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Abstract

Quantum computing is a new type of computing system that is rapidly emerging
with immense success in the area of computer science. In our day-to-day lives, there
are different types of sounds in our surroundings, which provide us with a lot of
information and data. We need to extract the noise and collect important infor-
mation from it. Convolutional neural networks (CNN) and other techniques have
been used for audio classification tasks for several years with high accuracy. But,
quantum computing has never been used for audio classifications. So, our goal in
this work is to investigate the potential of quantum advantage by experimenting
with certain quantum techniques for this specific task. We will scrutinize the ef-
fectiveness of the hybrid Quantum Convolutional Neural Network. Also, we check
whether it is capable of classifying or optimizing the classification task or not in its
Noisy Intermediate Scale-Quantum (NISQ) era.

Keywords: Audio Classification, Quantum CNN, Quantum Techniques
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Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

CNN Convolutional Neural Network
MFCC Mel Frequency Cepstral Coefficients

QCNN Quantum Convolutional Neural Network



Chapter 1

Introduction

1.1 Motivation

Quantum computing system is a new phenomenon in computer science. In computer
science, we traditionally use classical computing systems to calculate and process
data. In classical computational systems, we use binary 0 or 1 bit to represent any
type of data or information. Along with that, it uses various logic gate which mostly
follows the law of classical physics. The classical computational system has come
a long way and demonstrates huge success in processing the data accurately. But
sometimes it is very hard to calculate or process a large scale of data in this classical
computation system. As a result, it gives the wrong output when we want to solve a
complex problem. Moreover, it takes a huge time to simulate the behavior of those
complex problems. That is the reason for the new computational system, quantum
computing. There are such problems where a supercomputer needs a decade to cal-
culate and simulate those problems whereas a quantum computer can easily solve
that problem within exponentially the fastest time.

Quantum computing uses the ideas and law of quantum mechanics to calculate
the information. In quantum computing, the single bit of expressing the informa-
tion is known as a qubit. In classical systems, we use just 0 or 1 at the same time
but in the quantum system, we can use both 0 and 1 at the same time and all of the
possible combinations of that two state by using superposition. That is the main
benefit of this computing system because it gives us a multidimensional space to
calculate easily and faster which we cannot imagine in classical computing systems.
When we pass a piece of information through the quantum computer, it keeps the
data in both 0 and 1 bit and uses the probabilistic analysis simultaneously for cal-
culation. When we measure a qubit, then we get the ultimate output. Quantum
computing nowadays has a lot of research areas like quantum machine learning,
quantum neural networks, quantum cryptography, quantum simulation, quantum
algorithms, quantum internet, and so on. Every field gains immense success day by
day and also improves for reaching the betterment.

Like classical machine learning, we need quantum machine learning techniques to
solve particular problems in a quantum computing system. Quantum machine learn-
ing sometimes gives us a broader benefit than classical machine learning. When we
use a superposition state, it gives the benefit of calculating in a multidimensional



space. As a result, we can calculate a lot of information in one single time which
significantly reduces the total time complexity of any complex problem. Quantum
machine learning can be built by using quantum circuits. A Quantum circuit con-
sists of a lot of quantum gates by which we can organize the operation needed to
solve that particular problem. To operate the quantum circuit, we need to use some
techniques depending on the categories of the problem. Nowadays, many classical
machine learning techniques are also implemented in quantum circuits to get extra
advantages from them.

In this research work, we take an audio dataset for classification. Nowadays au-
dio or sound can be classified by using various machine learning algorithms which
provide highly efficient results. Support Vector Machine, K-nearest neighbor, and
many deep learning models like Convolutional Neural Networks are used for achiev-
ing the classification task accurately. Our goal in this work is to investigate the
potential of quantum advantage by experimenting with certain quantum techniques
for the classification and processing of audio. We will test the effectiveness of the
Hybrid QCNN and related quantum methods for the audio classification task.

