
Exploring Architectural Floor Plan Appropriateness in
Context of Bangladesh Leveraging Graph Neural Networks

in Spatial Context

by

Tanjim Noor
24341103

Mahir Tasin Islam
24341104

Tiham Shafi Islam
24341115

Mahid Atif Hosain
21101170

Md. Irtiza Anam
24341101

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
September 2024

© 2024. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing the degree
at Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material that has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Tanjim Noor
(24341103)

Mahir Tasin Islam
(24341104)

Tiham Shafi Islam
(24341115)

Mahid Atif Hosain
(21101170)

Md. Irtiza Anam
(24341101)

i

Approval
The thesis/project titled “Exploring Architectural Floor Plan Appropriateness in
Context of Bangladesh Leveraging Graph Neural Networks in Spatial Context” sub-
mitted by

1. Tanjim Noor (24341103)

2. Mahir Tasin Islam (24341104)

3. Tiham Shafi Islam (24341115)

4. Mahid Atif Hosain (21101170)

5. Md. Irtiza Anam (24341101)

Of Summer, 2024 has been accepted as satisfactory in partial fulfillment of the
requirement for the degree of B.Sc. in Computer Science on September 17, 2024.

Examining Committee:

Md. Tanzim Reza
(Supervisor)

Senior Lecturer
Department of Computer Science

and Engineering
BRAC University

Dr. Farig Yousuf Sadeque
(Co-Supervisor)

Associate Professor
Department of Computer Science

and Engineering
BRAC University

Dr. Md. Golam Rabiul Alam
(Thesis Coordinator)

Professor
Department of Computer Science

and Engineering
BRAC University

Sadia Hamid Kazi
(Head of Department)

Chair Person and Associate Professor
Department of Computer Science

and Engineering
BRAC University

ii

Abstract
This paper investigates the use of Graph Neural Networks (GNNs) for classifying ar-
chitectural floor plans and establishing the applicability of international floor plans
with respect to Bangladeshi architectural standards. Flooring plan data is mainly
derived from Chinese residential designs, which are converted into graph-based rep-
resentations where rooms represent the nodes, and the connections through doors
form the edges. Node features are prepared that include room area, centroid co-
ordinates of the room, and room type, while door connections form unweighted
edges. Three GNN models—GCN, GraphSAGE, and GAT are tested to evaluate
their effectiveness in this binary classification task. GraphSAGE yielded the best
performance among all the three GNN models tested, showing 87.09% test accuracy
and an AUC-ROC score of 0.9512, with good generalization on unseen data. This
work illustrates how GNNs can capture spatial relations from architectural data to
enable scalable solutions for cross-cultural design evaluation and urban planning.
It contributes to the increasingly important intersection of AI and Architecture by
going beyond image-based traditional approaches and introducing a framework that
automatically assesses the appropriateness of architectural designs concerning dif-
ferent cultural contexts.
Keywords: Architectural floor plans, Cross-cultural suitability, Graph Neural Net-
works, Spatial relationships, Binary classification, Bangladesh, Urban Planning,
GraphSAGE, Design evaluation, Automated assessment, Model performance.

iii

Acknowledgement
Firstly, all praise to the Great Allah for whom our thesis has been completed without
any major interruption.
Secondly, we would like to thank our supervisor Md. Tanzim Reza, and co-supervisor
Farig Yousuf Sadeque, who gave us the incentive to start our thesis on this topic.
Also, we would like to express our gratitude towards Arch. Abu Sayed Samiul
Islam, Arch. Tahsina Islam, Samiha Rahman Khaled, and other annotators for
their contributions. Finally, our parents without whose constant support we would
not have been able to finish this report.

Abu Sayed Samiul Islam
(Principal Architect)
Module Architects

Tahsina Islam
(Managing Partner)
Module Architects

iv

Table of Contents

Declaration i

Approval ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Background on Floor Plan Classification 1
1.2 Problem Statement . 2
1.3 Research Contribution . 3

2 Related Work 4
2.1 Literature review . 4

3 Methodology 16
3.1 Work Plan . 16
3.2 Dataset Overview . 17
3.3 Initial Preprocessing Pipeline . 17

3.3.1 Initial Data Cleaning . 17
3.3.2 Feature Extraction: Image Encoding and Vertex Data 17
3.3.3 Contour Extraction and Simplification 19
3.3.4 Graph Construction: Nodes and Edges 19
3.3.5 Artifacts . 19

3.4 Initial Filtered Dataset . 21
3.4.1 Visualization . 21

3.5 Annotation Process and Labeling . 22
3.5.1 Annotation Labels in Context of Bangladesh 23
3.5.2 Data Labeling Workflow and Adjustments 29

3.6 Final Dataset Visualizations . 32
3.6.1 Final Dataset Analysis . 35

3.7 Dataset Transformation and Refinement 36

v

3.7.1 Annotation Transformation 36
3.7.2 Data Augmentation . 36

3.8 Model Selection . 38
3.8.1 Model Selection Criteria . 38
3.8.2 Selected Models . 38

4 Model 39
4.1 Data loading and Train-test Split . 39

4.1.1 Feature Representation in GNN Models 39
4.1.2 Data Processing and Graph Construction 39
4.1.3 Train-Test Split . 41

4.2 Model Overview . 41
4.3 Model Architecture . 44

4.3.1 Abstract Model Architecture 44
4.3.2 Model-Specific Differences . 45
4.3.3 Hyperparameter Summary . 45

5 Results and Discussion 47
5.1 Result Analysis . 47

5.1.1 GCN . 47
5.1.2 GraphSAGE . 50
5.1.3 GAT . 53
5.1.4 Model Comparison: Loss and Accuracy 55

5.2 Limitations and Challenges . 58
5.2.1 Ambiguities in Architectural Concepts 58
5.2.2 Challenges in Labeling Floor Plans with Local Annotations . . 59
5.2.3 Model Limitations . 60

6 Applications and Future Directions 61
6.1 Enhance Dataset in the Context of Bangladesh 61

6.1.1 Enhance Dataset with Orientation Considerations 61
6.1.2 Incorporate Ventilation Factors 62

6.2 Application of GNNs in Spatial Context 63
6.3 Future Improvements in GNN Architecture 63

7 Conclusion 64

Bibliography 66

Code Snippets for Classifiers 67

vi

List of Figures

3.1 Workplan . 16
3.2 Initial Data Preprocessing Pipeline 18
3.3 One door Connecting multiple rooms problem 20
3.4 Multiple Door Morphing Problem . 20
3.5 Room Adjacency Matrix . 21
3.6 Histogram of Room Areas . 22
3.7 Type A apartment’s floor plan design 25
3.8 Type B apartment’s floor plan design 26
3.9 Type C apartment’s floor plan design 27
3.10 Type D apartment’s floor plan design 28
3.11 Architectural Floor Plan Filtering Website’s User interface 30
3.12 Room Connectivity Matrix . 32
3.13 Histograms of Room Areas . 33
3.14 Scatter Plots of Room Areas vs. Edge Count 34
3.15 Box Plots of Room Areas . 35
3.16 Data augmentation through rotation 37

4.1 GCN Model Illustrated in [6] . 42
4.2 Attention mechanism illustrated in [8] 43
4.3 Visual illustration of the GraphSAGE and aggregate approach [5] . . 44

5.1 Confusion Matrix for GCN . 49
5.2 Training and Validation Metrics over Epochs for GCN 49
5.3 t-SNE Visualization for GCN . 50
5.4 Confusion Matrix for GraphSAGE . 51
5.5 Training and Validation Metrics over Epochs for GraphSAGE 52
5.6 t-SNE Visualization for GraphSAGE 52
5.7 Confusion Matrix for GAT . 54
5.8 Training and Validation Metrics over Epochs for GAT 54
5.9 t-SNE Visualization for GAT . 55
5.10 Loss and Accuracy between models over the epochs 56

7.1 Code Defining GCN Model . 67
7.2 Code Defining GraphSAGE Model 68
7.3 Code Defining GAT Model . 69

vii

List of Tables

4.1 Train-Validation-Test Split with 60-20-20 Ratio 41
4.2 Hyperparameters for Each Model . 46
4.3 Comparison of Custom GNN Model Architectures 46

5.1 Test Results for GAT, GCN, and GraphSAGE Models 57

viii

Chapter 1

Introduction

1.1 Background on Floor Plan Classification
Architectural design is profoundly shaped by a variety of cultural, geographical,
and climatic influences, resulting in notable discrepancies in floor plans across var-
ious regions. Such variations arise from distinct local preferences, lifestyle needs,
and environmental circumstances, which dictate the organization of spaces within a
structure. Nevertheless, the majority of current architectural datasets are tailored
to specific regions, thereby constraining the applicability of these designs in diverse
geographic or cultural settings. For example, a floor plan designed to meet the com-
pact and efficient housing requirements of urban China may not be as appropriate
for the more expansive and climatically varied environment of Bangladesh. This con-
straint underscores the necessity for more adaptable design evaluation frameworks
that can effectively assess architectural appropriateness across different geographical
contexts. As urbanization and global architectural exchange accelerate, developing
automated tools to assess and adapt foreign designs to local contexts is essential for
creating functional, culturally appropriate buildings.

Over the last years, advances in AI and ML have enabled new ways of automating
architectural design and evaluation processes. In particular, GNNs have recently
shown great potential due to their powerful ability to model complex relationships
inherent in graph-structured data, such as spatial configurations of floor plans. Un-
like traditional image-based architectural models, GNNs are strong at learning from
structured data where rooms can be represented as nodes and their connections as
edges. That makes them suitable for tasks like the floor plan analysis, when spatial
relationships between rooms are critical to define the overall functionality and flow
of a building. This work is going to explore the ability of Graph Neural Network ar-
chitectures, which include Graph Convolutional Networks (GCN) [6], GraphSAGE
[5], and Graph Attention Networks (GAT) [8], to generalize spatial attributes of
floor plans and apply them in unfamiliar cultural settings.

Our research focuses on evaluating the adaptability of residential floor plans, which
are originally from China, for application in Bangladesh. The core objective is to
apply GNN-based classification methods to analyze spatial data from Chinese floor
plans and determine whether these designs align with the functional and cultural
needs of Bangladesh. Given the rapid urbanization in both countries, developing

1

an efficient and scalable method to assess and adapt foreign architectural designs
is crucial for future urban planning and housing development. Through this ap-
proach, the present study not only tackles the particular issue of modifying Chinese
architectural designs for the context of Bangladesh but also adds value to the wider
domain of evaluating cross-cultural architectural design.

In the process, this research contributes to advancements in AI-driven architecture
by extending the application of GNNs beyond conventional domains like social net-
works or molecular biology, where GNNs have traditionally excelled. Here, GNNs
are applied to architectural floor plans to show their versatility in learning from
spatial relationships and functional dependencies between rooms. GNNs are par-
ticularly good for this task since they capture both local and global patterns in
graph-structured data. Their capability makes them identify subtler design ele-
ments that serve as critical determinants for the functional suitability of a floor plan
in context.

The study then builds upon a GNN’s capability of binary classification between suit-
able and unsuitable floor plans in Bangladeshi architecture. Based on the graph-
based representation of such floor plans, the research utilized models like GCN,
GraphSAGE, and GAT, which uniquely offered advantages in learning complex spa-
tial features. As typical examples, GCNs are effective for handling large-size graphs
while modeling local patterns [6]; GraphSAGE is advantageous in generalizing to
unseen nodes by aggregation of information from neighborhoods [5]. GATs introduce
an attention mechanism that lets the model weigh node importance, which could be
particularly helpful when trying to highlight key rooms or spatial features whose rel-
evance to the classification task may vary [8]. By integrating the GNN architectures,
the research not only addresses the immediate challenge of adapting Chinese floor
plans for use in Bangladesh but also sets the stage for the broader applications of
GNNs in architectural design. The aim is to develop an automated, scalable solution
with which to assess and adapt architectural designs across cultures and geography.
The paper illustrates how GNNs can be useful in the advancement of AI in architec-
ture, helping to better the design process to be more cross-culturally adaptive and
thereby informing and improving urban planning practices more effectively across
the world.

1.2 Problem Statement
Architectural floor plans vary significantly across regions due to differences in cul-
tural preferences, lifestyle, and climatic conditions. However, most available datasets
focus on floor plans from specific regions, limiting the applicability of those designs
in different geographic or cultural contexts. In this study, we aim to evaluate the
appropriateness of residential floor plans from China for use in Bangladesh. Using
a Graph Neural Network (GNN) framework, we analyze spatial data from these
plans to determine whether they align with the architectural needs of Bangladesh.
By leveraging GNN architectures GCN, GraphSAGE, and GAT in a binary classi-
fication task, this research explores whether GNNs can effectively generalize spatial
features in architectural designs and identify patterns relevant to local contexts.

2

1.3 Research Contribution
This research aims to apply GNNs to test the appropriateness of Chinese floor plans
for Bangladesh by analyzing spatial data with GNNs. The goal is to develop an
efficient automated method of architectural design evaluation across cultural and
geographical contexts by applying GNN to assess spatial data.

• Cross-cultural relevance: The research aims to adapt foreign architectural
designs to local contexts by using GNNs to automatically assess the appropri-
ateness of floor plans for Bangladesh, thus offering scalable solutions for urban
planning.

• Spatial data analysis: The study focuses on the coordinates of the rooms
and the spatial relationships defining the floor plans, highlighting how GNNs
learn complex structural patterns for an exact way to assess the functional
suitability of an architectural design.

• Advancement in Architectural AI: The research strives to contribute to
the ever-evolving AI in architecture by showing the capabilities of GNNs for
extending beyond the typical image-based models through spatial context,
which could eventually improve design evaluation processes around the world.

3

Chapter 2

Related Work

2.1 Literature review
Graph Neural Network [1] is a model that extends the current neural network meth-
ods of effectively dealing with data structured in graph form: acyclic, cyclic, directed,
and undirected. Based on the initialization and estimation of its parameters using
a supervised learning algorithm, the model is formulated as a graph-to-point map-
ping. Experiments also show that the identified information diffusion mechanism
in the GNN model can generate effective and generalizable features since it keeps
consistent data structures and preserves relationships. The GNN process can per-
form better without preprocessing than other techniques like random walk models
or recursive neural networks, which are limited in their ability to learn specific types
of graph structures. Applications include computer vision, molecular chemistry and
biology, pattern recognition, and data mining. The authors suggest investigating
avenues such as processing dynamic graphs, and relational learning over data on-
tologies for future investigation. The model highlights GNN models as a robust
backbone in graph-based data processing taking the best of both neural networks
(for representation) and Graph theory(dependent elements).

Kipf and Welling (2017) present a method for supervised learning on graph-based
data by employing Graph Convolutional Networks (GCNs) [6]. These networks
implement a first-order estimation of graph convolutions to handle large graphs effi-
ciently by scaling linearly with the number of edges while capturing local graph pat-
terns and node characteristics in hidden layer representations effectively. Through
testing, on citation networks and a dataset of knowledge graphs, the GCNs show
performance compared to methods. The method avoids using graph-based regular-
ization by incorporating the adjacency matrix of the graph into the model. This
enables the distribution of gradients, from loss and representation learning, for both
labeled and unlabeled nodes. The authors introduce a layer-based propagation rule
for GCN, inspired by a first-order spectral graph convolution approximation, which
ensures efficient and scalable semi-supervised classification. The experimental re-
sults show how accurate and computationally efficient the model is. Through a
comparative analysis of various propagation models and an evaluation of the train-
ing time per span, they conclude that their model has advantages for extensive use.
Additionally, Kipf and Welling go over the drawbacks of their GCN technique as well

4

as potential advancements in the future, such as memory needs and managing di-
rected edges or edge properties. Using the trade-off between accuracy and efficiency,
their work defines GCN as an important tool for graph-based data classification.

