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Abstract

This paper is about creating a system that helps to manage the charging of electric
vehicles that are connected and can drive autonomously taking into consideration
the safe reinforcement learning outcomes in this process. The system is regarded
as an intelligent decision support system (IDSS). In this system, a holding corpora-
tion that works the whole charging infrastructure, installs charging equipment for
both regular electric vehicles driven by humans and autonomous vehicles. The prob-
lem arises when human-driven vehicles ask for more charging time and energy than
they really need and to success charging request competition, which can particularly
lead to cause issues. To address this problem, a proposed solution aims to make
sure the charging equipment is used efficiently minimizing the risk of not having
enough power available as well as considering all the safety of the charging equip-
ment. Here a system will be introduced where it encourages human-driven vehicles
to make rational charging requests based on data and noting down the parameters
which are the number of DSOs (Distribution System Operator), the nearest finding
of EVSE(Electrical Vehicle Supply Equipment), the association among the EVSEs,
the starting and ending time of the plugin, energy absorption, time duration, request
for charging for the CAV, CV and AVs. Furthermore, the introduction of a learn-
ing system where the charging equipment learns how to schedule charging sessions
based on the procession from the main operator or the distribution system operator.
The conducted experiments will show that this system improves the charging rate,
active charging time, and energy usage compared to existing systems ensuring all
the protection of the electrical and connected autonomous vehicles. Therefore, the
study will contribute to making transportation systems smarter and addressing the
challenges and safeties of connected and autonomous vehicles.

Keywords: Safe Reinforcement Learning, EV, CAV, AV, CAV, EVSE
Charging System
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Chapter 1

Introduction

The integration of connected and autonomous vehicle (CAV) technology has be-
come a significant catalyst in the pursuit of smarter and more efficient urban living
in an era dominated by intelligent transportation systems (ITS). The significance
of integrating connected vehicles (CVs), as well as autonomous vehicles (AVs) into
the connected and autonomous vehicle (CAV) ecosystem, is of utmost importance
as we move away from conventional vehicles. It is projected that by the year 2040,
a significant proportion of ICE automobiles, probably 55 percent, will be substi-
tuted by electric vehicles (EVs). This transition is expected to necessitate roughly
350 terawatt-hours (TWh) of electric power to adequately fulfill the energy require-
ments of these EVs. The management of electric vehicle supply equipment (EVSE)
has become a crucial design challenge for adequately meeting the enlarging energy
quantity for CAV charging systems. The effective management of energy in charg-
ing systems for connected and autonomous vehicles (CAVs) heavily relies on the
adoption of electric car charging scheduling strategies that optimize the utilization
of accessible power resources. This undertaking is mostly based on rational decision-
making procedures, with the objective of selecting options that result in the highest
possible advantage else usage, whether for a singular or for a whole system. The
concept of a logical way of behaving posits that individuals engage in behaviors with
the intention of maximizing their benefits, whereas any actions that deviate from
this objective are considered irrational. Enhancing the effectiveness of electrical re-
source use among Electric Vehicle Supply Equipment (EVSEs) is the main goal of
this study, with the goal of benefiting distribution system operators (DSOs). How-
ever, human-operated connected automobiles (CVs) provide challenges to the quest
of reasonable electric vehicle (EV) charging scheduling. These CVs usually lead to
irrationality concerning the amount of energy required and the duration of charging.
Unlike autonomous cars (AVs), which rely on user input and can thus be subject
to inaccurate demands, conventional vehicles (CVs) rely on automated analysis to
accurately estimate and request specific quantities of energy and charging durations.
Autonomous cars frequently have a propensity to require more energy and longer
charging times than are really required, which results in less efficient use of energy. It
is feasible to include a rational decision support system (RDSS) into the CAV charg-
ing infrastructure as a means of addressing the problem of rationalizing EV charging
(CAV) systems. Individual electric cars (both conventional and autonomous) and
their electric vehicle supply equipment (EVSE) responses to energy supply demands
are considered by the RDSS. By examining and categorizing irrational behaviors
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related to energy demand and supply, and measuring them as a tail risk within the
context of the charging system for Connected and Autonomous Vehicles (CAVs),
it becomes feasible to build a robust correlation between the behaviors of energy
demand and supply inside CAV charging systems.
The main purpose of the study is to present the Safe Reinforcement learning-based
system examining the risk associated with illogical demand of energy as well as
supply in the context of Connected and Autonomous Vehicles in Charging Infras-
tructure (CAV-CI). The aim is to improve the efficiency of energy management. The
safe RL-based system will capture the behavioral characteristics that arise from the
parameters of energy demand and supply in connected and autonomous vehicles
(CAV-CI). It utilizes data-driven methods to effectively handle rationality. This re-
search makes substantial contributions in the following important areas: Developing
a Intelligent Decision Support System (IDSS): The study will introduce a Intelli-
gent decision support system (IDSS) designed for scheduling electric vehicle (EV)
charging sessions in connected and automated vehicle (CAV) charging infrastructure
(CI). This IDSS considers the unpredictable tail-risk of CV-AV-EVSE interactions.
This method will assess remissness risk for each electric vehicle (EV) in the CAV-CI
architecture. Optimizing rational rewards in Connected and Automated Vehicles
with Cooperative Intelligence is the focus of this study. This research aims to lessen
the hazards of negligence. The research advises using simulate-driven and intu-
itive methods to attain this goal. A consolidated risk adversarial agent (RAA),
local self-learning agents for each Electric Vehicle Supply Equipment will make up
the system. The autonomous EVSE-LAs will acquire knowledge of Electric Vehicle
Supply Equipment (EVSE) systems. These agents will decide on energy supply,
charging rate, and charge duration. Lack of diligence risk, determined from Con-
ditional Value at Risk tail distributions, affects decision-making. In CAV-CI, the
system will utilize a actor-critic architecture to communicate between EVSE-LAs
and RAAs. As autonomous learners, EVSE-LAs set their own EV session scheduling
policies while the RAA is the main teaching center. Moreover, each EVSE will be as-
signed a learning agent which is EVSE-LA that will update the policy of each EVSE
and based on the behavior of the vehicle, scheduling indicator will perform. As our
main goal is to increase the efficiency of energy utilization, the proper scheduling
policy can help to increase the energy utilization.

1.1 Problem statement

A robust and scalable system that can effectively manage and optimize the charg-
ing process, while accommodating a wide range of user preferences and ensuring
grid stability, is the main challenge in the context of safe reinforcement learning-
based electric vehicles and connected autonomous vehicles (EVs and CAVs) charging
infrastructure. Additionally, it aims to address important problems like manag-
ing irrational charging requests, success in compitative charging request based on
scheduling indicator, laxity of each EVs, CVaR of each time session, and finding the
best policy for the EVSEs and lastly proper indicator for each of the EVs. To build
a secure and effective charging infrastructure for electric and linked autonomous ve-
hicles, these issues must be resolved. In addition to encouraging the widespread use
of AEVs and CAVs, addressing these issues would help create a more dependable
and sustainable transportation ecology.
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The main definitions used in the paper and the formal statement of the EV Charging
Indicator problem are presented in this section.

Consider a set of N charging stations C = {c1, c2, . . . , cN}, By considering each day
as an episode, we start by defining a charging request as follows.

Definition 1 Charging Request of EVs: A charging request qt = ⟨lt, Tt, T
c
t ⟩ ∈

Q represents the t-th request (i.e., step t) in a single day. In this context, lt indicates
the location where the charging request qt is made, Tt is the specific real-world time
when the request is initiated, and T c

t is the real-world time when the request is con-
cluded. A charging request is considered complete if the vehicle either successfully
charges or ultimately fails to do so (i.e., the vehicle abandons the attempt to charge).
The notation |Q| represents the total number of charging requests within the set Q.
Furthermore, we may use qt interchangeably to refer to the electric vehicle making
the charging request qt to simplify the discussion.

Definition 2 Waiting period for charging (WPC): The Waiting period for
charging is defined as the subtraction between the requested location time lt to done
charging time of qt to the target charging station EV SEi.

Definition 3 Cost of charging (CC): The cost of charging is stated to be the
cost per kWh of any specific EVSE. Usually, this would include a cost for electricity
and a service fee.

Definition 4 Failure rate of charging (FRC): The total number of charging
request came to the DSO and who accepted the indication and failed to charge, the
ratio is considered as failure rate.

Problem 1 Electric Vehicle (EV) Charging indicator : In each day there
are many request for charging Q a DSO gets, the porpose of the research is to
provide indication each qt ∈ Q to the most proper charging station revse in ∥EV SE|,
based on various aspects with the intention is to optimize using Safe RL approach
to achieve the long-term goals of continuously minimizing the overall WPC, average
CC, and the FRC for the electric vehicles qt ∈ Q who accept the indicator.