1.2 Problem Statement

In our daily lives, we are surrounded by a lot of sound or audio. We cannot imagine
a world without any sound. Sound or audio is a very important material for our life.
When we talk to others, we can communicate by voice. People from another side,
hear the sound of our voice and respond. When a man coughs, he produces sound,
when a man snoring there produces sounds. When the dog barks it creates sounds.
When a tiger roars it creates another type of sound which is different from a dog’s
barking sound. when an aeroplane flies it produces sounds. When it’s raining it
creates the sound of rain, which is different from a thunderstorm sound. When an
alarm bells it produces a sound, when we take water into glass it creates a sound
that is different from the wave sounds of the sea. Own creates a sound that is
different from the sound of a crow. The guitar produces one type of sound, whereas
the violin produces another type of sound. So from morning to night, we engage
and experience a lot of sounds. Sound is a very good form of data because it gives
us a lot of information. We need to classify which sounds are associated with the
things. Audio classification is a very important and significant task in the area
of machine learning. Before machine learning, audio classification can be done by
frequency and spectral analysis. Using machine learning for the audio classification
tasks provides us with very accurate results. We can now correctly predict the
sounds of birds, and dogs, snoring of a man, glass breaking, typing on the keyboards,
and various sounds by using machine learning algorithms. SVM, KNN, and CNN
have already produced very high-accuracy results in this field. Moreover, machine
learning researchers research more and more efficient ways to classification of audio
data with higher and higher accuracy.

As we know, quantum computing is the future of the new computing era, we explore
how the audio classification task can be performed on a quantum computer. To do
this, we need to apply various quantum techniques. We scrutinize how quantum
techniques can perform on audio classification and is these techniques work well on
the classification task for the audio dataset.



1.3 Research Objective

This research aims to explore the effectiveness of various quantum techniques for
audio classification tasks. The objectives of this research are:

e To deeply understand how quantum techniques perform in the classification
of the audio dataset

e To develop new quantum techniques for the classification problem.
« To save time for classification operations in a short time.

o After completion, we aim to realize our suitable quantum techniques for audio
classification and publish our work.

1.4 Research Structure

e In Chapter 1 we discuss the motivation for doing this research including the
problem statement and research objective.

e In chapter 2 we discuss some basic definitions of quantum computing. Those
basic definitions will help us to understand many terminologies used in our
research along basics of quantum information theory.

o In chapter 3 we discuss the literature review.

o In chapter 4, we introduce the dataset analysis where we describe the dataset,
some data visualization along data augmentation.

o Research methodology section, we describe in brief how we proceed with our
research.

e in chapters 6 and 7 we describe how our model works and its result.
e In chapter 8 we discuss the limitations and advantages of this work.

« Finally, we conclude with chapter 9 and discuss our future plan for this work.



Chapter 2

Quantum Computing Basics

2.1 Qubit

In classical computation, we use a bit where it denotes 0 or 1. In quantum computer
systems, it is known as qubits. A two-by-one matrix can be used to represent
qubits, which are two-dimensional matrices having complex number elements. It
is represented using ”Bra-ket” notation. [5] These constitute the computational

foundation of qubits.
1 0
=l w=]i 2.)

2.2 Superposition

In addition to 0 or 1, a qubit can remain in various states by using linear state
combinations. This characteristic is known as superposition. By using this super-
position, we can represent n qubit into a state vector of 2™ Hilbert space. This is
the prime advantage that quantum computing provides us but classical computing
cannot.

[¥) = col0) +c1[1)  such that |[lcol|* + [|ea]* = 1 (2.2)

2.3 Quantum Entanglement

It is a special kind of state that cannot be stated independently. If 2 systems or
states are entangled with each other, then, one state is instantaneously effect the
other state. Along with that, measuring one state, the other state will also be
determined, no matter how much distance there is between those 2 systems. One
example of how entanglement states should be:

1 1
E|00> + E|11> (2.3)



2.4 Measurement

In quantum mechanics, measurement denotes the process of observing the state
of a quantum system. After performing the measurement, the superposition state
collapses and we get a specific outcome.

2.5 Block Sphere

Any two-level quantum mechanical system’s potential states can be represented
geometrically by a "Bloch Sphere,” Here states are presented as projections that are
orthogonal to one another.

Figure 2.1: Block Sphere

2.6 Quantum Logic Gate

Like classical computing, in quantum computing, we also use many logic gates for
performing some necessary operations. Here we discuss some of them that will be
further needed in our research. [2]

2.6.1 Pauli Gates

Pauli Gates are quantum logic gates used in various circuits for applying quantum
operation. Pauli X gate is known as bit flip operation, Pauli Z is known as phase
flip and Pauli y denotes the bit-phase flip operation.

X = {(1) (1)} (2.4)

Y = [Q _Z} (2.5)

Z = [0 _1] (2.6)



2.6.2 CNOT Gate

CNOT gate or Control-NOT gate is one kind of logic gate, where one qubit acts like
a control bit and another like a target bit. When the control bit is on 1, then the
opposite target will be changed.