The introduction of graph attention networks (GATs) [8] by Velikovic et al. (2018)
identified a breakthrough using masked self-aware layers, allowing nodes to join fea-
tures of neighbors with different weights, increasing expressiveness and efficiency
without expensive matrix operations. This greatly increases the expressiveness and
efficiency without the expensive matrix operations involved in diffusion and convolu-
tion. State-of-the-art GATs show state-of-the-art performance on benchmarks such
as Cora, Citeseer, Pubmed, and protein-protein interaction data, which testifies to
their at-most efficiency for dealing with graph-structured data. GATs address several
key issues in the previous approaches of spectral-based approaches: The models do
not depend on the whole graph structure from the beginning and can assign different
importance to different nodes within a neighborhood. These models have success-
fully achieved or matched state-of-the-art performance across well-established node
classification benchmarks, both transductive and inductive, especially with unseen
graphs used for testing. The other potential future enhancements may involve the
handling of larger batch sizes, model interpretability, the extension of the method to
handle graph classification, and the inclusion of edge features to treat a wider range
of problems. From early GNNs to sophisticated models such as GATs, these demon-
strate very significant advances in this domain, in terms of computational challenge
and enhancement of models’ learning capabilities from complex graph structures.

Rossi et al. (2020) introduce Temporal Graph Networks (TGNs) [16], a novel
paradigm for deep learning on dynamic graphs represented as sequences of time-
stamped events. TGNs combine memory modules with graph-based operators, yield-
ing a much more computationally efficient solution that outperforms existing meth-
ods. The general framework can seamlessly determine several prior models as specific
instances for the learning of dynamic graphs. It contains memory components for
storing the history of nodes, message functions to model interactions between nodes,
and embedded modules for producing up-to-date node embeddings. Thus, it alle-
viates the problem of memory staleness. Moreover, TGNs enable efficient parallel
processing and are easily applicable for both transductive and inductive tasks. Ex-
tensive experiments are carried out to establish the effectiveness of the framework
that achieves the state-of-the-art performances on several benchmark datasets. More
importantly, the ablation studies did provide detailed information that underlines
how important the memory module and graph-based embedding are in maintaining
accuracy while being computationally efficient. Future work on TGNs will relate
to the exploration of more advanced configurations, enhancing model interpretabil-
ity, and applications in different domains, and possibly leveraging edge features and
graph classification tasks.

House-GAN’s [15] method for creating house layouts makes use of a relational gen-
erative adversarial network that is graph-constrained. Given as input, a bubble
diagram—representing architectural constraints such as room types and their spa-
tial adjacency—produced a set of axis-aligned bounding boxes of rooms. It uses
convolutional message-passing neural networks to handle the graph-encoded con-
straints within relational networks of both the generator and discriminator. Eval-
uations based on over 117,000 real images of floor plans verify that the proposed

5

House-GAN significantly outperforms the existing approaches in generating realis-
tic, diverse, and compatible house layouts. These results show the capability of
House-GAN in automating house designs and hence assisting an architect to get an
efficient, aesthetic-looking design within budget and time. The authors intend to
make their code and dataset accessible to everyone to encourage more study and
advancement in this field.

FloorplanGAN [17] proposes a new generative adversarial framework committed to
the generation of architectural floorplans, solving the peculiar difficulties that arise
because of their vector graphic and raster image dual nature. However, the tradi-
tional deep learning models choke on these characteristics, FloorplanGAN combines
a vector-based generation process with room area constraints, complemented by
raster-based visual discrimination using convolutional layers. A differentiable ren-
derer effectively bridges the gap from a vector generator to a raster discriminator.
The model employs a self-attention mechanism to capture interrelationships among
rooms, enhancing the coherence and realism of generated layouts. The experimen-
tal results are verified by various objective metrics and user studies that prove the
effectiveness and feasibility of FloorplanGAN and further demonstrate that it per-
forms significantly better than other state-of-the-art approaches for the generation
of accurate and editable floorplans, able to be easily integrated into existing CAAD
workflows. This approach automates and accelerates the usually iterative architec-
tural design process; hence, it is a promising solution to accomplish the challenging
task of residential floorplan generation.

The development of automatically generating floorplans, integrated with deep learn-
ing techniques, has significantly evolved from traditional manual methods. Probably
the most frequent method is that of Wu et al. (2019), which proposes a data-driven
approach toward the automatic generation of residential floorplans given the bound-
aries of the floor [11]. In general, the contribution of Wu et al. (2019) focuses on the
two-stage process of the technique in question, similar to how humans usually create
a floorplan. It predicts room locations first, starting with the living room, which
is the central element in most modern residential designs, and refines the structure
by placing the walls to make the layout coherent and practical. It is based on the
Wu et al. dataset of 2019, developed from the RPLAN dataset that includes over
80,000 floorplans from real residential buildings and thus provides sufficient data
for learning architectural patterns. The rich, dense annotations within the dataset
of labeled rooms and walls thus enable neural networks to predict configurations of
rooms consonant with typical human designs. First, the iterative prediction model
places the living room, which is the most important room for enhancing the plau-
sibility of the generated layouts and logically situating and connecting the other
rooms. This data-driven approach enjoys much more flexibility compared to earlier
manual or rule-based methods. It freely allows the generation of realistic floorplans
directly from boundary inputs, without the need to specify detailed constraints by
designers. Results from user studies prove that the system is indeed capable of
generating efficient floorplans, the quality of which is comparable to professionally
designed ones. The approach of Wu et al. does constitute a significant landmark
in automated architectural design, as this indeed cuts time and expertise for the
generation of floorplans considerably.

A new concept in architectural layout synthesis [4] has been presented in a paper

6

published by Elsevier B.V. in the journal "Automation in Construction" in 2016.
The basic thrust of this research has been on manipulating highly irregular shapes
without a particular structure in the plane, enabling designers to impose patterns
from any arbitrary image onto the layout. Layout automation historically has shown
great promise in supporting design activities; however, its practical adoption remains
limited. The primary reasons are that most of the automation approaches are con-
fined to right-angle polygons, and there is no mechanism to input high-level prefer-
ences by architects themselves. This research fills this gap by feeding the automated
tool with an image of arbitrary patterns, thus giving more room for flexibility and
creativity in the design process. The methodology used herein is strong: It extracts
irregular regions from images through the use of statistical region merging and then
uses sub-graph matching and simulated annealing in constructing topologically fea-
sible layouts. It also introduces methods for measuring similarities between desired
templates and irregular rooms to make sure the final designs meet the initial re-
quirements. The results derived are promising. When users input images of regular
patterns, resultant layouts prove to be predictably regular. Complex images produce
highly irregular layouts, which demonstrates the flexibility and adaptability of the
proposed system. The generated layouts are very irregular yet true to the patterns
of the input image; hence, the designer could visually assess and iterate on their
design. Considering the limitations, first and foremost is the fact that the layout
automation program only focused on room dimensions and adjacencies. It did not
deal with realistic specifications a building should have, such as building materials,
natural lighting, heating, and energy conservation. This may be one of the probable
ways for research and development shortly. The paper presents a new synthesis of an
architectural layout, which has a lot of flexibility and creativity during the process.
The methodology is solid and results are promising, but certain aspects need to be
improved, particularly with more realistic building specifications.

Contour detection is a very crucial stage in the development of semantic segmenta-
tion and image classification [7]; many challenges are still associated with it, though,
especially when the contours are incomplete or unclosed. Gong et al. (2018) review
existing approaches to contour detection that fall into four categories: pixel-based,
edge-based, region-based, and DCNN-based methods. While traditional approaches
have evolved significantly, it was the advent of DCNNs that fully revolutionized
contour detection by being able to exploit their outstanding performance for im-
age recognition tasks. The DCNN-based approaches include holistically nested edge
detection and fully convolutional networks, which introduced deep learning into
contour detection to enhance precision and efficiency. Considering the above advan-
tages, effective integration of higher-level features and enhancement of the robust-
ness and generalization of these models still need to be overcome. In this direction,
future research will focus on feature combination optimization, using prior shape
information, and attempting to develop weakly-supervised learning techniques that
can mitigate some of the current methodologies.

Park et al. (2023) proposed an AI-driven methodology [25] that may help the
early design phase in architecture through their study entitled "Floor plan recom-
mendation system using graph neural network with spatial relationship dataset,"
published in the Journal of Building Engineering. In this paper, by using graph
neural networks combined with a spatial relationship dataset, this system tries to

7

recommend appropriate floor plans based on the needs of the client. Traditional
floor-plan selection is based on manual case studies and subjective filtering through
books, and real estate websites, which is extremely time-consuming and imprecise.
This research uses the model SimGNN to quantify graph similarity for efficiently
and effectively recommending floor plans with specific spatial configuration require-
ments. The research process creates a large dataset of house floor plans, analyzes
spatial relationships, and trains the GNN models for the prediction of similarities
among graphs. It follows from these results that the proposed system will give rec-
ommendations of high accuracy; therefore, it will result in considerable improvement
in efficiency during the pre-design phase. The result of this is that the derivation of
a suitable floor plan is much faster. Most importantly, the system guarantees that
such a design objectively meets the client’s specifications by using a data-driven
approach. The authors go on to point out that their system can be used with other
building types; this suggests that it could be popular and continue to be extended
in further research into architectural design automation.

The paper "Graph Structure Extraction from Floor Plan Images and Its Applica-
tion to Similar Property Retrieval" [20] by Yamada et al. (2021) presented a novel
approach to handle such challenges provided by diversified and non-standardized
drawing styles in traditional floor plan images that made computational analysis
quite hard. The authors make use of a two-tiered methodology: deep learning for
semantic segmentation, which identifies and annotates various regions in an image of
a floor plan down to a pixel level of detail, while a rule-based transformation would
convert such segmented images to their respective graph representations where the
rooms become nodes and their connections are modeled as edges. This would bring
forth structured yet mathematically tractable graphs that, at best, capture the
spatial relationships in floor plans and go as high as 92 percent accuracy. The
graph-based representation will surely enhance the comparison, evaluation, and re-
trieval beyond the limitation with which traditional image-based searches present
floor plans. The proposed system significantly extends the functionalities of prop-
erty retrieval by allowing for detailed searches with specifications in terms of spatial
arrangement and relationship, other than only by room type and quantity. This
will ensure that the search results are not affected by the change in style of the im-
ages, hence providing a better and more reliable retrieval experience. Besides, this
study is significant because it entails the wide applicability of this method when
the correctness of a similar property retrieval system is assured, thereby accurately
identifying similar-configured properties using the graph structures once again. The
authors now present an end-to-end method that succeeds in outperforming the best
state-of-the-art methods based on deep neural networks for floor plan analysis, es-
tablishing a new state-of-the-art in the automation and retrieval of floor plans for
the real estate industry.

The results are incomparable using the T2D model on the generated floor plan by
T2D [23]. Among them, the T2D without using any boundary information, namely,
T2D, gained a very high micro IoU of 54.34 and a macro IoU of 53.30, much higher
than baseline models. This was achieved because the Seq2Seq model effectively con-
trolled the generation of the target box sequence, guided by the salient information
extracted from the given linguistic instructions. The traditional text-conditional im-
age generation methodologies cannot suffice for this context, as their relevant design

8

is directed toward generating artistic images concerning high-level visual concepts
inferred from short texts, which cannot satisfy the requirements laid out by multiple
instructions with diverse constraints, a necessity in some design tasks. Also, while
trained only on artificial instructions and then tested by ones written by humans,
there happens a big fall in its performance, hence proving that yes, the gap in lan-
guage distribution between artificial and human instructions does exist. This gap
was reduced to a considerable extent when a preliminary warming-up of the model
was done using artificial instructions before fine-tuning it with human instructions,
which achieved an amazing increase of more than 10 IoU scores. That suggests
that the artificial and human instructions were each other’s positive factors, be the
language gap as it may, in training. Moreover, the floor plan boundary uniformly
came out as a sequence of boxes, relentless in the improvement of the performance of
Seq2Seq within all conditions of training. This further assured the mere feasibility
of the particular strategy as a valid method of effectively integrating the constraints
of the floor plan. It also pointed out that quantitative results concern IoU score,
indicating indirect checking of generated floor plans on their alignment with respec-
tive language instructions by considering overlap amongst generated layouts and
their ground-truth counterparts. Moreover, referring to the difficulty of the task,
one had to consider that an IoU score cannot be taken as a hint at poor generation,
since one instruction in language can correspond to multiple correct floor plans.
Quantitative results need further refinement to interpret them well enough to have
a proper understanding of performance in this respect. Human judgments give more
direct insight into how well the generated floor plans were aligned with the language
instructions. A subset of this test set, T2D, was already evaluated by humans; it
consisted of 100 randomly selected instructions from different annotators. In this
study, five volunteers with NLP experience were required to assess to which degree
the instructions given in the source language, according to four concrete alignment
criteria, correspond to target floor plans. Volunteers scored each criterion on a scale
between 1 and 5 and also provided a global alignment of the generated floor plan
concerning whether it followed all specifications described in the instruction. This
same subjective assessment had been done for both T2D-generated and ground-truth
floor plan designs. Results from human evaluation indeed showed that 85 percent of
the ground truth satisfied all specifications for each of the partial alignment criteria.
That would be a good indication that this dataset contained great human instruc-
tions that have communicated their designs into the ground truth. On the contrary,
T2D did not record scores below 3.5, thus stipulating that the model can predict at
least 50 percent of the rooms concerning their positions, sizes, and relationships. It
still showed divergence from the ground-truth design relating to room location and
relationship pointing to aspects that would need further improvement. To give a
better understanding of human performance on the T2D task, volunteers were asked
to design the floor plans for 100 samples taken from the same subset used for human
evaluation. The IoU scores which resulted showed that human subjects do tend to
outperform the model of T2D. Even the floor plans generated by humans-naturally
much closer to following the input instructions-received the highest IoU score of
about 63 percent, compared with the ground truth floor plans. This observation
brought out the implicit diversity in design whereby one set of language instructions
could map to many plausible interpretations of the floor plan.

