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Point-Cloud-based 3D Object Detection for Autonomous
Navigation in Unmanned Ground Vehicles

Abstract

Autonomous navigation for UGVs faces significant challenges in detecting objects
accurately in complex environments. Despite advancements in 2D object detection,
the absence of robust 3D object detection models leave a critical gap in the accurate
identification of objects in real-time UGV applications. In this thesis, we propose
a novel approach for 3D object detection in the context of autonomous navigation
for Unmanned Ground Vehicles (UGVs). The suggested approach uses a two-stage
pipeline. Utilizing the additional depth information from the 3D remote Sensor,
3D proposals are generated from the point cloud data in the initial stage. These
proposals act as potential foci for the detection of objects. GLENetVR and SE
SSD fusion architecture is used in the second stage to train and detect objects in-
side the suggested bounding boundaries. The two 3D Networks make it possible to
more accurately distinguish between objects and the backdrop because they cap-
ture the spatial relationships in the volumetric representations of the point clouds.
Combining two Neural Network and CNN models requires combining their feature
representations, such as concatenation or element-wise combination, to form a com-
bined feature representation used for object recognition. Through comprehensive
testing and evaluation of benchmark datasets, we want to show the effectiveness
and efficiency of our suggested strategy in comparison to existing 2D object detec-
tion methodologies, which are limited by their reliance on only visual information.
Our research lays the door for increased safety and dependability in autonomous
navigation systems for UGVs by embracing the promise of cloud point-based 3D ob-
ject identification. Our proposed model has shown superior performance, achieving
high accuracy of surpassing both the SE SSD and GLENetVR models.

Keywords: 3D object detection; autonomous navigation; Unmanned Ground Ve-
hicles (UGVs); point cloud data; Convolutional Neural Networks (CNNs); 3D pro-
posals; 3D CNN; CNN architecture fusion; Dual CNN.
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Chapter 1

Introduction

For autonomous driving, the ability to perceive and understand the three-dimensional
environment around the vehicle is a benchmark. Object detection, the primary
function in this industry, is central to safety, efficiency, and navigation. It allows
autonomous vehicles to detect and react to various objects, from pedestrians and
cars to road signs and obstacles. With lives and property at stake, the accuracy and
reliability of tracking are second to none, making it a key component in autonomous
vehicle tracking systems.

Traditional object recognition, usually limited to two-dimensional (2D) visuals, ini-
tially improved perceptual capacity. Real-world complexity, however, requires a
more nuanced understanding. This is where 3D object recognition appears as a
transformation model. Unlike its 2D counterpart, 3D object detection uses extreme
depth of field, which is invaluable for accurate placement, alignment, and orien-
tation of objects in three-dimensional space Drawing on technologies like LiDAR
(Light Detection and Ranging) and Point Cloud Data to allow the UAVs to navi-
gate autonomously. 3D object recognition models use volumetric geometry data and
point cloud information [18] [15]. These models exploit the geometric properties of
point clouds for accurate object detection in real-world applications [12]. Methods
such as voxel-wise feature learning and 3D voxel convolution neural networks are
used to generate proposals and regress offsets of 3D bounding boxes. Moreover, these
models incorporate geometric information and semantic properties of point clouds
to provide feature extraction and search accuracy of object offerings to improve. For
flexibility, voxel-based and point-based images are combined. Some models combine
2D camera images with 3D LIDAR point clouds for better visualization. Overall, 3D
object recognition models use volume geometry data and point cloud information
to achieve accurate and robust object recognition.

To achieve this accurate 3D object detection, we will use the GLEnet-VR and SE-
SSD models. GLEnet-VR, a pioneering architecture, leverages the power of neural
networks to capture complex features from point cloud data. At the same time,
the SE-SSD model uses Single Shot MultiBox Detector (SSD) technology, which is
known for its real-time 2D sensing capabilities. By blending the capabilities of a 3D
view of GLEnet-VR with SE-SSD functionality, we are paving the way for a com-
plete solution. This fusion enables our system to convert from LiDAR-based point
cloud data to webcam imagery in real-time, providing unmatched object detection



accuracy for autonomous vehicles in different environments.

1.1 Research Problem

In autonomous systems, accuracy and the pursuit of adaptability are of the utmost
importance. Traditional 2D object recognition, a remarkable advance in quality,
suffers from a fundamental limitation—it works in two dimensions, so it can’t cover
the fine fabric of the three-dimensional world [6]. It’s not enough to render the
complex three-dimensional space challenges.

Furthermore, most of the existing research mainly focuses on 2D object recognition
systems, which unfortunately omits an important feature which is depth object in-
formation [4]. These systems inherently waste their effectiveness, hindering their
usefulness in important areas such as intelligent video surveillance, robotic road
navigation, and the growing field of autonomous driving technology [4]. As a result,
The broad potential of autonomous systems remains unrealized, constrained by the
inherent limitations of traditional detection methods. To meet this challenging chal-
lenge, researchers embarked on a journey into 3D object recognition by leveraging
deep learning techniques [2]. This visionary approach seeks to use depth informa-
tion to balance out the complexity of real-world detection. Addressing this extra
dimension promises a paradigm shift of the reliability in the dynamic environments

1].

Although 3D visualization methods offer a tempting solution to the limitations of 2D
visualization, it has an increased computational expense. Applying the 3D model
to real-time applications such as webcam-based recognition or 2D camera-based
recognition presents a formidable challenge. These models, while adept at detect-
ing depth in controlled environments, tend to produce highly inaccurate results in
the face of complex real-world challenges. Lighting conditions, image noise, and
the unpredictability of object motion are major obstacles, leading to a significant
drop in detection accuracy. Research shows an end-to-end, efficient pseudo-stereo
3D detection framework that uses a Single-View Diffusion Model (SVDM) to train
the detector and reduce the accuracy gap between LiDAR-based and camera-based
methods [19].

The solution to this challenge is the integration of complementary models. We will
be using two CNN models, GLEnet-VR and SE-SSD. The deep-rooted GLEnet-VR
is designed to extract complex features from the rich point cloud data. On the
other hand, SE-SSD boasts the real-time strength of Single Shot MultiBox Detector
(SSD) technology, which has found its stripes in 2D object recognition. Combining
the strength of GLENet-VR’s 3D perceptions with SE- SSD’s efficiency we are a way
to find a holistic solution. This hybrid model stands as a key component in object
detection, evolving seamlessly from LiDAR-generated point cloud data to real-time
webcam imagery. This thesis capitalizes on GLENet-VR’s precise depth perception
and SE-SSD’s speed and adaptability. This dynamic collaboration addresses the
challenges posed by real-world data and provides unparalleled object detection ac-
curacy, even in dynamic environments and diverse scenarios.



The transition from traditional 2D to 3D emergent object recognition represents a
critical moment in the development of independent systems. In our research, we will
journey through two-dimensional barriers of deep understanding, which is required
to navigate real-world complexity. The fusion of models in our research will make
it possible to detect objects in the dynamic landscapes of our modern world for the
autonomy of the UAVs.

1.2 Research Contribution

The primary objective of this research is to formulate an innovative 3D detection
approach by utilizing GLE-NetVR model and SSD model to allow for the accurate
object recognition for UGVs. Our research efforts lead the pioneering field of 3D ob-
ject recognition, where a combination of advanced techniques and models is poised
to change the landscape of autonomous systems, especially in the field of unmanned
ground vehicles (UGV). At its core, our research stems from a quest for accuracy,
adaptability, and real-world applicability. Our goal is to create innovative solu-
tions that seamlessly integrate deep information into the search process, enabling
autonomous systems to navigate through the complex dynamic environment with
increased situational awareness and security. The research objectives include:

1. We developed a state-of-the-art 3D object recognition techniques based on the
latest advances in deep learning. These methods will be the cornerstone of
accurate and reliable identification.

2. We fused a model with high accuracy which has les computational complexity
compared to state-of-the art architectures.

3. We contributed in new systems to seamlessly add in-depth information to the
search process. This integration is necessary for a deeper understanding of
object-place relationships.