CNOT = (2.7)

oS O O
o O = O
_— o O O
o= O O

2.6.3 Rotational gate

A rotational gate is responsible for rotating on a qubit by the angle in radian with
X, Y, and Z axis in a block sphere. [4] Here are the rotational gates used in quantum
computation:

cos) —isind
Rx(0) = {—i sinf  cosf ] (2.8)
cosf) —sind
Ry(0) = {Sinﬁ cos 6 ] (2.9)

Rz(0) = leig ?9] (2.10)



Chapter 3

Literature Review

Michael Esposito et al. author a paper [12] where they use quantum machine learn-
ing for audio classification with application to healthcare. They implement a hybrid
quantum neural network to detect and classify their dataset. They perform it on
the COVID-19 cough classification task. After that, they compare classical and
quantum neural network methods for this task to see how efficiently classified it can
be. From the dataset, they create a Log-mel spectrogram image as feature extrac-
tion. The processed image goes through a quantum convolution circuit. Then they
pass the image on a classical Recurrent Neural network and a convolutional neural
network. The classical RNN gives test accuracy with 79.4% and CNN provides 73%
whereas when applying QNN-2 qubits with no noise, it becomes 74.6% and QNN-4
qubits with no noise produce 78.8% accuracy.

Siddhant Dutta, Mann Bhanushali, et al. author a paper [13] about environmental
sound classification tasks by using quantum quantized networks. They propose a
hybrid QQNN architecture that requires fewer parameters than the normal method.
They use the ESC-10 dataset for the task. They use mel spectrogram for feature
extraction from the audio dataset pass it on MobileNetV3 architecture and then
pass the output into a variational quantum circuit. The training accuracy of clas-
sical MobileNet3small was 70.33% whereas the hybrid MobileNetv3small is 85.33%.
Moreover, Classical MobileNetv3Large training accuracy was 62.33% but the hybrid
one provided 89.67% training accuracy.

The research paper by Joy Krisan Das et al. proposed the idea of using a CNN
and LSTM-based system for urban sound classification [11] They used the Ur-
bansSound8k dataset for classification. For feature extraction from the audio dataset,
they use MFCC, Mel spectrogram, chroma STFT, and other retable techniques. In
the data augmentation part, they use pitch shift, time stretch, and pitch shift with
time stretch. From these collected images, they pass these on to the convolutional
neural network architecture and observe how correctly it classifies the audio. Along
with that, they also pass the signal’s images on the LSTM. Applying CNN on the
MFCC images they get 90.78% accuracy without augmentation, and 96.78% ac-
curacy with augmentation. Melspectogram images provide output with 83.11 and
94.42% respectively. From LSTM, they got MFCC image accuracy without augmen-
tation 93.30%, with augmentation 98.23%, and mel spectrogram provides 81.85%
and 96.25% respectively.



Fan Fan, et al. Authored a paper where they proposed a hybrid quantum-classical
CNN model for image classification [14]. In their proposed model, they have used
four layers which were encoding layers, quantum convolution layer, measurement
layer, and dense layer. When an image passes through the model first it goes
through an encoding section. They used the idea of flexible representation of a
quantum image for encoding the image [6]. For the quantum convolutional layer,
they used a 2*2-sized kernel with a stride size of 2. Then, in the measurement layer,
features are mapped into 1D feature vectors for the dense layer. In the dense layer,
they implement an activation function to achieve the nonlinear transformation and
output as a probability distribution for classifying the category. Their proposed
QC-CNN provides 69.7% training accuracy on the overhead-MNIST dataset, 71.8%
on the So2Sat LCZ42 dataset, and 85.7% on the PatternNet dataset.

Farina Riaz, et al. propose a neural network model where they use the idea of
quantum entanglement approach for image multi-class classification [16]. For im-
plementing this model, they assume that the input image is a 2D matrix of size m*n
where the pixel values are normalized. So they use a 4-qubit quantum circuit where
4 pixels are encoded using RY Gate. The output that produces the RY gate is for-
warded to the quantum circuit. For this, they use 4 Hadamard gates, 20 three-axis
rotations gates, and 20 CNOTS gates. After processing the model, then get output
features which are transformed into a 1D vector.

Yijie Dang, et al. use the idea of a quantum K-nearest-neighbor algorithm for the
image classification task properly [8]. They compile feature vectors from the im-
ages. Then they pass these vectors set on the quantum state for preparation. They
calculate the distances between the test images and training images that signify
the similarity of they are computed on the quantum circuit and perform amplitude
estimation algorithm. To find the k minimum distance from the quantum super-
position state they use Durr’s Algorithm [3]. Finally, the classification is produced
based on the k similarity. They obtain O(root k M). This experiment provides
83.1% accuracy on the Graz-01 dataset and 78% on the Caltech-101 dataset.