Graph Neural Networks [21] have emerged very fast as powerful ways to learn from

9

graph-structured data, finding applications in domains ranging from chemistry and
biology to social networks and recommendations. The power of GNNs comes with
their efficacy in modeling both local neighborhood information along global graph
structure, enabling tasks as far-reaching as node classification to graph-level pre-
diction. In recent years, various works have focused on improving the expressivity,
scalability, and generalization of GNN architectures. One of the problems that has
often made it difficult to develop GNNs in a way that allows their comparison among
different models fairly and homogeneously is the lack of standardized benchmarks.
Traditional datasets, such as Cora, Citeseer, and TU datasets, are usually too simple
to reflect the complexity that new models developed are meant for; therefore, new
benchmarking frameworks need to be more rigorous. With this in mind, Dwivedi
et al. 2022 presented one of the most complete GNN benchmarking frameworks
that "is modular, user-friendly on top of PyTorch and DGL". It consists of a set
of medium-sized real and synthetic datasets representative of various graph-related
tasks, such as node classification, edge classification, and graph regression. Compar-
isons among models are fair and reproducible owing to the use of fixed parameter
budgets. The introduction of diverse datasets such as ZINC and AQSOL in the
benchmark widened the expressiveness of GNN research, and models can be put to
tasks that are relevant to chemistry, such as molecular property prediction. More-
over, this has provided intuition about how GNNs are to be improved, specifically
regarding aggregation functions, pooling mechanisms, and positional encodings. For
example, Laplacian eigenvectors have been proposed as a type of positional encod-
ing that significantly boosts the performance of message-passing GNNs for synthetic
datasets. The development of standardized benchmarks has overall been crucial to
the development of GNN research, as these have largely facilitated a basis in which
new architectures can easily be explored, and the performance scalability and ro-
bustness of these models tuned.

Automated floor plan generation has recently received extensive attention in the
form of deep learning and AI-enabled generative models. Various methods have
been devised for this, focusing on creating realistic layouts from minimum user in-
put. Graph2Plan [14] is one of the major contributions in this category. It presented
a new paradigm of floorplan generation with GNNs and CNNs, where the former
processes layout graphs and the latter processes build boundaries. Hu et al., 2020.
Most of the earlier methods were largely developed based on either procedural or
optimization techniques. As an example, Arvin and House (2002) used spring sys-
tems to develop indoor layouts given certain design objectives, whereas Merrell et al.
(2010) used the approach of stochastic optimization for residential layouts. However,
these approaches lacked flexibility and could not adaptively handle the increasingly
complex user constraints. Recent methods, for instance, that of Wu et al. 2019,
employed deep learning for floorplan generation but these provided limited user con-
trol and hence restricted capability in making room layouts as desired. Graph2Plan
overcomes this limitation by taking, as input, sparse constraints on room count,
connectivity, and layout preferences and processing these through GNNs to retrieve
relevant floorplan layouts from a large-scale dataset, namely RPLAN. By leveraging
the RPLAN dataset collection of more than 80,000 annotated floorplans-Graph2Plan
can produce more architecturally valid designs. This system takes its root from the
previous research in scene synthesis and layout generation, where Johnson et al.
2018 proposed an image composition model conditioned on scene graphs and Wang

10

et al. 2019 introduced Scene Generation with Neural Networks. Unlike previous
methods, Graph2Plan allows both fully automatic mass generation of floorplans
and detailed, user-guided designs, targeting a wide range of applications from vir-
tual world creation to large-scale urban planning.

GNNs have achieved outstanding success in the problem of applying large-scale
graph structures in various domains over recent years. Traditional algorithms, such
as DeepWalk by Perozzi et al. (2014) for node embedding, and matrix factorization-
based approaches, e.g., Tang et al. (2015), consider transductive learning for the
most part. These approaches mandate that during training, the entire graph should
be known; therefore, they cannot manage evolving graphs and unseen nodes ef-
ficiently. While real-world networks, such as social networks and protein-protein
interaction networks, dynamically change, there is a growing demand for induc-
tive methods that could generate embeddings of unseen nodes efficiently. To avoid
such a limitation, GraphSAGE (Hamilton et al., 2017) proposed an advanced in-
ductive method [22] for learning node representation through the exploitation of
node feature information, such as text attributes and structural properties. Unlike
the transductive methods, GraphSAGE does not pre-train the embeddings for each
node; instead, it learns an aggregation function that could create the embedding
based on a node’s local neighborhood. This aggregation step allows GraphSAGE to
generalize across unseen nodes and new subgraphs. The flexibility makes it highly
applicable to real-world tasks, such as node classification and link prediction, espe-
cially in such dynamic environments as citation networks, Reddit discussions, and
biological networks. GraphSAGE architecture has been one of the key contribu-
tions of this paper to the field, introducing different types of aggregating functions
such as mean, pooling, and LSTM-based aggregators, which gave state-of-the-art
performance compared to previous methods on both inductive and transductive
learning tasks. It also showed the efficiency and scalability of the framework on var-
ious benchmarking datasets such as citation data, and protein-protein interaction
datasets, among others, showing significant improvement in F1 scores compared to
prior methods. To conclude, GraphSAGE brought a step-change in both scalability
and flexibility for GNNs regarding evolving graphs and inductively generating em-
beddings of unseen nodes, hence setting the new standard for inductive learning in
graph-structured data.

GNNs have been used to serve several graph-structured data analysis tasks, includ-
ing node classification, link prediction, and graph classification. Most of the classical
models, such as Kipf & Welling, 2017, and DeepWalk by Perozzi et al., 2014, are
designed for transductive learning, where the whole graph is present at the time of
training. That is, such models are in a transductive setting, which means that they
do not generalize well to unseen nodes or new graphs. Dynamic environments, then,
are when the graph keeps changing in nature with continuously coming data; hence,
this forms a basic challenge. In most real-world applications such as social networks,
citation networks, and protein interaction networks, graphs are real-time-updated.
In their influential paper [5], "Inductive Representation Learning on Large Graphs",
Hamilton, Ying, and Leskovec (2017) introduced GraphSAGE (Sample and Aggre-
gate), an inductive framework designed to overcome the limitations of transductive
models. GraphSAGE learns to generate node embeddings by sampling and aggregat-
ing features from a node’s local neighborhood rather than requiring individual em-

11

beddings for every node in the graph. GraphSAGE induces generalization to unseen
nodes and even to new graphs through induction. GraphSAGE uses node features,
which can be some form of textual attributes or even node degrees, to produce useful
embeddings that capture both local and global graph structures. GraphSAGE first
introduced three kinds of aggregation strategy: mean, pooling, and LSTM-based
aggregators, which can flexibly combine neighbor information in many ways. They
also proved that GraphSAGE outperformed traditional transductive methods in var-
ious benchmarking tasks that included evolving citation graphs and protein-protein
interaction networks. This is because it could come up with much better embeddings
for the unseen data, hence superior performance in classifying posts to subreddits.
Its scalability and adaptability to different graph structures keep on being developed
either for the supervised or unsupervised model. The paper "Inductive Represen-
tation Learning on Large Graphs" stirred a new revolution within the domain of
GNNs by enabling the scaling of inductive learning. The efficiency of doing node
embedding on unseen data by GraphSAGE began to become an important factor in
dynamic environments and was a strong solution for industries or fields of research
reliant heavily on large-scale graph analytics. The present paper gave way to GNNs,
pointing out the induction learning needed in most higher-order graph-based tasks.

Graph neural networks have attracted widespread interest because of their ability to
model graph-structured data. Most of the traditional GNNs focus on learning node
embeddings through neighborhood information aggregation; two very popular such
methods include the GCN method by Kipf and Welling (2017), and GraphSAGE by
Hamilton et al. (2017). But usually, these models fail to capture rich information
provided by edge features. Edges in graphs, especially in domains like molecu-
lar networks, represent important relationships. For instance, chemical bonds are
crucial for tasks such as molecular property prediction. Trying to tackle this chal-
lenge, Yang and Li (2020) extended the proposal with the introduction of the Node
and Edge Neural Network [18] (NENN), a brand-new architecture that encompasses
both node and edge features. NENN leverages a dual-level hierarchical attention
mechanism to enhance the learning process. The model iteratively passes through
node-level and edge-level attention layers so that it can mutually learn node and
edge importance. The two layers ensure node embeddings capture their connecting
edges, and vice versa, to better perceive the graph structure. Extensive experiments
on several benchmark datasets have demonstrated the effectiveness of NENN. Node
classification: On citation networks such as Cora, Citeseer, and Pubmed, the model
outperforms traditional GNN models, including GCN and GraphSAGE. NENN has
been run for graph classification and regression on molecular data sets, and com-
pared to the state-of-the-art baselines, it yields significant gains in performance for
Tox21 and HIV, demonstrating its capacity for handling both node and edge feature
learning efficiently. In short, NENN gave a very nice response to the challenges as-
sociated with incorporating edge features into GNNs, yielding superior performance
across a wide variety of graph-related tasks.

GNNs have recently gained a lot of attention due to their capability for modeling
graph-structured data and have thus harnessed applications from the preponder-
ant number of people in tasks ranging from node classification, and link prediction,
to graph classification. Most early GNN models focus on the aggregation[10] up-
date of information from the neighbor nodes to compute node embeddings; some

12

of them are GCN by Kipf and Welling, 2017, and GraphSAGE by Hamilton et al.,
2017. GCNs were very influential; they could aggregate node features and graph
structures in a simple, scalable way. However, as GNNs were applied to ever big-
ger and bigger graphs, these methods finally started to have some issues, such as
over smoothing, where node representations become indiscriminate across deeper
layers. GraphSAGE introduced inductive learning by neighborhood sampling, en-
abling scalability of embedding generation in large, dynamically evolving graphs
but did so at some cost in terms of theoretical expressiveness, at least considering
successor models such as the GIN model of Xu et al. (2019). Despite such devel-
opment, one important bottleneck still exists in the field of GNNs: a systemic lack
of reproducibility and comparability of results. Most of the model investigations
are performed on traditional datasets, whose experimental settings are inconsistent,
including ambiguous hyperparameter tuning and methods for data splitting. In such
a case, comparing different models is difficult since each evaluation may result in a
performance that is either biased or excessively optimistic. Regarding this, Errica
et al. (2020) indicated a systematic re-evaluation of the state-of-the-art five GNN
models of DGCNN by Zhang et al. (2018), DiffPool by Ying et al. (2018), ECC
by Simonovsky and Komodakis (2017), GIN by Xu et al. (2019), and GraphSAGE
across nine different bench-mark chemical and social data-sets. Some key points
were thereafter developed in the developed study. Notably, this involves structure-
agnostic baselines that outperform many GNN models on D & D and PROTEINS
datasets, respectively, representatives of chemical domains. Again, this underlines
the fact that in those tasks, such as molecular property prediction, where the graph
structure has a direct bearing on the chemical properties, GNN needs to make
proper use of the node and edge features. The performances of GNN models like
GIN were remarkable in social datasets such as IMDB-BINARY and REDDIT-5K
once additional structural information like node degree was included. The work by
Errica et al. brought lots of rigor into GNN evaluation through a very transpar-
ent and reproducible framework, thus allowing future researchers to compare their
models without any unfairness. By actually normalizing these evaluation protocols,
the authors have provided a starting point for more massive strides in the design
and performance evaluation of Graph Neural Networks. In fact, only a few datasets
have full coverage of all structural features, examples of which are chemical-domain
datasets. Unlike previous research using general datasets from the chemical and so-
cial domains, this study deploys GNN models in an architectural floor plan domain.
This is a specific challenge, besides other common applications of GNN, by repre-
senting the rooms as nodes and the relations between them as edges. This will help
enhance reproducibility by developing GNN architectures with specializations that
target unique graph structures of architectural layouts; hence, contributing usefully
to the evolving domain of GNN research.

Cross-entropy loss functions have formed the backbone of many classification tasks
[24], most notably in neural networks. They find applications, mainly paired with
softmax output, in training models in quite a few domains ranging from image recog-
nition to language processing. A very desirable property of the cross-entropy loss is
that it is Bayes consistent-meaning that its minimization will also minimize asymp-
totically the zero-one classification loss (Zhang, 2004). This would make sense in
an ideal setting: infinite hypothesis space, large dataset. However, in most realistic
scenarios, when the hypothesis space needs to be limited limited neural networks

13

the datasets are not that big, and there haven’t been many clear theoretical guar-
antees about the cross-entropy loss. Recent work by Mao et al. (2023) answers
this by introducing H-consistency bounds serving as a non-asymptotic guarantee for
cross-entropy and any other comp-sum loss functions, hence giving insight into the
zero-one loss estimation error in terms of the surrogate loss estimation error within
a given hypothesis set. In fact, in most practical problems, H-consistency bounds
are much more informative than the standard Bayes consistency guarantees since
the hypothesis set is always restricted. On the other side, Mao et al. also discuss
the inimitability gaps of some popular loss functions in the comp-sum family and
show that these gaps present a major part in determining whether some loss func-
tions work or not in practice. The authors also address the question of adversarial
robustness, a recent concern of modern machine learning. It is documented that
neural networks might be unusually sensitive to small and sometimes impercepti-
ble perturbations of input data and, hence, considerably degrade the performances.
To this end, Mao et al. developed a new class of smooth adversarial composi-
tional sum losses tailored for adversarial robustness. These loss functions introduce
a smooth term into the combinatorial sum counterparts, guaranteeing theoretical
improvement of the model in terms of robustness. Empirical evaluations on bench-
mark datasets such as CIFAR-10 and CIFAR-100 showed that models trained using
adversarial loss functions outperformed state-of-the-art robustness techniques like
TRADES from Zhang et al., 2019, both in adversarial and non-adversarial settings.
In fact, from a theoretical viewpoint, this has been a great leap into generalizing
the H-consistency bounds and introducing smooth adversarial loss functions into
the application of machine learning in practice. These will be useful in enhancing
the robustness of neural networks by providing the ability to compare and select,
depending on the task, the most appropriate loss function among those presented
in this paper.

Optimization has always acted as the key influencer in training a model of machine
learning, let alone deep neural networks. Variants concerning Stochastic Gradient
Descent [2] (SGD) have gained wide acceptance due to their efficiency in compu-
tation and handling big data. However, standard methods of SGD completely fail
under sparse gradients or nonstationary objectives. To handle such issues, several
adaptive learning rate techniques have been invented, which include the technique
of AdaGrad by Duchi et al. in 2011, RMSProp by Tieleman & Hinton in 2012, and
most recently Adam by Kingma & Ba in 2015. Adam stands for Adaptive Moment
Estimation. This extends the basis from Adagrad and RMSProp toward adaptive
estimates of both the first and second moments of gradients to deduce the learning
rate individually for each parameter. The key merits of Adam include competence
in handling sparse gradients and adapting to the objectives’ non-stationarity, there-
fore enabling this algorithm to perform very efficiently on deep learning tasks and
at scales. Secondly, its hyperparameters make intuitive sense, and for most prac-
tical applications, little adaptation is required. Its compact memory footprint and
computational efficiency have led to widespread adoption for tasks ranging from
basic image classification to complex natural language processing. They also pro-
pose a variant of the optimization algorithm, which they refer to as AdaMax, based
on the infinity norm and well-suited to problems with unbounded updates of the
parameters. AdaMax extends the Adam update rule in such a way that for some
applications in large nonconvex optimization problems leads to an algorithm with

14

improved numerical stability. This extension keeps the merits of adaptive learning
rates but allows better stability at the same time. Empirical results are presented
by Kingma and Ba (2015), where, on an array of models and datasets, Adam and
AdaMax outperform other stochastic optimization methods: namely, SGD with Nes-
terov momentum and Adagrad on logistic regression, multi-layer neural networks,
and convolutional neural networks. Also, it illustrates the way Adam is superior for
convergence and more reliable to converge than the other methods for both noise-
less and noisy data with sparse gradients. In turn, the emergence of Adam and
its variant, AdaMax, significantly beat some new paths in machine learning opti-
mization techniques. These algorithms represent strong and effective solutions for
some challenges usually coming from training great neural networks and becoming
irreplaceable tools in academic research and some practical applications.