1.2 Research Contribution

In order to construct intelligent and adaptable electric cars and connected au-
tonomous vehicles (EVs and CAVs) charging infrastructure, the main goal of this
research is to use actor-critic network to find the best policy for each EVSE which
is considered as an individual learning agent so that it can meet the requirements
of each EVs and safe reinforcement learning techniques to optimize the actor-critic
network. The following goals will be emphasized as this infrastructure strives to
thoroughly address the highlighted challenges:

• First challenge is to handle the large state and action space which will cre-
ate problem because of huge numbers of publicly availabe stations. Directly
centralized learning will induce many inefficiency and scalability problem.
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• Second challenge is to calculate the reward function, we used a safe reinforce-
ment learning process so that we can skip the risk for the best policy among
all the EVSE and to calculate the initial policy for each EVSE.

• Thirdly the most significant challenge is to collaborate between EVSEs so that
only one EVSE can serve a single EV and rest of the EVSEs should wait for
the better indicator.

• To execute the framework, a linear model has been used and this model has
also been used to calculate the scheduling indicator which is dependent on the
framework.

By attaining these goals, our research will help to establish a safe, efficient, and
long-term charging infrastructure for connected and autonomous cars, supporting
their wider acceptance and inclusion into future transportation systems.

1.3 Thesis Organization

In this section we have discussed about the organization of this research that how
this explained based on the chapter.

• Chapter 2 discussed about related works and domain and the existing work.

• Chapter 3 introduced about the proposed Method and the Formulation of
the architecture which described the algorithms along with the training and
execution process.

• Chapter 4 described about the preliminary analysis of data which proposed to
use in optimization considering hard constraint.

• Chapter 5 discussed performance Evaluations for SRL-CAVCI method com-
pared with some baselines.

• Chapter 6 summarize and conclude the research along with proposing future
work.
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Chapter 2

Related Work

In the research paper [16] the authors embark on a journey to innovate and im-
prove the design of charging stations for autonomous vehicles (AVCS) by employing
a scientometrics-based approach. They began by analyzing past designs and their
inherent challenges, which they gleaned from a meticulous review of English articles
in the Lens database. The primary issues pinpointed from prior designs encom-
passed the diverse and non-standardized charging interfaces across different vehicle
manufacturers and the inefficiencies of existing wireless charging solutions. Their
novel design proposal seeks to address and rectify these challenges. The new AVCS
concept is envisioned as a green energy solution, evidenced by its solar chargers and
the adoption of a leaf-shaped design for the frame, emphasizing its commitment
to sustainability. The station is planned to be versatile, accommodating various
charging methods including underbody wireless, traditional plug-in methods, and
even battery-swapping capabilities. To further refine the user experience, a commu-
nication system is proposed to discern the type and needs of an arriving vehicle. A
standout feature is the robot arm, designed with a five-degree of freedom, ensuring
it can flexibly connect to various vehicle charging ports. Through the combination
of these features, the authors aim to greatly elevate the convenience, efficiency, and
sustainability of AV charging stations.

Energy-Saving Local Route Scheduling for a Self-Directed Car Taking into Account
the Suggested Load Position One of the main factors influencing the energy con-
sumption of Self-Guided Vehicles (SGV) is the local path planning phase of navi-
gation. This paper [14] suggests a way to use load position to increase the energy
efficiency of the local path planning step. The results of the study show that com-
pared to a general planner, the recommended one generates faster and more efficient
routes across corridors and around obstacles. Thus, taking into account the load
effect reduces the energy usage of SGV. They employed two models to do this objec-
tive. In order to take into account the change in the SGV’s Centre of Mass (CoM)
caused by the load properties, a kinetic model of the differential drive SGV is first
created. Second, two learning models for online estimation of the position of CoM
(PoCoM) and prediction of necessary energy of sample trajectories are created using
machine learning techniques. As a result, the learning models are trained using the
SGV’s generated kinetic model. employing a dynamic model of SGV, creating a
dataset for machine learning techniques. To comprehend torque requirements under
diverse circumstances, the dataset comprises a variety of scenarios with variable in-
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ertial characteristics and reference velocities. The dataset contains information on
motor torques, angular and linear velocities, and PoCoM coordinates, together with
additional Gaussian noise to account for errors in the industrial context. There are
two learning models employed, and each has unique input and output features. In a
controlled lab setting, the experimental validation of simulations is discussed using
an industrial SGV. The SGV is put through its paces in several scenarios where loads
are carried through waypoints and unforeseen barriers are encountered. The purpose
of these tests is to evaluate how different load scenarios affect SGV’s energy usage.
There are six distinct load locations and mass attempts made. 28 times are added
to each attempt for a total of almost an hour of continuous mobility while taking
location and mapping uncertainties into account. The findings demonstrate that the
DWA approach, which is energy-efficient, produces smoother routes and optimizes
trajectories around obstructions. These trials’ specifics and findings—including load
information, trip distances, energy use, and energy efficiency comparisons between
the suggested technique and the general DWA—are outlined. This paper presents
a method for SGV path planning that is energy-efficient. It builds a dataset, trains
two machine learning models for CoM and torque estimates, and constructs a kinetic
model that takes into account the weight and position of the load. These models
are included into the Dynamic Window Approach (DWA) for navigation, which im-
proves energy efficiency over conventional DWA. This strategy supports real-time
operations by optimizing SGV movements while accounting for load deployments in
corridors and obstacle avoidance.

Alighanbari, S.et al. (2021) [10] describes Reinforcement learning (RL) plays a key
part in allowing intelligent decision-making for autonomous cars, and the potential
of autonomous driving to minimize traffic accidents brought on by human mistake is
highlighted. With an emphasis on employing Model Predictive Control (MPC) as a
filter to direct an RL agent’s exploration, the specific topic addressed is safe explo-
ration in RL. The Deep Deterministic Policy Gradient (DDPG) agent’s exploration
in autonomous driving situations is improved by the introduction of a Novel Model
Predictive Control (NMPC) filter. In comparison to the baseline DDPG technique,
the NMPC filter greatly enhances the performance of the DDPG agent, resulting in
a large rise in the mean reward.confirming the heuristic rules’ success in directing
the DDPG agent, even if they restrict the exploration space and produce better
incentives. Utilizing SUMO as a traffic simulator and hybrid testing, which involves
assessing a real car in an enclosed space using simulation scenarios and sensor inputs,
is the co-simulation framework for the development and performance verification of
autonomous vehicles in crucial situations. This study shows that noise and uncer-
tainty have a limited effect on automobile systems, negating the need for robust
approaches. illustrating the advantages of adaptive learning, which results in better
rewards and less overfitting by just using one training sample per trajectory. The
report makes indicator s for future research directions, including the incorporation
of more realistic vehicle dynamics, steering and acceleration control, and the use
of more accurate simulation settings and sensor data for training. Additionally, it
recognizes a brand-new class of hazards known as automation risks that are con-
nected to autonomous cars, placing a strong emphasis on the necessity of continuing
research and development to solve technological, sensor-related, and safety issues in
autonomous driving.
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Author Kim et. al.[18] proposed the trajectory planning and control technique
presented in this study for autonomous cars operating in multi-vehicle complicated
urban situations. For safe and efficient trajectory following and obstacle avoidance
in urban conditions, the integration of motion planning and control components with
an emphasis on lateral and longitudinal MPC. It was tested on real world vehicles.
The algorithm makes use of the ideas of a”free spaces” and ”safe drivable envelope”
to evaluate the operable zone in urban driving circumstances and to deal with on-
road impediments efficiently. In order to keep a safe distance from earlier cars, for
example,The velocity planner produces reference transverse and lateral conditions
for the ego vehicle.In the event of in-lane obstacle avoidance, the lateral motion
planner selects the desired lateral offset to align with the center of the drivable
envelope. If there is a possibility of a side lane accident and the lane’s free space
is limited, the vehicle may undertake an evasive movement by entering the side
lane or coming to a halt behind the obstruction. The vehicle may slow down to
continue a safe space when the object completely fills the lane or try to change lanes
depending on the side lane risk assessment. Model Predictive Control (MPC) issues
that are both longitudinal and lateral in nature can be solved to provide the control
inputs necessary for monitoring the reference states with safety assurances.Actual
car experiments have proven the practicality of this motion control and planning
system for urban autonomous driving. Future research aims to expand the suggested
frame to different driving situations in cities, such as junctions that have both signals
and no signals, where the algorithm would need to actively react to merging vehicles
and anticipate the intentions of preceding vehicles, resembling human behavior in
avoidance maneuvers.