Kevin Shen et al. author a paper [17] where they use a variation circuit for data en-
coding for the classification of the fashion-MNIST dataset. For encoding, they take
Flexible Representation of Quantum Images techniques. Then they implement this
by introducing the variational algorithms. For a single image, all of the parameters
are initialized in the circuit and continuously updated by using a classical optimizer.
After initializing the circuit they perform it on 70,000 labeled images for training
and perform it on the quantum machine learning techniques.

Debanjan Konar et al. propose random quantum neural networks for recogniz-
ing noisy images [15]. They implemented this on the MNIST, fashionMNIST, and
KMNIST datasets and obtained an average of 94.9% accuracy. Here they used a
classical preprocessing layer for connecting the layer between the temporal pooling
layer. After that, the output is encoded as quantum states and passed through a
variational quantum circuit.



Irish Cong, et al. proposed a quantum CNN in this paper. [9]. They claim that their
QCNN uses O(logN) variational parameters for the input size of N qubits. They
construct the QCNN circuit based on two important properties. One is the fixed
point criterion. They claim that if the input is a cluster state of L spin, the output
of the convolution-pooling layer of one-third of the L. Then another property is the
Quantum error correction criterion. According to them, these two properties are
necessary for any quantum circuit implementation.
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Chapter 4

Dataset Analysis

4.1 Dataset

Dataset analysis is one of the important tasks in the machine learning dataset.
Dataset analysis provides a glimpse of the available data of that dataset. We can
know the distribution of data, Along with that, we get information about whether
there is any error, or null value available in the dataset by performing the data
analysis task. That is why it is one of the most important tasks before doing any
work in the field of machine learning.

4.2 Data Collection

As we are working on sound classification by using quantum techniques, we use the
ESC-50 dataset [7], which is a dataset of environmental sound. This is an open-
source dataset. In this dataset, there are 2000 audio data with 50 categories. We
preprocess the dataset and use the feature for our further work.

4.3 Dataset Overview

In the ESC-50 open-source environmental sound dataset, there exist 50 categories.
Each of the categories contains 40 individual audio data. Dog, glass breaking, sneez-
ing, insects, laughing, washing machine, car horn, clapping, keyboard typing, etc
are some of the categories of the dataset. As this is an audio dataset, for feature
extraction we need to convert the audio to image by applying some technique to vi-
sualize the data. For each audio available in the dataset, we extract Chroma STFT,
Mel spectrogram, and MFCC. In total, we have 2000 Chroma STFT images, 2000
Mel spectrogram Images, and 2000 MFCC images.

e Mel Spectrogram: It is a combination of spectrogram and Mel scale. Here
vertical axis denotes Hz and the horizontal axis denotes time. It provides us
the information about the time and frequency. Some of the Mel Spectrogram
images are for some existing categories of the dataset.

e Chroma STFT: It is another useful feature extraction technique. It maps
each STFT bin to chroma after performing a short-time Fourier transform
on an audio input. Here vertical axis denotes pitch class and the horizontal

11



axis denotes time. [11] It provides us the information about the time and
frequency. Some of the Chroma STFT images are for some existing categories
of the dataset.

« MFCC: Mel frequency cepstral coefficient is another technique for audio fea-
ture extraction.[1] Here vertical axis denotes frequency cepstral and the hor-
izontal axis denotes time. Some of the MFCC images are for some existing
categories of the dataset.

4.4 Data Augmentation

Data Augmentation technique used to increase the existing data. There are many
data augmentation techniques for audio datasets like pitch shifting, time stretching,
etc. We use the pitch-shifting technique here. We use the factor of 42 and -2 to
raise and lower the pitch of the audio.[11] After pitch shifting we will have available
4000 mfcc images of pitch shifting, 4000 mel spectrogram, and 4000 chroma stft
images with normal 2000 images of each category.

