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Abstract

Speech serves as a potent medium for expressing a wide array of psychologically
significant attributes. While earlier research on deducing personality traits from
user-generated speech predominantly centered on other languages, there is a notice-
able absence of prior studies and datasets for automatically assessing user person-
alities from Bangla speech. In this paper, the speaker’s objective is to bridge the
research gap by generating speech samples, each imbued with distinct personality
profiles. These personality impressions are subsequently linked to OCEAN (Open-
ness, Conscientiousness, Extroversion, Agreeableness, and Neuroticism) NEO-FFI
personality traits. To gauge accuracy, human evaluators, unaware of the speaker’s
identity, assess these five personality factors. The dataset is predominantly com-
posed of around 90% content sourced from online Bangla newspapers, with the
remaining 10% originating from renowned Bangla novels. We perform feature level
fusion by combining MFCCs with LPC features to set MELP and MEWLP features.
We introduce MoMF feature extraction method by transforming Morlet wavelet and
fusing MFCCs feature. We develop two soft voting ensemble models, DistilRo (based
on DistilBERT and RoBERTa) and BiG (based on Bi-LSTM and GRU), for person-
ality classification in speech-to-text and speech modalities respectively. The DistilRo
model has gained F-1 score 89% in speech-to-text and the BiG model has gained
F-1 score 90% in speech.

Keywords: bangla speech, OCEAN, NEO-FFI, personality classification, MoMF,
MEWLP, DistilRo, BiG
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Chapter 1

Introduction

Personality is like the fingerprint of our inner selves. An individual is a unique
combination of traits, behaviors, and characteristics [6]. Some of us light up in
social gatherings, while others find solace in quieter moments. Our interests, the
way we react to challenges, our sense of humor — they're all threads that weave
together into the beautiful tapestry of who we are [7]. Nature gives us a head start
with certain traits, but life experiences add their own splash of color to the canvas
[22]. Personality remains a dynamic and evolving essence, a key to understanding
ourselves and connecting with others on a profound level.

1.1 Research Background

Speech serves as a potent medium for the expression of a multitude of psychologically
significant phenomena. For instance, within a matter of a few hundred milliseconds
of encountering speech, humans have the remarkable ability to consistently deduce
an extensive array of details about the speaker [43]. Beyond mere directed dialogues
and basic command-and-control interfaces, the realm of voice-based human-machine
interaction is broadening. Machines must now possess the capability to comprehend
inputs and generate responses within a distinct context and it is influenced by nu-
merous factors, prominently the voice quality, necessitating a more intricate level
of interpretation and output generation [14]. The modern landscape is reminiscent
of the vivid characters that inhabit the pages of famous novels, each showcasing a
unique facet of human nature. The increasing number of online platforms including
news portals, social media, and blogs [49] make it easier for people to raise their
voices on a multitude of subjects. Various systems have been suggested to char-
acterize an individual’s personality. A substantial number of these systems revolve
around the framework of the Big Five personality traits [1]. This model endeavors
to depict a person’s personality by utilizing five distinct factors, somewhat akin to
a vector.

Previously, many methodologies have utilized a variety of lexicons, linguistic ele-
ments, psycholinguistic factors, and emotional attributes within a supervised learn-
ing framework to ascertain a user’s personality from their textual and spoken inter-
actions. These approaches have employed a spectrum of learning models, ranging
from conventional SVM [14], KNN, BPT, TF-IGM|[57], naive Bayes, and so on, to
the contemporary deep learning strategies like CNN, MLP [49], Bi-LSTM [61], GRU
[28] and so on. In this study, we harness the power of state-of-the-art language mod-



els to address the intricacies of personality. Specifically, we leverage the capabilities
of BoBERTa (Bidirectional Encoder Representations from Transformers) [41] and
DistilBERT [50], two prominent transformer-based models that have demonstrated
exceptional prowess in natural language understanding tasks. BoBERTa excels in
capturing bidirectional contextual information, enabling nuanced comprehension of
linguistic nuances [46]. On the other hand, DistilBERT strikes a balance between
computational efficiency and performance, making it an attractive choice for tasks
with resource constraints [52]. In [65], the authors harnessed the power of RoOBERTa
for capturing semantics and contextual information from YouTube comments in both
English and Russian languages. Furthermore, in [64], the authors employed Distil-
BERT to undertake the classification of personality traits within the realm of social
media. Ensemble methods represent learning algorithms that build a collection of
classifiers and subsequently categorize novel data points by aggregating their pre-
dictions through a weighted voting mechanism [2]. The synergy achieved through
ensemble methods not only mitigates the limitations of individual models but often
results in superior generalization and resilience to noise. The majority of these tech-
niques have primarily been developed for languages such as English, German [14],
and others. To the best of our understanding, there exists a solitary prior effort and
dataset in Bangla that dealt with the intricacies of detecting personality from social
media Bangla text [49]. However, no previous endeavor or dataset is accessible for
identifying personality traits from Bangla speech. As a result, it becomes impera-
tive to bridge this gap in research and establish resources that can pave the way for
future investigations in this domain.

1.2 Research Scopes

As far we have studied, no prior work on Bangla speech base personality traits
classification. In [14] utilize traditional Machine Learning model and statistical
features. Therefore, their proposed model is unable to extract depth level discrim-
inative features to successfully classify speech base personality traits. There exist
one Bangla paper that work on text base personality classification. In [49] refers
text based personality classification based on Facebook and YouTube comments in
Bangla Language and utilize TF-IDF base feature extraction and deep learning mod-
els for text base personality traits classification. However, this research is unable
to grab the semantic relationship among the words. Therefore, the results are not
impressive.

1.3 Research Objectives

Accessing personality from speech is crucial in understanding and interpreting hu-
man behavior in a more nuanced manner. Speech serves as a rich medium for
conveying not only verbal content but also various non-verbal cues and nuances
that reflect an individual’s unique personality traits. By tapping into the acoustic
features, intonations, and patterns within speech, we gain insights into aspects of
personality that may not be easily discernible through other means. This capability
has significant implications across diverse fields, from improving human-machine in-
teractions and designing personalized user experiences to enhancing mental health



assessments and refining communication strategies in various professional settings.
Ultimately, accessing personality from speech broadens our understanding of indi-
viduals, fostering more tailored and effective approaches in both technological and
interpersonal contexts.

Our research focuses on evaluating personality traits using a concise dataset, specif-
ically aiming to classify the personality of individuals based on short Bangla speech.
Given the absence of pre-existing datasets for assessing personality from Bangla
speech, we undertake the creation of our dataset. To achieve this, we engage a
speaker to generate the necessary data, following two distinct trajectories: speech-
to-text modality and speech modality.

In the speech modality, we apply feature extraction techniques and obtain initial
predicted outcomes. Subsequently, we employ a feature level fusion technique, in-
corporating Morlet wavelet instead of the conventional Fast Fourier Transform in
the Mel-Frequency Cepstral Coefficients (MFCCs) architecture. This involves the
utilization of a Morlet low pass filter, capturing both frequency and time-domain
information simultaneously, which is an enhancement over the in-built MFCCs that
primarily capture frequency information.