Graph neural networks have gained an unbeatable reputation in the last few years
because of their strong ability to model complicated relational data, including so-
cial networks, protein interactions, and molecular structures. In principle, GNNs
are neural networks to capture the dependencies or relationships between nodes in
a graph using some aggregation mechanism. Early models introduced by Kipf &
Welling 2017, such as Graph Convolutional Networks, extend the operation of con-
volutional neural networks into graph domains and set a strong solution to tasks such
as node classification and link prediction. These models typically assume a static
graph and generalize badly to dynamic or very large graphs arising in several real
applications. Zhou et al. (2021), in their review entitled "Graph Neural Networks:
A Review of Methods and Applications," suggested the development and advance
that had been made in the GNN models [19] over the years across a wide variety of
domains. The paper examines a large number of GNN variants, including Graph At-
tention Networks by Velickovic et al. (2018) and Graph Recurrent Networks in their
development to attack specific challenges arising in graph-based learning. GATs use
the attention mechanism to guide attention differentially to neighbors; hence, they
perform well on tasks whose node relationships are unequally distributed. Similarly,
the GRNs capture temporal information and could therefore be applied to tasks
making use of dynamic graphs like time-evolving networks. It puts the applications
of GNNs systematically into view from structured tasks. The GNNs can model the
relationships that are explicitly or implicitly represented across these variable types.
In consequence, they have become the crucial ingredient in most bio-informatics,
knowledge graphs, and combinatorial optimization settings. Some of the design and
application issues of GNNs remain open despite its large number of applications.
Among them, the problems of scalability, interpretability, and integration of het-
erogeneity remain very important trends. Based on these problems, this paper has
taken up some research directions related to constructing much more effective graph
neural network models, to refine the theoretical basis to decisively raise the level
of handling large-scale dynamic graphs. In a nutshell, Zhou et al. (2021) reviewed
GNN models concerning some important milestones and prospects. Their effort in
this area of science has demonstrated very clearly the flexibility of GNNs and ac-
tive effort toward their improvement because of current model shortcomings. This
positions GNNs as an essential tool for the future of machine learning based on
graph-structured data.

15

Chapter 3

Methodology

3.1 Work Plan
The work plan begins with Dataset Collection, where floor plan data is gathered.
Then we extract room coordinates, room area, and room connectivity from the floor
plan image. This extracted information is used to make nodes and edges which
represent the floor plan in graph. An annotation framework is built, defining
the protocols and standards that should be maintained by the annotator in labeling
floor plans in different classes. The labeled floor plan is paired against each graph
accordingly. These graphs are augmented by rotating the original floor plan to
increase the data sample size. After suitable models are chosen, Node features are
normalized, and encoding techniques are applied. The entire dataset is loaded by
converting the node features and edges into graph object. After train-test split, the
different Model undergoes training. All the results of different models are gathered
and used for analysis. Derive conclusion from result analysis

Figure 3.1: Workplan

16

3.2 Dataset Overview
The dataset used in this study is derived from the RPLAN[12] dataset, which com-
prises over 80,787 real-world floor plans in China. The dataset provides a wide
variety of room types, floor layouts, and connections, crucial for the architectural
design tasks addressed in this research. The data is presented as 256 x 256 pixel
pre-processed images. In the data encoding schema for the floor plan model, four
channels are used to represent different aspects of the floor plan.

3.3 Initial Preprocessing Pipeline

3.3.1 Initial Data Cleaning

The dataset used in this study undergoes a detailed cleaning process to ensure it
is suitable for graph-based processing. The initial step involves converting the raw
floor plan images into structured graph representations. This is achieved by first
extracting the contours of essential architectural features using binary masks on
the channels, such as walls and doors, and simplifying these shapes while retaining
their fundamental geometry. The simplification reduces computational complexity,
making the data more efficient for downstream tasks. Once simplified, the contours
are converted into vertices, which capture the structural layout of the floor plan.
These vertices are then organized into a graph format, where rooms are represented
as nodes and doors as edges, modeling the spatial relationships between different
components. This transformation prepares the dataset for further processing stages,
ensuring that it maintains the critical architectural details necessary for the task at
hand. A brief overview is shown in Figure 3.2

3.3.2 Feature Extraction: Image Encoding and Vertex Data

The feature extraction process leverages the pre-processed floor plan images provided
by the RPLAN dataset, which includes a structured four-channel encoding schema
that captures essential aspects of the architectural elements.

• Channel 1 encodes the exterior walls with a pixel value of 127, designates
the front door with a pixel value of 255, and marks other areas with 0.

• Channel 2 assigns specific integers to various room types, starting from 0 for
non-room areas and incrementing for different rooms, such as 1 for the master
room, 2 for the kitchen, and up to 17 for the interior door.

• Channel 3 differentiates between rooms with identical labels by using distinct
integers.

• Channel 4 distinguishes between exterior and interior areas, marking the
exterior with a pixel value of 0 and the interior with 255.

This structured encoding allows for effective differentiation between critical com-
ponents of the floor plans. Subsequently, the contours derived from these encoded
images are transformed into vertex data. The vertices represent specific points in
the spatial layout, which are then organized into a format suitable for graph con-
struction.

17

Figure 3.2: Initial Data Preprocessing Pipeline

18

3.3.3 Contour Extraction and Simplification

The contour extraction process begins with the generation of binary masks from the
pre-processed floor plan images, which serve as the foundational input for identifying
architectural features. These binary masks isolate critical elements such as walls,
doors, and rooms, allowing for precise contour detection.

• Contour Detection: This phase utilizes the find_contours() function from
the skimage.measure module to accurately identify the boundaries of archi-
tectural elements within the binary masks. By scanning the image at a defined
intensity level, this function effectively delineates features such as walls, doors,
and rooms, ensuring that the essential structural components are captured.

• Polygon Simplification: Following contour detection, the identified con-
tours undergo simplification to reduce the number of vertices representing each
shape while retaining critical geometric features. This process streamlines the
contour representation by approximating the outline of each shape with fewer
points, thereby minimizing computational complexity. By effectively reducing
the complexity of the contours, this technique enhances the efficiency of sub-
sequent data processing stages while preserving the essential characteristics of
the architectural elements.

3.3.4 Graph Construction: Nodes and Edges

• Node Creation: The nodes are created representing the rooms where each
node is attributed with features such as room vertices, the area, type of room.

• Edge Establishment: Spatial relationships and adjacency between archi-
tectural components are analyzed to establish edges. For instance, doors are
connected to the rooms they lead into, representing direct relationships be-
tween nodes that stand for connected rooms. We used our custom special
algorithm to find which doors are connecting which two rooms and as a result,
made an edge between them. As an edge feature, vertices of the connecting
door between the nodes or rooms are being stored.

As the main gate holds significant information, an exception was made. It is stored
with a dummy node termed "Main Gate" and the main gate’s vertex information
is stored as the edge feature between the dummy room and the room which is
connected to the main gate.

3.3.5 Artifacts

The constructed graph is then checked to be valid, as the data itself does not have
any problems. The problems, namely two of them were detected. After the filtering
process, the dataset was reduced to 51K functional data. The problems are as
follows:

• One door connecting multiple rooms: In the dataset, there are multiple
cases where two rooms were connected by the same interior door, which made
the graph take only one of the multiple rooms that were connected. In this
case, if all the nodes in our graph are not equal to the number of rooms, it is

19

not selected in the functional data pool. This appeared in 11521 images of the
dataset. The small blue rectangles represent the internal doors in Figure 3.3.

Figure 3.3: One door Connecting multiple rooms problem

• Multiple doors being morphed during simplification: The contouring
and simplification process which was carried out sometimes morphed multiple
door coordinates together when they were on top of each other, or if they
were too close. If the interior door vertex count was not 4 (as all doors are
represented as rectangles in our dataset), it is not selected in the functional
data pool. This appeared in 17920 images of the dataset. The small blue
rectangles represent internal doors in Figure 3.4, the artifacts within the door
outline the problem.

Figure 3.4: Multiple Door Morphing Problem

20

3.4 Initial Filtered Dataset

3.4.1 Visualization

The graphs derived from initial pre-processing are then acquired which numbers
around 51K. The data is then visualized to understand the information that exists
in them.

Figure 3.5: Room Adjacency Matrix

The Room Adjacency Matrix in Figure 3.5 demonstrates the network of room inter-
actions within a house layout. Here, the Living Room is revealed as the central hub,
with particularly strong connections to essential areas such as the Master Room,
Kitchen, Bathroom, and Second Room. This centrality suggests that the Living
Room functions as the main passage and gathering area in the house. Interest-
ingly, certain rooms like the Guest Room, Entrance, and Child Room show minimal
connectivity, which reflects their more secluded or specific roles within the home.
Asymmetries in connectivity, such as the robust link from the Living Room to the
Main Gate that isn’t reciprocated, may indicate movement flow patterns or sensor
positioning within the home

The Histograms in Figure 3.6 reveal the distribution of connectivity across different
rooms. The Living Room presents a multi-modal distribution, with peaks at various
ranges such as 2000-3000 and 6000-8000, hinting at different intensities of connec-
tions to other spaces. Other rooms like the Master Room, Kitchen, and Bathroom
display right-skewed distributions, with their peaks concentrated at lower values,
indicating that while they maintain some strong connections, most of their interac-
tions are at lower levels. Utility areas like the Guest Room and Storage maintain
narrow, low ranges of connectivity, underscoring their limited interaction with other
parts of the house. Individual sampling of data also reveals that graphs can be
cyclic.

The initial filtered dataset emphasizes the role of the Living Room as the dominant
node in the house’s connectivity network. As demonstrated across the visualiza-

21

Figure 3.6: Histogram of Room Areas

tions, it functions as the main conduit for movement and interaction. A hierarchical
connectivity structure emerges, where the Living Room is followed by the Master
Room and Kitchen in terms of connectivity importance, then by other main rooms
like the Bathroom and Second Room. Utility spaces and smaller rooms are the least
connected. The visualizations also reveal occasional high outliers in connectivity
between certain rooms, suggesting significant but infrequent interactions. This hi-
erarchical structure and the presence of outliers provide deeper insights into how
spaces are utilized within house layouts in China. This is important as further down
the pipeline, as a random subset of the dataset is considered for annotating. Com-
paring both datasets provides insights into the information the model was trained
and evaluated.

3.5 Annotation Process and Labeling
In the field of architectural floor plan classification, the annotation process is nec-
essary for evaluating the spatial structure and zoning features of a quality family
residence. This annotation scheme aims to classify residential floor plans according
to their spatial properties, zoning configuration, interior relationships, and overall
design efficiency in the context of residential floor plans in Bangladesh. Classifica-
tion is based on a hierarchical system and helps to create an effective guide for the
standardization of the assessments done in architectural design, providing a valid
measure of its evaluation. Especially in the context of Bangladesh, urban residential
architecture presents some distinct challenges and opportunities.

The ranking framework encompasses four distinct categories: Type A, Type B, Type
C, and Type D, in which each category represents a different level of design quality
and spatial effectiveness.

22

These annotations are applied to ensure whether a floor plan is ideal for family living,
functionally inadequate, or not recommended for standard residential application.
Moreover, the labeling process takes into consideration regional architectural con-
ventions, spatial behaviors, and different residential requirements associated with
Bangladesh, which also provides a different perspective on the judgment of floor
plans. The approach to this annotation involves reviewing and categorizing features
related to room location, space utilization, interrelationships between different ar-
eas, privacy concerns, and traffic flow patterns. Data labeling is hereby required as
an important step in training the models to be used in the accurate classification
of floor plans based on these spatial features. The section below describes how the
annotation labels were contextualized for Bangladesh’s residential architecture and
further details the exact workflow that was followed while labeling the data to ensure
consistency and reliability in the classification process.

3.5.1 Annotation Labels in Context of Bangladesh

In the context of Bangladesh, residential architecture must address several local
relevant issues, including constrained spatial conditions, the need for efficient zoning
layouts, and significant privacy requirements. The developed labeling system for
categorizing floor plans acknowledges these factors by providing a framework that
reflects the basic needs and practices of the country. The classification system is
categorized into four distinct types of residential floor plans, Type A, Type B, Type
C, and Type D.

• Type A: Type A residences are considered ideal and give us an overview
of proper zoning with optimal space utilization. It provides strong internal
connections between areas, with a clear division between public, semi-private,
and private spaces. Proper zoning holds a large portion of a residence’s design
quality. The arrangements of the zoning are crucial. When it comes to zon-
ing, privacy is important in this category, which indicates the private zones,
such as bedrooms, kitchens, etc. The spatial arrangement of zoning within a
residential design should be in a manner that private areas are placed far from
public areas, like the living room, dining area, and primary entrance. If it is
otherwise, this would be considered a poor design in the context of Bangladesh.
This setup ensures that the private areas are kept away from external visitors,
keeping privacy intact. Secondly, the number and arrangement of bathrooms
are important. For instance, in a three-bedroom apartment, there should be at
least two bathrooms, one being attached to one bedroom and another common
bathroom to accommodate household needs, which is generally practiced in
the context of Bangladesh. In addition, Type A houses show a coherent pat-
tern of circulation smoothly guiding the flow between public and semi-private
areas logically and in a decent sequence, which is essential for both comfort
and functionality.

Similarly, like zoning, space utilization is another critical factor. Type A resi-
dence designs have minimal to no wastage of space. Every room is thoughtfully
designed to optimize spatial efficiency, and also ensure maximum utilization
and the arrangement of spaces. So that there will be no unused or leftover

23

spaces within the layout. Space ratio is also a major part of a residence de-
sign. It ensures each room’s size is proportionate to its function and overall
layout. Proper space ratio enhances comfort and usability, avoiding crowding
or unused space. It is an important aspect in maximizing the entire residence
in terms of flow and efficiency.

In the context of Bangladesh’s geography, orientation is one of the key concepts
while mapping a floor plan. Due to the geographical location, north-south
oriented residences are favored, because they allow natural ventilation, and
also facilitate better airflow throughout the space. As Bangladesh is a hot and
humid country, west-facing apartments are not preferred due to excessive heat
exposure during the daytime. This orientation increases room temperatures
and makes the living environment uncomfortable. On the other hand, as
Bangladesh is an overpopulated nation, and buildings are next to each other,
north-south-oriented apartments are quite rare to find. For natural ventilation,
and better airflow, semi-opened spaces like balconies are needed. Airflow in
a residence is aligned with the ventilation allocations. Ventilation is one of
the major concerns in designing Type A apartments. Considering the climatic
condition of Bangladesh, the inclusion of a balcony and proper orientation of
rooms can ensure cross-ventilation, which is highly valued. Even though it is
quite hard to meet all the ideal conditions in Type A apartments, an architect
always tries to create the optimal living environment for their clients that
prioritizes comfort and functionality.

24

Figure 3.7: Type A apartment’s floor plan design

25

• Type B: Type B residences are functional and meet all the standard require-
ments within the context of Bangladesh. However, it lacks the design precision,
quality, and the characteristic of Type A residences. Though they still follow
zoning and space ratio principles. However, the internal relationships between
spaces are not as strong as they should be, which ends up resulting in less
optimal space utilization. This category of residence mostly creates confusion
in the separation of public and semi-private areas. For example, a kitchen
may be placed too close to the main entrance, which disrupts the flow of the
zoning. Similarly, while privacy is a key aspect of residential design, most
of the older buildings in Bangladesh do not provide adequate separation for
private zones. But still, they are livable and meet the basic needs of their
inhabitants. While they do not meet the standards of Type A designs, still
Type B designs are acceptable and also commonly seen in Bangladesh. These
residences often fulfill basic functional requirements and needs but they still
lack in space efficiency and maintenance of privacy concerns.