Figure 4.1: Mel Spectrogram of a single Thunderstorm audio

Figure 4.2: Chroma STFT of a single Thunderstorm audio

12



Figure 4.3: MFCC of a single Thunderstorm audio

Figure 4.4: Pitch-shift -2 Chroma STFT of a Thunderstorm audio

Figure 4.5: Pitch-shift +2 MFCC of a Thunderstorm audio
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Chapter 5

Research Methodology

‘ ESC-50 Data set for classification ‘

v

create image from the audio as feature
extraction by using some technigues

v

" Passing the images, through the Quantum ™.
A Convolutional Layer 4

l_ﬂ

Input the extracted feature through a feed
forward network

—

Measurement the probability of the output
image classification

Figure 5.1: Research Methodology

From the dataset, we get 2000 audio. From this 2000 audio, we create 2000 chroma
stft, 2000 Mel spectrogram, and 2000 MFCC images. After pitch shifting, we get in
total of 18000 images. We perform classical CNN on the images without augmented.
On the other hand, we perform QCNN on both augmented and without augmented
images. We perform QCNN on augmented data so that we can understand how
actually the hybrid model works.

For designing, a quantum circuit for the convolutional layer, we use amplitude em-
bedding for the feature extraction method. A detailed explanation of the model
architecture is available in the model architecture chapter.

14



Chapter 6

Model Architecture

6.1 Convolutional Neural Network

The first model we use here is the convolutional neural network (CNN). CNN is
widely used to classify tasks. It is especially well-suited for learning hierarchical
feature representations. Generally, CNN extracts spatial features from the input
data, increasing the depth of the feature maps while gradually decreasing the spatial
dimensions. The architecture starts with several convolutional layers, then moves
on to max-pooling layers, and ends with fully linked classification layers. Here is
the detail that, I have used in my work:

e Input Layer: This layer consists of the size of the images. In this work, we
use 400*400*3 where 3 denotes the RGB channels.

« Convolutional Layers:

— 1st layer: this layer consists of 32 filters, each of size 3x3. Here we use
the ReLLU activation function to introduce non-linearity.

— 2nd layer: this layer consists of 64 filters of size 3x3. This layer is used
to capture more features. Here also, we used ReLU for the activation
function

— 3rd layer: this is the final layer that we used in our work which consists
of 128 filters of size 3x3. Here also ReLLU activation is applied as well.

« Max Pooling Layers: 3 max-pooling layers with a 2x2 window are applied
after each of the convolutional layers. This max pooling layer takes the largest
value in each 2x2 zone and uses it to minimize the spatial dimensions of the
feature maps while keeping the most significant features.

o Flatten Layer: the flattening layer used to convert into a 1D vector from the
feature maps created by the convolutional layer. After flattening the features,
the information is passed to the fully connected layer.

e Fully Connected Layers:

— Dense Layer: A 128-neuron fully connected layer—also called a dense
layer—applied on the flattened vector. This layer finds complex patterns
from the features retrieved by the convolutional layers. The model is kept

15



from being a straightforward linear classifier by introducing non-linearity
through the use of the ReLLU activation function.

— Output Layer: After performing the complex operation with classifica-
tion, it provides the output. We use the softmax activation function.

Figure 6.1: CNN Architecture

In the time of training, we use sparse categorical cross entropy and an Adam opti-
mizer. we also implement early stopping to prevent overfitting.

6.2 Quantum Convolutional Neural Network

For our research, we implement a hybrid quantum-classical convolutional network.
We design a quantum version of the convolutional layer and pooling layer. Then
after applying the quantum convolutional layer and quantum pooling layer on the
features, the extracted information will pass on to the classical feed-forward network.

e image input: For the lack of computational resources we use here 4 qubits.
For this reason, we take 4*4 images so that we can feed the feature perfectly.

e Quantum Convolutional Layer:

— Amplitude embedding of classical features: Amplitude embedding
is a feature extraction technique that is used to embed classical data into
the quantum state. Amplitude embedding’s primary benefit is its ability
to use the quantum states of very few qubits to represent large amounts
of classical data. As we use 4 qubits, So we can extract the 2* = 16
feature by using amplitude embedding. Though we have 4*4*3(RGB)
= 48 features, we take only 16 of them. To pass the features, through
amplitude embedding, we need to normalize the input features to ensure
that, the total probability of all quantum states sum to 1 which is required
for amplitude embedding. [10]

— Quantum Gates for Entanglement and Rotation: Quantum gates
are applied to the embedded quantum state in this section of the quantum
circuit. By adding entanglement and nonlinearity, this technique enables
neural networks to learn complex representations. For this, we implement

a circuit with CNOT Gate and RX, RY Gate.
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* At first, we apply a series of CNOT gates. This gate is used to create
correlations between qubits. We use CNOT gates in this layer to
entangle adjacent qubits. We connect CNOT between qubit 0 and
qubit 1. Here qubit 0 is control and qubit 1 is target. Then qubit
1 and qubit 2. In this case, qubit 1 acts like control, and qubit 2
becomes the target. and finally qubit 2 with qubit 3. These gates
enable the network to identify patterns in the incoming data and
record interactions between adjacent qubits.