In the training phase, we utilize Long Short-Term Memory (LSTM), Gated Re-
current Unit (GRU), and Bidirectional LSTM (Bi-LSTM). Ensemble methods are
then applied to GRU and Bi-LSTM, aiming to enhance result accuracy. In the
speech-to-text modality, we convert speech to text using Speech Recognition (SR)
libraries. Subsequently, we utilize the in-built tokenizer of individual transformers
and fine-tune a transformer model. Similar to the speech modality, we apply en-
semble methods to improve the accuracy of the results in the model. The outcomes
of our study demonstrate state-of-the-art performance compared to earlier research
endeavors.

1.4 Research Contributions

The research presents a set of noteworthy contributions:

e The absence of a pre-existing dataset tailored for personality detection from
Bangla speech necessitated the creation of our own dataset. This dataset
stands out as a distinctive resource, encompassing speech samples derived from
non-professional speakers. These scripts are meticulously curated from online
Bangla newspapers and excerpts from famous Bangla novels. Importantly,
each of these speech segments is diligently annotated with the quintessential
Big Five NEO-FFI personality traits.

e Introduce Morlet-based Mel-frequency Cepstral Coefficients (MoMF) feature
extraction method by transforming Morlet wavelet and fusing MFCCs feature.

e In this study, a key focus lies on an exploration of personality traits as assessed
by the NEO-FFI questionnaire, considering both acted and non-acted speech.
To ensure the reliability of our findings, we first computed Cronbach’s alpha
to gauge the internal consistency of individual traits within the NEO-FFI.



Additionally, we delved into the probability density distribution of NEO-FFI
ratings for acted speech.

e We have proposed two distinct classification methodologies. The first one
is speech-to-text multi-class classification, where we apply an ensemble model
called DistilRo. DistilRo is developed based on DistilBERT and Roberta. The
second approach involves speech multi-class classification, where we developed
a feature extraction technique called MELF based on MFCC and LPC. We also
apply an ensemble model called BiG. BiG is developed based on Bi-LSTM and
GRU. This duality in classification methodologies enriches the depth of our
research, catering to the intricate nuances of personality assessing in Bangla
speech.

1.5 Outline of Research

The subsequent sections of this research study include the following.

In Section II, a comprehensive exposition unfolds, elucidating the intricacies of the
personality test employed in this study. The examination and contextualization of
this test are crucial for grasping the framework within which personality traits are
assessed, providing readers with a solid foundation for the subsequent analyses.

Section III takes center stage, unveiling our distinctive dataset and introducing the
model deployed in this research. A detailed exploration of the dataset’s uniqueness
and the model’s architecture offers transparency into the methodologies applied, set-
ting the stage for a nuanced understanding of the subsequent analytical processes.

Moving on to Section IV, a meticulous analysis of the results derived from our model
is presented. This section serves as the empirical heart of the paper, where findings
are scrutinized, patterns are identified, and correlations are unveiled, contributing
substantively to the overarching goal of unraveling personality traits through Bangla
speech.

Finally, Section V draws the threads together, offering a comprehensive conclusion
to the paper. It encapsulates the key findings, highlights the significance of the re-
search, and responsibly reports on its limitations. This structured approach ensures
a cohesive narrative that guides the reader through the journey from methodology
to conclusion, enhancing the overall coherence and impact of the study.



Chapter 2

Literature Review

In line with the foundational Big Five personality traits concept, as elucidated in
[1], we have employed the Bangla version of the NEO-FFI personality inventory [40].
Our application involves the evaluation of vocal impressions derived from speech,
with each of the 5 fundamental traits.

2.1 Big Five personality traits

Baesd on [14], we provide an overview of the general characteristics associated with
these personality traits, as assessed by the NEO-FFI inventory:

Agreeableness (A): When individuals achieve high scores in agreeableness, it of-
ten signifies their natural inclination towards empathy and trustworthiness. They
tend to place trust in others readily and are often eager to offer assistance. Con-
versely, those who score lower in agreeableness may tend to display traits such as
egocentrism, competitiveness, and a predisposition towards skepticism and distrust.

Conscientiousness (C): Individuals with high conscientiousness scores are gener-
ally recognized for their precision, attentiveness, reliability, and effective planning
skills. Conversely, individuals with low conscientiousness scores may display care-
lessness, thoughtlessness, and a tendency to act imprudently.

Extroversion (E): Individuals with high extroversion scores are often character-
ized by their outgoing, sociable nature, marked by a propensity for sociability and
enthusiasm. They tend to thrive in independent roles and exhibit a vibrant, ener-
getic demeanor. Conversely, individuals leaning towards introverted tendencies are
frequently observed as reserved, deep in thought, and inclined towards more conser-
vative outlooks.

Neuroticism (N): Individuals scoring high in neuroticism tend to exhibit emo-
tional instability and are often susceptible to feelings of shock or embarrassment.
They are easily overwhelmed by emotions and may lack self-confidence. Conversely,
individuals with low neuroticism scores are generally characterized as composed and
emotionally stable. They excel under pressure and remain unflustered.

Openness (O): Scores on the openness factor reflect an individual’s receptivity



to new ideas and their willingness to embrace novel experiences in daily life. High
scorers are often described as visionary and curious, with an openness to adventur-
ous experimentation. In contrast, individuals with low scores tend to lean toward
conservatism, favoring conventional wisdom over avant-garde thinking.

2.2 NEO-FFI Questionnaire

The NEO Five-Factor Inventory (NEO-FFT) is a personality inventory that assesses
general personality using the five-factor model [12].

In our research study, we integrated a subset of 50 statements from the NEO-FFI
questionnaire, a well-established and widely used personality assessment tool. The
NEO-FFT is derived from the Revised NEO Personality Inventory, designed to eval-
uate the fundamental dimensions of personality, commonly known as the ”Big Five”
traits. These traits encompass Neuroticism, Extraversion, Openness, Agreeableness,
and Conscientiousness, providing a comprehensive framework for understanding and
categorizing individual differences in personality.

Our system is a fusion of the NEO-FFI questionnaire and innovative technologi-
cal components tailored specifically for the analysis of personality traits through
Bangla speech. The inclusion of a unique dataset, combined with a model designed
for Bangla speech analysis, underscores the interdisciplinary nature of our study.
This synthesis of established psychological measurement tools with state-of-the-art
linguistic analysis techniques positions our research at the forefront of exploring the
intricate relationship between language and psychology.

The system utilizes advanced linguistic analysis methods, including natural language
processing and machine learning algorithms, to decipher the linguistic patterns em-
bedded in Bangla speech. By leveraging this technology, we aim to unveil subtle
connections between specific linguistic features and the underlying personality traits
of the speakers. This approach not only enhances the applicability of traditional
personality assessments but also contributes novel insights to the broader field of
personality research.