The paper [17] introduces an advanced reinforcement learning framework aimed at
enhancing safety and recovery during autonomous robot navigation. Utilizing a
grid-world environment of various sizes for experiments, the authors propose two
core methodologies: a Safety Shield and a Self-Recovery Mechanism. The Safety
Shield acts as a filter to prevent the robot from taking risky actions, whereas the
Self-Recovery Mechanism allows the robot to revert to a prior safe state should
it encounter obstacles. These components were integrated into a Safe and Self-
Recoverable Reinforcement Learning (SSRL) framework, which was then compared
to traditional Q-learning algorithms. Results showed that SSRL not only converged
faster but also registered fewer collisions with obstacles. Furthermore, the paper
also addresses the framework’s practical implications in real-world challenges like
deep-sea and cave explorations, where resetting to an initial state may not be fea-
sible, and conditions like lighting and terrain may change over time. Overall, SSRL
demonstrated improved safety and efficiency, with the authors suggesting future
work on enhancing the predictive capabilities of the Safety Shield and adapting the
framework to dynamic environments.

Ge, Y.et al [7] addressed when utilizing reinforcement learning in industrial appli-
cations, safety issues are a major problem. Traditional approaches make an effort
to alter the agent’s goals and exploration techniques, but frequently fail to stop
harmful states from occurring. To this end, a secure Q-learning technique based
on constrained Markov decision processes is proposed. This approach, incorporat-
ing safety constraints as conditions, ensures that the agent always acts in a safe
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environment while trying to find the optimal responses. Experimental results have
shown the success of this strategy. There are now two main ways to deal with agent
safety issues in reinforcement learning. The first approach includes changing the
agent’s objective function to lessen the possibility that it would enter risky con-
ditions, but it doesn’t offer a permanent solution to the safety issue. The second
approach concentrates on enhancing exploration by obtaining data by randomly
exploring the status and action spaces. Although this approach can improve al-
gorithm performance, it doesn’t fundamentally address safety concerns, as agents
may still get into hazardous situations due to inadequate information. There is a
Q-learning technique presented based on limited Markov decision processes. This
technique uses multidimensional constraints to limit each action to a subset of safe
actions. We guarantee the agent’s safety during the initial exploration stage by
limiting the agent’s possible states to a set of safe states. The algorithm has many
uses, including boosting game player performance and promoting safety in robotics
and driverless vehicles. It also emphasizes the possibility for various reinforcement
learning methods to safely employ the Lagrange multiplier technique. This method
is useful for future applications since it may be expanded to handle a variety of
limited challenges.

Another research paper [11] introduces a novel three-layer charging system design
that caters to both static and dynamic wireless charging while seamlessly integrating
with existing wired charging infrastructure and standards within Intelligent Trans-
portation Systems (ITS). The system leverages IoT technology and a handshake pro-
tocol, facilitated by vehicle-to-infrastructure (V2I) and vehicle-to-grid (V2G) com-
munications, to efficiently fulfill charging requests for connected and autonomous
electric vehicles (CAEVs) while optimizing trip routes.Key features include the
dynamic distribution of charging requests across various charging equipment, se-
cure billing using encrypted virtual currency, and the ability to detect and correct
hardware-related issues like misalignment on wireless charging pads and speed er-
rors in dynamic wireless charging systems. The system also excels in trip planning,
reducing waiting times, travel costs, and energy consumption, achieving an impres-
sive 90.25 percent charge delivery efficiency. The paper begins by highlighting the
environmental benefits of electric vehicles (EVs) and autonomous electric vehicles
(AEVs) while acknowledging challenges related to their limited driving ranges and
longer charging times. Initiatives to build charging infrastructure have been under-
taken in various countries to encourage EV adoption. Wireless charging solutions
are explored, with magnetic resonance coupling identified as a promising wireless
power transfer technique. The proposed architecture involves CAEVs communi-
cating with infrastructure like roadside units (RSUs) and smart grids through V2I
and V2G communication. The three-layer hierarchical charging system aims to
enhance CAEV trip efficiency by reducing waiting times, travel costs, and energy
consumption. It emphasizes secure billing through two proposed payment schemes
using encrypted virtual currency. The system is also equipped to detect and cor-
rect misalignment and speed errors in wireless charging systems and prevent charge
theft. Additionally, it can automatically configure a custom DWC infrastructure for
testing.

The paper concludes by describing a simulator that allows users to predict and ana-
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lyze the system’s performance, highlighting its remarkable charge delivery efficiency
and efficiency in minimizing waiting times, travel costs, and energy consumption
compared to manual EVSE searches by CAEVs. This research paper presents an
innovative charging system design, integrating static and dynamic wireless charging
with existing wired infrastructure for ITS. It offers efficient charging, route optimiza-
tion, secure billing, and error detection capabilities, contributing to the advancement
of smart city IoT applications and sustainable transportation.

In order to promote environmental sustainability, the use of electric vehicles (EVs)
is rapidly increasing around the world, according to a study paper titled ”Intelli-
gent Charging Infrastructure Design for Connected and Autonomous Electric Ve-
hicles in Smart Cities.”[12]In order to meet the growing number of connected and
autonomous EVs (CAEVs), it underlines the necessity for smart charging infras-
tructures and solves lengthy charging times by taking into account dynamic wireless
charging. The research presents a three-layer hierarchical charging infrastructure
concept that allows for communication between current wired charging systems and
foreseeable wireless options. For effective scheduling of CAEV charging reserva-
tions over various networks, it suggests charging request and reservation message
frames. For quick calculation and low latencies, the system uses error detection,
vehicle-to-infrastructure (V2I), and vehicle-to-grid (V2G) connections. For both
shared and nonshared CAEVs in smart cities, it also analyzes a dynamic wireless
charging network (DWCN) suggestion tool to maximize charge delivery performance
at the lowest possible cost. The environmental issues with present transportation
methods are highlighted in the introduction along with the potential advantages of
EVs, driverless cars, and mobility-on-demand made possible by the IoT. It empha-
sizes how crucial smart charging infrastructure is to overcoming these difficulties.
In the paper, a flexible architecture for a smart charging infrastructure is proposed
that supports both wired and wireless charging, efficiently manages CAEV charging
schedules, and keeps backward compatibility with both existing standards and new
wireless systems. Additionally, it presents a suggestion tool for dynamic wireless
charging networks that is affordable, adding to the sustainability of smart cities.