4. Our model lead to a solution that facilitates the real-time visualization of
3D objects, meeting the time-critical requirements of applications such as au-
tonomous vehicle technology.

5. Our proposed methodology goes beyond mere object recognition and enable
autonomic systems to sense the spatial context of objects.

6. GLE-SSD-VR transcends domain boundaries by taking advantage of a wide
range of applications from intelligent video surveillance and robotic navigation
to autonomous driving.

7. We explored the fusion of two formidable models, GLEnet-VR and SE-SSD,
that combine their capabilities to achieve a harmonious blend of depth per-
ception and real-time efficiency.

8. We object recognition capabilities with our model in developed 3D offerings
providing higher recognition accuracy necessary for ensuring safety in au-
tonomous systems.



1.3 Thesis Organization

This thesis is organized into six chapters, each addressing specific aspects of the
research:

In Chapter 1, we provide an overview of the research problem, and research contribu-
tion of the study. It outlines the significance of 3D object detection for autonomous
navigation and highlights the challenges that current methods face. The proposed
approach is briefly introduced, along with the contributions made by this research.

In chapter 2, a detailed review of existing methods and advancements in 2D and 3D
object detection is presented. The chapter discusses the background of the Point
cloud based 3D object detection. Also it discusses the related works and recent de-
velopments in 3D neural networks, particularly focusing on models such as SE SSD,
GLENetVR, and other related architectures. This sets the stage for understanding
the research gap addressed by the proposed fusion model.

In chapter 3, we dive into the Kitti Dataset. This chapter outlines the dataset
used for training and testing the proposed model. The chapter includes an in-depth
explanation of the KITTI dataset, including the classes (Car, Pedestrian, Cyclist,
etc.) and the pre-processing techniques applied to the data, such as point cloud
standardization and occlusion augmentation.

In chapter 4, we explain the methodology and the proposed approach in detail. It
discusses the two-stage pipeline for 3D object detection, including the generation
of 3D proposals from point clouds and the fusion architecture of GLENetVR and
SE SSD for object detection. The chapter also describes the model fusion strategies
and the architecture of each compents of the proposed model.

In chapter 5, we present the results of the proposed model and compares its per-
formance with state-of-the-art methods like SE SSD, GLENetVR, and VirConv-S.
Detailed analysis of performance metrics such as accuracy, precision, recall, F1 score,
and AUC is provided. The computational efficiency of the proposed model is dis-
cussed in comparison to the other models, along with insights into the strengths and
limitations of the approach.

Finally, in chapter 6, we draw the conclusion of the study we conducted.



Chapter 2

Literature Review

In the studies of 3D object detection techniques, it is often leverage on point cloud
data, captured through sensors such as LiDAR, to provide spatial and geometric
insights, which are crucial for reliable scene understanding. The challenge lies in
processing this unstructured and sparse data efficiently. This paves the way for
innovative research and development in this domain.

2.1 Point Cloud based 3D object detection

Point cloud-based 3D object recognition represents an important frontier in com-
puter vision, motivated by potential applications in autonomous navigation, robotics,
and augmented reality but presenting unique challenges with irregular data and spar-
sity of the data. To address these challenges, researchers have explored various ap-
proaches, including grid-based and point-based approaches, each with its strengths
and limitations. Grid-based methods have been used to convert point clouds into
regular 2D scenes or 3D voxels [17]. This research shows that, although this approach
brings structure to the data, it introduces quantization loss, where the continuous
properties of the point clouds are discrete as a mesh. This loss can affect the ac-
curacy of object recognition, especially in cases of geometric accuracy is important.
On the other hand, point-based methods, exemplified by techniques such as Point-
Net, learn from individual points directly in the cloud. This approach may face the
challenges of capturing complete semantic information from the data while avoiding
quantization loss. PointNet’s ability to sense complex relationships between points
may be limited, potentially resulting in incomplete or incorrect identifications. In
response to these challenges, the proposed gateway attention-based point-set ab-
straction (GAPSA) algorithm appears as a promising solution [17]. GAPSA rep-
resents a new approach that aims to bridge the gap between the geometric and
semantic understanding of point clouds. The system uses cognitive techniques to
highlight important parts of the data, enabling it to recognize geometric and se-
mantic features simultaneously. The main innovation lies in GAPSA’s ability to
focus on specific points in the cloud, taking into account their spatial relationship
and relative semantics. This sharp focus increases the completeness and accuracy
of visualization. It not only addresses issues of irregularities and irregularities but
also provides a solid foundation for understanding complex point cloud data. By
combining geometric and semantic insights, GAPSA provides a holistic approach
to meaningful cloud-based 3D object recognition. It also promises that point-based



logical differentiation will overcome the limitations of network-based quantization,
opening the way for accurate and reliable object detection in complex and dynamic
environments. As researchers refine and extend GAPSA, its potential applications
become more apparent, from improving the reserve capabilities of autonomous ve-
hicles to providing augmented reality experiences.

Traditional 3D object recognition algorithms face challenges when objects lack com-
plete shape information due to distance or occlusion. The proposed algorithm in
[21] addresses this issue by exploiting the capabilities of Ada-GRU (adaptive gated
recurrent unit) which is a type of Recurrent neural network (RNN). Ada-GRU plays
an important role in the algorithm by seamlessly merging features extracted from
each frame with hidden features from the previous frames. This dynamic fusion
mechanism enhances feature detection, period suffering from incomplete design is-
sues due to factors such as distance or obstruction. Another important aspect of
the algorithm is how uncertainty is handled, especially for peripheral and blocked
objects. Acknowledging that estimating the location of such objects can be chal-
lenging. This paper [21] introduces a probability distribution model based on a
Gaussian distribution function This model, together with the corresponding bound-
ing box loss function, is presented as this algorithm which can detect and estimate
the uncertainty, associated with bounding box positioning with immense accuracy.
The outstanding achievement of this algorithm is that it achieves this improvement
without significantly increasing the complexity of the algorithm. This is critical
for real-world applications, especially in autonomous driving, where computational
effort is paramount. As such, the algorithm provides a dynamic and robust solu-
tion for detecting objects in a 3D point cloud, which is key to enabling autonomous
vehicles to sense and navigate the environment. Incorporating timeline informa-
tion and dealing with uncertainty, enhances informed decision-making by vehicles.
The experimental results presented in the paper [21] provide strong evidence for the
effectiveness of the algorithm. Detection accuracy is greatly improved, especially
in situations involving distant or obstructed objects. These developments have the
potential to move the autonomous vehicle industry forward, enabling it to better
meet real-world challenges and pave the way for safer and more efficient autonomous
vehicles on the roads. As such, the algorithm provides a dynamic and robust solu-
tion for detecting objects in a 3D point cloud, which is key to enabling autonomous
vehicles to sense and navigate the environment By incorporating timeline informa-
tion and dealing with uncertainty, it enhances informed decision-making by vehicles.

Another research [5] introduces Part-A2Net, a new 3D object recognition system,
which marks a significant step forward in this field. The Part-A2Net process con-
sists of two important phases: a fraction-aware phase and a fraction-gathering phase.
These techniques work in concert to improve the accuracy and reliability of 3D ob-
ject recognition from point cloud data. In the awareness phase, the system adopts
a different perspective. It uses free-side views derived from 3D ground-truth boxes.
These observations are used to predict high-level 3D coordinates and determine the
precise locations of object components. This phase plays an important role in intro-
ducing preliminary concepts and establishing precise component locations, laying a
strong foundation for subsequent applications. The part-accumulation stage takes
the known part regions of the object and reconstructs the location of the object



by analyzing the spatial relationship between these parts. This stage increases the
accuracy of the object location by capturing and adding the geometric details of the
object parts to the scoring system. A notable achievement of the Part-A2Net frame-
work is its ability to achieve state-of-the-art results on benchmark datasets such as
KITTI 3D object detection using only LiDAR point cloud data. This demonstra-
tion highlights how the framework is effective in dealing with the challenges of 3D
objects found in real-world situations. The paper [5] also builds on previous work,
in particular extending the original Point RCNN method to the Part-A2Net frame-
work. This extension further enhances the performance of 3D features detected
from point cloud data. Notably, the system avoids the use of highly pre-defined 3D
anchor boxes, which simplifies the process and constrains the 3D shapes to be im-
ported only from facial regions, thus improving performance. In summary, the Part-
A2Net framework represents a significant advance in point cloud-based 3D object
recognition. Its innovative phase detection, spatial relationships, and free reference
functions help increase accuracy and efficiency and overcome common challenges to
maximize the power of state-of-the-art results.