Our raters construct an individual’s personality profile by responding to 50 state-
ments from the NEO-FFI questionnaire, utilizing a scale that ranges from ’strongly
disagree’ to ’strongly agree,” which corresponds to numeric values between 1 to 5.
Each of the five personality factors can yield a score within the range of 0 to 50.
The combination of these scores results in a comprehensive personality profile for the
individual. The reliability of the questionnaire is consistently high, with intra-scale
consistency coefficients, as measured by Cronbach’s Alpha, consistently exceeding
0.8.

Feature level fusion, employed in this study, integrates distinctive information from
multiple sources or modalities at the feature level, enhancing the overall perfor-
mance by merging diverse and complementary characteristics. This approach is a
comprehensive understanding of the underlying data, promoting synergy and im-
proved representation for robust analysis and decision-making [4]. For instance, in



the study outlined in [25], the author employs the Mel-frequency cepstral coeffi-
cients (MFCCs) and linear predictive coding (LPC) feature extraction techniques
to evaluate personality traits from speech data. Another notable approach, high-
lighted in [56], involves the utilization of Morlet wavelet for the classification of
electroencephalogram (EEG) signals. Furthermore, in [27], the author tackles the
challenge of noise reduction by employing the Wiener filter and Spectral Subtraction
techniques. Subsequently, a combination of LPCs, MFCCs, and Linear Prediction
Cepstral Coefficients (LPCC) is utilized for feature extraction in this multi-faceted
exploration of signal processing methods.

In [63], the authors employed ensemble methods for the classification of context
and emotion in political speech, achieving accuracies of 73% and 53%, respectively.
Utilizing an ensemble approach, authors integrated insights from personality recog-
nition in text [21], [53], and speech [17], [58], demonstrating the effectiveness of this
combined strategy in achieving high performance across their tasks. The progress in
this area for Bangla language was not possible for the lack of dataset. The NEO-FFI
questionnaire [8] is meant for people to assess themselves or for others who know
them well to assess them. But in our experiments, we're not using it to judge a
person’s entire personality. Instead, raters assess the immediate vocal impression
of an unfamiliar speaker listening to just a few seconds of speech. We expect the
ratings to be consistent even with this short listening time.

2.3 The landscape of Bengali speech and person-
ality linked studies

For the development of a voice search module for the Pipilika search engine [33],
various Deep Neural Network (DNN-HMM) and Gaussian Mixture Model-Hidden
Markov Model (GMM-HMM) models are explored for Bengali speech recognition.
The study assembles a corpus of 9 hours of voice recordings from 49 speakers, con-
tributing to the advancement of voice-enabled search functionality.

In the realm of sentiment recognition and emotion extraction [34], the authors
present an extensive collection of methods for Bangla texts. Deep learning-based
models are developed for categorizing phrases into three-class and five-class senti-
ment labels and identifying fundamental emotions. The effectiveness of these models
is assessed using a fresh dataset of comments from various YouTube videos in Ben-
gali, English, and Romanized Bengali.

Additionally, efforts have been made to create open-source Bengali corpora for sen-
timent analysis [44] and hate speech detection [35]. The sentiment analysis corpus
comprises over 10,000 texts annotated for sentiment polarity, with an additional
word corpus annotated for sentiment polarity. The hate speech detection study in-
volves data collection from social networks, followed by classification using machine
learning methods such as SVM and Naive Bayes.

In the domain of speech recognition [45], a convolutional neural network (CNN) is
employed to create a Bengali number recognition system from spoken streams. Mel



Frequency Cepstrum Coefficient (MFCC) analysis is utilized for feature extraction
from speech signals, with the trained CNN utilizing these characteristics for effective
recognition of isolated Bengali digits.

Identifying Bengali broadcast speech is addressed in [51], where support vector ma-
chines (SVM) are employed with a linear kernel on the MATLAB platform. The
study achieves promising results in distinguishing between different forms of noisy
broadcast voice samples.

Another research endeavor [59] focuses on gathering data from Bengali comments
on social media platforms, aiming to develop a classifier capable of swiftly distin-
guishing between social and anti-social remarks. Using supervised machine learning
classifiers, including Logistic Regression, Random Forest, Multinomial Naive Bayes,
and Support Vector Machine, alongside neural network models such as Gated Recur-
rent Unit (GRU), the study examines 2000 comments from Facebook and YouTube.
Language models, incorporating unigrams, bigrams, and trigrams, enhance the clas-
sification process.

In [60] studies contribute significantly to the evolving landscape of Bengali Natural
Language Processing (BNLP), covering diverse subfields such as sentiment analysis,
speech recognition, optical character recognition, and text summarization. A critical
analysis of contemporary BNLP tools and techniques is notably absent in available
resources, prompting the authors to conduct an in-depth examination of 75 BNLP
research papers, categorizing them into 11 distinct areas.

One notable study [55] introduces a deep learning-based approach for speech emo-
tion identification, leveraging a combination of a time-distributed flatten (TDF)
layer, a deep convolutional neural network (DCNN), and a bidirectional long-short-
term memory (BLSTM) network. This model, evaluated on the SUBESCO Bengali
emotional speech corpus, outperforms cutting-edge convolutional neural network
(CNN)-based speech emotion recognition models, demonstrating superior temporal
and sequential emotion representation.

The paper [49] addresses the growing interest in utilizing online platforms for ex-
pressing opinions and thoughts, recognizing the significance of user-generated con-
tent in studying and modeling personality traits. To design effective systems like
recommendation systems, /A systems, employee assessments, and product promo-
tions, detecting and analyzing user personality.

2.4 Feature extraction and dataset of personality
linked studies

In [62] studies the dataset comprises recorded clinical diagnostic interviews (CDI)
from 79 patients diagnosed with major depressive disorder, each classified into ana-
clitic and introjective personality styles. Feature extraction involves analyzing lin-
guistic features associated with each style, utilizing standardized questionnaire re-
sponses, basic text features (TF-IDF scores), advanced text features using LIWC



(linguistic inquiry and word count), and context-aware features employing BERT
(bidirectional encoder representations from transformers). Notably, automated clas-
sification based on LIWC outperforms questionnaire-based models, with the best
performance achieved by combining LIWC with questionnaire features, suggesting
the potential of linguistically based automated techniques for characterizing person-
ality in psychopathological contexts.

In [49] works predominantly focus on personality detection from user-generated text
in English, this paper introduces a pioneering effort in the realm of Bangla language.
The research contributes a benchmark Bangla personality traits detection dataset,
consisting of 3000 informal Bangla texts sourced from diverse online platforms, and
presents baseline systems leveraging advanced supervised classification methods for
a comprehensive performance analysis.

The paper [48] introduces a novel TB-APR (Text-Based Automatic Personality
Recognition) approach by utilizing a projective test to construct a corpus for person-
ality computing research. Unlike conventional personality inventories, which may
exhibit limitations in controlling intentional or non-conscious omissions of undesired
personality traits, the proposed model employs the Z-test projective instrument for
labeling a textual corpus.