Again, in [15]delves into innovative strategies to enhance the Electric Vehicle Supply
Equipment (EVSE) infrastructure. As the popularity of electric vehicles surges,
there’s a pressing need for advanced charging solutions. This research encompasses
aspects like demand management, integration with the power grid, risk evaluation,
and enhancements to the charging process, shedding light on the latest advancements
in the domain. The global pivot towards eco-friendly transportation has accelerated
the growth of electric vehicles. For these vehicles to reach their full potential, the
EVSE infrastructure needs to be top-notch. In this academic work, cutting-edge
techniques for boosting the EVSE infrastructure are explored. To improve EVSE
performance, risk management is essential, particularly in situations when charging
demand is erratic. To handle erratic charging demands from human-driven cars, the
RAMALS system incorporates advanced risk assessment techniques. The system
makes significant operational gains, including a decrease in policy mistakes and
an increase in billing proficiency, by employing entropy regularization to guarantee
constant training. Improving the caliber of charging experiences has been a main
area of study. Existing systems frequently struggle to keep up with the excessive
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energy demands made by connected cars, which can result in energy losses and
ineffective charging.
Moreover, [6] shows the rapid urbanization and population growth of metropolitan
areas increase transportation demand, which leads to frequent congestion. An ATSC
system dynamically adjusts the signal timings according to real-time traffic condi-
tions to relieve such congestion. In the past, widely implemented ATSC solutions,
such as SCOOT and SCATS, used optimization techniques to coordinate traffic sig-
nals efficiently. However, other more complex systems, like OPAC and PRODYN,
are much less applied because of their high computational complexity.
A number of interdisciplinary methods have been employed in ATSC for a long
time. Early applications of fuzzy logic, genetic algorithms, and immune network
algorithms showed innovation but posed challenges of scalability and adaptability.
The development of Reinforcement Learning (RL), particularly within the frame-
work of Markov Decision Processes (MDPs), provided an alternative, data-driven
way of solving ATSC. Unlike the traditional optimization methods, RL approaches
do not rely on heuristic assumptions and pre-defined models. Instead, these policies
learn to optimize the control strategy through interactions with the traffic environ-
ment.
Earlier applications of RL in ATSC adopted simple models, such as a piece-wise
constant table and linear regression, which were limited by scalability and sub-
optimality. The incorporation of Deep Neural Networks into RL granted an enor-
mous ability to deal with complex and high-dimensional tasks. Subsequently, a
variety of RL methods have been applied, which, in general, can be categorized as
Value-based, Policy-based, and Actor-critic methods.
Off-policy methods, which combine value estimation with off-policy exploration, are
popular because they allow for efficient updates through experience replay. However,
it requires reliance on one-step temporal difference updates, which exposes them to
the sensitivity to the stationarity of the environment—a condition rarely met in
dynamic traffic systems. Directly optimizing the policy based on sampled returns,
policy-based methods like REINFORCE accommodate non-stationary transitions
within each episode at the cost of high variance. Actor-critic methods combine
the advantages of both value-based and policy-based approaches by using separate
models for the policy and value functions to reduce bias and variance.
Among the actor-critic methods, the Advantage Actor-Critic (A2C) algorithm is
popular for dealing with continuous action spaces, leveraging the power of DNNs to
approximate the policy and value functions. Deploying centralized RL algorithms,
such as A2C, is impractical in large-scale traffic networks, since it requires global
state information and the joint action space grows exponentially.
MARL is a viable solution to address the scalability issue of distributing control at
local RL agents at each individual intersection. The decentralization can result in
each agent making a decision based on local observations, which eventually reduces
the computational burden and improves scalability. Traditional MARL approaches
primarily focus on Q-learning variants, like Independent Q-learning (IQL), in which
each agent learns its policy independently by treating other agents as part of the
environment. Though scalable, IQL often suffers from convergence due to increased
partial observability and nonstationarity of the environment as agents update their
policies independently.
Recent advances have attempted to stabilize MARL systems through mechanisms
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of efficient communication and coordination among agents. This includes enabling
experience replay in deep MARL to deal with nonstationarity. However, so far,
the extension of the actor-critic methods, in particular A2C, within a decentralized
multi-agent framework for ATSC remains largely unexplored.
We first apply independent A2C (IA2C) to ATSC, extending the principles of IQL
to the A2C algorithm. We have further proposed two novel enhancement techniques
to ensure better stability and robustness of the IA2C system: the incorporation of
observations and fingerprints of other agents to improve state observability, and
the introduction of a spatial discount factor with the main objective of maximizing
improvements in local traffic. It thus balances the fitting power and fitting difficulty
of the multi-agent A2C algorithm, leading to a more robust and scalable MA2C
algorithm.
The efficacy of MA2C is tested through exhaustive evaluation on both synthetic
and real-world traffic networks and found to excel over state-of-the-art decentralized
MARL algorithms on robustness, optimality, and sample efficiency.
Another thing is seen in [9] feature selection is one of the most important processes
in machine learning and data mining, where from a big feature space, the most rele-
vant features will be determined with the purpose of improving model performance
and reducing computational complexity. Traditional feature selection methods can
be divided into three categories: filter methods, wrapper methods, and embed-
ded methods. Filter methods select features based on their individual relevance,
using statistics such as chi-square, ANOVA, or mutual information. Univariate fea-
ture selection is a filter method, which is effective due to its low computational
resources, but it lacks the analysis of the interaction between features, thus not
being efficient when it comes to choosing the optimal combination of features for
a particular problem. Wrapper methods, like forward selection, backward elimina-
tion, and branch-and-bound algorithms, evaluate subsets of features based on their
performance with a specific predictive model. While a better performance in terms
of accuracy is achieved by considering the interaction among features using wrapper
methods, they are computationally expensive and may not scale to the feature size
of large datasets. Embedded methods integrate feature selection into the model
training process, and the most common methods are regularization techniques. For
example, LASSO (Least Absolute Shrinkage and Selection Operator) adds a term
into the penalty of the model loss function, thereby forcing the coefficient of less im-
portant features to zero. These methods offer a balance in computational efficiency
and model performance by selecting features during model training.
Recent breakthroughs in RL have brought a new dimension into feature selection,
treating feature selection as a problem in sequential decision-making. RL-based
methods automate the feature selection process by training an agent to move in the
feature space guided by rewards from the environment.These methods seem promis-
ing in dealing with complex feature spaces but are mostly inefficient because of
high exploration requirements. Interactive Reinforcement Learning augments tra-
ditional RL by using external trainers in order to guide the agent. This approach
dramatically accelerates the process of learning by leveraging domain knowledge and
human expertise. IRL has been successfully used in a lot of applications for making
agents learn more effectively through interaction with skilled trainers. Therefore,
the proposed Interactive Reinforced Feature Selection framework will be used to con-
front the computational dilemma of balancing effectiveness and efficiency in feature
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selection. In formulating the feature selection problem as an interactive reinforce-
ment learning paradigm, IRFS introduces a hybrid teaching strategy that integrates
both self-exploration and guidance from external trainers. The framework utilizes
multiple trainers with different skills, including a K-Best-based trainer and a De-
cision Tree-based trainer, for giving multiple perspectives on the relevance of the
features. Besides, IRFS personalizes the process of teaching by categorizing agents
into assertive and hesitant groups and giving advice adapted to the needs of the
learners, further improving learning. Thus, IRFS combines the strengths of tra-
ditional methods for feature selection and the adaptive features of reinforcement
learning to achieve a balanced and effective process of feature selection. Extensive
experiments on real-world datasets demonstrate the superiority of IRFS over exist-
ing approaches in terms of efficiency and effectiveness. This new framework offers a
promising solution for the long-standing challenge of optimizing feature selection in
machine learning.
Forester et. al. [2] state that multi-agent communication and coordination have
come a long way in current times, keeping in line with the advancement of deep
learning and reinforcement learning techniques. Multi-agent systems were tradition-
ally based on heuristic-based approaches and pre-defined communication protocols,
which lacked adaptability and were limited in handling the complexity of real-world
scenarios. Recent advances, especially in deep reinforcement learning, have opened
up new opportunities for the development of autonomous communication strategies
among the agents. Filter methods, wrapper methods, and embedded methods have
been extensively used for feature selection. Filter methods consider feature relevance
independently, while wrapper methods utilize predictive models to evaluate feature
subsets. Embedded methods insert feature selection into model training, such as
techniques like LASSO, adding penalty terms to feature coefficients and shrinking
the coefficients of less important features. On the other hand, in multi-agent sys-
tems, RIAL and DIAL are two significant advancements. RIAL makes use of deep
Q-learning, incorporating recurrent networks that handle partial observability by
treating other agents as part of the environment and enabling agents to learn com-
munication protocols. This also includes variations like independent Q-learning and
shared network parameters among agents.
On the other hand, DIAL exploits centralised learning and decentralised execution.
This allows for real-valued messages to be passed between agents at training time
by the treatment of communication actions as differentiable connections. There-
fore, the gradients can be back-propagated through the channel of communication,
and the agents are end-to-end trainable. During execution, these messages are dis-
cretized and fit within the limited bandwidth communication constraints of the
environment. The empirical studies of these methods have shown that deep learn-
ing can effectively discover and optimize protocols for communication in complex,
partially observable environments. RIAL and DIAL have been deployed success-
fully on sequential decision-making tasks and raw input processing, which shows
the robustness and adaptability of the agents. By integrating deep learning into
reinforcement learning, the agents are enabled to develop sophisticated and efficient
communication strategies with a significant outperformance of the state of the art.
The presented developments underline the potential of deep reinforcement learn-
ing to revolutionize multi-agent communication and coordination. The possibility
of learning and adapting communication protocols in an autonomous manner repre-
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sents an important step toward the creation of more intelligent, flexible, and scalable
multi-agent systems. This research contributes to the theoretical understanding of
multi-agent communication and moreover paves the way for practical applications
in robotics, autonomous vehicle guidance, or distributed sensor networks.
This paper [3] says EVs are of great interest to policymakers and researchers be-
cause of their possible economic and environmental benefits; therefore, they can be
considered as having great potential for replacing traditional fuel-engine vehicles.
The large-scale integration of EVs has greatly increased focus on developing effi-
cient charging scheduling mechanisms to optimize the operations of systems and
ensure that they address the main challenges caused by long refueling times and
significant charging power demands of EVs. EVs charging scheduling mechanisms
may be classified into two: temporal and spatial scheduling mechanisms. Temporal
scheduling mechanisms aim to provide a indicator regarding suitable charging time
to minimize the total cost of EVs charging and discharging for a day. For instance,
researchers have proposed the globally optimal scheduling scheme and the locally
optimal scheduling scheme to achieve this cost minimization. Additionally, some
study optimal charging strategies based on drivers’ self-interested behaviors, traffic
congestion, operating expenses of the CSs, and pricing models. Temporal scheduling
also aims at maximizing the operating profits of electric taxis through considera-
tion of the uncertainties of the electricity prices and time-varying incomes .Spatial
scheduling, on the other hand, aims to provide a indicator regarding geographically
distributed charging stations in order to minimize the time for traveling and queu-
ing. Spatial scheduling is very important, especially in an urban setup where the
distribution of the charging stations and the demand for charging services will most
likely greatly influence the overall efficiency and experience of the end users. This
effectiveness of spatial scheduling can be further boosted by incorporating game-
theoretical approaches, which ensure that the indicator s are fair.
In this context, game-theoretical approaches have been put forward to develop fair
and efficient spatial scheduling algorithms for EVs. They take into account the
strategic interactions of EV users with the charging infrastructure in order to op-
timize system operation and user satisfaction. Numerical results of the studies by
methods based on these approaches demonstrate their effectiveness in reducing the
idle rate of the charging piles, minimizing EV queuing time, and eventually saving
time for the users. To sum up, the integration of temporal and spatial scheduling
mechanisms with game-theoretical approaches provides a holistic framework for the
optimization of EV charging operations. This way, not only will EV charging be
effective and economical, but fair and user-friendly, overcoming all the challenges
linked with large-scale EV integration into the grid.
However in [4] the progress in the domain of multi-agent reinforcement learning
(MARL) has evolved prominently in developing algorithms that will facilitate agents
to learn cooperative behavior in complex, partially observable environments. Tra-
ditional methods on multi-agent cooperation mainly focus on centralized training,
with decentralized execution to solve decentralized partially observable Markov de-
cision processes (Dec-POMDPs). However, exact solutions to Dec-POMDPs are
computationally intractable. Recent progress has been made on applying deep re-
inforcement learning (DRL) techniques to multi-agent systems. DRL merges deep
learning with reinforcement learning, which uses the power of neural networks for
handling large and complex observation spaces. The combination has thereby en-
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abled single-agent reinforcement learning to solve difficult domains, such as playing
Atari games and robotic locomotion, and showed significant success in learning poli-
cies for complex tasks. Researchers in MARL have developed several approximation
methods to deal with the challenges of Dec-POMDPs. These include reinforcement
learning techniques like Deep Q-Networks, policy gradient methods like Trust Re-
gion Policy Optimization, and actor-critic methods like Deep Deterministic Policy
Gradient.
Empirically, it has been shown that policy gradient methods often outperform the
temporal-difference and actor-critic methods, especially when using feed-forward
neural architectures. On the other hand, recurrent neural networks have shown
better performance in environments that need the memory of past observations, de-
spite the difficulty of training them. This shows how important neural architecture
choices are in developing efficient MARL algorithms. The introduction of the decen-
tralized parameter sharing neural network policies has moved the field even further.
Each agent can now develop emergent cooperation without explicit communication
among agents. This approach enables solutions that scale to environments with
continuous action spaces and a large number of agents. For example, promising
results with PS-TRPO demonstrate the feasibility of scaling up multi-agent con-
trol tasks to dozens of agents cooperating toward common objectives. Generally,
DRL within the framework of MARL is a significantly further step toward solving
complex, cooperative tasks. The development and further refinement of these al-
gorithms may allow solving a wide range of real-world applications, from robotic
teams to distributed sensor networks. This research underlines the transformative
impact that deep learning has on multi-agent systems and offers strong frameworks
for developing cooperative policies in a variety of challenging environments.
Lastly in the paper [1] electric vehicles have been attaining high growth rates because
of their environmental benefits and low operating costs compared to conventional
gasoline vehicles. Their steep growth rate has made a large, strategically deployed
network of public charging stations crucial in supporting them. The deployment of
these charging stations has to be done effectively so that the time spent by drivers
traveling to and waiting at the charging points is minimized and, in turn, improves
the overall experience and further adoption of EVs. The present research in the field
of the deployment of charging stations generally follows two approaches: temporal
scheduling and spatial scheduling. Temporal scheduling suggests the optimum times
for EV charging, managing the demand for reducing costs. However, the spatial
distribution of these charging infrastructures is not considered—a critical factor to
cut down the traveling and waiting time for EV users. Spatial scheduling, on the
other hand, works on the strategic placement of these charging stations with their
charging points to enhance their accessibility and reduce congestion.
The station siting problem has long been studied in the context of gas stations and
hydrogen filling stations; it provides a foundation for understanding the complexity
of deploying EV charging stations. However, unique characteristics, such as a longer
duration for charging and higher variability in demand for EVs, require specialized
models. The facility location models proposed earlier fail to capture these aspects
and generally demand trip origin-destination data, which is difficult to acquire. To
address these challenges, optimization frameworks for the deployment of electric ve-
hicle charging infrastructures have been proposed recently. The frameworks accom-
modate historical trajectory data, road network information, and existing charging