In Type B residences, zoning practices are applied, but with compromises.
Public, private, and semi-private zones may overlap or be poorly defined, which
eventually leads to confusion in the use of spaces. Mainly, the difference within
the zoning placements of semi-private and private zones. For example, there
can be a dining room in front of the main entrance instead of a living room.
It is not convenient, but as long as other basic standard requirements are
fulfilled, it is not that big of a deal. This indicates the flow from the main
entrance to public areas and eventually from semi-private to private zones is
not as smooth, which can result in a less comfortable living experience, but it
can be standard in the context of Bangladesh. Typically, Type B residences
embody a more functional design philosophy, emphasizing practicality rather
than aesthetic appeal or spatial refinement.

Figure 3.8: Type B apartment’s floor plan design

26

• Type C: Type C residences are different from the pattern found in Type
A and Type B residential models. A floor plan of this category may suggest
zoning with flaws, not optimal space allocation, and weak interconnections be-
tween different zones. Not only that, Type C residences are marked by inferior
room layouts, poor provision for privacy, and utilization of space is not proper
and may create confusion. Also services may not work properly. Most of the
time, these types of residential designs are more suited for non-family residen-
tial purposes, such as hostels or commercial spaces. The spatial relationship
among rooms does not allow for ease of living, and key facilities such as bath-
rooms and kitchens may be misplaced or inadequately provided. Normally,
accommodations of this type are not at all suited to permanent residential
purposes by a family but would be more suited to temporary accommodation
or shared living arrangements where privacy and space efficiency are less of a
priority.

Figure 3.9: Type C apartment’s floor plan design

27

• Type D: Within these floor plan classification systems, Type D serves as a
benchmark for identifying designs that fail to meet basic residential standards,
and also lack the fundamental characteristics of a functional floor plan. Type
D is the worst-case scenario in residential design. The floor plan types classi-
fied as Type D could not reach the minimum requirements mentioned earlier
and are not recommended for residential purposes. Generally, most residences
with Type D show disorderly spatial arrangement, improper zoning, and inef-
fective utilization of space. Unfortunately, these designs may still exist due to
outdated construction practices or a lack of regulation, but some of these plans
are contemporary standards. The flow in these residences is usually poor, and
there is no distinction between public and private areas, which then leads to
a very disorganized living environment.

The Type D residential constructions should be discarded or avoided for mod-
ern residential purposes, as they don’t even satisfy the basic design require-
ments. The spatial flow of the spaces is fragmented, the rooms are often poorly
ventilated, and privacy is near to nonexistent. Such designs may continue in
areas where there is either older or less regulation, but they do not meet the
needs or expectations of modern living.

Figure 3.10: Type D apartment’s floor plan design

The hierarchical classification of residential floor plans mentioned earlier pro-
vides a clear concept for evaluating the spatial effectiveness, zoning, and overall
design quality of family residences in the context of Bangladesh. Addressing
such key architectural factors like privacy, space utilization, and functionality,
helps the ranking system to guide the design process towards creating a more
livable and sustainable modern living.

28

3.5.2 Data Labeling Workflow and Adjustments

The classification of residential floor plans, Types A, B, C, and D provided a vivid
understanding of different zoning, space utilization, and strong internal relationships
between the spaces that impact the livability and functionality of a residence. In
this way, it has been established through this classification that optimum designs,
the ones meeting the strict conditions of Type A, are very rare, especially when con-
sidering those floor plans obtained from the RPLAN dataset from China, different
cultural and architectural backgrounds.

To have an in-depth understanding of these categories, we approached a professional
architect from a local firm. The insights gained from these consultations helped us
refine our concepts of classification and further adapt them to the specific needs of
residential architecture in Bangladesh. Afterward, the architect trained a group of 13
architecture students in an iterative process to filter out floor plans that satisfied the
set criteria for family residences in Bangladesh. Through multiple cycles of training
and feedback, the students developed the required skills necessary for identifying
appropriate designs based on zoning, room interrelationships, and space utilization.
This approach will ensure that the classification system is tuned to the professional
architectural experience.

However, since all the floor plans were sourced from China, it became necessary to
eliminate those designs that were irrelevant to the Bangladeshi context. All of the
floor plans did not reflect regional architectural preferences and were not aligned
with them, for example, room positioning, circulation flow between the rooms, and
ventilation, which are critical for livability in a hot, humid country like Bangladesh.
To help us with this filtering process, we developed a website called "Filtering Floor
Plans," which was hosted online for the architect’s team to access and contribute
to. To streamline the process, we developed and hosted a website called "Filtering
Floor Plans," where the trained students could filter and classify the floor plans
according to our ranking system. The architects used this platform to evaluate and
label the floor plans based on the guidelines.

Through this website, our goal was to identify floor plans based on the classification,
Type A, B, C, and D. However, after reviewing between 800 and 1,000 plans, no
plans were found that fully satisfied the requirements of Type A. This led to the
conclusion that our dataset was not directly applicable to real-world residences in
Bangladesh without significant modification. So, the limitation caused us to create
two subcategories under Type B: High B and Low B. It allowed us to represent floor
plans better. The ones that were close to Type A but required minor modifications
as High B and those that met basic functional requirements but fell short of optimal
design as Low B.

• High B: The High B category includes floor plans that are close to the ideal
standards of Type A, but slight modifications are needed to meet the optimum
standards. Generally, such plans show appropriate zoning and effective usage
of space, with clear distinctions between public, semi-private, and private ar-
eas. The room layouts and relationships are strong, but small adjustments,
like repositioning the main entrance or modifying the orientation of certain
rooms are needed to bring the design to Type A quality.

29

The High B plans represent a distinct class of architectural layouts that, while
not perfect in every respect, form a very sound basis for family residence
in Bangladesh. Minor adjustments to these plans allow them to meet the
needs of the people’s comfortable living by providing efficient use of space
and maintaining coherent room sequences to strengthen the interconnections.
Overall, the High B class provides a practical approach to the development of
near-optimal designs with reduced redesign effort.

• Low B: The Low B category consists of family residences that are functional
but make more significant compromises compared to High B or Type A plans,
but similar to the low-end Type B category. Even though this category of
architectural design follows the proper zoning principles, room relationships
or spatial arrangements might not be optimal for family living. For example,
a Low B would entail a rearrangement where the dining room and living room
are switched, or there is only one bathroom shared between two bedrooms.
These modifications make the design less suitable for larger families, but still,
they are functional for smaller households and couples.

In contrast, the Low B plans resemble the normal Type B designs, which are
very common in Bangladesh, still despite the fact, they are not suitable for
contemporary family living. Such a design would meet the minimum func-
tional requirements but is poorly designed in terms of space utilization and
circulation flow. Despite these shortcomings, Low B plans are still suitable for
families living in the context of Bangladesh, particularly for smaller families
with fewer demands on space.

Figure 3.11: Architectural Floor Plan Filtering Website’s User interface

30

The website has a voting mechanism that enables each participant to classify an
image into one of the following classes: High B, Low B, C, or D. For each floor plan
image, the most voted category is assigned. The corresponding graph of the image
is included in the final dataset, if there were a minimum of 5 votes by different
annotators. This democratic approach helps ensure that these classes reflect the
collective agreement of users’ judgment based on established criteria.

Our machine learning model works by converting the floor plan images to bubble
diagrams, representing the rooms as each node and holding essential information like
the centroid of each room, total area, room types like master bedroom or kitchen,
etc, and interconnections between rooms. However, the model does not capture
ventilation and orientation, which are the key factors in evaluating the livability of
floor plans in the context of Bangladesh. Despite this limitation, the architecture
students worked within the constraints of the available data to classify the floor
plans.

The filtered dataset after the initial pre-processing provided plans in graph structure.
To address this issue, images with color-coded labels are produced from the graph
data and are integrated into the website for the annotators to annotate. After giving
the inputs to the website, the final output of labeled data is stored in MongoDB for
further analysis and the use of our model.

Our initial goal was to filter and annotate a subset of the original dataset, which
contained 51,000 floor plans. Due to time constraints, and the intensity of the task,
we were able to filter and annotate 9,028 plans. Moreover, the architecture students
participating in the project also had their studies and could not commit fully to this
project. Similarly, the architects assisting us had their professional responsibilities,
limiting the time they could allocate to the project. But among these, 897 plans
were classified as High B, 3,165 as Low B, 2,753 as Type C, and 2,213 as Type
D. The subset of the dataset was chosen chronologically as the filename, for which
the first 10.5K entries are annotated and the remaining part of the dataset was
not labeled for reasons mentioned above. These results point to the challenge of
retrieving the best floor plans from this data, even more so considering that none of
the retrieved plans met the strict criteria of Type A. Although more precise results
could be obtained by further refinement and subdivision of each class, and also by
modifications of the data for particular uses in the context of Bangladesh.

31

3.6 Final Dataset Visualizations
The annotated dataset of 9k graphs holds information that is different from the
superset of 51K graphs. To understand the final dataset, the information is then
visualized.

Figure 3.12: Room Connectivity Matrix

In the figure 3.12, the living room is the most connected space, linking to almost all
other rooms. Second room and balcony also show high connectivity. Master room,
kitchen, and bathroom have moderate connections. This suggests a central role for
the living room, with second room and balcony as important secondary connective
spaces.

In figure 3.13, the living room area is roughly normally distributed with a right skew.
Master room is more symmetric. Kitchen is right-skewed with a clear peak. Bath-
room is heavily right-skewed. Second room shows a bimodal distribution. Balcony
is right-skewed with a long tail. Notably, dining, child, entrance, and storage rooms
have tall bars near zero, indicating they’re often absent in many house designs.

32

Figure 3.13: Histograms of Room Areas

33

Figure 3.14: Scatter Plots of Room Areas vs. Edge Count

34

In figure 3.14, the living room shows a slight positive correlation between area and
edge count. The second room area increases more clearly with edge count. Most
other rooms show little correlation. The balcony area slightly decreases with more
edges. This suggests only some rooms (mainly living and second) tend to be larger
when more connected.

Figure 3.15: Box Plots of Room Areas

In figure 3.15, the living room has the largest median area and widest range. The
master and second rooms follow in size. The kitchen, bathroom, and balcony show
moderate, less variable sizes. Smaller rooms (dining, child, study) have compact
distributions. Entrance and storage are consistently small. Outliers in most room
types indicate some unconventional designs.

3.6.1 Final Dataset Analysis

The data reveals common patterns in house layouts. Living rooms are central,
largest, and most connected. The master and second rooms are also significant.
Kitchen and bathroom sizes are more standardized. Balconies are important con-
nective spaces despite moderate sizes. Smaller rooms (dining, child, guest) show
less variability and connectivity and are often absent in many designs. Room size-
to-connectivity relationships vary by type. The second room’s bimodal distribution

35

suggests two distinct design approaches. This data highlights a clear hierarchy of
room importance and reveals how different spaces are prioritized in home designs,
with some rooms being optional in many layouts.

The final annotated graph data, selected chronologically due to resource constraints,
represents a more focused version of the initial filtered graphs, though some informa-
tion from the initial dataset may have been missed. While the final dataset maintains
the centrality of key rooms like the Living Room and its connections to spaces such
as the Master Room and Kitchen, it filters out less frequent interactions seen in the
initial graphs. This results in a more concentrated view of room connectivity, but
the chronological selection process may have overlooked certain patterns present in
the broader dataset, potentially limiting the diversity of interactions captured.

3.7 Dataset Transformation and Refinement

3.7.1 Annotation Transformation

The annotations that are collected are then aggregated following the majority vote.
The data from the annotation site is passed in JSON format, which is converted to an
HDF5 file containing the floor plan information and the label value from the JSON
file. However, as binary classification is to be performed, the label values containing
"A" and "B" are converted to "1" signifying yes, and label values containing "C"
and "D" are converted to "0" meaning no.

The edge feature from filtered data is dropped, and all the individual vertex infor-
mation for each node is converted to a single 2D array representing the center of
the room. In doing so, the information about the front door will also be lost, but
to counter it, the dummy node was modified with information from the door, where
its centroid became the centroid of the front door.

3.7.2 Data Augmentation

As the information of the 2D array is being passed as a node feature, data augmen-
tation was done with rotation. For example, a labeled data that has a label value of
"1" will still be the same (as direction is not being considered for this data) if it is
rotated by any amount of degrees. However, after doing a rotation, the node feature
of the centroid will change according to the rotation, while the pattern will be the
same, hence the label should still be the same. Doing such data augmentation allows
us to introduce new data from the labeled data, while also allowing the model to
explore new spaces for it to learn.

This still poses a challenge as within the 9028 labeled data, there are 4062 "1" labels
and 4966 "1" labels. Thus, the class imbalance will worsen if the data is rotated
in multiple angles uniformly. For this, graphs containing the label "0" are rotated
7 times at angles 0 (unchanged), 45, 90, 135, 180, 225, and 270 degrees, & graphs
containing the label "0" are rotated 6 times at angles 0 (unchanged), 45, 90, 135,
180, 270 degrees. Doing so our total dataset size becomes 58230 labelled graphs.
This can also help combat the problem’s ambiguous nature by reinforcing the same
patterns so that the model can learn better.

36

Figure 3.16: Data augmentation through rotation

37

3.8 Model Selection

3.8.1 Model Selection Criteria

The primary objective of this study is to perform graph-level binary classification
to determine whether a given architectural floor plan aligns with Bangladeshi ar-
chitectural standards. Considering the nature of the data and the task, we require
models capable of capturing complex relationships within graphs and generalizing
well to unseen data.

Criteria for model selection included:

• Ability to Handle Graph-Structured Data: Models must effectively pro-
cess and learn from graph representations of floor plans.

• Scalability: Models should be scalable to accommodate large datasets and
complex graphs.

• Expressiveness: Models need to capture both local and global patterns
within the graphs.

• Computational Efficiency: Reasonable training and inference times are
essential for practical applicability.

After evaluating various Graph Neural Network (GNN) architectures that meet these
criteria, we selected three models known for their effectiveness in graph classification
tasks.

3.8.2 Selected Models

The models chosen for this study are:

• Graph Convolutional Networks (GCN)

• Graph Attention Networks (GAT)

• GraphSAGE

These models were selected based on their unique approaches to aggregating and
updating node information:

• GCN: Efficient and suitable for capturing general graph structures through
spectral convolution.

• GAT: Incorporates attention mechanisms to weigh the importance of neigh-
boring nodes, enhancing the model’s ability to focus on relevant features.

• GraphSAGE: Capable of handling large graphs through inductive learning
and flexible neighborhood aggregation methods.

38

Chapter 4

Model

4.1 Data loading and Train-test Split

4.1.1 Feature Representation in GNN Models

Effective feature representation is crucial for the performance of GNN models. In
this study, each node and edge in the graph is associated with specific features that
capture both geometric and semantic information.

Node Features:

• Normalized Area: Represents the size of the room, normalized between 0
and 1.

• Normalized Centroid Coordinates: (cx, cy), normalized to a range of [0,
1] based on the maximum coordinate value.

• One-Hot Encoded Room Type: A binary vector indicating the type of
room among 13 possible types.