Additionally [14] utilizes German and English language datasets for the application
of a personality assessment paradigm to speech input. The professional speaker
is cued to produce speech with different personality profiles, and the resulting vo-
cal personality impressions are encoded using the ”Big Five” NEO-FFI personality
traits. Human raters, unfamiliar with the speaker’s identity, assess these traits
based on the recordings. Signal-based acoustic and prosodic methods are then em-
ployed for analysis, revealing high consistency among the acted personalities, human
raters’ assessments, and initial automatic classification results. This marks a sig-
nificant step toward incorporating personality traits into speech for potential use in
voice-based communication between humans and machines.

The paper [67] aims to develop a technique for deducing a user’s personality traits
based on social media profiles, acknowledging the value of users’ contributions and
emotions in status updates for studying human behavior. The proposed method
utilizes LSTM-CNN, with pre-processed and vectorized text documents fed into the
model. Feature extraction employs SpectralNet Features (SNF'), and feature selec-
tion is carried out using Correlation-based Feature Selection (CFS). However, the
focus is on leveraging the LSTM-CNN model, which combines the strengths of CNN
for extracting time-independent features and LSTM for capturing long-term depen-
dencies.

Addresses the challenge of automatically inferring users’ [30] personality from social
network activities, emphasizing the critical role of data representation in the perfor-
mance of such approaches. Deep learning methods are employed to autonomously
learn effective data representations for personality recognition. The experiments
conducted in the study utilize Facebook status updates data as the dataset. Sev-
eral neural network architectures, including fully-connected (FC) networks, convo-



lutional networks (CNN), and recurrent networks (RNN), are investigated and com-
pared with shallow learning algorithms in the context of the myPersonality shared
task.

Explores emotion and personality detection from text [66], emphasizing its novelty
as a sub-field of artificial intelligence closely tied to Sentiment Analysis (SA). In
contrast to SA’s focus on positive, neutral, or negative sentiments, emotion analysis
discerns specific emotions like disgust, fear, anger, happiness, surprise, and sadness
expressed in text. Simultaneously, the article delves into the critical psychological
concept of personality, aiming to efficiently and reliably identify and validate an in-
dividual’s unique characteristics. The review encompasses approaches in developing
text-based emotion and personality detection systems, shedding light on the studies’
contributions, methodologies, datasets, and conclusions, along with their respective
strengths and limitations.

In [20], conducted a comprehensive analysis of 700 million words, phrases, and topic
instances extracted from Facebook messages of 75,000 volunteers. These volunteers
had also taken standard personality tests, allowing for the exploration of language
variations correlated with personality, gender, and age. The open-vocabulary tech-
nique employed in the analysis allows the data itself to drive an extensive exploration
of language, uncovering connections not captured by traditional closed-vocabulary
word-category analyses. The dataset used in this paper comprises Facebook mes-
sages, representing the largest study, by an order of magnitude, of language and
personality to date.

Addressing [39] challenges associated with working with spatial data in the context
of personality traits and their regional clustering. Two main challenges, the Modifi-
able Aerial Unit Problem and spatial dependencies, are tackled using data-analytic
techniques specifically designed for spatial data. The research provides practical
guidelines for working with spatial data in psychological research and explores the
robustness of regional personality differences and their correlates.
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Chapter 3

Methodology

Our research had five phases to classify personality from Bangla speech. We began
with data collection (Phase 1). In Phase 2, we annotated this data to understand
personality traits. Phase 3 involved reliability checks to ensure the accuracy of our
annotations. Phase 4 involved data preprocessing and feature extraction. Lastly, in
Phase 5, we developed two soft voting ensemble models called DistilRo and BiG. In
Figure 3.1, we show an overview of our work.

| Data Collection |

| Data Annotation |

Reliability Analysis

Speech-to-text Speech
Data Separation

Data Preprocessing

Data Preprocessing Target labelling Train Validation split
Speech to Target Train Validation
text convert labelling split Feature Extraction
Tokenization | LPC | | MFCCs | | Morlet |
roberta-base distilbert-base-uncased

e
WLPC

Classification

Soft Voting Classifier @
(DistilRo)
RoBERTa DistilBERT Classification
Soft Voting Classifier (BiG)
Bi-LSTM GRU
Qutput

Classification into
Agreeableness/Extroversion/Opennass/Neuro Output
ticism/Conscientiousness

Classification into
HighAgree/LowAgree/HighExtrover/LowExtrover/HighOpen/LowOpe
n/HighNeurotic/LowNeurotic/HighConscientious/LowConscientious

Figure 3.1: Toplevel Overview of the Proposed System
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3.1 Data Collection

The majority of prior investigations conducted on various native languages, includ-
ing English [19][11], German [5], French [23], Spanish [29], Mandarin [13], and Hindi
[42], have predominantly relied upon data collection from online newspapers and
renowned novels.

Based on these observations, we conducted a data collection process that involved
gathering single-sentence text from various popular online Bangla newspapers and
renowned Bangla novels. To obtain relevant content, we employed an empirical
approach, using specific keywords aligned with the Big Five personality model. Fol-
lowing this initial data gathering phase, we took additional precautions to ensure
the quality and relevance of the text. We enlisted graduate students from Bangla
Department, who possessed a deep understanding of the Big Five personality traits,
to review and verify the collected text. They were familiar with the Big Five per-
sonality traits and made sure the text matched our criteria. This process helped
maintain the correct semantic information in our data. We obtained 90% of the text
from various online Bangla newspapers, while the remaining 10% was sourced from
well-known Bangla novels.

To prepare a realistic speech corpus for our experiments in the speech-to-text modal-
ity, we enlisted a non-professional speaker. The speaker was given the task of im-
mersing himself in the NEO-FFI descriptions, which represent 5 personality profiles.
The speaker recorded a 'matural’ version of a predefined text, speaking in his or-
dinary manner without acting. We instructed speaker to perform this imitation
at least 7 times for each text. All the audio recordings were conducted in a room
that prevents external noise. Then we carefully examined all the audio recordings
and selected the best 5 audio samples for each text. The complete audio database
comprises a total of 1750 recorded files.

In the speech modality, we utilized 71% of the text from our predefined material. We
provided specific instructions to our speaker to enact 10 distinct personality vari-
ations, resulting in the desired speech recordings. These instructions were crafted
following the guidelines outlined in the NEO-FFI manual and Section II. The actor’s
performance was aimed at portraying extreme ends of the personality factors. To
illustrate, for the trait of agreeableness, we directed the speaker to imitate both a
highly agreeable person and a significantly less agreeable person. Since the speaker
was not a professional, there was a higher likelihood of obtaining authentic and nat-
ural speech samples. We ensured that the speaker carried out this imitation process
a minimum of 6 times for each text. We followed same procedure for recordings
audio like before. Afterward, we carefully reviewed the audio and selected the best
4 recordings for each text. As a result of this effort, our audio database contains a
total of 1000 recorded files. Similar approach of [25], we provides a summary of all
the recorded data and conditions in TABLE 3.1.
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Table 3.1: Present an overview of the recordings

speech-to-text modality | speech modality
Predefine text Yes Yes
Domain Newspapers and novels Newspapers and novels
Speaker-dependency Yes Yes
Acted / non-acted Non-acted Acted
Linguistic diversity ”Short Text” ”Short Text”
Dataset size ~ bh ~ 3h
Number of speaker 1 1
Audio capturing quality 44.1 KHz, mono 44.1 KHz, mono

3.2 Data Annotation

In the speech-to-text modality, we enlisted the assistance of 5 graduate students
who were knowledgeable about the Big Five personality traits and were not known
about the speaker. Each of them was allocated 350 randomly selected recorded au-
dio files along with NEO-FFI questionnaires. These students carefully listened to
each audio file multiple times and completed the questionnaires. Each question in
the questionnaire offered five response options, ranging from ”strongly disagree” to
"strongly agree,” corresponding to numeric values between 1 to 5.