2.2 Related Works

L. Wang et al. [20] proposes a 3D vehicle recognition network based on images and
point clouds. It includes the first fusion module, the BEV encoding format, and
the Feature Fusion (2F) network. The proposed solution uses a first-class fusion
method to combine data from LiDAR and camera sensors, enabling smoother pro-
gramming and improving convolution coding effectiveness. This method uses a color
point cloud a bird’s eye perspective representation is used to detect vehicle speed.
However, it states that one of the main challenges in 3D scene perception is that the
3D data consists of a large field of view (FOV) of irregular and unstructured points,
which requires consideration of data representation and arrangement suitable for
CNN design in detail. The findings show that the proposed method improved the
detection of blocked and remote vehicles and can finally be evaluated by end-to-end
training. The method proposed in the KITTI benchmark provides more accurate
real-time execution.

Another paper [13] describes a novel approach for vehicle detection from point clouds
and images using a multilayer fusion network. The proposed method has the poten-
tial to improve vehicle safety by providing accurate and efficient vehicle recognition.
The author’s approach is to use a multilayer fusion network for 3D vehicle recogni-
tion from point clouds and images. This fusion has three forms: data-level fusion,
feature-level fusion, and deep fusion. In the data-level fusion step, the network pro-
vides points with rough texture information from the RGB images of the first fusion
module. Then, point clouds are encoded in both voxel grid and Bird’s Eye View
(BEV) formats, their abstract features are extracted and fused to output propos-
als using a new coarse-fine detection header with greater recall. The search header
simulates a two-stage detection network to obtain coarse proposals at the encoder
and optimize them at the decoder. Finally, the deep fusion module improves the
reliability of quality samples by re-fusing image components, thus reducing false
detection. The experimental results show that the proposed method is effective for



object recognition accuracy and can reduce the incorrect detection of blocked and
peripheral objects, as well as the detection of objects with similar shapes lies so well.
Thus, the paper identifies two research gaps in traffic detection. The first difference
is the lack of visibility of obstructions and peripherals, which is a common problem
in traffic areas. The second difference is the false detection of objects of the same
shape, which can also be a serious problem in automotive safety. The paper argues
that this particular problem needs to be further studied and addressed to improve
accuracy.

Another research [16] proposes a LiDAR~camera-based fusion algorithm to improve
the trade-off between dense semantic information from the camera and accurate
depth information from LiDAR for real-time object detection in autonomous driving.
The algorithm converts unprocessed point clouds into camera planes producing 2D
depth images using the depth and the RGB function. These branches are connected
by a cross-feature fusion block. Data fusion is also performed by feature-level fu-
sion technique. The proposed method outperforms other state-of-the-art algorithms
and provides more performance and real-time efficiency at different complexity lev-
els according to experimental results on the KITTII dataset. Wire detection and
conceptual strategies are introduced to improve mediation focus on areas of interest
and to reduce false negatives and false positives.

3D object recognition using point clouds is complicated by its incomplete shape and
weakness of point clouds. H. Liu et al. [11] discusses the challenges of accurate 3D
object recognition of point clouds and suggests that another two-dimensional De-
formable Pyramid R-CNN scheme is not developed. For multilevel selection of 3D
features based on the sparsity of non-empty voxels in a region of interest (Rol), it
also presents a voxel feature pyramid. Deformable Voxel Rol Pooling, a method that
KITTTI provides a coherent definition for accuracy for identifying by abstracting rich
contextual information from voxels of interest beyond the Rol. For vehicle identifi-
cation in the dataset, the method outperforms PV-RCNN 0.47%, 1.63%, and 1.34%
in terms of it being in the mild, medium, and hard range. The method achieves
consistent performance on both the KITTI Dataset and the Waymo Open Dataset.

In another research [7], the authors propose a LIDAR-based approach for object de-
tection in 3D using a fully flexible convolutional network (FS 2 3D) and foreground
segmentation. Sparse enhancement detection heads are used to predict the target
and the bounding box at each active point in the sparse feature map, which trans-
forms the search problem into a bird’s eye classification problem. A new bounding
box coding technique and associated loss functions were developed. For cars and
motorcycles, the technique surpasses the most advanced LIDAR-based solutions in
terms of speed and accuracy. Compared to the dense backbone mesh, the sparse
convolutional backbone mesh presented in the paper is 2.2 times faster and uses 18.4
times fewer FLOPs. To predict objects 3D bounding box, the study uses multitask-
ing mesh design results in a detecting head with three branches. The addition of
a new boundary box reference registration method and associated loss in birds-eye
view (BEV) and 3D search enhances the performance of the loss function based on
the boundary box rule of 1.1% and 0.8%.



The study [14] proposes a multilayer fusion network for 3D vehicle detection, which
enhances the blocking and remote object performance and reduces the false detec-
tion of equal-sized objects. A first fusion module is provided for data-level fusion
of images and point clouds, unlike the existing fusion-based techniques. Navat -
Information obtained The study proposes a new coarse-fine detection header for
traffic scene characterization, using 3D points in point clouds as voxel meshes and
BEVs, resulting in more accurate representation and semantic information Improves
the accuracy of our search As to evaluate results, their method outperforms many
SOTA algorithms, especially for objects a of blocked and peripheral. It also re-
duces the blurring of objects with similar shapes. Through ablation experiments,
the recommended modules of the assay are successful in improving the detection
performance. The complex network topology of the analysis results in lower real-
time performance compared to previous methods, and further research is needed on
a smaller network sample.

L. Wiesmann et al. [8], discusses a different approach based on neural networks for
loss point cloud compression was developed. Their approach relies on complex and
large-scale maps constructed from integrated point clouds mounted in autonomous
vehicles. Their method uses a deep convolutional autoencoder to identify a small
collection of feature descriptors using the common schemes. The descriptor set acts
as a compressed representation, which the decoder can use for later point cloud re-
construction or efficient storage transmission. Furthermore, to avoid memory space
issues from skip connections or discretization effects from using voxel grids practi-
cally, the research proposes that 3D deconvolution acting directly on points can be
successfully reduced.

In another research [3] surveys, the rapid development of deep learning-based 3D ob-
ject recognition technologies has been facilitated by advanced computational tools.
However, more accurate real-time methods are being sought. Research focuses on
developing new deep-learning architectures that extract finer features and provide
new data representations aimed at faster processing for more accurate and efficient
detectors. The addition of a second detector enhanced post-processing NMS. The
challenges of automatic 3D object recognition include negative and positive unbal-
anced samples and complex sensitivity conditions, which need further development
to improve classification reliability and local accuracy This study compares different
3D object detection techniques and provides a comprehensive literature review. It
aims to provide readers with valuable information about the 3D sensitivity of point
clouds and help in research questions. The proposal proposes a general 3D object
detection system, a framework for analyzing key sample features, and a comparative
analysis of state-of-the-art methods The study also addresses issues related to meth-
ods based on deep learning for LiDAR point cloud processing and suggests possible
future research methods.