* Rotation gates are applied around the X-axis (RX) and Y-axis (RY)
after the CNOT gates. Learnable parameters are added to the net-
work through the rotation gates. These gates use an angle corre-
sponding to the parameter (0.2 * i for RX and 0.3 * i for RY) to ro-
tate the state of each qubit. For example, in qubit 2, it is, RX(0.2*2)
= RX(0.40) and RY(0.3*2)= RY(0.60). These parameters regulate
how much rotation occurs and introduce nonlinearity into the quan-
tum circuit.

— Measurement: The measurement of the qubits is the last stage of the
quantum layer. Here, we quantify each qubit in Pauli-Z expectation
value. We can determine the probability along the Z-axis. The expected
value, which ranges from -1 to 1, is returned by this measurement. Sup-
pose, the outcome is |0> so the measurement is +1 which is known as
spin up and for |1> the measurement is -1 known as spin down. After
that, the value will be passed to the next layer for further processing.

Figure 6.2: Quantum circuit of Quantum convolutional Layer

e Quantum Pooling Layer: In classical CNN, there is a pooling layer after a
convolutional layer. Similarly, we introduce a mechanism for quantum com-
putation. It is responsible for reducing the number of qubits and reducing the
spatial dimension. The features that came from the convolutional layer have
become the input feature for this quantum pooling layer. After that, we use
RX and RY rotation. The RX applies in the x-axis of the block sphere for
the qubit at the I index. Same as RY corresponding to the y-axis. How much
it will rotate, depends on the value of input features it gets. After quantum
rotations to all qubits, we perform a pooling operation to reduce the num-
ber of qubits and the information of that subsequent layer. In this case, we
reduce the number of qubits from 4 to 2. As a result, the model extracts
key information about the quantum system and finally measures it in Pauli-Z
expectations. By this measurement, we only get classical information based
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on the quantum states of those qubits. After that, the output is fed into the
fully connected layers.

0: —RX(-0.64)—RY(-0.64)— <>
1: —RX(-0.94)—RY(-0.94)— <Z>
2: —RX(-0.05)—RY(-0.05)
3: —RX(-0.09)—RY(-0.09)

Figure 6.3: Quantum circuit of Quantum pooling Layer

o Classical Flattening and fully connected Layer: After performing this
quantum operation, now we pass the information that we get from the quan-
tum state to the flattening layer which is used to convert it into a 1D vector
from the feature maps. After flattening the features, the information is passed
to the fully connected layer. On the flattened vector, a 64-neuron fully con-
nected layer is applied. This layer finds complex patterns from the features
retrieved by the quantum convolutional layers. The model is kept from being
a straightforward linear classifier by introducing non-linearity through the use
of the ReLU activation function.

While training the model, We ensured the setup was just like the classical CNN.
Below is the basic architecture of our hybrid quantum CNN.

Figure 6.4: QCCN Architecture
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Chapter 7

Result Analysis

7.1 Test Accuracy

7.1.1 Test accuracy of classical CNIN

In the current setup where the dense layer is set to 128, after performing a classical
convolutional neural network we achieved 98% accuracy in the Mel Spectrogram cat-
egory, 100% in the MFCC category, and 98% in the Chroma STFT image category.
All of these 3 categories have individually 2000 images without any augmentation.
We split the dataset into 1280 training samples, 320 validation samples, and 400
test samples.

Image Category | Epoch | Batch Size | Image Size | Test Accuracy
Mel Spectrogram 10 16 400*400 98%
MFCC 10 32 400*400 100%
Chroma STFT 10 32 400*400 98%

Table 7.1: Performance of Classical CNN

Figure 7.1: CNN performance on Chroma STF'T
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Figure 7.2: CNN performance on Mel Spectrogram

Figure 7.3: CNN performance on MFCC

These accuracies on image categories were achieved with high accuracy as the num-
ber of images per category is not so many. Normally, it is predicted that CNN
provides a very very high accuracy with this dataset as it takes only 1280 training
samples and gives tests on just 400 images. After extracting the feature from the
images by 3 convolutional layers and 3 pooling layers and finally feeding it into a
128-dense layer, it is very obvious that the classical CNN performs very well in this
classification task.