Subsequently, we calculated numerical values for each audio file based on the NEO-
FFI questionnaire responses. The audio file that generated the highest value for a
particular trait was selected as representative of that trait.

In the speech modality, we engaged 5 graduate students who were also well-versed in
the Big Five personality traits. Similar to the speech-to-text phase, each of them was
provided with 1000 recorded audio files along with NEO-FFI questionnaires and they
were unknown to one another. These students followed the same procedure, listening
to the audio files and completing the questionnaires to determine the personality
traits represented in each audio recording. Following the annotation phase, our
findings are presented in both TABLE 3.2 and TABLE 3.3

Table 3.2: speech-to-text modality

Label Number of data
Agreeableness 350

Extroversion 350
Openness 350
Neuroticism 350

Conscientiousness | 350
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Table 3.3: speech modality

Label Number of data
HighAgree 100
LowAgree 100
HighExtrover 100
LowExtrover 100
HighOpen 100
LowOpen 100
HighNeurotic 100
LowNeurotic 100
HighConscientious | 100
LowConscientious | 100

3.3 Reliability Analysis

We assess the reliability of the personality trait measures used in our research.
The reliability analysis is crucial in ensuring that the measurement items consis-
tently capture the underlying personality constructs. Cronbach’s alpha [15], a well-
established measure of internal consistency, was employed to evaluate the reliability
of each personality trait scale utilized in our research. A high Cronbach’s alpha
value, typically ranging from 0.8 and higher, indicates strong internal consistency.
This suggests that the items within the scale are closely related and collectively
contribute to a reliable measurement of the intended variable [24].

During the speech-to-text modality, we took the numeric values that had been pre-
viously calculated for each audio file in the data annotation phase. These numeric
values represented various aspects of personality traits. We used these numbers to
compute Cronbach’s alpha for each personality trait. In TABLE 3.4, we provide an
overview of the Cronbach’s alpha values obtained from our data.

In the speech modality where we used the NEO-FFI questionnaire to assess person-
ality through speech, we assigned ratings using a five-point Likert scale [25]. Since
we had 6 assessors for doing this assessment, and the total score for each person-
ality trait could range from 0 to 50. To provide a clear sense of how ratings on
this scale correspond to the various personality traits, we created histograms for
each of the Big 5 personality traits and a Gaussian distribution curve in Figure
3.2,3.3,3.4,3.5,4.1. This figure simplifies a direct comparison between the ratings for
high traits (depicted in purple) and low traits (depicted in green). If the difference
between high and low traits was not noticeable, the Gaussian curves would mostly
overlap. However, we observe that, for certain traits like extroversion, there is only
a small area of overlap, indicating a clear distinction between high and low trait
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Table 3.4: speech-to-text modality

Traits Cronbach’s alpha
Agreeableness 0.83

Extroversion 0.86
Openness 0.83
Neuroticism 0.85

Conscientiousness | 0.81

ratings. In contrast, for other traits such as openness, there is more overlap between
the two, suggesting that distinguishing between high and low trait ratings is less
straightforward in this dataset. So, some pairs of high and low personality traits are
more easily distinguishable based on the data, while others exhibit more similarity.

Trait A

0 II

012345678 291011121314151617181920212223324252627282930313233343536373839404142434445454748
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Figure 3.2: The graph shows the probability distribution of Agreeableness. On the
left, green bars represent ratings for speech acted to low personality trait scores.
On the right, there are purple bars, which represent ratings for speech acted to high
personality trait scores.

3.4 Data Preprocessing and Feature Extraction

We performed data preprocessing in two distinct modalities to prepare our audio
dataset for analysis.

In the first modality (Speech-to-Text), we focused on converting audio data into
text format, which is essential for subsequent text-based analysis. The labels for the
audio files were determined based on the directory structure of the dataset. To con-
vert audio to text, we employed the SpeechRecognition library. This library allowed
us to transcribe spoken words and convert them into a textual representation, mak-
ing the data accessible for text-based processing. For tokenization, we used built-in
DistilBERT tokenizer and the RoBERTa tokenizer.
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Figure 3.3: The graph shows the probability distribution of Conscientiousness. On
the left, green bars represent ratings for speech acted to low personality trait scores.
On the right, there are purple bars, which represent ratings for speech acted to high
personality trait scores.
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Figure 3.4: The graph shows the probability distribution of Extroversion. On the
left, green bars represent ratings for speech acted to low personality trait scores.
On the right, there are purple bars, which represent ratings for speech acted to high
personality trait scores.
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Figure 3.5: The graph shows the probability distribution of Neuroticism. On the
left, green bars represent ratings for speech acted to low personality trait scores.
On the right, there are purple bars, which represent ratings for speech acted to high
personality trait scores.
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Figure 3.6: The graph shows the probability distribution of Openness. On the left,
green bars represent ratings for speech acted to low personality trait scores. On
the right, there are purple bars, which represent ratings for speech acted to high
personality trait scores.
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In the second modality (Speech Processing), We used audio files that were in WAV
format. Similar to speech-to-text, we determined the labels for the audio files were
determined based on the directory structure of the dataset. In our approach, we
employ four feature extraction techniques: MFCCs, MELP, MEWLP, and MoMF.

3.4.1 MFCCs

For feature extraction, we turned to ”Mel-frequency cepstral coefficients” (MFCCs)
that captured a snapshot of the audio’s acoustic characteristics and translates them
into numerical data. MFCCs transform the speech signal into a frequency domain
using Fourier Transform [16]. It divides the audio signal into small time frames and
for each frame it calculates the energy. Mel scale is then applied to approximate
the perception of pitch and the intensity of sound is converted to a logarithmic
scale. Then the data is processed using DCT to convert the information into a set
of coefficients and these coeflicients capture the unique features of the sound [32].
From [32], we can define the MFCCs formula:

m(f) = 2595*log10(1+ﬁfo) (3.1)
!
Ay = Z(logél)cos[m(l - %)?] (3.2)

m=1
where f is frequency(Hz), 1 is number of mel ceptrum coefficients, ¢; is filterbank
output, and a,, is MFCCs coefficient.