• Positional Encodings: Computed using sine and cosine functions to capture
spatial relationships.

Edge Features:

• Edges represent connections between rooms (e.g., doors) and are unweighted
in this study.

4.1.2 Data Processing and Graph Construction

Node and Edge Feature Selection

Area Normalization:

normalized_area =
area − min_area

max_area − min_area

Centroid Normalization:

39

cx =
xcentroid

max_coordinate
, cy =

ycentroid

max_coordinate

One-Hot Encoding of Room Types:

Each room type is converted into a binary vector of length 13, where the index
corresponding to the room type is set to 1.

Positional Encoding:

Applied using the formula mentioned in attention:

PE(p,2i) = sin
(p

100002i/dmodel

)
PE(p,2i+1) = cos

(p

100002i/dmodel

)
where p is the position (normalized centroid coordinate) and dmodel is the dimen-
sionality of the encoding (set to 64 in this study). By using a positional encoding,
the model is given a structured way to understand the relative position of rooms in
the layout. This way, the model can learn a meaningful graph representation of the
floor plans in the dataset,

Graph Construction from Annotated Data

The process involves:

1. Data Extraction:

• Reading nodes and edges from the HDF5 files.

• Extracting attributes such as area, centroid coordinates, and room types.

2. Feature Preparation:

• Normalizing area and centroid coordinates.

• One-hot encoding room types.

• Computing positional encodings for each node based on centroid posi-
tions.

• Concatenating all features to form the node feature matrix X.

3. Edge Index Construction:

• Edges are extracted and formatted into an edge index tensor required by
PyTorch Geometric.

• Edge indices represent connections between nodes in the graph.

4. Label Assignment:

• Binary Labels in the dataset for each graph are extracted. This label
used to train the binary classifer mode,

5. Data Object Creation:

40

• Using the Data class from PyTorch Geometric to encapsulate node fea-
tures, edge indices, and labels into a single graph data object ready for
model training.

4.1.3 Train-Test Split

Initially, 58230 sample of data was loaded from the hdf5 file into a data list. But
before training, a stratified split is performed on the dataset to ensure an even
distribution of classes across the training, validation, and test sets. The function
begins by extracting the labels from the data list, and then balances the dataset by
selecting an equal number of samples from each class. This balance is achieved by
identifying the smaller class and restricting the larger class to the same number of
samples.

The indices for both classes are shuffled to ensure randomness, and then the dataset
is split into training, validation, and test sets. This stratification ensures that the
class proportions remain consistent across all splits.

In the end we have 28434 samples for each of the classes which we split by into
training, validation and test set in the ration of 60, 20 and 20 respectively. This
ended us with 34120 training samples, 11374 samples for validation and test each.

Set Class 0 Samples Class 1 Samples Total Samples Split Ratio
Balanced 28,434 28,434 56,868 100%
Training 14,217 14,217 34,120 60%
Validation 5,687 5,687 11,374 20%
Test 5,687 5,687 11,374 20%

Table 4.1: Train-Validation-Test Split with 60-20-20 Ratio

4.2 Model Overview
In this section, we provide the theoretical background, historical development, and
mathematical foundations of the three Graph Neural Network (GNN) models applied
in this study: Graph Convolutional Networks (GCN), Graph Attention Networks
(GAT), and GraphSAGE.

Graph Convolutional Networks (GCN)

Historical Development

GCNs were introduced by Kipf and Welling in 2016 [6], pioneering the extension of
deep learning techniques to graph-structured data. They formulated a localized first-
order approximation of spectral graph convolutions, enabling efficient and scalable
learning on graphs.

Mathematical Foundations

GCNs are rooted in spectral graph theory, where the convolution operation is defined
in terms of the eigenfunctions of the graph Laplacian. The layer-wise propagation
rule for a GCN is:

41

H(l+1) = σ
(
D̂−1/2ÂD̂−1/2H(l)W (l)

)
where:

• H(l) is the matrix of node features at layer l,

• Â = A+ I is the adjacency matrix with added self-loops,

• D̂ is the degree matrix of Â,

• W (l) is the trainable weight matrix,

• σ is an activation function (e.g., ReLU).

This formulation allows the model to aggregate information from a node’s immediate
neighbors, effectively capturing local graph structures.

Figure 4.1: GCN Model Illustrated in [6]

Graph Attention Networks (GAT)

Historical Development

GATs were proposed by Veličković et al. in 2017 [8], introducing attention mech-
anisms to GNNs. GATs allow nodes to weigh the importance of their neighbors
during feature aggregation, addressing limitations of earlier models that treated all
neighbors equally.

Mathematical Foundations

GATs compute attention coefficients to weigh the influence of neighboring nodes:

1. Compute Unnormalized Attention Coefficients:

eij = LeakyReLU
(
a⃗⊤[Whi ||Whj]

)
2. Normalize Attention Coefficients:

42

αij =
exp(eij)∑

k∈Ni
exp(eik)

3. Compute Node Representations:

h′
i = σ

(∑
j∈Ni

αijWhj

)

where:

• hi and hj are the input features of nodes i and j,

• W is the weight matrix,

• a⃗ is the attention vector,

• || denotes concatenation,

• σ is an activation function.

This mechanism allows the model to focus on the most relevant parts of the graph.

Figure 4.2: Attention mechanism illustrated in [8]

GraphSAGE

Historical Development

GraphSAGE was developed by Hamilton et al. in 2017 [5] to improve scalability
and inductive learning capabilities in GNNs. It introduced a framework for gener-
ating node embeddings by sampling and aggregating features from a node’s local
neighborhood, allowing the model to generalize to unseen nodes or graphs.

43

Mathematical Foundations
GraphSAGE updates node embeddings by aggregating neighbor information:

1. Aggregate Neighbor Representations:

h
(k)
N (i) = AGGREGATE(k)

(
{h(k−1)

j ,∀j ∈ N (i)}
)

2. Compute Node Representations:

h
(k)
i = σ

(
W (k) · CONCAT

(
h
(k−1)
i , h

(k)
N (i)

))
where:

• h
(k)
i is the embedding of node i at layer k,

• AGGREGATE(k) is a permutation-invariant aggregator function (e.g., mean,
max),

• W (k) is the trainable weight matrix,

• σ is an activation function.

GraphSAGE allows for inductive learning by learning how to aggregate features
from a node’s local neighborhood.

Figure 4.3: Visual illustration of the GraphSAGE and aggregate approach [5]

4.3 Model Architecture

4.3.1 Abstract Model Architecture

The custom models in this study follow a common abstract architecture designed
for classifying architectural floor plans. This architecture comprises the following
key components:

• Graph Convolutional Layers: All models use graph convolutional layers
(e.g., GCNConv, GATConv, SAGEConv) to aggregate and transform node
features, enabling the model to learn spatial and topological relationships be-
tween rooms in the floor plans.

44

• Global Pooling: After the graph convolutional layers, a global pooling mech-
anism (mean, max, or a combination of both) is applied to condense node-level
embeddings into a single graph-level representation. This step is crucial for
producing a fixed-size vector that summarizes the entire floor plan.

• Fully Connected Network (FCN): The pooled graph representation is
passed through a fully connected network, consisting of one or more linear
layers. These layers further refine the graph-level features and produce the
final classification output.

• Binary Classification Output: The final output layer performs binary clas-
sification, determining whether a given floor plan conforms to the specified
architectural standards.

• Loss function and Optimizer: The binary cross-entropy [24] loss function
(via nn.CrossEntropyLoss) is used to optimize the model. The model parame-
ters are updated using the Adam optimizer [3]. Additionally, L2 weight decay
is applied to regularize the model.

4.3.2 Model-Specific Differences

Although the abstract architecture remains consistent across all models, each model
incorporates specific adjustments:

GCN Architecture

The GCN model uses two GCNConv layers to propagate node information, with
global mean pooling applied afterward. The fully connected network consists of two
linear layers that process the node embeddings and output the classification result.

GAT Architecture

The GAT model introduces graph attention mechanisms through its GATConv lay-
ers, with each attention head focusing on different regions of the graph. It applies
both global max and mean pooling, which are concatenated before passing through
the fully connected network.

GraphSAGE Architecture

The GraphSAGE model uses SAGEConv layers with a "mean" aggregation function
to gather information from neighboring nodes. Afterward, global mean pooling is
applied, followed by fully connected layers to produce the final classification output.

4.3.3 Hyperparameter Summary

The hyperparameter tuning is done using Optuna library [9] which uses a form of
Bayesian optimization called TPE (Tree-structured Parzen Estimator) for hyperpa-
rameter tuning. The best hyperparameters used for each model are summarized in
Table 4.2.

45

Table 4.2: Hyperparameters for Each Model

Hyperparameter GCN GAT GraphSAGE
Learning Rate 0.001 0.00007 0.0005
Batch Size 32 32 16
Optimizer Adam optimizer

without weight
decay

Adam optimizer
with weight de-
cay of 4.5e-5

Adam optimizer
with weight de-
cay of 1e-6

Number of Layers 2 (GCNConv
and FCN)

2 2

Hidden Dimension 256 512 256
Number of Heads N/A 1 N/A
Dropout Rate Not applied 0.271 0.06

Table 4.3: Comparison of Custom GNN Model Architectures

Feature GCN GraphSAGE GAN
Number of Convolution
Layers

2 2 2

Type of Convolution
Layers

GCNConv SAGEConv GATConv

Aggregation Function Spectral Convolu-
tion

Mean Attention

Node Feature Transfor-
mation

80 → 256, then 256 80 → 256, then 256 80 → 512

Consistency in Embed-
ding Size

Maintained at 256 Maintained at 256 Maintained at 512

Attention Mechanism N/A N/A Yes (single head)
Pooling Mechanism Global Mean Pool-

ing
Global Mean Pool-
ing

Global Max and
Mean Pooling

Fully Connected Net-
work (FCN)

Two Linear Layers:

64 → 64,

64 → 2

Two Linear Layers:

256 → 256,

256 → 2

Two Linear Layers:

512 → 512,

512 → 2
Dropout Rate N/A 0.06 0.271
Output Classes Binary Classifica-

tion (2 classes)
Binary Classifica-
tion (2 classes)

Binary Classifica-
tion (2 classes)

Learning Rate 0.001 0.0005 0.00007
Batch Size 32 16 32
Optimizer Adam (no weight

decay)
Adam (weight
decay=1e-6)

Adam (weight
decay=4.5e-5)

46

Chapter 5

Results and Discussion

5.1 Result Analysis
The models are evaluated on different statistical analysis and the final results are
analyzed and compared between the models.

5.1.1 GCN

The performance of the GCN model is analyzed based on statistical analysis:

• Training and Validation Accuracy Over Epochs
The accuracy curves over 300 epochs demonstrate steady improvement in both
training and validation accuracy. Initially, the model shows a rapid increase in
accuracy, which begins to plateau after around 150 epochs. The final valida-
tion accuracy is approximately 85% which indicates good generalization
capability with minimal overfitting. The closeness between the training and
validation curves suggests that the model has learned the patterns in the data
well and generalizes effectively to unseen samples.

• Training and Validation Loss Over Epochs
The loss curves complement the accuracy curves by showing the decline in both
training and validation loss over epochs. The sharp drop in the early epochs
indicates that the model learned quickly which further decreases with more
training. The final validation loss stabilizes around 0.30, indicating effective
learning without significant divergence between the training and validation
curves, further confirming that the model does not suffer from overfitting.

• Confusion Matrix
The GCN model correctly classified 4945 instances of Class 0 and 4949 in-
stances of Class 1. The false positives and false negatives were relatively low,
with 742 misclassified instances for Class 0 and 738 for Class 1. This score
suggests that the model has high true positives and low false positives in both
classes.

• Precision-Recall Curve
The precision-recall curve provides insight into the model’s ability to maintain
high precision and recall across different thresholds. The GCN model’s AUC

47

score of 0.954 indicates strong performance in distinguishing between the
two classes. The curve maintains a high level of precision across a broad range
of recall values. This proves that the model effectively handles class imbalance
and lower probability of false positives.

• Receiver Operating Characteristic (ROC) Curve
The ROC curve is another measure of classification performance. The AUC
score of 0.9507 suggests excellent discrimination capability. Again, the curve
is well above the diagonal line further supports that the model is making
accurate predictions across both classes.

• t-SNE Visualization of Graph Embeddings
The t-SNE plot illustrates the clustering of graph embeddings learned by the
model. Here, each point representing a sample from either Class 0 (blue) or
Class 1 (orange). The separation between the two clusters is visible, sug-
gesting that the model successfully learned to represent the classes differently.
While there is some overlap, the overall clustering pattern indicates that the
embeddings contain meaningful features that allow the model to differentiate
between the two classes. Even if there is some overlap, the overall clustering
pattern indicates that the embeddings contain meaningful features that allow
the model to differentiate between the two classes.

Summary:
The GCN model demonstrates strong performance on the binary classification task.
The confusion matrix highlights its balanced classification with low false positives
and low false negatives, while both the precision-recall and ROC curves shows lower
probability of making mistakes. The training and validation metrics suggest effec-
tive learning and generalization without overfitting. The t-SNE visualization further
supports that the learned embeddings provide useful representations for classifica-
tion. Overall, the GCN model is well-suited for the graph-based binary classification
task.

48

Figure 5.1: Confusion Matrix for GCN

(a) Training and Validation Loss over
Epochs

(b) Training and Validation Accuracy over
Epochs

(c) Precision recall curve for GCN (d) Receiver Operating Characteristic

Figure 5.2: Training and Validation Metrics over Epochs for GCN

49

Figure 5.3: t-SNE Visualization for GCN

5.1.2 GraphSAGE

The performance of the GCN model is analyzed based on statistical analysis:

• Training and Validation Accuracy Over Epochs
The accuracy curves over 300 epochs show a steady increase in both training
and validation accuracy. Similar to the GCN model, the accuracy plateaus
after around 150 epochs, with the final validation accuracy reaching approxi-
mately 85%. The training and validation accuracy are close, which suggests
that the model generalizes well without overfitting.

• Training and Validation Loss Over Epochs
The training and validation loss curves show consistent improvement, with
both losses decreasing over time. The final validation loss stabilizes around
0.30, indicating that the model converged effectively. The loss curves for both
training and validation data closely follow each other, confirming the model’s
ability to learn without overfitting.

• Confusion Matrix
The confusion matrix shows that the GraphSAGE model correctly classified
4973 instances of Class 0 and 4933 instances of Class 1. The false positives
and false negatives were slightly higher compared to the GCN model, with 714
misclassified instances for Class 0 and 754 for Class 1. However, the model
still demonstrates a balanced classification across both classes.

• Precision-Recall Curve
The precision-recall curve for the GraphSAGE model shows an AUC score
of 0.9543 which is very similar to GCN model. This indicates that the model

50

retains high precision across a broad range of recall values.

• Receiver Operating Characteristic (ROC) Curve
The ROC curve shows the AUC score of 0.9512 which reflects strong dis-
criminative power. Again, this score is similar to GCN which is also evident
in the curve.

• t-SNE Visualization of Graph Embeddings
The t-SNE plot shows the clustering of graph embeddings generated by the
model. Although some overlap exists, there is a clear separation between the
two classes (Class 0 in blue and Class 1 in orange). The overall clustering
pattern shows that the model has learned meaningful representations of the
data, which contribute to its classification performance.