15



station data to come up with optimal deployment strategies. Examples of this in-
clude integer programming models and polynomial-time approximation algorithms
that have been developed to solve the problem of charging station placement in
a manner that minimizes the travel and wait times of EV users. A major break-
through in this respect is the Optimal Charging Station Deployment (OCSD) frame-
work, which integrates Optimal Charging Station Placement (OCSP) and Optimal
Charging Point Assignment (OCCA). The OCSD framework leverages real-world EV
taxi trajectory data to extract seeking, charging, and traveling behavioral patterns,
thus directing the strategic placement of new charging stations and the allocation
of charging points. It ensures that the deployments not only meet current demand
but are also scalable to accommodate future growth. The empirical performance of
the OCSD framework is evaluated and considerable improvements over the baseline
methods are shown. For instance, it reduces the average time to find a charging
station by 26 percent to 94 percent, and it significantly reduces the waiting time
before charging. Moreover, the results provide valuable guidelines on the optimal
configuration of charging stations, indicating that when many charging points are
provided, it is optimal to place a larger number of smaller stations, while when
the number of charging points is limited, fewer, larger stations are more effective.
From what the literature indicates, the importance of taking into consideration the
temporal and spatial perspectives of the deployment of EV charging infrastructure
is highlighted. The development of sophisticated optimization frameworks—such as
the OCSD—represents a significant step forward toward an attempt at answering
the peculiar challenge of EV charging station deployment and, therefore, toward the
sustainable growth of electric mobility.
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Chapter 3

Proposed Method

Figure 3.1: Top Level Overview of the proposed SRL-CAVCI

In this research we worked with simulation based actor-critic network which is used
to find the best policies and indicator. Moreover we will use ACN Dataset [8] which
holds the information about all Electric vehicles that took services from JPL and
Caltech site for charging. Basically this data we are planning to use for optimize the
actor-critic network using safe RL. Both of the data has all information available for
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each electric vehicle like User ID, requested charge, available time, charging site, sta-
tion ID, delivered charge, connection time, done charging time, disconnection time
etc.From this dataset we can initially identify the inefficiency of charging. To solve
this problem we proposed a Safe RL AVCI model that can handle the scheduling
policy without any risk.

We provide the formulation of the SRL-CAVCI problem for the task of the EV
charging indicator and detail our SRL-CAVCI framework with centralize training,
decentralize execution. More than that, this research Generalize the multi-critic
architecture to multiple modes and the Goals is to optimization.

3.0.1 Actor-Critic Method

Initially we discussed about some of the core aspects about the proposed Actor-Critic
formulation for the EV charging indication task.

• Agent EVSE: The research considered a charging stations as individual
agents EV SE. These individual agents provide real time indication decisions
for a series of charging requests that came all over the day and each EvSE’s
aim to achieve many long-term optimization objectives.

• Observation oit: When a charging request qt arrives, the observation oit for
agent EV SEi contains the following information: the index of EV SEi, the
actual time Tt, currently available chharging spots at EV SE, the number
of charging requests that are scheduled to occur soon near EV SE (future
demand), the available charging power of EV SE, the estimated time of arrival
(ETA) from the location of request lt to EV SE, and the capacity constraint
(CC) of EV SE at the next ETA. The set of observations determine the state
of all agents at step t is further defined as st = {o1t , o2t , . . . , oNt }.

• Action ait: A basic design for the action of agent EV SEi given an observation
oit is a binary decision on whether to advise the recommendation of qt to itself
for charge. However, the coordination of multiple agents will be challenging
because one qt can only indicate one specific station to charge. We designed
each agent EV SEi to provide a scalar value as a ”bid” for qt, which is repre-
sented by its action ait. This design is inspired by the bidding process. The
agent provide the highest ”bid” value, rc = EV SEi, where i = arg max(u), is
allocated qt after the joint action is defined as ut = {a1t , a2t , . . . , aNt }.

• Transition. The observation transition for each agent EV SEi is defined as
the change from the current charging request qt to the subsequent charging
request qt+j following the completion of qt. Let us begin to highlight it with an
example. Suppose at Tt = 13:00, a charge request qt is made. Currently, each
agent EV SEi acts ait, following its observation oit, and they decide together
on the suggested station rct . The next charge request, which is qt+j, will take
place at Tt+j = 13 : 20, after the request completion time of T c

t = 13 : 18.
The observation transition in this example for agent EV SEi is defined by
(oit, a

i
t, o

i
t+j), where oit represents the observation that is under progress, and

oit+j corresponds to the observation of qt+j.
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• Reward. Three objectives are combined into two natural reward functions in
our SRL-CAVCI formulation, along with a delayed reward settlement mech-
anism. That is, it will receive the negative of WPC and the negative of CC
from the environment as part of reward rWPC(st, ut) and reward rCC(st, ut),
respectively, if the successful charge request qt is obtained. If the WPC of qt is
above a certain level, the environment will give agents much smaller rewards
to penalize them, which is considered to encourage them to reduce the FRC.
In sum, we define two instant reward systems for three objectives as

rWPC(st, ut) =

{
−WPC, charging success

ϵWPC , charging failure
a (1)

rCC(st, ut) =

{
-CC, charging success,

ϵCC , charging failure
(2)

where the penalty rewards are ϵWPC and ϵCC . In our the framework agents
collaborate to determine the indicators as they share the same advantages.
The proposed model determine the cumulative discounted reward by adding
the rewards of all the indicated charging requests as the observation transition
from oit to oit+j may span several lazy rewards (such as T c

t−h and T c
t ). T c

t′ for
qt′ (e.g., qt−h and qt) is between Tt and Tt+j, as indicated by

Rt:t+j =
∑

Tt<T c
t′≤Tt+j

γ(T c
t′−Tt−1)r(st′ , ut′), (3)

where, depending on the learning objectives, r(·, ·) can represent either of the
two reward functions or their average, and γ denotes the discount factor which
we considered as 0.99.