For visual understanding,
we provide one lowneurotic audio sample’s waveplot, spectogram, and mfccplot in
Figure 4.2,4.4,4.5 respectively.
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Figure 3.7: Lowerneurotic Waveplot
In 4.4, the x-axis represents time in seconds, and the y-axis represents frequency
in Hertz. The colors represent the amplitude of the signal at each frequency and

time, with blue being the lowest amplitude and red being the highest amplitude.
The graph shows a series of vertical lines, indicating a repeating pattern in the signal.

18



6000

4000

2000

Frame

B el

3
3
i
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In 4.5, the x-axis is labeled “MFCC Coefficient” and ranges from 0 to 350. The
y-axis is labeled “Frame” and ranges from 0 to 12. The color scale is on the right
side of the graph and ranges from -250 to 150.

We provide one highneurotic audio sample’s waveplot, spectogram, and mfccplot in
Figure 4.6,3.11,3.12 respectively.

highneurotic

1.00
0.75
0.50
0.25
0.00 |
—0.25 1
—0.50 -
~0.75 -
~1.00
0 1 2 3 4 5 6
Time
Figure 3.10: Highneurotic Waveplot
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Figure 3.11: Highneurotic Plot of Spectogram

In 3.11, the x-axis represents time in seconds, and the y-axis represents frequency
in Hertz. The colors represent the amplitude of the signal at each frequency and
time, with blue being the lowest amplitude and red being the highest amplitude.
The graph shows a series of vertical lines, indicating a repeating pattern in the signal.

In 3.12, the x-axis is labeled “MFCC Coefficient” and ranges from 0 to 350. The
y-axis is labeled “Frame” and ranges from 0 to 12. The color scale is on the right
side of the graph and ranges from -250 to 150.

We provide one highagree audio sample’s waveplot, spectogram, and mfccplot in
Figure 3.13,3.14,4.11 respectively.

In 3.14, the x-axis represents time in seconds, and the y-axis represents frequency
in Hertz. The colors represent the amplitude of the signal at each frequency and
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Figure 3.12: Highneurotic Plot of MFCCs
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Figure 3.13: Highagree Waveplot
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Figure 3.14: Highagree Plot of Spectogram
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time, with blue being the lowest amplitude and red being the highest amplitude.
The graph shows a series of vertical lines, indicating a repeating pattern in the signal.
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Figure 3.15: Highagree Plot of MFCCs

In 4.11, the x-axis is labeled “MFCC Coefficient” and ranges from 0 to 350. The
y-axis is labeled “Frame” and ranges from 0 to 12. The color scale is on the right
side of the graph and ranges from -250 to 150.

We provide one lowagree audio sample’s waveplot, spectogram, and mfccplot in
Figure 4.12,4.13,3.18 respectively.
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Figure 3.16: Lowagree Waveplot
In 4.13, the x-axis represents time in seconds, and the y-axis represents frequency
in Hertz. The colors represent the amplitude of the signal at each frequency and

time, with blue being the lowest amplitude and red being the highest amplitude.
The graph shows a series of vertical lines, indicating a repeating pattern in the signal.
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Figure 3.17: Lowagree Plot of Spectogram
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Figure 3.18: Lowagree Plot of MFCCs
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In 3.18, the x-axis is labeled “MFCC Coefficient” and ranges from 0 to 350. The
y-axis is labeled “Frame” and ranges from 0 to 12. The color scale is on the right
side of the graph and ranges from -250 to 150.

We provide one HighConscientious audio sample’s waveplot, spectogram, and mfc-
cplot in Figure 4.7,3.20,4.3 respectively.
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Figure 3.19: HighConscientious Waveplot
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Figure 3.20: HighConscientious Plot of Spectogram

In 4.13, the x-axis represents time in seconds, and the y-axis represents frequency
in Hertz. The colors represent the amplitude of the signal at each frequency and
time, with blue being the lowest amplitude and red being the highest amplitude.
The graph shows a series of vertical lines, indicating a repeating pattern in the signal.

In 3.18, the x-axis is labeled “MFCC Coefficient” and ranges from 0 to 350. The
y-axis is labeled “Frame” and ranges from 0 to 12. The color scale is on the right
side of the graph and ranges from -250 to 150.

We provide one HighConscientious audio sample’s waveplot, spectogram, and mfc-
cplot in Figure 3.22,3.23,3.24 respectively.

In 3.23, the x-axis represents time in seconds, and the y-axis represents frequency
in Hertz. The colors represent the amplitude of the signal at each frequency and
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Figure 3.21: HighConscientious Plot of MFCCs
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Figure 3.23: LowConscientious Plot of Spectogram
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time, with blue being the lowest amplitude and red being the highest amplitude.
The graph shows a series of vertical lines, indicating a repeating pattern in the signal.
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Figure 3.24: LowConscientious Plot of MFCCs

In 3.24, the x-axis is labeled “MFCC Coeflicient” and ranges from 0 to 350. The
y-axis is labeled “Frame” and ranges from 0 to 12. The color scale is on the right
side of the graph and ranges from -250 to 150.

We provide one HighExtrover audio sample’s waveplot, spectogram, and mfccplot
in Figure 3.25,3.26,3.27 respectively.
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Figure 3.25: HighExtrover Waveplot

In 3.26, the x-axis represents time in seconds, and the y-axis represents frequency
in Hertz. The colors represent the amplitude of the signal at each frequency and
time, with blue being the lowest amplitude and red being the highest amplitude.
The graph shows a series of vertical lines, indicating a repeating pattern in the signal.
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Figure 3.27: HighExtrover Plot of MFCCs
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In 3.27, the x-axis is labeled “MFCC Coefficient” and ranges from 0 to 350. The
y-axis is labeled “Frame” and ranges from 0 to 12. The color scale is on the right
side of the graph and ranges from -250 to 150.

We provide one LowExtrover audio sample’s waveplot, spectogram, and mfccplot in
Figure 3.28,3.29,3.30 respectively.
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Figure 3.28: LowExtrover Waveplot
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Figure 3.29: LowExtrover Plot of Spectogram

In 3.29, the x-axis represents time in seconds, and the y-axis represents frequency
in Hertz. The colors represent the amplitude of the signal at each frequency and
time, with blue being the lowest amplitude and red being the highest amplitude.
The graph shows a series of vertical lines, indicating a repeating pattern in the signal.

In 3.30, the x-axis is labeled “MFCC Coefficient” and ranges from 0 to 350. The
y-axis is labeled “Frame” and ranges from 0 to 12. The color scale is on the right
side of the graph and ranges from -250 to 150.

We provide one HighOpen audio sample’s waveplot, spectogram, and mfccplot in
Figure 3.31,3.32,3.33 respectively.