Summary:
Just like GCN, GraphSAGE model also performs well on the binary classification
task. It shows a balanced classification in the confusion matrix and strong per-
formance metrics in both the precision-recall and ROC curves. The evidence of
good generalization ability is shown in accuracy and loss curves. The t-SNE vi-
sualization further supports the model’s capacity to differentiate between the two
classes through meaningful graph embeddings. Overall, GraphSAGE shows com-
parable performance to the GCN model and proves to be a suitable model for the
graph-based binary classification task.

Figure 5.4: Confusion Matrix for GraphSAGE

51

(a) Training and Validation Loss over
Epochs

(b) Training and Validation Accuracy over
Epochs

(c) Precision-Recall Curve for GraphSAGE (d) AUC-ROC Curve for GraphSAGE

Figure 5.5: Training and Validation Metrics over Epochs for GraphSAGE

Figure 5.6: t-SNE Visualization for GraphSAGE

52

5.1.3 GAT

The performance of the GAT model for the graph binary classification task is sum-
marized through six key visualizations, as explained below:

• Confusion Matrix
The confusion matrix indicates that the GAT model correctly classified 4086
instances of Class 0 and 2243 instances of Class 1. However, the model also
misclassified 1945 instances of Class 1 as Class 0 which indicates a noticeable
imbalance in performance. It demonstrates where Class 1 is harder for the
model to predict accurately compared to Class 0.

• Precision-Recall Curve
The precision-recall curve shows that the GAT model has an AUC score
of 0.84. While the precision remains relatively high at lower recall values,
the precision significantly decreases as recall approaches 1, indicating that
the model struggles with maintaining precision as more positive samples are
considered.

• Receiver Operating Characteristic (ROC) Curve
The ROC curve shows that the model achieves an AUC score of 0.86, sug-
gesting moderate discriminative power. The curve does not reach as close to
the top-left corner as the previous models (GCN or GraphSAGE), which re-
flects the model’s lower overall ability to differentiate between the two classes.

• Training and Validation Accuracy Over Epochs
The training accuracy steadily increases over time, reaching around 0.74, while
the validation accuracy fluctuates more significantly, indicating some instabil-
ity during training. The variation in the validation accuracy suggests potential
overfitting or difficulty in generalizing to the validation data.

• Training and Validation Loss Over Epochs
The loss curves reveal a decrease in both training and validation loss, with
the training loss stabilizing after several epochs. However, the validation loss
exhibits severe fluctuations, This shows that the model may not generalize as
well to unseen data.

• t-SNE Visualization of Graph Embeddings
The t-SNE visualization of the embeddings shows that while the GAT model
has learned some level of distinction between the two classes (with some dis-
tinct clusters). But there is significant overlap between the two classes. This
overlap further confirms the model’s difficulties in fully separating the two
classes, particularly Class 1.

Summary:
The GAT model shows moderate performance in the binary classification task. The
confusion matrix reveals a challenge in identifying Class 1 instances, with higher false
negatives compared to other models. The AUC scores in both the precision-recall
and ROC curves reflect this moderate performance. The validation accuracy over
the epoch is also unstable. The t-SNE visualization suggests the model struggles
to distinguishing between the two classes. Overall, while the GAT model performs
noticably worse than GraphSAGE and GCN.

53

Figure 5.7: Confusion Matrix for GAT

(a) Training and Validation Loss over
Epochs

(b) Training and Validation Accuracy over
Epochs

(c) Precision-Recall Curve for GAT (d) AUC-ROC Curve for GAT

Figure 5.8: Training and Validation Metrics over Epochs for GAT

54

Figure 5.9: t-SNE Visualization for GAT

5.1.4 Model Comparison: Loss and Accuracy

• Loss Comparison:
GCN and GraphSAGE: Both models exhibit nearly identical loss patterns
in both training and validation. They begin with higher losses (0.60-0.65) and
steadily decrease over the course of 300 epochs. By the end of the training,
both models achieve training losses around 0.25 and validation losses around
0.30-0.35. This indicates efficient learning with good generalization, as the
models maintain a smooth and stable decline in both training and validation
loss, without significant fluctuations or divergence.

GAT: In contrast, the GAT model struggles with higher initial losses and
slower convergence. It starts at a higher training loss (0.65) and plateaus
around 0.50, showing it doesn’t minimize the loss as effectively as GCN and
GraphSAGE. The validation loss exhibits a high degree of variance, oscillating
between 0.80 and 0.90, particularly after 100 epochs. This instability suggests
GAT is prone to overfitting or underfitting, unable to generalize well to the
validation set.

• Accuracy Comparison:
GCN and GraphSAGE: These models achieve similarly high levels of ac-
curacy in both training and validation. The training accuracy climbs steadily
and stabilizes at around 0.85 for both models, indicating robust learning from
the training data. Their validation accuracy curves also stabilize close to 0.85,
demonstrating that these models generalize well to unseen data without signs

55

of overfitting. The consistency between training and validation accuracy con-
firms their balanced performance.

GAT: The GAT model exhibits significantly lower training and validation
accuracy compared to GCN and GraphSAGE. While its training accuracy
plateaus at around 0.70, the validation accuracy fluctuates erratically between
0.40 and 0.70, reflecting its struggle to maintain consistent performance. The
instability in validation accuracy further highlights GAT’s difficulty in gener-
alizing to new data, making it less reliable compared to GCN and GraphSAGE
for this task.

Summary:
GCN and GraphSAGE perform similarly and show strong overall performance.
Their loss and accuracy curves indicate efficient learning, good generalization, and
stable convergence without overfitting. In contrast, GAT lags behind both models,
with slower convergence, higher loss, and unstable validation accuracy. These issues
suggest that GAT is less suited for this specific binary classification task without
further tuning.

Figure 5.10: Loss and Accuracy between models over the epochs

56

Test Results

The models are evaluated across various metrics necessary to determine their com-
petence in capturing the patterns in architectural floor plans and distinguishing
between them. Here, Accuracy measures the overall correctness of the model.
Although it can be misleading in imbalanced datasets, we trained, validated and
tested our with equal number of class present in the dataset. Precision indicates
how many of the predicted positive cases are actually true positives, it is useful to
understand which model has the lowest false positive. Recall (or sensitivity) mea-
sures the ability to identify all true positives, which in our case is useful to determine
which model can the extract the highest number of applicable floor plan from the
total dataset. F1 Score shows the balance between precision and recall. Lastly,
AUC-ROC evaluates a model’s ability to distinguish between classes. This is very
important for our task which is binary classification.

Table 5.1: Test Results for GAT, GCN, and GraphSAGE Models

Metric GAT GCN GraphSAGE

Loss 0.4462 0.2806 0.2787

Accuracy 0.7246 0.8699 0.8709

Precision 0.8295 0.8696 0.8736

Recall 0.5356 0.8702 0.8674

F1 Score 0.6509 0.8699 0.8705

AUC-ROC 0.8609 0.9507 0.9512

The table clearly shows GCN and GraphSAGE outperforms GAT across all the
metrics.GraphSAGE shows marginally better performance than GCN in most areas,
particularly in precision and AUC-ROC. Although GAT has decent accuracy and
precision, it falls short in all other metrics. GAT struggles with recall, leading to
a lower F1 score. On the other hand, GCN and GraphSAGE showcases excellent
accuracy, precision, and recall. Both of them have very good AUC-ROC score which
indicates they are able to distinguish between the classes properly. GraphSAGE is
the best model based on the results. It has better scores in all metrics except recall.

The results suggest that GCN and GraphSAGE models are the most suitable for
tasks requiring balanced accuracy, precision, and recall. These models are better
suited for architectural design validation, where minimizing both false positives and
false negatives is important. In contrast, GAT struggles with recall is unsuitable for
most cases compared to GraphSAGE. Overall, GraphSAGE is the clear outlier in
terms of its performance, but GCN is not too far behind.

57

5.2 Limitations and Challenges

5.2.1 Ambiguities in Architectural Concepts

As architecture is a true field of creativity and aesthetics it does not hold any kind of
perfections. The conceptualization of residential floor plans is ambiguous because of
a set of socio-economic, cultural, and geographical influences. It varies from man to
man according to their social aspects, economic standards, cultural background, geo-
graphical challenges, etc. These elements contribute to a multifaceted understanding
of what constitutes an ideal living environment, underscoring the complexity and
subjectivity of architectural design. The work of the architect does not involve mere
implementation of the design but also various needs and expectations of the client,
while also considering local conditions and material availability.

Architecture is a living atmosphere where one can experience their living style ac-
cording to their taste. Individuals from different walks of life generally exhibit
distinct preferences regarding their residence structures. For instance, a highly paid
doctor or businessperson would appreciate modern and spacious architectural spaces
that reflect luxury. On the other hand, an artist or photographer would prefer a
more eclectic and aesthetic style that allows for creativity and flexibility. This re-
flects not only personal choice but also the socio-economic factors that can shape
one’s lifestyle and aspirations. That is why personal taste and cultural tendencies
influence architectural design. Therefore, architects engage in a thorough under-
standing of their client’s needs, ensuring that their designs resonate with the client’s
values and financial capabilities.

Geographical and climatic conditions add another complexity to the architectural
design process, which makes it more ambiguous. For example, in Bangladesh, an
architect would have to consider certain environmental hazards, such as heavy rain-
fall, high humidity, and extreme temperature variations throughout the year. These
factors dictate the choice of construction materials, structural designs, and spatial
arrangements within residential plans. An architect should continue being aware of
such local features to ensure that the design is workable and viable. Design therefore
needs to balance aesthetic appeal with functional requirements to achieve both the
client’s desires and the needs of the environment.

Moreover, the changing nature of architectural trends and standards adds another
layer of ambiguity to residential design. Generation wise it varies. As societal
norms evolve, the expectations concerning the living environment also change. For
instance, the increase in remote work has led to a higher demand nowadays. For that,
the home office spaces are changing the priorities in residential design. Architects
must remain adaptable, embracing new concepts and methodologies that align with
contemporary lifestyles.

The architectural concept is inherently ambiguous by nature and shaped by diverse
personal preferences, socio-economic factors, and environmental challenges. While
efforts are made to maintain standards and present various design options to meet
individual abilities and choices, it is the architect’s job to determine the best solu-
tions within the client’s overall financial range. There are endless possibilities while
designing a residential floor plan, but establishing fundamental principles and ser-
vices can make decision-making easier. This ambiguity in architecture presents an

58

opportunity for continuous exploration and innovation, which allows architects to
create spaces that truly reflect the complexity of human experience.

5.2.2 Challenges in Labeling Floor Plans with Local Annota-
tions

As previously mentioned, the categorization of residential floor plans is High B, Low
B, Type C, and Type D. It poses fundamental challenges, especially when consider-
ing the subjective aspects of architectural design shaped by socio-economic, cultural,
and geographical influences. When architectural students participated in the anno-
tation process, they encountered significant difficulties while filtering out the floor
plans based on these classifications. The main challenge was that diverse interpre-
tations arose from distinct individual viewpoints. Each classification embodies a
unique understanding of optimal residential design, which is often shaped by the
diverse needs and expectations of clients.

• Subjectivity in Classification: The classification system for floor plans
necessitates a level of subjectivity, as individual evaluators may perceive the
suitability of a design differently. Whereas one evaluator might classify a floor
plan to be Low B concerning its functional attributes and principles of zon-
ing, another evaluator might classify it as Type C on account of deficiencies
perceived either in spatial relationships or room layout. This discrepancy in
viewpoints may lead to plans being considered suitable for various classifica-
tions, thereby causing ambiguity regarding their applicability to prospective
occupants.

• Contextual Influences on Perceptions: Floor plan classifications are deeply
rooted in the context of local socio-economic conditions. For an example, what
constitutes an ideal residence for a wealthy individual may vastly differ from
the standards of a low-income family. A High B classification, considered suit-
able for a reasonably comfortable family lifestyle, might prove beyond the able
means of economically deprived families, who would wish to consider Type C
or Type D plans as more in line with their economic constraints. As a result,
the same floor plan may be viewed as a viable residence for one group while
considered inadequate by another.

• The Role of Client Expectations: Architects also have to balance their
client’s expectations and needs, which complicates the labeling process. Lifestyle,
cultural background, and individual needs all make a difference in what clients
perceive to be an adequate residential environment. What might be considered
an inadequate design in one case could easily be labeled as ideal by another
client, further adding to the pervasive ambiguity of categorization.

• Implications for the Filtering Process: The challenges inherent in label-
ing floor plans necessitate a flexible approach within the classification system.
The architectural students who were part of the filtering process found it diffi-
cult to justify their classification from other perspectives. The iterative nature
of the filtering process emphasizes that mutual discussions among the evalu-
ators are required so that a consensus can be reached keeping in mind that
architectural design is a variant of different interpretations and preferences.

59

The complexity of labeling residential floor plans with local annotations underscores
the multifaceted nature of architectural design. Factors such as subjectivity, con-
textual elements, variability in application, and client anticipations all play a role
in the difficulties encountered in forming conclusive classifications. This uncertainty
illustrates the imaginative and dynamic quality of architecture, necessitating a so-
phisticated comprehension of both design principles and the varied social contexts
within which these plans are situated.

5.2.3 Model Limitations

The task of Graph binary classification depends on the representational learning
capability of GNN. GNN models use message-passing layers to aggregate and trans-
form node features by sharing information between the neighbors. These node-level
embeddings are condensed by pooling operation, making a graph-level representa-
tion. This process has many varieties and factors involved, which makes it complex.
In this paper, three different types of models are used for graph binary classification.
However, the core architectures in the models are fairly simple. The architectural
floor plan information is converted into a graph because the connectivity information
between rooms can be easily represented on the edges. However, the node features
and edge features determine how well the floor plan information can be learned by
the GNN models. In this paper, only three node features(area, centroid, room type)
and no edge features are present in the graph. This is done due to the higher model
complexity of handling edge features and node features, which are dynamic. For
example, room coordinates with dynamic vertex count can hold spatial information
better than a centroid, also edge features with door vertex coordinates can give the
model crucial door location information. However this would increase model com-
plexity, and implementing this requires more research. Moreover, different pooling
and aggregate functions could be used which are good at handling spatial data (eg.
diffpool). So, in this paper, the models are limited by not being handled to dy-
namic node features and edge features and not using other advanced pooling, and
aggregation operations. This results in limited graph-level representation has room
to improve.

60

Chapter 6

Applications and Future Directions

6.1 Enhance Dataset in the Context of Bangladesh
The attempt at adapting foreign architectural data for local applications poses its
unique challenges, especially when faced with datasets that are not inherently de-
signed for the target environment, Bangladesh. In our work, we sought to use a
dataset of 51,000 floor plans from China to evaluate and filter them for our applica-
tion in the context of Bangladesh, where the hot and humid climate requires certain
attributes for residential design. Although our dataset is quite broad in terms and
valuable for the architecture field. However, it lacks major factors like orientation
and ventilation, these are the factors that are essential for assessing livability in
Bangladesh. To bridge this gap, we have made several enhancements to the dataset
while understanding certain limitations that influence model performance.