3.0.2 Centralized Training Decentralized Execution

The SRL-CAVCI method for teaching agents to coordinate policies and solve non-
stationarity is Centralized Training Decentralized Execution, CTDE. The three
modules that make up the SRL-CAVCI are the centralized attentive critic, the
delayed access information strategy to include forthcoming charging competition,
and a decentralized process for execution. With respect to indication of EV charg-
ing, CTDE provides two-fold advantages. First, centralized training helps because
of the use of the bigger, global view and retroactive incorporation of knowledge from
the future enables the collaboration of different agents to learn specific regulation.
However, since the process of execution is fully decentralized and does not need all
the data involved in training, the online indicator application is bound to be effective
and adaptive.

3.0.3 Centralized Attentive Critic

We build a multi-agent actor-critic architecture with a centralized attentive critic to
learn a deterministic policy, enabling the agents to supply indicators jointly. In[5],
a similar method based on the CTDE architecture is proposed, which feeds into
the critic the full state st and the collective action ut of all agents for it to learn
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coordinated and cooperative policies. However, such a method in our assignment is
subject to massive state and action space difficulties.
In reality, EVs are used to go to nearby stations to get charged. For this reason,
once we receive a charging request, only a few agents that are nearest to the request,
say top-nearest, are active following the indicator. Since other agents are far away,
we set them to inactive and exclude them from the set of agents that participate in
the indicator for. In this way, learning cooperation for better indicators is a problem
that involves relatively few active agents. However, the active agents for different
are most often different, and this is an intermediate problem. To address this,
we propose combining the information of the active agents through a permutation-
invariant attention mechanism. That is, the attention system automatically counts
the impact of each active agent through

eit = v⊤ tanh
(
Wa

[
oit ⊕ ait ⊕ pit

])
, (4)

where ⊕ is the concatenation operation and v and Wa are learnable parameters.
To find the each active agent’s impact weight dit can help develop an attentive
representation of all active agents EV SEi ∈ Ca

t .

xt = ReLU

Wc

∑
i∈Ca

t

dit
[
oit ⊕ ait ⊕ pit

] , (5)

where Wc are learnable parameters.
The policy of actor network for every agent EV SEi ∈ Ca

t updated by the gradient
of the anticipated return according to the chain rule that have provided to given
the state st, joint action ut, and the future demand pt of active agents. This can be
expressed as

∇θiJ(b
i) = Est,ut∼D

[
∇θib

i
θi(o

i
t)∇ui

t
Qϕ(xt)|ui

t=bi
θi
(oit)

]
, (6)

where the transition tuples (sat , u
a
t , p

a
t , rt:t+j, Rt:t+j+1) are included in the learning

replay buffer D, and θi are the learnable parameters of the actor policy bi of agent
EV SEi. Based on the gradients that spread from the centralised attentive critic,
each agent modifies its policy. The agents are encouraged to learn policies in a
coordinated and cooperative manner as a result of the centralised attentive critic’s
perception of more comprehensive knowledge about all active agents. By minimising
the subsequent loss, the centralised attentive critic Qϕ is updated:

L(θ) = Est,ut,pt,rt:t+j ,Rt:t+j∼D

[
(Qϕ(xt)− yt)

2] , (7)

yt = Rt:t+j + γ(T c
t+j−Tt)Qϕ(xt+j)|ua

t+j=bi
θi
(oit+j)

, (8)

where θϕ represent the critic Qϕ’s learnable parameters. With delayed parameters
θi and Qϕ, respectively, b

i and Qi
ϕ represent the target actor policy of EV SEi and

target critic function.

3.0.4 Integration of Future Charging Competition

Since first-come, first-served policies apply to public charging stations, concurrently
arriving EVs may eventually compete with one another. If charging requests are
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recommended without taking into account this upcoming competition, WPC may
rise or there may even be charging failures. Nevertheless, integrating future charging
competition is difficult as it need precise forecasts of approaching electric vehicles
and open charging locations in the future.
In this study, this research expand the centralised attentive critic by incorporating
a delayed access approach that makes use of future charging competition data after
the fact. More specifically, we provide a scoring function to assess the effect of
competition in the future up until the charge is finished for a charging request qt. To
account for anticipated future competition for qt, represented as Ñ , we estimate the
number of available charging slots at each EV SEi at incremental minutes following
Tt. (tildeN) may be negative, which denotes the quantity of EVs waiting in queue
at the station. A fully-connected layer is used to acquire the future competition
information for each EV SEi:

pit = ReLU
(
Wpp̃

i
t

)
, (10)

where the parameters that can be learned areWp. To support the agents’ cooperative
policy learning, the pit is included into the centralised attentive critic (Eqs. (4)–(6)).

Figure 3.2: Decentralized execution of active agents

The active charging station with the best of action ”bid” will receive the indication
for the charging request.

Decentralized Execution

Only the learnt actor policy with its own observation is involved in the fully decen-
tralised execution process. To be more precise, the agent EV SEi ∈ Ca

t responds to
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a charge request qt by taking ait based on its biθ:

ait = biθ(o
i
t)), (11)

and of all the acts of Cat, the active agent with the biggest ait will be advised to use
qt. Each agent is capable of light execution and is not required to be aware of the
competition details for upcoming charges. Moreover, even in the event that some
agents fail, the large-scale agent system is fault-tolerant.

3.0.5 Multi-Objective Enhancement

The charging indication for electric vehicles aims to minimise the average CC, the
FRC, and the total WPC at the same time. These goals are joined with two ad-
ditional goals provided by the reward functions outlined in Equations (1) and (2).
The normalised reward distributions of rWPC and rCC by means of a random pol-
icy executed on a number of successfully charged requests are displayed in Figure
3.2. The allocation of various objectives might differ greatly as is shown. More
importantly, the optimum solution for different objectives may differ. For example,
a cheaper charging point could be invented and then become a popular trend and
would require a lengthier WPC. These data imply that the policy which achieves
one objective well may perform poorly at another. An indicator biased towards a
few specific targets risks providing most users with an inferior experience.
A naive way to enhance multiple objectives is to maximize the total reward as a
single target by averaging the rewards of the individual objectives using a set of
predefined weights. Such a biased approach, however, is inadequate for dynamic
adaptation to a particular target and for other learning phases. In order to ensure
that the policy works well on a variety of objectives, we have created a dynamic
gradient re-weighting technique that adjusts the optimization direction to various
training phases. More precisely, we have extended the attentive critic which is
centralized, to a number of reviewers.

Algorithm: SRL-CAVCI model
Input: stn,ν , e

EVSE
n,ν , etripn,ν , tend, p

t
n, q

t
n,v, t

act
n,ν(t), πn,ν(t), R

CV aR
α (L(x, y))

Output: SRL-CAVCI model
Initialization: w∗

n, ν
∗, γ, V π, θ1, η, β

1. Randomly initialize critic networks Qcwt

b , Qcp

b , Qb and each actor network bi

with weights θc
wt

Qb
, θc

p

Qb
, θib.

2. Initialize target networksQcwt

b′ , Qcp

b′ , b
′i with weights θc

wt

Qb′
← θc

wt

Qb
, θc

p

Qb′
← θc

p

Qb
, θb′i ←

θbi .

3. Initialize objective-specific optimal networks Qcwt

b∗ , Qcp

b∗ , b
∗
wt, b

∗
CC and bi∗CC with

well-trained weights θ
Qcwt

b∗
, θQcp

b∗
, θb∗wt

, θb∗CC
, θbi∗CC

.

4. Value of replay buffer D.

5. For 1tomax− iterationsdo
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6. Reset environment.

7. For t = 1 to number of requests |Q| do

(a) For agent cl ∈ Cqt do
i. Take action aib = bi(oit) for each charging request qt−r.

(b) Store the transition values (sat , u
a
a, ρ

a
t , s

a′

t′ , ρ
a′

t+r′ , R
cwt

t+r, R
cp

t+r) into D.

(c) Sample a randomminibatch ofM transitions (sat , u
a
a, ρ

a
t , s

a′

t′ , ρ
a′

t+r′ , R
cwt

t+r, R
cp

t+r)
from D.

(d) Set yc
wt

t = Rcwt

t+r + γ(Rcwt

t+r′ −Rcwt

t+r)Q
cwt

b′ (st′ , u
a′
t )|aat=bi(oit)

.