Also, another study [10] investigates a point-based 3D object detection method in
a 3D object detection algorithm. This study investigates PointRCNN-—a 3D object
recognition system using deep learning. Third-order point cloud classification and
image classification are presented to increase the classification confidence. The first
proposed point cloud classifier and image classifier are introduced with their mesh



structure and how to return and resolve the objective. Then, the network design and
loss function of the proposed point cloud classifier and image classifier are described
in detail. Finally, model tests are conducted to demonstrate that it can achieve a
high sensitivity of 79.51% (moderate). The accuracy of the model is 0.66% bet-
ter than the original, demonstrating the robustness of point clouds and third-order
image classification. In the KITTI validation set, the 3D detection results of the
model in this study are compared with the traditional 3D target detection method.
In this study, if the 3D intersection ratio between the detection frame and the label
exceeds 0.7%, the detection frame is considered correctly detected; Otherwise, the
search is considered unsuccessful. Table 1 shows the detection results obtained by
the model in the validation set using the mentioned methods. As can be seen, this
method has a higher detection rate than the original 3D target detection algorithm,
but a faster speed than the original 3D target detection algorithm, which has been
reduced. This is because the method presented in this study is point-based, and each
of the three steps requires multiple inputs, mask operations, configuration changes,
etc. Although it has a higher time complexity.
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Chapter 3

Dataset Description

3.1 Data Collection

Point cloud data is collected from LiDars. The Point clouds are collected from
different types of urban environments. The Point cloud datasets are released to check
the benchmark of different 3D object detection models. The three most competent
datasets are the Kitti Dtaset, The NUplan Dataset, and the ApolloScape Dataset.
We have decided to use Kitti Dataset for it’s availability and world-wide credibility
in case of Model Evaluation.

3.1.1 NUplan Dataset

The world’s first ML planning benchmark, 1200h of driving data from 4 cities
(Boston, Pittsburgh, Las Vegas and Singapore)Sensor data released for 120h (5x
LIDAR, 8x camera, IMU, GPS), 5B 3D bounding boxes auto labeled for 7 classes.

3.1.2 ApolloScape Dataset

Trajectory dataset, 3D Perception Lidar Object Detection and Tracking dataset
including about 100K image frames, 80k lidar point cloud and 1000km trajectories
for urban traffic. The dataset consisting of varying conditions and traffic densities
which includes many challenging scenarios where vehicles, bicycles, and pedestrians
move among one another.

3.1.3 Kitti Dataset

The 3D object detection benchmark consists of 7481 training images and 7518 test
images as well as the corresponding point clouds, comprising a total of 80,256 labeled
objects. This Dataset is widely used in computer vision and autonomous driving
research. It contains a variety of scenes captured from a car equipped with LiDAR
sensors and cameras, making it ideal for tasks like 3D object detection, tracking, and
segmentation. There are three kinds of data in this Dataset: Easy, Moderate, Hard.
We used the Moderate order. From our analysis, the dataset contains the following
classes: Car, Pedestrian, Cyclist, Van, Person sitting, Truck, Tram, Misc. These
classes encompass various common objects found in roads in the cities, particularly
focusing on road traffic scenarios.
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Pickle File Creation: The pickle files in the Kitti dataset is created to store pro-
cessed data in a serialized format.

Data Collection: Raw data is collected from the sensors, which may include point
cloud data from LiDAR, images from cameras, and annotations (like bounding boxes
and class labels) for each object in the scene.

Data Processing: The raw data is processed to extract useful features which involves:
Filtering the point cloud data to remove noise, Projecting LiDAR points into the
camera images to associate 3D data with 2D images, and Annotating objects with
bounding boxes and class labels.

Serialization: The processed data, including features and annotations, is serialized
into a binary format. This is done using Python’s pickle library. This allows for
efficient storage and quick loading of large datasets.

Saving: The serialized data is saved to .pkl files, which can be easily loaded into
Python programs for further analysis or training machine learning models.

Figure 3.1: Raw Image Data from Kitti Dataset
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Figure 3.2: Bounding Box Data from Kitti Dataset
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Figure 3.3: Point Cloud Data from Kitti Dataset using Color Map
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Figure 3.4: Full Data from Kitti Dataset
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3.1.4 Data Preprocessing
3.1.4.1 SE-SSD Preprocessing

These are the techniques used in SE-SSD model for Pre processing. Data Normal-
ization: Standardization: This involves scaling the point cloud data to have zero
mean and unit variance. This step helps stabilize the training process and improves
the convergence rate of the model.

Voxelization: The LiDAR point clouds are often voxelized into a structured grid.
Voxelization involves dividing the 3D space into a grid and point cloud data into
the grid cells. This reduces the number of points and simplifies the data structure.
Random Occlusion: Simulating occlusions by randomly removing some points from
the point cloud helps the model generalize better. This mimics real-world scenarios
where objects can be partially obscured.

Random Rotations and Translations: This technique increases the efficiency of the
model by training it on different orientations and positions of the objects.

Data Augmentation: Applying transformations like flipping, rotation, and scaling
to increase the diversity of the training dataset.

Input Scaling: Rescaling the coordinates of point clouds to a certain range (e.g.,
[-1, 1]) ensures that the data is on a consistent scale, which is crucial for neural
networks.

3.1.4.2 GLENet — VR Preprocessing

Point Cloud Encoding: In GLENet — VR, point clouds are encoded into feature
representations that capture spatial information effectively.

Local and Global Feature Augmentation: GLENet —V R employs local feature ex-
traction to capture fine details of the object.

Augmentation Techniques:Similar to SE SSD, GLENet — V' R use various data aug-
mentation techniques, including random rotations, translations, and possibly syn-
thetic occlusion, to create robust training samples.

Standardization: Like SE SSD, GLENet — V R benefits from standardizing point
cloud data to improve model training.

3.1.4.3 Preprocessing Technique used for the Modified Model

We used Occluded Point Cloud Data and Standardized Point Cloud Data. The other
techniques are also followed, however we get the best output and efficient compu-
tational power using these two methods. For our limited computation power we
took 7,481 items from the Moderate Dataset. The Dataset was split into trainning,
testing and validation folders respectively in the ratio of 70:20:10.

We used color maps and visual class to visualize data from the Kitti Dataset.
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Figure 3.5: Pre Processed Data
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Chapter 4

Methodology

Figure 4.1: The top level overview of the propose GLE-SSD-VR.
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4.1 GLE-SSD-VR Model

e Model Fusion Framework: Developing a fusion framework that combines the
strengths of GLENet —V R-VR and SE-SSD for robust 3D object recognition
using LiDAR datasets.We will leverage GLENet — V R’s uncertainty-aware
quality estimator architectures to enhance the training of SE-SSD’s Inter-
section over Union (IoU) branch, ensuring effective utilization of predicted
localization uncertainty.

« Conditional Variation Autoencoders (VAEs) Integration: We will implement
a seamless integration of GLENet — V R’s conditional VAEs into the SE-SSD
architecture, enabling the generation of robust 3D object representations from
fuzzy annotations. Quantify label uncertainty introduced by GLENet — VR
and incorporate it into SE-SSD, transforming it into a probabilistic model that
better understands and represents uncertainty in object localization during
both training and inference.

o Practical Implementation and Performance Evaluation: We will implement
the integrated GLENet — V R-VR and SE-SSD framework into popular 3D
detectors, ensuring practical applicability. We will evaluate the performance
of the integrated model on benchmark datasets such as KITTI and Waymao,
demonstrating improved accuracy in 3D object recognition, particularly sur-
passing previous Lidar-based methods and excelling on challenging datasets
like KITTI.

In the beginning the models takes Point Cloud and Bounding Box as input. The
Tensor image features along with Bounding Box Parameter goes to GLENet —
V'R as showed in figure 4.1. In the Prior Network of GLENet — V R the image
features is made to latent variables. The Recognition Network of GLENet — VR
uses both image features and Bounding Box Parameters to make featured Latent
variables. This Recognition Latent Variables gets fed to Context Encoder later. In
the Prediction Network of GLENet — V' R the latent variables gets fed and generate
Predicted Bounding Box as showed in figure 4.1. In the Context Encoder class,
PointNet generates Feature which is fed to MLP. In MLP latent variable from
GLENet — V R combines with the feature got from PointNet to generate Context
Features. The context features from Context Encoder and Predicted Bounding
Boxes from GLENet — VR get fed to MTHead of the both Teacher SSD and
Student SSD. The Teacher SSD is complex, thus gives target predictions as "ground
truth” to the Student SSD. We get IoU of the predictions of Teacher SSD and
Student SSD. This is used to calculate Consistency Loss of Bounding Box and
Classification. The calculated loss is then back propagates to Student SSD for
knowledge distillation as showed in figure 4.1.