e Mel Spectrogram: During the training period of the Mel spectrogram, we
see that the training accuracy increases rapidly during the first epoch which
indicates the model is learning very well from the training dataset. The val-
idation accuracy is also 98% and remains constant throughout the training
process which signifies that the accuracy of the validation data may not im-
prove over time. But in training loss and validation loss is very low which we
understand that the performance of the model is good and does not overfit
significantly.

o MFCC: We see that the training accuracy from 0 to 4 epochs reaches close to
100%. Validation accuracy is also stable at around 98%. On the other hand,
if we observe the training and validation loss, we see that they are converging
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toward a very low value which means the model might not overfitting.

e Chroma STFT: Here also the training and validation accuracy is 98% and
loss is very low. This helps us to understand that, in this category also the cnn
performs very well. We also see that, Along with that, the difference between
training and validation loss is very low.

7.1.2 Test accuracy of Quantum CNN

In the current setup after performing a hybrid quantum convolutional neural network
we achieved 98% accuracy in all of the image categories. All of these 3 categories
have individually 2000 images without any augmentation where we split the dataset
into 1280 training samples, 320 validation samples, and 400 test samples. Along with
that, to ensure the model works perfectly on the large dataset, we use augmented
data also. After using Augmented data in 3 categories we have 6000 images per
category. We split the dataset into 3840 training samples, 960 validation samples,
and 1200 test samples.

Image Category | Epoch | Batch Size | Image Size | Accuracy with Augmentation
Mel Spectrogram 20 8 4*4 98%
MFCC 20 8 4*4 98%
Chroma STFT 20 8 4*4 98%

Table 7.2: QCNN Test accuracy with augmented image

Image Category | Epoch | Batch Size | Image Size | Accuracy with Augmentation
Mel Spectrogram 20 8 4*4 98%
MFCC 20 8 4*4 98%
Chroma STFT 20 8 4*4 98%

Table 7.3: QCNN Test accuracy without augmented image

Though we achieved 98% accuracy during the training, there is something that needs
to be observed. We use 4*4 images. We are unable to feed high pixels because of the
lack of the qubit. As we discussed earlier, we use just 4 qubits in our research so, 4
qubits can process only 16 features. So the number of features fed into the model
is very low. When we fed the 16 features into the quantum convolutional layer, the
layer provided output with just 4 features. These 4 features went through a pooling
layer and reduced 2 more features. So finally it processes only 2 features when it
goes to the 64 dense layer. As a result, during training, the model did not find any
difficulties. So we achieved very high accuracy. Here as the feature number is low
it was possible to provide the low accuracy but it did not.
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Figure 7.4: QCNN performance on Augmented Chroma STFT

Figure 7.5: QCNN performance on Augmented MFCC

Figure 7.6: QCNN performance on Augmented Mel Spectrogram
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Figure 7.7: QCNN performance without Augmented Chroma STFT

Figure 7.8: QCNN performance without Augmented MFCC

Figure 7.9: QCNN performance without Augmented Mel Spectrogram
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7.2 Trainable Parameter

7.2.1 Classical CNN

When performing classical CNN on our image dataset, for 400%400 images and
setting the dense layer to 128, we get 37,848,562 trainable parameters in total which
is approximately 37 Million! Below is the breakdown of the parameters:

Layer (type) Parameter #
conv layer 1 896
Pool layer 1 0
conv layer 2 18,496
Pool layer 2 0
conv layer 3 73,856
Pool layer 3 0
flatten layer 0
dense 37,748,864
dense 1 6,450
Total parameters 37,848,562
Trainable parameters 37,848,562
Non-trainable parameters 0

Table 7.4: CNN Model summary with parameters

Moreover, if we use 128*128 size images, and a dense layer with 128 we get trainable
parameters based on the CNN model is 3,311,090 in total which is approximately
3.3 Million! Below is the breakdown of the parameters based on the dense layer:

Input Image Size | Dense Layer | Trainable Parameter
128*128 64 1,702,194
1024*1024 64 130,152,754
1024*1024 128 260,212,210

Table 7.5: Trainable parameters for different input image sizes and dense layers.

It is happening because, in classical CNNs, the network learns the parameters of
each filter during training. So when we input large pixels of images, adding more
filters and layers quickly increases the number of parameters.
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7.2.2 Quantum CNN

Now we calculate how many parameters are used here in our designed hybrid quan-
tum convolutional neural network:

Quantum Convolutional Layer:

— We use 4 qubits, for processing 16 features.
— We use 2 types of Rotational Gate. So, for 4 qubits * 2 parameters per
gate = 8 parameters.
Quantum Pooling Layer:
— In the pooling layer, we reduce qubits from 4 to 2. Each qubit in this
layer also has 2 trainable rotational gates.
— So, We use 2 types of Rotational Gate. So, for 2 qubits * 2 parameters
per gate = 4 parameters.
Flatten Layer: It is used for reshaping the data.