(e) Set yc
p

t = Rcp

t+r + γ(Rcp

t+r′ −Rcp

t+r)Q
cp

b′ (st′ , u
a′
t )|aat=bi(oit)

.

(f) Update Critic Qcwt

b and Qcp

b by minimizing the losses:

L(θc
wt

Qb
) =

1

M

∑(
Qcwt

b (xt)− yc
wt

t

)2

L(θc
p

Qb
) =

1

M

∑(
Qcp

b (xt)− yc
p

t

)2
(g) Compute βt through Eq. (13) and Eq. (14).

(h) For agent cl ∈ Cqt do
i. Update actor by the sampled policy gradient:

∇θbi
J(bi) ≈ 1

M

∑
∇θbi

bi(at|oit)∇aat
Qcwt

b (xt)

θbi = (1− βt)∇θbi
bi(at|oit)∇aat

Qcp

b (xt)|aat=bi(oit)

θbi = θbi + η∇θbi
J(bi)

ii. Update target actor networks:

θb′i ← τθbi + (1− τ)θb′i

(i) Update target critic networks:

θc
wt

Qb′
← τθc

wt

Qb
+ (1− τ)θc

wt

Qb′

θc
p

Qb′
← τθc

p

Qb
+ (1− τ)θc

p

Qb′

8. End for

End for
————————————————————————————————————–

where each critic relates to a specific objective. We develop two centralized attentive
critics in our work, referred to as Qe

ϕ and QCC
ϕ respectively, and they correspond to

the estimated returns of the reward functions rWPC and rCC . As the two critics
share the same architecture, we only give as an illustration.

Qe
ϕ(xt) = Est,ut,pt,rt:t+j ,Rt:t+j∼D

[
Rt:t+j + γ(T c

t+j−Tt)Qe′

ϕ (xt+j)|ua
t+j=bi

θi
(oit+j)

]
. (12)
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where E denotes the environment, and RCC
t:t+j is the cumulative discounted reward

(defined in Eq. (9)) concerning rCC .
Additionally, we construct two centralized attentive critics that are linked to two
objective-specific optimal policies for reward, denoted as QWPC

ϕ and QCC
ϕ , respec-

tively. This enables us to measure the degree of convergence of different objectives.
These are captured by the corresponding optimum policies bi∗θWPC and bi∗θCC . In order
to generate these objective-specific optimum policies and critiques, SRL-CAVCI
can be pre-trained on a single reward. Then we compute the ratio of differences be-
tween the multi-objective policy and the optimum policy that is particular to each
goal by :

gWPC
t =

QWPC
ϕWPC∗(xt+j)|ua

t+j=bi
θi
(oit+j)

−QWPC
ϕ (xt+j)|ua

t+j=bi
θi
(oit+j)

QWPC
ϕWPC∗(xt+j)|ua

t+j=bi
θi
(oit+j)

, (13)

The gap ratio gCC
t can be derived similarly. Intuitively, a smaller gap ratio means

the objective is well-optimized, which can be adjusted with a smaller step size, while
a larger gap ratio means that it’s poorly optimized and it needs to be bolstered by a
larger update weight. Therefore, we come up with dynamic update weights, which
the Boltzmann softmax function learns to adaptively modulate the step size of the
two objectives.

βt =
exp(gWPC

t /τ)

exp(gWPC
t /τ) + exp(gCC

t /τ)
, (14)

where τ is the temperature controlling the sensitivity of adjustment. Every agent of
EV SEi ∈ Ca

t with the two critics defined above and adaptive update weights aims
to learn an actor policy to maximise the following return.

J(bi) = Est,ut,pt,rt:t+j ,Rt:t+j∼D

[
βtQ

WPC
ϕ (xt) + (1− βt)Q

CC
ϕ (xt)|ui

t=bi
θi
(oit)

]
. (15)

Algorithm 1 describes the full process of learning in SRL-CAVCI. Note that due
to scalability reasons, we share the actor and critic network configurations across all
agents.

3.1 Laxity Estimation

From our data we can get the requested energy demand, available minutes and
actual energy delivered, actual charging time along with other features like user ID,
EVSE ID etc. Based on this data we can find the requested and delivered energy
rate as follows:

λreq
n (t) =

∑
v∈V ϵreqn,v∑
v∈V δreqn,v

× 60. (3.1)

λact
n (t) =

∑
v∈V ϵactn,v∑
v∈V δactn,v

× 60. (3.2)

Where λreq(t) and λact(t) represent the average energy demand rate and the energy
delivery rate at EVSE n ∈ N , respectively. εreq,n,v and εact,n,v represent the energy
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demand requested and actual energy delivered by EVSE n ∈ N to EV v ∈ Vn.
Lastly, δreq,n,v and δact,n,v represent the session duration requested by EV v ∈ Vn at
EVSE n ∈ N and the actual charging time by EVSE n ∈ N for EV v ∈ Vn.

From the above equation we can find the laxity as follows:

L(x, y) = min
x∈X

Ex∼X

[∑
n∈N

∑
v∈V

∣∣∣∣ ϵreqn,v

λreq
n (t)

−
ϵactn,v

λact
n (t)

∣∣∣∣
]

(3.3)

Where λreq
n (t) and λact

n (t) are determined by the previous equations.

3.2 Conditional Value at Risk

In essence, it says that, if an investment is stable in the long run, its value at risk
would be sufficient for the management of risk in a portfolio. The more un-safety
of the investment, the more likely it is. And because the Value at Risk is invariant
to what is outside of its own breakpoint, and it alone cannot paint a full picture of
the risks. Statistical method to measure the level of financial risk in a company or
investment portfolio over a given period of time is the Value at Risk (VaR) model.
The deficiencies in the VaR model are meant to be corrected by Conditional Value
at Risk, or CVaR. VaR is the worst case loss that is associated with a probability
and time horizon; in contrast, CVaR is the expected loss in the rare case that the
worst case breakpoint is ever reached. In other words, Conditional Value at Risk
calculates the expected losses which occur beyond the VaR breakpoint.

We can define CVaR as follows:

RCVaR
α (L(x, y)) = − 1

α(1− ω)(ω + ξ2)Pω(ξ)σµ

(3.4)

We can find the Pω(ξ) from,

Pω(ξ) =
Γ
(
ω+1
2

)
Γ
(
ω
2

)√
πω

(
1 +

ξ2

ω

)−ω+1
2

(3.5)

We consider degree of freedom by ω and µ , σ consecutively mean, and standard
deviation, respectively and L(x, y) where d and ξ represents a sample of laxity
and a cut-off point of the laxity tail-risk respectively. Thus, the probability density
function (pdf) for student t-distribution is defined as follows:

P (d, ω, µ, σ) =
Γ
(
ω+1
2

)
Γ
(
ω
2

)√
πωσ

(
1 +

(d− µ)2

ωσ2

)−ω+1
2

(3.6)

where the gamma function represents as Γ(·). We fit the t-distribution to observa-
tional laxity d1, d2, . . . , dJ ∈ D. This fit is computed by maximizing a log-likelihood
function l(D;ω, µ, σ) that is defined from
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l(D;ω, µ, σ) = D log Γ

(
ω + 1

2

)
+
Dω

2
log(ω)−DΓ

(ω
2

)
−D

2
log σ−ω + 1

2

J∑
j=1

log

(
ω +

(dj − µ)2

σ2

)
(3.7)

where ω represents the degree of freedom, µ represents the mean and σ represents
the standard deviation.
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Chapter 4

Preliminary analysis

In the main dataset we found the requested charge and available minutes and also
the actual delivered charge and charging time along with the User id which denotes
each EVs and Station Id, that denotes the EVSE id. From that dataset, we used a
linear model that calculated the laxity of each EVs for each EVSE. As we worked
with the ACN dataset[8], we splitted time session for one hour and calculated the
above function for each time slot. Finally, in order to determine the values of the
DOF (Degree of Freedom), mean, and standard deviation, we computed the PDF
for the student t-distributions. This parameter will help us to find the value for
CVaR(Conditional Value at Risk).

4.1 Requested Charge vs Actual Delivered Charge

Figure 4.1: Requested Charge vs Actual Delivered Charge
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Figure 4.2: Laxity of Each EV

In these above diagrams, the irrational charging request has been shown. In the
Caltech dataset, we can see that each of the electric vehicles requested for a charge,
but except the autonomous vehicle, all the vehicles requested irrationally. Moreover,
in some cases, the vehicles requested more than double, and that’s why the energy
utilization is not being sufficient. In Figure 4.2, we can find the irrational charging
request from the user.

4.2 Laxity Sum of Each EVSE

Figure 4.3: Laxity Sum of Each EVSE
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Figure 4.4: Summary of Laxity Sum of Each EVSE

In this diagram, we have represented our model outcome that calculated the laxity
of each EVSE and EV. Each of the white line borders represents the EVSE, and the
small blocks represent the EVs. The block size represents the laxity of each EV and
EVSE, respectively.