4.2 Description of GLENet-VR

Point cloud-based 3D object recognition represents an important field in computer
vision, especially for autonomous vehicles and robotics. In the study, [22] addresses
an important challenge in this area: the uncertainty of the ground-truth description
of 3D bounding boxes, which can lead to confusion in the deep training of 3D object
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Figure 4.2: The Architecture of GLENet — VR

detector’s intensity and reduce eventual detection accuracy. To address this issue,
the authors introduce a novel framework called GLENet — VR. GLENet — VR, a
short generation class for 3D object recognition from fuzzy annotations, is a gener-
ation algorithm based on conditional variation autoencoders (VAEs) with the main
objective of being generally robust to 3D objects and their downstream capabilities
true boundary boxes between One and many relationships are modeled. This corre-
lation is due to the inherent uncertainty in defining object boundaries in 3D space.
GLENet — V R addresses this by introducing label uncertainty, effectively quanti-
fying ambiguity in ground-truth identification. This label uncertainty can then be
easily incorporated into existing 3D object detectors for depth objects. In doing
so, it transforms these detectors into probabilistic models, increasing their ability
to understand and represent uncertainty in object localization during training and
inference The main feature of the paper [22] is the introduction of uncertainty-aware
quality estimator architectures. This algorithm plays an important role in guiding
the training of the Intersection over Union (IoU) branch by exploiting the predicted
localization uncertainty In particular, it ensures that the training process uses am-
biguous knowledge and calculates it, resulting in more accurate and robust detec-
tions. Importantly, the proposed methods are not only theoretically explored but
also practically implemented by integrating them into popular base 3D detectors.
The results are impressive, showing performance greatly benefits from benchmark
datasets such as KITTI and Waymo. GLENet—V R in particular stands out as out-
performing all previously published LiDAR-based methods and outperforming single
methods on the complex KITTI dataset. The contribution of this paper is notewor-
thy, as they directly address a key issue in point cloud-based 3D object recognition:
annotation ambiguity By introducing GLENet — V R and related methods, the au-
thors provide tools that account for this ambiguity and resolving the field, thereby
increasing detection accuracy and self-sustaining systems based on the accuracy of
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3D object recognition such as self-driving cars and robot motion.

4.3 Description of SE-SSD

Figure 4.3: The Architecture of SE-SSD

A recent study [9] introduces a new framework that represents a breakthrough in
this field which is called entitled SE-SSD: Self-Ensembling Single-Stage Object De-
tector From Point Cloud.

The SE-SSD architecture is designed to provide accurate and efficient 3D object
detection in external point cloud data. It makes several key contributions, each
contributing to the effectiveness of the whole. At the core of the SE-SSD is a self-
assembling device, which is optimized by limiting stabilization with flexible values.
This approach allows the system to iteratively adjust and improve its predictions
during training. By exploiting the knowledge of a simple objective, SE-SSD can
fine-tune its predictions, resulting in more accurate and reliable detections. Fur-
thermore, the paper [9] introduces ODIoU loss which plays an important role in
managing networks with complex objectives. This loss function contributes to vi-
sual accuracy by providing a strong observer signal as shown in Figure 4.2. It helps
the network learn how to construct bounding boxes that are more consistent with
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the ground truth, ultimately improving detection performance. Another distinctive
feature of the SE-SSD architecture is its size-aware data enhancement strategy. This
strategy aims to increase the diversity of training models, which is often necessary
for complex and comprehensive learning. By introducing data sets, the network is
equipped to deal with real-world complexities and nuances. Perhaps the strongest
aspect of the SE-SSD is its functionality. It outperforms all state-of-the-art 3D
and birds-eye view (BEV) vehicle detection methods at the kitty scale. This im-
provement highlights the effectiveness of the system and highlights its potential to
set a new standard in 3D object recognition. Furthermore, the SE-SSD does not
sacrifice performance for accuracy. It achieves very high computational speed, mak-
ing it suitable for real-time applications where speed and accuracy are paramount.
In conclusion, SE-SSD represents a remarkable breakthrough in point cloud-based
3D object recognition. Its self-assembly innovation, missing ODIoU implementation,
and highly data-aware scalability combine to contribute to exceptional performance.
As autonomous systems and robotic applications continue to evolve, SE -SSD re-
mains a promising tool to increase holding power, ultimately helping to sail safely
and effectively in challenging real-world conditions.

4.4 Working Process of GLE-SSD-VR

The workflow begins with the input of point cloud data, which represents 3D spatial
information. This data consists geometric details, allowing the model to understand
the physical layout of objects within a scene. The point cloud consists of discrete
data points, each characterized by its coordinates (x, y, z) in a three-dimensional
space, along with additional attributes such as color. This geometric data format
provides spatial cues which helps object localization and classification. Alongside
the point cloud data, image data gives visual information that helps the spatial
characteristics of the point cloud. Images provide contextual details, such as texture,
color, and visual patterns, which are important for distinguishing between objects
that may have similar geometric shapes but differ in appearance.

4.4.1 Context Encoder

The point cloud data is first processed by the Context Encoder, which is a class
designed to extract meaningful features from the point cloud. The Context Encoder
includes a PointNet layer that captures local features of the 3D data while preserving
global contextual information. Following this, the features are combined with latent
variables that represent contextual knowledge or noise factors. This combination
creates the feature representation by introducing relevant information that might
not be present in the point cloud data.

After the Context Encoder processes the point cloud, the next stage involves passing
these enriched feature representations to the MT Head. This head is responsible for
leveraging the combined features of both the point cloud and image data.

4.4.2 GLFENet —V R Integration

The image data is fed into the GLENet—V R, which is a class made to extract visual
features. This network is built to analyze the RGB images, detecting important
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attributes and relationships within the visual context. The outputs from GLENet—
V' R provide high-level visual features that help the spatial features obtained from
the point cloud.

4.4.3 Combining Outputs for Detection

The architecture leads to integration of outputs from both the Context Encoder
and MT Head. These combined features are essential for the MT Head, where they
are utilized in a multi-task learning framework. The MT Head have two separate
networks: the Teacher SSD and the Student SSD. The Teacher SSD acts as
a guide, providing target predictions based on the combined feature inputs. In
contrast, the Student SSD learns from the Teacher’s predictions, allowing it to
develop similar accuracy while optimizing for computational efficiency.

This architecture not only facilitates effective object detection by synthesizing spatial
and visual information but also ensures that the model can generalize different
kind of environments. By leveraging knowledge distillation, the workflow enhances
the Student SSD’s performance while maintaining an efficient model for real-time
applications. The result is a powerful and efficient 3D object detection system
capable of accurately detecting and localizing objects in complex environments.

4.5 Model Architecture

4.5.1 Description of GLENet — VR

The GLENet — VR (Global and Local Enhanced Network for Visual Recognition)
plays a crucial role in processing 2D image data to generate visual feature maps
that contribute to the overall performance of the multi-modal architecture for 3D
object detection. By employing a hierarchical structure made with three major
components—the Prior Network, Recognition Network, and Prediction Network.
GLENet — VR is designed to extract a rich representation of the image data, facil-
itating accurate object detection.

4.5.1.1 Prior Network

The Prior Network serves as the initial stage of GLENet — V R, where raw image
data is introduced. This network works to preliminary feature extraction, focusing
on capture low-level features present in the image.

Fully Connected Layers: The Prior Network consists of four fully connected lay-
ers: Layer 1: Linear(512, 64), Layer 2: Linear(64, 128), Layer 3: Linear(128, 512),
Layer 4: Linear(512, 8) (Output latent variable dimension)

Layers: Input image features (dimension: 512) are passed through the first fully
connected layer, generating 64 features. The output from Layer 1 is processed
through Layer 2, producing 128 features. This is followed by Layer 3, which out-
puts 512 features. Finally, Layer 4 produces an 8-dimensional latent variable, which
represents essential low-level features.