In 3.32, the x-axis represents time in seconds, and the y-axis represents frequency
in Hertz. The colors represent the amplitude of the signal at each frequency and
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Figure 3.30: LowExtrover Plot of MFCCs
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Figure 3.32: HighOpen Plot of Spectogram
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time, with blue being the lowest amplitude and red being the highest amplitude.
The graph shows a series of vertical lines, indicating a repeating pattern in the signal.
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Figure 3.33: HighOpen Plot of MFCCs

In 3.33, the x-axis is labeled “MFCC Coefficient” and ranges from 0 to 350. The
y-axis is labeled “Frame” and ranges from 0 to 12. The color scale is on the right
side of the graph and ranges from -250 to 150.

We provide one LowOpen audio sample’s waveplot, spectogram, and mfccplot in
Figure 3.34,3.35,3.36 respectively.
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Figure 3.34: LowOpen Waveplot
In 3.35, the x-axis represents time in seconds, and the y-axis represents frequency
in Hertz. The colors represent the amplitude of the signal at each frequency and

time, with blue being the lowest amplitude and red being the highest amplitude.
The graph shows a series of vertical lines, indicating a repeating pattern in the signal.
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In 3.36, the x-axis is labeled “MFCC Coefficient” and ranges from 0 to 350. The
y-axis is labeled “Frame” and ranges from 0 to 12. The color scale is on the right
side of the graph and ranges from -250 to 150.

3.4.2 Mel-Frequency Cepstral Coefficients with Linear Pre-
dictive Coding (MELP)

Besides MFCCs, we develop a feature extraction technique called MELP based on
MFCCs and LPC (Linear Predictive Coding) to capture unique acoustic features in
speech signals. LPC is try to calculate a set of coefficients that describe the filter
and tries to predict the next sound sample based on previous samples [54]. From
[32], we can define the LPC formula:

b, = log[i :LZ;:] (3.3)

Now from equation (3.2) and equation (3.3), we get:
MELP = MFCC's & LPC (3.4)
MELP = d,, ®b, (3.5)

The concatenation of MFCCs and LPC in the MELP technique offers a comprehen-
sive representation of speech signals. While MFCCs capture spectral features and
intensity-related information, LPC delves into the vocal tract’s characteristics. In
terms of labels, we used one-hot encoding.

For visual understanding,
We provide one Lowneurotic audio sample’s Ipcplot in Figure 3.37.
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Figure 3.37: Lowneurotic Plot of LPC
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In Figure 3.37, x-axis is labeled “Sample Number” and the y-axis is labeled “Am-
plitude”. The blue line is labeled “Original signal” and the orange line is labeled
“LPC estimate”. The blue line has a higher amplitude than the orange line.

We provide one Highneurotic audio sample’s Ipcplot in Figure 3.38.
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Figure 3.38: Highneurotic Plot of LPC

In Figure 3.38, x-axis is labeled “Sample Number” and the y-axis is labeled “Am-
plitude”. The blue line is labeled “Original signal” and the orange line is labeled
“LPC estimate”. We see, the lines have a similar shape and follow a similar pattern,
but the orange line is smoother and less jagged than the blue line.

We provide one Lowagree audio sample’s Ipcplot in Figure 3.39.

In Figure 3.39, x-axis is labeled “Sample Number” and the y-axis is labeled “Am-
plitude”. The blue line is labeled “Original signal” and the orange line is labeled
“LPC estimate”. We see, the blue line has a higher amplitude than the orange line
and is more jagged. The orange line is smoother and has a lower amplitude than
the blue line. The lines intersect at multiple points and follow a similar pattern.

We provide one Highagree audio sample’s Ipcplot in Figure 3.40.

In Figure 3.40, x-axis is labeled “Sample Number” and the y-axis is labeled “Am-
plitude”. The blue line is labeled “Original signal” and the orange line is labeled
“LPC estimate”. We see, the x-axis ranges from 0 to 100 and the y-axis ranges
from -0.015 to 0.005. The blue line has a sharp dip around sample number 40 and
then rises again. The orange line follows the blue line closely but is slightly smoother.

We provide one Lowconscientious audio sample’s Ipcplot in Figure 3.41.

In Figure 3.41, x-axis is labeled “Sample Number” and the y-axis is labeled “Am-
plitude”. The blue line is labeled “Original signal” and the orange line is labeled
“LPC estimate”. We see, the blue line has a jagged pattern, while the orange line
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Figure 3.41: Lowconscientious Plot of LPC

has a smoother pattern. The lines start at the same point on the left side of the
graph and end at the same point on the right side of the graph. The lines intersect
at multiple points throughout the graph.

We provide one Highconscientious audio sample’s Ipcplot in Figure 3.42.

In Figure 3.42, x-axis is labeled “Sample Number” and the y-axis is labeled “Am-
plitude”. The blue line is labeled “Original signal” and the orange line is labeled
“LPC estimate”. We see, the lines are jagged and do not follow a clear pattern. The
lines intersect at multiple points.

We provide one Lowextrover audio sample’s Ipcplot in Figure 3.43.

In Figure 3.43, x-axis is labeled “Sample Number” and the y-axis is labeled “Am-
plitude”. The blue line is labeled “Original signal” and the orange line is labeled
“LPC estimate”. We see, the blue line has a higher amplitude than the orange line
and is more jagged. The orange line is smoother and has a lower amplitude than the
blue line. The x-axis ranges from 0 to 100 and the y-axis ranges from -0.015 to 0.025.

We provide one Highextrover audio sample’s Ipcplot in Figure 3.44.

In Figure 3.44, x-axis is labeled “Sample Number” and the y-axis is labeled “Am-
plitude”. The blue line is labeled “Original signal” and the orange line is labeled
“LPC estimate”. We see, the x-axis ranges from 0 to 100 and the y-axis ranges from
-0.006 to 0.004.

We provide one Lowopen audio sample’s Ipcplot in Figure 3.45.

In Figure 3.45, x-axis is labeled “Sample Number” and the y-axis is labeled “Am-
plitude”. The blue line is labeled “Original signal” and the orange line is labeled
“LPC estimate”. We see, the blue line has a more jagged appearance, while the
orange line is smoother. The x-axis ranges from 0 to 100 and the y-axis ranges from
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Figure 3.42: Highconscientious Plot of LPC
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Figure 3.45: Lowopen Plot of LPC
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-0.002 to 0.010.

We provide one Highopen audio sample’s Ipcplot in Figure 3.46.
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Figure 3.46: Highopen Plot of LPC

In Figure 3.46, x-axis is labeled “Sample Number” and the y-axis is labeled “Am-
plitude”. The blue line is labeled “Original signal” and the orange line is labeled
“LPC estimate”. We see, the blue line has a higher amplitude than the orange line
and is more jagged. The orange line is smoother and has a lower amplitude.