Our machine learning model plays a crucial role in the data processing pipeline,
which converts initial images of floor plans into bubble diagrams showing rooms
as independent nodes carrying critical information on the centroid position of each
room, total area, and types of rooms-labeled, including master bedrooms, kitchens,
and bathrooms, etc. Additionally, it displays the interrelationships among the rooms
in the bubble diagrams and also allows us to evaluate the internal space ratio and
spatial zoning. However, even if the model is effective in capturing floor plan data’s
structural elements, it does not account for ventilation and orientation, which are
necessary for designing functional residences in Bangladesh’s aspect.

6.1.1 Enhance Dataset with Orientation Considerations

Orientation is a crucial part of the residence design. In the context of Bangladesh, as
it is a hot, humid climate country, orientation plays a huge role. Proper orientation
can enhance the conditions of a building in terms of natural lighting, ventilation,
thermal comfort, and airflow, which significantly helps us to reduce dependence on
artificial cooling. Generally, in Bangladesh, residences with west-facing facades are
avoided, because they are exposed to the intense afternoon sun, which can make
the indoor environment uncomfortable to live in because of the unbearable temper-
ature. Because of that, we typically preferred north and south-facing orientations,
as they allow for better natural ventilation and smooth airflow. Still, always it is

61

not possible to prefer a north-south facing facade apartment because of the location
and building’s front directions.

In the context of our dataset, the lack of information about orientation is a major
limitation. To address this issue in the future, it would be beneficial to enhance
the data by considering the orientation of the dataset. It can be either by adding
metadata to the floor plans or by developing a model capable of acknowledging the
orientation based on external factors like balcony positions, or the location of main
entrances. While window placement is an important factor too in residential design,
the dataset we used in this study, does not contain any information about window
orientation. However, enhancing the dataset by incorporating window orientation
and training the model accordingly so that it could provide valuable insights and
improve the accuracy of spatial assessments in the context of Bangladesh. This
will enable our model to grade floor plans more accurately, especially those falling
into the High B and Low B classifications. In particular, many of those currently
graded as High B could receive a Type A designation if orientation is optimized.
Similarly, some of the Low B plans will be further downgraded because of their west-
facing facade orientations, which would increase the thermal load on the building
and consequently affect its overall livability.

6.1.2 Incorporate Ventilation Factors

As we know, Bangladesh is a hot and humid country, proper ventilation is essential in
residential design. Decent airflow can reduce indoor temperatures and can improve
air quality. Which eventually makes the environment more livable without heavily
relying on artificial cooling systems. However, the dataset used for the study does not
contain any explicit information about windows. But windows are the key element to
determine to what extent a floor plan can help with natural ventilation and airflow.
Cross-ventilation is also necessary for residential plans. The lack of information
limits and constrains the precise evaluation of the residential floor plan’s livability.

The existing machine learning model is mainly centered on transforming floor plans
into bubble diagrams, which capture fundamental spatial information like dimen-
sions of rooms, their classifications, and their interconnections. Even though this
approach is effective in evaluating zone relationships, but it fails to incorporate ven-
tilation considerations, such as the positioning of windows, vital for analyzing airflow
between different rooms. Knowing this limitation, students of architecture had to
make subjective assessments on ventilation, based on room size, room configuration,
and the presence of a balcony.

For the future directions, incorporating windows into the dataset would significantly
enhance the accuracy of our classifications. This crucial attribute would be able to
let the model consider key aspects like cross-ventilation and natural airflow, which
become essential in the perspective of Bangladesh’s climatic condition. Accommo-
dating window data would enable better classification of the floor plans, and there-
fore, modifications could be suggested that would significantly enhance livability,
particularly for High B plans that could potentially be upgraded near Type A. By
addressing this gap in the dataset, we could make more informed and meaningful
contributions to residential design practices in Bangladesh.

62

6.2 Application of GNNs in Spatial Context
Graph Neural Networks have emerged as powerful tools for machine learning with
data represented in graph structures, thereby enabling the modeling of complex re-
lationships and dependencies manifested in those graph topologies. In particular,
GNNs are very helpful in spatial scenarios since they can model and explore spa-
tial relationships that integrate node attributes with graph structures. That ability
makes GNNs very successful in tasks related to urban planning, geospatial analysis,
and architectural design-encompassing tasks where spatial relationship understand-
ing is fundamental.

6.3 Future Improvements in GNN Architecture
In our current research, we annotated 9028 floor plans with 4 labels which were
converted to 2 labels but we plan to increase the data set by increasing the amount
of annotated data and incorporating multiclass classification.

In the present paper, the use of the NENN [18] model enables the effective incorpo-
ration of edge features, such as the data on door locations that were excluded in our
earlier GraphSAGE model. While GraphSAGE is primarily focused on node features
and the pooling of nearby neighborhood information, NENN offers a hierarchically
deployed dual-level attention mechanism that enables the integration of node as well
as edge features. This becomes specifically helpful in the present context since the
relations through doors connecting different rooms are edge features that carry cru-
cial spatial information capable of influencing the structure of the entire graph. The
alternating layers in NENN allow the model to learn knowledge not only about the
importance of neighboring nodes but also about that of the neighboring edges, hence
improving the embeddings of both nodes representing rooms and edges signifying
doors. Such dual-level attention makes the model fully exploit the rich information
provided by the edge features and improve the classification accuracy of floor plans
relevant to Bangladeshi architecture.

We can try to enhance the performance of our GraphSAGE model by considering
more advanced pooling techniques such as DIFFPOOL [13], replacing the current
global mean aggregator. DIFFPOOL instantiates a differentiable, end-to-end pool-
ing model that allows the model to learn hierarchical representations by clustering
the nodes and, hence, producing coarser graph representations in each layer. Incor-
porating DIFFPOOL will allow us to further coarsen the graph through multiple
layers, enabling the model to capture both local node-level information—in this
case, individual room features—and higher-level structural patterns that include
clusters of connected rooms and their spatial relations. We consider this to be a
very suitable hierarchical approach to graph classification tasks, where higher-level
understanding of general architectural structure is crucial to make distinctions be-
tween floor plans. This replaces using global mean pooling with DIFFPOOL and
would improve our ability to make the most of edge features, such as door locations,
but also train effectively on the spatial associations among rooms. Such a method
is likely to significantly boost the model’s skill at classifying complex architectural
floor plans, and in particular in activities targeted at recognizing patterns unique to
Bangladeshi architecture.

63

Chapter 7

Conclusion

Graph Neural Networks (GNNs) have demonstrated significant promise for tasks
involving classification on graphs, including the examination of architectural floor
plans. In this research, we employed GCN, GraphSAGE, and GAT models to cat-
egorize floor plans according to their suitability for Bangladesh, finding that GCN
and GraphSAGE surpassed GAT in terms of accuracy, precision, and generalization.
However, the most important issues we encountered were because of vagueness in
classifying architectural features. We tried to assure coherence by allowing a sys-
tem of votes between different annotators to take over. As a second point, there
are only three node featuresroom area, centroid, and room typeand no edge features
which can be considered in our models, providing more spatial details. Despite these
challenges, GCN and GraphSAGE outperformed most of the compared algorithms,
proving to be suitable for this binary classification task. Future work may focus on
incorporating dynamic node and edge features and advanced pooling techniques in
order to improve model complexity and representational learning. Overall, this re-
search contributes to the field by applying GNNs to architectural design evaluation
and highlighting areas for further improvement.

64

Bibliography

[1] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
graph neural network model,” IEEE Transactions on Neural Networks, vol. 20,
no. 1, pp. 61–80, 2009. doi: 10.1109/TNN.2008.2005605.

[2] P. K. Diederik, “Adam: A method for stochastic optimization,” (No Title),
2014.

[3] D. P. Kingma, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[4] H. Hua, “Irregular architectural layout synthesis with graphical inputs,” Au-
tomation in Construction, vol. 72, pp. 388–396, 2016, issn: 0926-5805. doi:
https://doi.org/10.1016/j.autcon.2016.09.009. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S092658051630231X.

[5] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” Advances in neural information processing systems, vol. 30,
2017.

[6] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolu-
tional networks, 2017. arXiv: 1609.02907 [cs.LG].

[7] X.-Y. Gong, H. Su, D. Xu, Z.-T. Zhang, F. Shen, and H.-B. Yang, “An overview
of contour detection approaches,” International Journal of Automation and
Computing, vol. 15, no. 6, pp. 656–672, 2018, issn: 1751-8520. doi: 10.1007/
s11633-018-1117-z. [Online]. Available: https://doi.org/10.1007/s11633-018-
1117-z.

[8] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
Graph attention networks, 2018. arXiv: 1710.10903 [stat.ML].

[9] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery data
mining, 2019, pp. 2623–2631.

[10] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A fair comparison of graph
neural networks for graph classification,” arXiv preprint arXiv:1912.09893,
2019.

[11] W. Wu, X.-M. Fu, R. Tang, Y. Wang, Y.-H. Qi, and L. Liu, “Data-driven
interior plan generation for residential buildings,” ACM Trans. Graph., vol. 38,
no. 6, Nov. 2019, issn: 0730-0301. doi: 10.1145/3355089.3356556. [Online].
Available: https://doi.org/10.1145/3355089.3356556.

[12] W. Wu, X.-M. Fu, R. Tang, Y. Wang, Y.-H. Qi, and L. Liu, “Data-driven inte-
rior plan generation for residential buildings,” ACM Transactions on Graphics
(SIGGRAPH Asia), vol. 38, no. 6, 2019.

65

https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/https://doi.org/10.1016/j.autcon.2016.09.009
https://www.sciencedirect.com/science/article/pii/S092658051630231X
https://www.sciencedirect.com/science/article/pii/S092658051630231X
https://arxiv.org/abs/1609.02907
https://doi.org/10.1007/s11633-018-1117-z
https://doi.org/10.1007/s11633-018-1117-z
https://doi.org/10.1007/s11633-018-1117-z
https://doi.org/10.1007/s11633-018-1117-z
https://arxiv.org/abs/1710.10903
https://doi.org/10.1145/3355089.3356556
https://doi.org/10.1145/3355089.3356556

[13] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec, Hier-
archical graph representation learning with differentiable pooling, 2019. arXiv:
1806.08804 [cs.LG]. [Online]. Available: https://arxiv.org/abs/1806.08804.

[14] R. Hu, Z. Huang, Y. Tang, O. van Kaick, H. Zhang, and H. Huang, “Graph2plan:
Learning floorplan generation from layout graphs,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 1–
11.

[15] N. Nauata, K.-H. Chang, C.-Y. Cheng, G. Mori, and Y. Furukawa, “House-gan:
Relational generative adversarial networks for graph-constrained house layout
generation,” in European Conference on Computer Vision (ECCV), Springer,
2020, pp. 162–177.

[16] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein,
Temporal graph networks for deep learning on dynamic graphs, 2020. arXiv:
2006.10637 [cs.LG].

[17] P. Wu, Z. Tang, S. Jiang, et al., “Floorplangan: Vector residential floorplan ad-
versarial generation,” Automation in Construction, vol. 120, p. 103 366, 2020.

[18] Y. Yang and D. Li, “Nenn: Incorporate node and edge features in graph neural
networks,” in Asian conference on machine learning, PMLR, 2020, pp. 593–
608.

[19] J. Zhou, G. Cui, S. Hu, et al., “Graph neural networks: A review of methods
and applications,” AI open, vol. 1, pp. 57–81, 2020.

[20] M. Yamada, X. Wang, and T. Yamasaki, “Graph structure extraction from
floor plan images and its application to similar property retrieval,” in 2021
IEEE International Conference on Consumer Electronics (ICCE), 2021, pp. 1–
5. doi: 10.1109/ICCE50685.2021.9427580.

[21] V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson,
Benchmarking graph neural networks, 2022. arXiv: 2003.00982 [cs.LG].

[22] M. Yoon, Y. Wu, J. Palowitch, B. Perozzi, and R. Salakhutdinov, “Graph
generative model for benchmarking graph neural networks,” arXiv preprint
arXiv:2207.04396, 2022.

[23] S. Leng, Y. Zhou, M. H. Dupty, W. S. Lee, S. Joyce, and W. Lu, “Tell2Design:
A dataset for language-guided floor plan generation,” in Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Toronto, Canada: Association for Computational Linguistics,
Jul. 2023, pp. 14 680–14 697. doi: 10.18653/v1/2023.acl- long.820. [Online].
Available: https://aclanthology.org/2023.acl-long.820.

[24] A. Mao, M. Mohri, and Y. Zhong, “Cross-entropy loss functions: Theoretical
analysis and applications,” in International conference on Machine learning,
PMLR, 2023, pp. 23 803–23 828.

[25] H. Park, H. Suh, J. Kim, and S. Choo, “Floor plan recommendation sys-
tem using graph neural network with spatial relationship dataset,” Journal of
Building Engineering, vol. 71, p. 106 378, 2023, issn: 2352-7102. doi: https:
//doi.org/10.1016/j. jobe.2023.106378. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2352710223005570.

66

https://arxiv.org/abs/1806.08804
https://arxiv.org/abs/1806.08804
https://arxiv.org/abs/2006.10637
https://doi.org/10.1109/ICCE50685.2021.9427580
https://arxiv.org/abs/2003.00982
https://doi.org/10.18653/v1/2023.acl-long.820
https://aclanthology.org/2023.acl-long.820
https://doi.org/https://doi.org/10.1016/j.jobe.2023.106378
https://doi.org/https://doi.org/10.1016/j.jobe.2023.106378
https://www.sciencedirect.com/science/article/pii/S2352710223005570
https://www.sciencedirect.com/science/article/pii/S2352710223005570

Appendix
Code Snippets for Data Split and
Model

Graph Convolutional Network
The code use for defining GCN Model:

Figure 7.1: Code Defining GCN Model

67

GraphSAGE
The code use for defining GraphSAGE Model:

Figure 7.2: Code Defining GraphSAGE Model

68

Graph Attention Network
The code use for defining GAT Model:

Figure 7.3: Code Defining GAT Model

69

	Declaration
	Approval
	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background on Floor Plan Classification
	Problem Statement
	Research Contribution

	Related Work
	Literature review

	Methodology
	Work Plan
	Dataset Overview
	Initial Preprocessing Pipeline
	Initial Data Cleaning
	Feature Extraction: Image Encoding and Vertex Data
	Contour Extraction and Simplification
	Graph Construction: Nodes and Edges
	Artifacts

	Initial Filtered Dataset
	Visualization

	Annotation Process and Labeling
	Annotation Labels in Context of Bangladesh
	Data Labeling Workflow and Adjustments

	Final Dataset Visualizations
	Final Dataset Analysis

	Dataset Transformation and Refinement
	Annotation Transformation
	Data Augmentation

	Model Selection
	Model Selection Criteria
	Selected Models

	Model
	Data loading and Train-test Split
	Feature Representation in GNN Models
	Data Processing and Graph Construction
	Train-Test Split

	Model Overview
	Model Architecture
	Abstract Model Architecture
	Model-Specific Differences
	Hyperparameter Summary

	Results and Discussion
	Result Analysis
	GCN
	GraphSAGE
	GAT
	Model Comparison: Loss and Accuracy

	Limitations and Challenges
	Ambiguities in Architectural Concepts
	Challenges in Labeling Floor Plans with Local Annotations
	Model Limitations

	Applications and Future Directions
	Enhance Dataset in the Context of Bangladesh
	Enhance Dataset with Orientation Considerations
	Incorporate Ventilation Factors

	Application of GNNs in Spatial Context
	Future Improvements in GNN Architecture

	Conclusion
	Bibliography
	Code Snippets for Classifiers