Feature Extraction Techniques:

Activation Function: The ReLU activation function is applied after each fully con-
nected layer, introducing non-linearity and enabling the network to learn complex
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patterns by setting all negative values to zero.

Batch Normalization: This technique is typically used in conjunction with the fully
connected layers to stabilize and accelerate the training process.

In summary, the Prior Network effectively lays the groundwork for feature extrac-
tion by capturing low-level image characteristics, ensuring that subsequent networks
can build upon a rich and nuanced representation of the input data.

Prior Network

Input Image Features .| Layer 1: Linear(512, .| Layer 2: Linear(64, .| Layer 3: Linear(128, .| Layer 4: Linear(512, o Output Latent
(512) 64) + ReLU 128) + RelLU 512) + RelLU 8)+ RelU Variable

Fully Connecied Layers

Figure 4.4: Layers of Prior Network

4.5.1.2 Recognition Network

Building upon the foundational work of the Prior Network, the Recognition Network
works with extracted features, enabling the detection of more complex patterns such
as shapes, objects, and contextual relationships within the image.

Fully Connected Layers: The Recognition Network also comprises four fully
connected layers: Layer 1: Linear(512 + 7, 64) (combining prior features with 7
bounding box parameters), Layer 2: Linear(64, 128), Layer 3: Linear(128, 512),
Layer 4: Linear(512, 8) (Output latent variable dimension)

Data Flow:

Layer 1: Linear layer with input size 519 (512 features from the Prior Network +
7 bounding box parameters) and output size 64. This step reduces the dimensions
and helps capture essential features while maintaining contextual information. Ac-
tivation Function: ReLU is applied after this layer to introduce non-linearity, which
helps the network learn complex patterns. Dropout: A dropout layer is used to
randomly drop units, helping reduce over-fitting.

Layer 2: Linear layer with input size 64 and output size 128. This expands the
feature space, allowing the network to model higher-level interactions. Activation
Function: ReLU again helps activate complex patterns.

Layer 3: Linear layer with input size 128 and output size 512. This step further
increases the complexity and dimensionas of the feature representations. Activation
Function: ReLU is applied to maintain non-linearity.

Layer 4: The final linear layer maps the 512-dimensional output to an 8-dimensional
latent variable. This latent variable is a condensed, learned representation of the
object’s features.

Techniques:

ReLU Activation: Introduces non-linearity, enabling the model to capture complex
patterns.

Dropout: It is added to prevent over-fitting by randomly setting a fraction of the
output units to zero during training.

The network’s output is an 8-dimensional latent variable, representing the features
and characteristics of the object in 3D space, learned from both the input data and
the bounding box parameters.
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Figure 4.5: Layers of Recognition Network

4.5.1.3 Prediction Network

The Prediction Network in the GLENet — V R class is responsible for predicting
the bounding box parameters based on the combined latent variables from the Prior
Network and Recognition Network.

Input: The input to the Prediction Network is a concatenation of two latent vec-
tors:

Prior latent: An 8-dimensional vector produced by the Prior Network that encodes
low-level features from the image.

Recognition latent: An 8-dimensional vector generated by the Recognition Network
that captures both the image features and bounding box parameters. The combined
vector has a total dimension of 16 (8 from prior + 8 from recognition).

Layers:

Layer 1: A fully connected layer that reduces the input dimensions from 16 to 64.
Layer 2: Another fully connected layer that maintains the same dimension of 64.
Layer 3: The final fully connected layer that outputs the bounding box parameters
with a dimension of 7.

Activation Function: The ReLU (Rectified Linear Unit) activation function is
applied after Layer 1 and Layer 2 to introduce non-linearity and help the model
learn complex patterns. The output from Layer 3 is used directly to predict the
bounding box parameters without an activation function, as it is a regression task.
Output: The output of the Prediction Network is a 7-dimensional vector repre-
senting the bounding box parameters for the object in the image. Bounding box
parameters are 4 coordinates, 3 object classes or other features.

Recognition Network

Priorl;aienl Layer 1 (16 -= 64) Layer 2: Linear(64, Layer 3: Linear(64, 7) Bounding Box

Recognition Latent +Relu v 64) + ReLU +RelU Co-ordinates

Input Fully Connected Layers Prediction

Figure 4.6: Layers of Prediction Network

4.5.2 Description of Context Encoder

The Context Encoder handles the point cloud data and latent variables, and outputs
a feature representation that merges the spatial information with the latent context.
This class is designed to handle the processing of 3D point cloud data using PointNet,
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and then integrates these point features with latent variables using a Multi-Layer
Perceptron (M LP).

4.5.2.1 Input from GLEnetV R Component:

The GLEnetV R model is used to process and learn key features from point cloud
data in relation to the bounding box parameters. This helps as a pre-processing step
where raw point cloud inputs are there into a more informative feature space. The
output from Recognition Network of GLEnetV R is used as input to the subsequent
PointNet component.

4.5.2.2 PointNet:

Input: After Recognition Network of GLFEnetV R processes the data, the PointNet
module receives the point cloud data as input. PointNet’s main role is to handle
the geometric structure of the point clouds by applying convolutional layers.

Convolutional Layers: PointNet starts by applying two 1D Convolutional layers:
The first convolution has a filter size of 64 and is followed by a ReLU activation
function. This layer applies 1D convolution across the point cloud data. Fach point
is processed individually, and local features are extracted for each point. It has 64
filters.

The second convolution has a filter size of 128, also followed by a ReLU activation.
A second 1D convolutional layer is applied to further refine and expand the local
features of each point. It has 128 filters.

These convolutional layers works to process the spatial features of each point in the
point cloud individually. This helps the model to capture local features for each
point.

Max Pooling: After feature extraction through convolutions, max pooling is ap-
plied across the entire set of points, which sums local features into a global feature
vector. This pooling layer ensures that the model hold a global representation of
the entire 3D structure. It focuses on the most prominent features across all points
in the cloud.

4.5.2.3 MLP

Combining Features: After max pooling, the global features extracted by Point-
Net are concatenated with the latent variables. These latent variables are repeated
across the dimension to match the size of the global feature vector. It ensures that
both types of data are aligned.

Feed-forward Layers:

The combined feature vector is then passed through a two-layer M LP. The first
layer reduces the dimensions. The global features and latent variables are concate-
nated and passed through a linear layer to integrate them (128 + latent variables
— 128). Followed by a linear transformation followed by a ReLU activation in this
linear layer.

The second M LP layer further processes the features and outputs the final 128-
dimensional feature vector. This integrates both the point cloud’s spatial informa-
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tion and the context from the latent variables.

Figure 4.7: Architecture of Context Encoder Class

4.5.3 SSD
4.5.3.1 Teacher SSD

The TeacherMTHead is designed to be a more complex architecture, with a deeper
and wider network than the Student version. The Teacher SSD consists of five fully
connected layers, with progressively reducing dimensions from 512 to 64 units. This
depth allows the Teacher SSD to capture more complex relationships and patterns
from the input features. The Teacher SSD has the capacity to model intricate feature
representations as it uses more layers and higher-dimensional transformations.

It has input features of 128 dimensions.

Layer Structure:

Layer 1: A fully connected layer (Linear(128, 512)) with ReLU activation.

Layer 2: A fully connected layer (Linear(512, 512)) with ReLU activation.

Layer 3: A fully connected layer (Linear(512, 256)) with ReLU activation.

Layer 4: A fully connected layer (Linear(256, 128)) with ReLU activation.

Layer 5: A fully connected layer (Linear(128, 64)) with ReLU activation.

After the deeper layers, the output is split into two branches:

Bounding Box Branch: A fully connected layer (Linear(64, 256)) to predict the
bounding box coordinates.

Class Scores Branch: Another fully connected layer (Linear(64, 256)) to predict the
object class scores.