Dense Layer:

— After the pooling layer we get the output of a vector of size 2.
— it takes 2 features as input and output 64 units.

— So, 64*2 +64 (bias) = 192 Parameters
Output Layer:

— There are 50 available classes in my dataset.

— So, 50*%64 + 50(Bias) = 3250 Parameters.

Total Parameters = Quantum Conv. Layer+ Quantum Pooling Layer+ Dense
Layer 4+ Output layer = 8 + 4 + 192 + 3,250 = 3,454 trainable parameters.

Now, this parameter calculation is based on 4 qubits which process initially
4*4 size image means 16 features. So, mathematically, if the number of qubits
can be increased, in that case, we can feed more features. In that case, the
number of trainable parameters will be(Assuming 64 dense layers):

Image Size | Required Qubit | Total Parameter
8*8 6 3590
16*16 8 3726
32*32 10 3862
128*128 14 4134
1024*1024 20 4542

Table 7.6: total parameters for different image sizes in QCNN
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7.3 Observation

— Based on Test Accuracy:

x Though we get about 98% accuracy in both case but:

As the image size fed into the hybrid quantum convolutional
neural network during training is very low, it does not face any
difficulty. As a result, it provides high accuracy based on the
small features it gets.

the accuracy that we get from the hybrid QCNN, that does not
beat the result of classical CNN. So, we cannot conclude that,
the hybrid quantum CNN performs better than the classical one.
Machine learning nowadays has so many advantages that, it is
nearly impossible to beat the result for comparatively new tech-
nology.

— Based on the trainable parameter:

« Here we see that, quantum computing, allows us to use more features
by using fewer parameters. It is happening because of the advantage
of superposition. We can input 2" features by using just n qubits.
that’s never possible for any classical computing system. So, based
on the parameter, QCNN beat the classical CNN.
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Chapter 8

Limitations and Advantage

8.1 Limitations

e The main limitation of quantum computing is the lack of computational re-
sources. As it is still in the noisy intermediate scale quantum(NISQ) era, it is
difficult to use more qubits(quantum units) right now.

e We use a hybrid model here. This means the convolutional layer and the
pooling layer that are made off with the quantum, after that, we calculate the
extracted feature classically and feed it to the classical neural network.

e Quantum Computing is in its early stage. Same as, the classical computer in
the 70s or 80s era. So it is very tough for quantum computing to beat the ac-
curacy of Machine learning right now. Classical Machine learning performs so
well that, it almost provides us with very high accuracy in many classification
tasks.

o This qubit is not inserted in classical computers right now. We have to use
some large company’s servers for simulations. When it will be available on
every device, it will create immense success.

8.2 Advantage

e Superposition is the main advantage. If the number of qubits can be increased,
lots of work can be done so easily. Suppose someone has just 100 qubits, then
he can process 2'% information!

o For feature extraction we use quantum amplitude encoding. This technique
is more helpful for extracting the information than any other classical tool.
Moreover, we use rotational gates where we used to rotate the qubit in radians
based on the x and y axis. As a result, there are more complex operations
happening inside it for feature extraction. Which are better than using a single
non-linear function in the layer.

o We see that it allows us to use fewer parameters than the classical one. Fewer
parameter signifies that it takes less memory and less time for training! So,
in very large-scale work suppose in various big-data related works it provides
the advantage.
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Chapter 9

Future Work and Conclusion

9.1 Future Work

[ am planning to add the number of quantum layers into the quantum convolutional
layer and pooling layer to see how it will behave on the complex networks. More-
over, I will implement the effective quantum version of the classical Support vector
machine(SVM) and K-nearest neighbor algorithm(KNN) for audio classification in
the future.

9.2 Conclusion

In this paper, we talked about the audio classification task using quantum tech-
niques. We propose an approach to implement a quantum convolutional neural
network for this audio classification task. Though Audio classification can be done
by classical machine learning algorithms with high accuracy, we want to explore
how it will perform in the quantum computer. For implementing this on the quan-
tum computer, we measure the effectiveness of some techniques that are fruitful for
classifying this task in quantum computers. Along with that, we can conclude that
the number of trainable parameters is less than the classical Convolutional neural
network. It signifies the advantage of the quantum era in the upcoming time.
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