.

[41] Z. Wei, Y. Huang, Y. Chen, C. Zheng, and J. Gao, “A-esrgan: Training
real-world blind super-resolution with attention u-net discriminators,” in Pa-
cific Rim International Conference on Artificial Intelligence, Springer, 2023,
pp. 16–27.

[42] E. Contributors, Enhanced super resolution generative adversarial networks
(esrgan), https://esrgan.readthedocs.io/en/latest/pages/esrgan.html, Ac-
cessed: 2024-10-14, 2021.

[43] S. Y. Kim, J. Lim, T. Na, and M. Kim, “3dsrnet: Video super-resolution using
3d convolutional neural networks,” arXiv preprint arXiv:1812.09079, 2018.

[44] F. Manessi and A. Rozza, “Learning combinations of activation functions,”
in 2018 24th International Conference on Pattern Recognition (ICPR), 2018,
pp. 61–66. doi: 10.1109/ICPR.2018.8545362.

[45] K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu, “Residual networks
of residual networks: Multilevel residual networks,” CoRR, vol. abs/1608.02908,
2016. arXiv: 1608.02908. [Online]. Available: http://arxiv.org/abs/1608.02908.

[46] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual
networks for single image super-resolution,” CoRR, vol. abs/1707.02921, 2017.
arXiv: 1707.02921. [Online]. Available: http://arxiv.org/abs/1707.02921.

[47] A. Jolicoeur-Martineau, “The relativistic discriminator: A key element missing
from standard GAN,” CoRR, vol. abs/1807.00734, 2018. arXiv: 1807.00734.
[Online]. Available: http://arxiv.org/abs/1807.00734.

48

https://www.digitalocean.com/community/tutorials/super-resolution-generative-adversarial-networks
https://www.digitalocean.com/community/tutorials/super-resolution-generative-adversarial-networks
https://www.digitalocean.com/community/tutorials/super-resolution-generative-adversarial-networks
https://doi.org/10.1007/978-3-031-43205-7_11
https://doi.org/10.1007/978-3-031-43205-7_11
https://www.geeksforgeeks.org/super-resolution-gan-srgan/
https://www.geeksforgeeks.org/super-resolution-gan-srgan/
https://esrgan.readthedocs.io/en/latest/pages/esrgan.html
https://doi.org/10.1109/ICPR.2018.8545362
https://arxiv.org/abs/1608.02908
http://arxiv.org/abs/1608.02908
https://arxiv.org/abs/1707.02921
http://arxiv.org/abs/1707.02921
https://arxiv.org/abs/1807.00734
http://arxiv.org/abs/1807.00734

	Declaration
	Approval
	Abstract
	Table of Contents
	List of Figures
	Nomenclature
	Introduction
	Background
	Problem Statement
	Research Objectives
	Thesis Outline

	Background
	Literature Review
	Neural Network (NN)
	Generative Adversarial Network (GAN)
	Convolutional Neural Network (CNN)
	Activation Functions
	Loss Functions
	Fine Tuning
	Evaluation Metrics
	Some Existing Models

	Dataset Extraction
	Dataset Description
	Dataset Splitting
	Dataset Preprocessing

	Model Implementation
	Experimental Framework
	Proposed Model: MSRGAN
	Development of SRGAN & ESRGAN

	Result Analysis
	Inspecting Loss Curves
	Evaluation Metric Result
	Generated Image Visual Comparison

	Conclusion
	Limitation
	Future Works
	Conclusion

	Bibliography