Data Flow: Input features pass through the first layer (128 to 512) with ReLU. The
result goes through multiple layers, reducing dimensions: 512 — 512 — 256 — 128
— 64. The final 64-dimensional output splits into two branches: one for bounding
box predictions and one for class scores. The bounding box branch produces a 256-
dimensional output, and the class scores branch also produces a 256-dimensional
output. This architecture is designed to have capacity to capture complex patterns,
making it a robust "Teacher” model in a knowledge distillation setup.
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4.5.3.2 Student SSD

The StudentMTHead is a simpler and smaller network, which makes it faster but
less complex than the Teacher model. It takes the outputs of the Teacher SSD as
inputs. It serves the purpose of approximating the performance of the teacher but
with fewer parameters, making it more efficient in terms of computation.
Description: Input Features Dimension: 128 Layer Structure: Layer 1: A fully con-
nected layer (Linear(128, 256)) with ReLU activation. Layer 2: A fully connected
layer (Linear(256, 128)) with ReLU activation. After these two layers, the output
is split into two branches: Bounding Box Branch: A fully connected layer (Lin-
ear(128, 128)) to predict bounding box coordinates. Class Scores Branch: Another
fully connected layer (Linear(128, 128)) to predict object class scores. Data Flow:
Input features pass through the first layer (128 to 256) with ReLU. The result goes
through the second layer (256 to 128). The 128-dimensional output splits into two
branches for bounding box predictions and class scores. Both the bounding box
and class scores branches produce a 128-dimensional output. This architecture is
designed to be simpler and less complex, making it suitable as the "Student” model
in a knowledge distillation process, where it learns from the more complex Teacher
model.

4.5.4 Knowledge Distillation

4.5.4.1 Consistency Loss

Classification Consistency Loss: The Student SSD tries to match its class pre-
dictions to those made by the Teacher SSD.

Instead of just using hard labels knowledge distillation often uses the soft class
probabilities produced by the Teacher. These soft probabilities carry more subtle
information, such as the relative confidence the Teacher has in different classes.
Loss Function: We used KL Divergence which measures how different the Student’s
predicted class probabilities are from those of the Teacher. This soft-target approach
is more informative than just using hard labels.

For example: If the Teacher predicts ”0.6 car, 0.3 truck, 0.1 bus,” and the Student
predicts 70.5 car, 0.2 truck, 0.3 bus,” the KL Divergence will measure how well the
Student mimics the Teacher’s confidence. We used Smooth L1 Loss function as well
for this task. This is less sensitive to outliers which makes it a good fit for bounding
box regression tasks.

Bounding Box Consistency Loss: The Student SSD tries to match its bounding
box predictions (i.e., the coordinates of detected objects) to those of the Teacher
SSD. The Teacher SSD detect an object, then the Student tries to match the pre-
dicted bounding box as closely as possible. The bounding box predictions involve
both the position and size of the detected object.

4.5.4.2 Knowledge Distillation Process

Teacher SSD Generates Predictions: The Teacher model processes input data
(e.g., images and point clouds). This produces bounding box predictions and class
scores which is confidence for different object categories.

Matching Predictions (Pseudo-Labels): The function match — targets — with —
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Figure 4.8: Knowledge Distillation Process

predictions aligns the Teacher’s bounding box predictions with those of the Student
by calculating the IoU. The IoU is calculated between corresponding bounding
boxes. Matched predictions with high IoU are treated as “ground truth” for the
Student during training.

Student SSD Receives Teacher Predictions: The Student SSD uses features as
pseudo-labels for learning when the predictions are matched. The bounding boxes
and class scores predicted by the Teacher SSD are treated as the target bounding
boxes for the Student SSD.

Consistency Loss Calculation: The Consistency Loss calculates the difference
between the Teacher’s and Student’s predictions. Classification Consistency Loss
computes the difference in predicted object categories using KL Divergence for soft
probabilities. And, Bounding Box Consistency Loss measures how closely the Stu-
dent’s bounding box predictions match the Teacher’s prediction using Smooth L1
Loss. Both these components are summed to get the final consistency loss, which
the Student SSD tries to minimize during training.
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Chapter 5

Results and Discussion

5.1 Performance Analysis

Table 5.1: Performance Metrics for GLE-SSD-VR Model

Model Accuracy (mAP) (%) | Precision (%) | Recall (%) | F-1 (%)
GLE-SSD-VR 85.13 85.16 83.14 84.32
Moder ver2 82.21 84.71 81.73 82.92
Model verl 81.34 82.62 79.93 80.27

The accuracy of the model we used was 85.132%. We created different models for
bench marking the results. The Model version 2 had the architecture similar to
GLENet — VR in the Teacher SSD. In the Model version 1, we used the same
Architecture for both Teacher SSD and Student SSD. We get the best result for
the current version of the model. The 1st version under performs while version 2 has
a quite near performance of the latest version. Because of using same architecture in
Student SSD and Teacher SSD, it does not have close to no effect in the accuracy.
Because the Soft prediction and the Student’s prediction likely to get the same
result for same architecture. Whereas when we used GLENet —V R in the Teacher
MTHead, it gave better result. Then we updated it to the latest proposed model
which gives better result so far. The accuracy was calculated using Mean Average
Precision mAP. The mAP compares the ground-truth bounding box to the detected
box and returns a score.
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Figure 5.1: Confusion Matrix of GLE-SSD-VR Moderate Dataset

Figure 5.2: Confusion Matrix of GLE-SSD-VR Easy Dataset

The model demonstrates high accuracy for critical classes like Car and Cyclist. In
the easy dataset, the model correctly identifies 2050 cars out of 2130 and 1382 cy-
clists, as showed in Figure 5.2. The model maintains strong detection capabilities
for Trams and Trucks in both datasets. Even in the moderate dataset, the model
accurately detects 657 trams and 328 trucks, as showed in Figure 5.1. This sug-
gests that the model is well-tuned to identify larger and less dynamic objects. The
model performs consistently across all the classes (e.g., vehicles, humans, and mis-
cellaneous objects). This shows its ability to handle multi-class detection scenarios.
This indicates that the model can generalize well to different object types, which
is essential for autonomous systems operating in dynamic, real-world environments.
Additionally, The Cyclist and Pedestrian classes, which are dynamic and often more
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challenging to detect, show high detection rates (e.g., 1382 cyclists and 1031 pedes-
trians in the easy dataset). This emphasizes the model’s capacity to accurately track
and identify moving objects, crucial for maintaining safety in autonomous naviga-
tion systems. Even with the accuracy drop in the moderate dataset, the model
retains over 85% accuracy. This demonstrates that the model has a robust baseline
performance. Further tuning and improvements can enhance its capabilities.

5.2 Comparative Study
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Figure 5.3: ROC & Precision-Recall Curve for Moderate Dataset
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Figure 5.4: Precision-Recall & ROC Curve for Easy Dataset

GLE-SSD-VR consistently shows the highest AUC score across both curves as
showed in Figure 5.3 and Figure 5.4. It indicates that it has the best performance
among the models in distinguishing between classes. SE-SSD and GLENet-VR ex-
hibit slightly lower AUC scores compared to GLE-SSD-VR, demonstrating decent,
but not the best, performance in classification tasks. Their curves are closer to
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the random guess line compared to GLE-SSD-VR. VirConv-S has the lowest AUC
score, indicating that while it has a high detection rate for some classes, it struggles
to distinguish objects accurately across all classes compared to other models. In
both the curves, GLE-SSD-VR maintains higher precision at lower recall levels. It
demonstrates that the model balances precision and recall better than the others.
Additionally, VirConv-S has a sudden drop in precision at the beginning, suggesting
that while it can detect objects, it may frequently misclassify them, leading to lower
overall precision when more objects are considered.