4.3 Laxity(Sum) vs PDF(Sum) of each EVSE

Figure 4.5: Laxity(Sum) vs PDF(Sum) of each EVSE
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Figure 4.6: Summary of Laxity(Sum) vs PDF(Sum) of each EVSE

In the above diagram, we calculated the PDF value of the EVs and EVSEs, respec-
tively. But here, the small block size represents the PDF value that will be required
to calculate the conditional value at risk, and the white-bordered block represents
the laxity of each EVSE.
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Chapter 5

Performance Evaluation for
SRL-CAVCI

Data description

We evaluate the SRL-CAVCI using datasets simulated for Beijing and Shanghai,
which are two of the most populous cities in China. The datasets are from July 1st,
2019, and May 18, 2019. The data consists of all supply availability records, charging
prices, and charging power collected from charging stations using an app available
to the public that compiles real-time sensor data. Each city is further divided into
grids that are 1 × 1 km2 in size. The number of 15-minute charging requests from
the grid, which consists of the station and its eight nearby grids, is summed up
to calculate future demand for the related charging stations for every station. An
Electronic Vehicle charging indicator simulator was used for making the real-world
dataset. The training set is composed of the 28 day’s consecutive data, the valida-
tion set consists of the following three days, and the rest 14 days are used for testing.

Implementation Specifics

An 8-core M1 Mac server was used to do conduct all these experiments. We choose
a discount factor γ = 0.99 to learn all the algorithms of RL, use temperature σ = 0.2
to tune the adjustment of updated weights, and set d = 30 minutes for modeling
the charging competition. All actor and critic networks are composed of three 64-
dimension linear layers and a ReLU activation for the hidden layers. The soft update
of the target networks uses a τ = 0.001 value, the size of the replay buffer is 1000,
and the batch size is 32. In the training of our model, the learning rate is set to
5 × 10−4, and we use the Adam optimizer for all learnable algorithms. All major
hyper-parameters of each baseline are then fine-tuned through a grid search. All RL
algorithms are trained for 52 iterations to recommend the top fifty nearest EVSEs;
the validation set picks the best iteration to test.

Evaluation metrics

Four measurements are set up to evaluate the efficacy of our methodology and
baseline indicator algorithms. We define the set of charge requests which accept our
indications as Qa. We also define the collection of charge requests which accept our
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indications and which end up starting charging as Qe \Qa. The cardinalities of Qa

and Qe are denoted as |Qa| and |Qe|, respectively.
We define the Mean Waiting time for Charging (MWPC) considering all the charging
requests qt ∈ Qa to evaluate the global waiting time for charging of our metrics:

MWPC =

∑
qt∈Qa WPC(qt)

|Qa|
(5.1)

where WPC(qt) is the waiting period for charging (in minutes) of charging request
qt.
We define the Mean Cost of Charging (MCC) over all charging requests qt ∈ Qa to
evaluate the average cost of charging, :

MCC =

∑
qt∈Qa CC(qt)

|Qa|
(5.2)

where CC(qt) represents the cost of charging in qt (in CNY).
We now define the Total Saving Fee (TSF), which we use to compare our indicator
method to the ground truth charging activities to compute the average daily total
saving fees:

TSF =

∑
qt∈Qa(RC(qt)− CC(qt))× CQ(qt)

Nd

(5.3)

where CQ(qt) is the electric charging quantity of qt, Nd is the number of evaluation
days, and RC(qt) is the cost of charging of the ground truth charging action. Note
that the TSF, which represents the amount of fees overpaid with respect to the
ground truth charging activities, can be negative.
In order to quantify the percentage of failures of the charging in our indices, we
finally define the Failure Rate of Charging as follows:

FRC = 1− |Q
e|

|Qa|
(5.4)

Baselines

We compared our approach to the SRL-CAVCI and five baselines introduced in
[13]:

• Real: The ground truth charging activities of the charge requests are real.

• Random: It randomly recommends charging stations for requests for charg-
ing.

• Greedy-N: recommends the closest EVSE.

• Greedy-P: recommends the cheapest EVSE.

• Greedy-P-N: recommends, for a given parameterized ratio, the top-N closest
and cheapest charging stations.

Table 1: All comparative baselines on two datasets and the holistic results of our
methodologies under each of our four criteria. In general, as can be shown, SRL-
CAVCI is ahead of all other baselines concerning overall performance. In terms
of MCC, TSF, and FRC, compared to the ground truth charging activities, SRL-
CAVCI has a decrease of 16.2%, 12.5%, and 42.1%, respectively.
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Algorithm MWPC MCC TSF FRC
Real 21.51 1.749 - 25.9%
Random 38.77 1.756 -447 52.9%
Greedy-N 20.27 1.791 -2527 31.3%
Greedy-P-5 23.40 1.541 9701 35.4%
Greedy-P-10 26.03 1.424 14059 39.9%
SRL-CAVCI 42.37 1.50 12304 10.1%

Figure 5.1: Comparison of Different Algorithms

Correlation Between Reward and Success Rate

In our SRL-CAVCI, we used the Actor-Critic Method, which is a DDPG algorithm.
Although we only iterate 52 times, we observe a significant impact of reward along
with the success rate.
According to the graph, we can analyze that the success rate increases along with
rewards. We used negative rewards for successful charging. If EVs are success-
fully charged, they incur a negative reward proportional to −WPC − CC; thus, as
WPC and CC increase, the reward becomes more negative, and if WPC and CC are
minimal, the reward is minimally negative. Additionally, a penalty is imposed for
charging failures.

When the iteration count was very low, the frequency of successful indicators was
less, but as iterations increased, the actor-critic architecture rapidly trained using
feedback from the critic network.
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Figure 5.2: Regression Rate: Success Rate vs Reward

Figure 5.3: Distribution of n rec and n recsc

For the same number of indicators, the success rate was minimal when iterations
were fewer than 10, but after 29 iterations, the success rate of the indicator increased
significantly. However, with limited computational power, we only iterated 52 times,
and based on this, there is no indication of a saturation stage. Moreover, the graph
suggests that the success rate of the indicator will continue to increase with more
iterations.
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Comparison between Training and Evaluation

As DDPG works in an Actor-Critic architecture, the critic evaluates the action based
on specific parameters, when the agent takes an action. After each iteration, both
the critic and actor networks are updated.

Figure 5.4: Comparison of Success Rates and Rewards

From our SRL-CAVCI model, we observe that the model performs well during execu-
tion. The frequency of reward and success rate is higher than in the training phase.
Additionally, the graph shows a continuous process with no saturation stage.
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Chapter 6

Conclusion

Future Work

In our research we are trying to solve the issues of charge failure and reduce the
waiting period for charging and cost of charging. But compared to other models
we can see the mean waiting period of charging time is significantly high but the
success rate is good. Moreover, not all the vehicles were given an indication for
better charging, only those who requested online got the indication. So there was
much of a problem correlating the queuing success and indication success. Our aim
is to bring all the vehicle charging infrastructure in one centralized system. To make
this possible we need to optimize our model.

Figure 6.1: Pair plot of (Success rate, Derived success rate and Reward) Vs Indica-
tion
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From the above diagram we can see that the indication of success and derived success
is increasing rapidly along with rewards but rewards are still in negative. Our aim is
to bring this near 0. To optimize our model, we are proposing a Safe RL and gradient
descent based approach which we have already used for our reward and success rate
optimization. But we didn’t reduce MWPC and MCC as our initial focus was to
succeed in the charging competition. To use Safe RL based optimization, we will add
an extra layer in the last layer of our DDPG model which we are already working on.

Conclusion

In conclusion, this research introduces an innovative Intelligent Decision Support
System (IDSS) designed to optimize the charging process for both human-driven
and autonomous electric vehicles, addressing challenges related to excessive charging
requests. The system encourages rational charging behaviors, excelling in identify-
ing the nearest charging equipment and managing detailed requests. Its adaptive
capability allows it to refine scheduling based on accumulated data, demonstrating
superior efficiency, safety, and energy utilization in empirical tests. The study also
explores a Safe Reinforcement Learning-based system to enhance charging infras-
tructure for connected and autonomous vehicles (CAVs). By promoting rational
charging through a Rational Decision Support System (RDSS) and optimizing pro-
cesses with Safe Reinforcement Learning algorithms, the research aims to overcome
challenges tied to irrational energy demands. The proposed system, incorporat-
ing Risk Adversarial Agents (RAA) and local self-learning agents, contributes to
intelligent decision-making, supporting the widespread acceptance of CAVs. Look-
ing forward, upcoming research will implement the Safe RL AVCI model, expanding
datasets to JPL and both Caltech sites and constructing a linear model for execution
and indication function calculation. This collaborative effort signifies a significant
stride towards smarter, safer, and more technologically advanced transportation
networks.
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