Table 5.2: Accuracy (mAP) Metrics for different Models

Model Accuracy for Easy (%) | Accuracy for Moderate (%)
GLE-SSD-VR (Ours) 01.83 85.13
SE-SSD 91.49 82.54
GLENet — VR 91.67 83.23
VirConv-S 92.48 87.20

Table 5.3: F1 Score Metrics for different Models

Model F1 for Easy (%) | F1 for Moderate (%)
GLE-SSD-VR (Ours) 91.6 85.0
SE-SSD 91.49 82.54
GLENet — VR 91.57 83.23
VirConv-S 92.48 87.20

Table 5.4: Precision Metrics for different Models

Model Precision for Easy (%) | Precision for Moderate (%)
GLE-SSD-VR (Ours) 01.83 85.16
SE-SSD 91.67 82.84
GLENet — VR 91.77 83.43
VirConv-S 92.79 87.53

Table 5.5: Recall Metrics for different Models

Model Recall for Easy (%) | Recall for Moderate (%)
GLE-SSD-VR (Ours) 91.83 83.14
SE-SSD 91.19 82.34
GLENet — VR 91.37 83.33
VirConv-S 92.27 87.53
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5.2.1 Proposed GLE-SSD-VR Model

GLE-SSD-VR scores an accuracy of 91.83% for the easy dataset and 85.13% for the
moderate dataset. This indicates a well-balanced performance that rivals state-of-
the-art models.

The precision scores (91.83% for easy, 85.16% for moderate) reveal that GLE-SSD-
VR has a strong capability for precise detection which means effectively minimizing
false positives. This indicates that the model’s architecture filters out irrelevant
detections.

The recall of 83.14% for the moderate dataset suggests that GLE-SSD-VR still
successfully identifies a significant portion of true instances. The F1 scores of 91.6%
(easy) and 85.0% (moderate) indicate a balanced trade-off between precision and
recall. It directs that the model not only identifies objects accurately but does so
without a heavy computational load.

GLE-SSD-VR achieves a strong balance between efficiency and performance, making
it a versatile model. It is suitable for autonomous applications that require robust
detection without excessive computational demands.

5.2.2 SE-SSD

SE-SSD’s accuracy is 91.49% in the easy dataset but drops to 82.54% in the moderate
dataset. It suggests that while the model performs reasonably well, it struggles more
than GLE-SSD-VR and VirConv-S in complex environments.

Precision values of 91.67% (easy) and 82.84% (moderate) show that it does not
match the precision levels of VirConv-S and GLE-SSD-VR.

With recall scores of 91.19% (easy) and 82.34% (moderate), SE-SSD captures most
objects in simpler environments. However, the result for Moderate dataset is not
up to the mark compared to the other models mentioned. This is because of the
limitations of its architecture in terms of multi-modal feature integration.

The F1 scores (91.49% for easy, 82.54% for moderate) highlight that SE-SSD is
indicates a need for further optimization or refinement, particularly in its feature
extraction and multi-modal fusion techniques.

SE-SSD is promising, especially in less complex environments, but its architecture
might not be fully optimized for the complexity of moderate settings.

5.2.3 GLENetVR

GLENet-VR scores 91.67% in the easy dataset and 83.23% in the moderate dataset.
The slight drop in moderate conditions indicates that while the model is effective
in simpler scenarios, it may struggle with the complexity of more challenging envi-
ronments. The precision scores (91.77% for easy, 83.43% for moderate) show that
GLENet-VR can maintain a relatively high rate of correct detections
GLENet-VR’s recall (91.37% for easy, 83.33% for moderate) is strong, indicating
the model’s ability to capture most objects.

The F1 scores (91.57% for easy, 83.23% for moderate) suggest that while GLENet-
VR is capable in simpler settings, its performance is less consistent when the com-
plexity increases. This indicates the model needs further refinement in multi-modal
integration.
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GLENet-VR performs well in less challenging environments, but its effectiveness
diminishes in moderate scenarios.

5.2.4 VirConv-S

VirConv-S consistently shows the highest accuracy in both easy (92.48%) and mod-
erate (87.20%) datasets. The precision score (92.79% for easy, 87.53% for moderate)
highlights that the model has a high rate of correctly identifying true positives among
the predicted objects.

With recall values of 92.27% (easy) and 87.53% (moderate), VirConv-S demonstrates
its strength in detecting most true instances of objects in the environment.

The F1 score confirms the balanced precision and recall, as VirConv-S shows the
highest values (92.48% for easy and 87.20% for moderate).

VirConv-S is robust and highly accurate across different environments, but it has
complex architecture and higher computational requirement. Thus, it may not be
the most efficient for low-resource or real-time applications.

5.3 Evaluation

Figure 5.5: Accuracy per class for Different Models

In our proposed model, we have successfully fused SE-SSD and GLENetV R. It
leverages the strengths of both models while refining key components. This fusion
has resulted in a model that outperforms its individual parts, particularly for mod-
erate tasks.

Despite the high accuracy of SE-SSD and GLENetV R individually, our fusion
model offers superior performance. Particularly in moderate tasks, where it achieves

35



85.132%, compared to 82.54% for SE-SSD and 83.23% for GLENetV R. The fusion
of features and learning strategies from both models, combined with the simplified
architecture and preprocessing, gives our model a computational edge.

VirConv-S, though highly accurate, uses more complex transformation. That makes
it less feasible for lower-resource environments. However, our model achieves good
results with significantly less computational cost.

Figure 5.5 compares the accuracy of four models—GLE-SSD-VR (Ours), SE SSD,
GLENet-VR, and VirConv-S—across eight classes. The model wise summary is
given below:

o« GLE-SSD-VR (Light Blue): Our model achieves consistently high perfor-
mance across all classes, with accuracy above 80% in most cases. It performs
particularly well for vehicle-related classes such as Car, Van, and Tram. The
balanced performance across categories suggests strong generalization and ro-
bustness.

o« SE SSD (Orange): SE SSD performs significantly lower to GLE-SSD-VR
and shows slight drops in the Pedestrian, Cyclist and Person sitting classes.
Although, its strength lies in vehicle detection, it may struggle with human-
related objects. This indicates potential limitations in capturing finer object
features.

« GLENet-VR (Green): GLENet-VR maintains slightly higher performance
than SE SSD but exhibits noticeable drops in the Pedestrian and Person
sitting classes. This suggests that the model may have difficulties handling
smaller or less distinct objects.

« VirConv-S (Yellow): VirConv-S delivers higher performance across all classes.
While consistent, it shows slightly lower accuracy for complex classes like Per-
son sitting, truck. This indicates limited capability in handling complex sce-
narios.

In summary, GLE-SSD-VR demonstrates balanced performance across all cate-
gories which is competitive to state-of-the art model VirConv-S, making it the best-
performing model among the four evaluated in terms of computational efficiency.

5.4 Future Work

There are several aspects of our research which can be done as future work to explore
the full potential of the model.

o Model Optimization: We have a plan to experiment with our model by adding
quantization and pruning techniques. It will reduce model size and improve
inference speed for real-time autonomous systems.

o Training on Larger Datasets and Advanced Data Augmentation: We will train
our model in a larger dataset with a higher computational system and apply
advanced data augmentation. We would use methods like weather transfor-
mation to improve generalization across different environments and datasets.
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e End-to-End Learning and Joint Optimization: We will implement end-to-end
learning pipelines that jointly optimize all components (GLENet-VR, con-
sistency loss, context encoder) to reduce manual tuning and achieve better
performance.

o Advanced Consistency Loss Functions: We will investigate new loss functions
(e.g., contrastive loss or focal loss). This can further improve detection, espe-
cially for small objects or crowded scenes.
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Chapter 6

Conclusion

In conclusion, this thesis represents an important contribution to autonomous nav-
igation in unmanned ground vehicles (UGVs) by developing a robust and efficient
3D object detection system. The main objective of this study was to address the
challenges associated with accurate and reliable object detection in complex and
dynamic environments. Our method uses the valuable depth information provided
by LiDAR as well as point cloud data, enabling accurate initial modeling of 3D
objects. These concepts are the basic building blocks for the next phase of pro-
duction. In the second step, we introduce a robust integration of GLEnet-VR and
SE-SSD in advanced devices. These models were carefully selected and combined
to maximize the accuracy and robustness of our object recognition system. The
addition of self-assembly methods, size-sensitive data, and additional features will
greatly improve the accuracy of our detection system. The advances that will be
made in this research will help to a wider range of robotic and system capabilities,
and move us closer to a future in which UGVs will play an increasingly important
role in a variety of industries and industries.
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