3.4.3 Mel-Frequency Cepstral Coefficients with Wiener Lin-
ear Predictive Coding (MEWLP)

The Wiener filter [10] is an adaptive, frequency domain linear filter designed to
minimize mean square error, widely used for noise reduction in signals. For MEWLP
feature extraction, we use Wiener filter to denoise an audio signal and then compute
the LPC coefficients of the denoised signal. Furthermore, we concatenate WLPC
coefficients of the denoised signal with MFCCs to obtain feature vector. It is defined
as:

original audio signal = y[n]

LPC(y,order) = ay; k= 1,2, ...,order = 40 (3.6)
In eqaution (3.6), ax is LPC coefficients.

ns[n] = y[n] + (nl x rn[n]) (3.7)

In equation (3.7), we generate a noisy version of the original signal by adding some
random noise. ns, nl, and rn represent noisy_stgnal, noise_level, and random_noise
respectively.
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||
W, =
"7 lag| + var(y — ns)

(3.8)

In equation (3.8), the Wiener filter coefficients are computed where W, is the Wiener
filter coefficient for the K — th LPC coefficient.

denoised_signal[n] = y[n] «* Wy,;n = 0,1, ..., len(y) — 1 (3.9)

In equation (3.9), apply the Wiener filter coefficients to each sample of the original
signal.

W LPC(denoised_signal, order) = a,, (3.10)

In equation (3.10), the WLPC coefficients are computed of the denoised signal where
a, are the WLPC coefficients after denoising.

T
1
MFCC R == MFCC, 3.11
o) = 13 MFCC, (311)
In equation (3.11), the Mel-Frequency Cepstral Coefficients (MFCC) are extracted
where M FCC} is the vector of MFCC coefficients at time ¢ and T is the number of
frames.

!/

cf = [MFCCY, ... MFCCy njee, Gys s Q] (3.12)

In equation (3.12), the MFCC and WLPC coefficients concatenate to obtain the
combined feature vector where cf represent combined_features.

3.4.4 Morlet-based Mel-frequency Cepstral Coefficients (MoMF)

For MoMF feature extraction, we use Morlet low pass filter that effectively sup-
presses the higher-frequency components of the Morlet wavelet [3], resulting in a
filter that retains the low-frequency information in the analysis of time-frequency
representations of signals. Since all audio samples in our dataset feature male voices,
this approach effectively isolates the distinctive lower-frequency components inher-
ent in male vocalizations that enhancing the analysis of key characteristics such
as pitch and fundamental frequency. From [37], we can define the Morlet wavelet
formula:

—t2
Morlet(t) = cos(2m f.t).e25? (3.13)
In equation (3.13), f., B, t represent center_frequency, bandwidth, and time re-

spectively. As we want to capture low-frequency information so we need convolution
operation. The convolution operation:

fsn] = Z signal[k].Morlet(n — k) (3.14)
k=—0o0
In equation (3.14), fs, k, n represent filtered_signal, input_signal, and kernel
respectively. The convolution operation is used here to implement Morlet low-pass
filter.
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[j] = [FFT(fs[n])] (3.15)

In equation (3.15), we use Fast Fourier Transform (FFT) to compute the magnitude
spectrum (z[j]) of the filtered signal.

msli] = 3 _mf[i. j] - «lj (3.16)

In equation (3.16), Mel filterbank is applied using matrix multiplication where
i= 0 to num-filters-1, j= 0 to len(magnitude_spectrum), ms and mf represent
mel_spectrum and mel_filters respectively. mel_spectrum captures the energy
distribution across different frequency bands, emphasizing regions that are more
perceptually significant. Then the log compression is applied to mimic the human
auditory system’s sensitivity to differences in loudness:

lce[i] = log(e + ms]i]) (3.17)

In equation (3.17), applies a logarithmic compression to the Mel spectrum where
[ce represent log_compressed_energies and € is a small constant to avoid taking
logarithm zero.

N-1
m 1
0 ot T 1 318

Foli} = 3 el con( 306+ ) (318)
In equation (3.18), DCT (Discrete Cosine Transform) is applied to the log_compressed_energies
to obtain the feature vector where fv represent feature_vector, N represent the
number of coefficients.
From equation (3.18) and equation (3.2), we get

MoMF = fve MFCC's (3.19)

MFCC is a column vector of size (M x1) and Morlet is a column vecor of size (N *1).
After concatenation, we get single vector shape ((M + N) x 1) for each signal.

3.5 DistilRo and BiG: Soft Voting Ensemble Mod-
els for Personality Classification in Speech,
and Speech-to-Text Modalities

For the classification of Speech, and Speech-to-Text modalities, we use different
techniques. Voting classifier is a technique in ensemble learning. Ensemble learning
models leverage the decisions made by various baseline models to enhance overall
performance. In the case of a soft voting ensemble model, it predicts the class label
by considering the highest sum of predicted probabilities from the baseline models.
For multi-class classification in the speech-to-text modality, we introduce DistilRo.
DistilRo is a soft voting classifier that combines the strengths of DistilBERT [50]
and RoBERTa [41] baseline models. They work together in a soft voting setup to
figure out the personality traits and considering all semantic stuff in the text. In
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the speech multi-class classification, we present BiG. BiG is another soft voting clas-
sifier, this time utilizing Bi-LSTM and GRU baseline models. These components
work together to make accurate predictions while also considering the semantic sub-
tle present in the spoken language. Now, we explain each model and then we explain
parameter tuning that used to develop them.

3.5.1 Distillated Bidirectional Encoder Representations from
Transformers (DistilBERT) and Robustly optimized
BERT approach (RoBERTa)

DistilBERT [50] is a shorter version of BERT model. It uses the same architecture
of BERT [38], which is a transformer model. Based on the model [50], multi-head
self-attention of transformer allows to focus on different parts of the input sentence
and learn the relationship between them. It is defined as:

9(Q,K,V) = c(hy, ..., h)w" (3.20)

QKT
Nen

In equation (3.20) and (3.21) multihead, concat, attention, and softmax are consid-
ering as g, ¢, a, and s respectively.

Feed-forward neural network allows the model to apply non-linear transformations
to the input and learn complex features. It is defined as:

where, by = a(Qu?, Kwk, Vw)),a(Q, K,V) = s( 1% (3.21)

f(a) = r(aw; + di)ws + do (3.22)

In equation (3.22), ReLU function is considering as r.

Model takes input as a sequence of tokens, which are words or subwords, and con-
verts them into vector using word embeddings and position embeddings. Word
embeddings capture the meaning of each token, and position embeddings capture
the order of each token in the sequence [47]. Then the model sum word embeddings,
and position embeddings for producing a final hidden state for each token [50]. The
equation for the output of DistilBERT is:

hidden' = transformer(e + p) (3.23)

transformer(a) = f(g(a,a,a)) (3.24)

In equation(3.23), e is the embedding matrix, p is the position embedding matrix,
and transformer is the Transformer encoder with | layers. Final hidden state can be
used for different tasks, in our case it’s a classification task.

RoBERTa [41] uses the same architecture as BERT [38], which is based on the Trans-
former model with more layers, and parameters that make it larger, and powerful.
The working procedure of DistilBERT and RoBERTa are same. In Figure 3.47, we
show an overview of DistilBERT model where we use one openness text from our
dataset.
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Figure 3.47: An overview of DistilBERT work flow

3.5.2 DistilRo

Our DistilRo model is a sophisticated soft voting classifier, bringing together the two
powerful baseline models: DistilBERT [50] and RoBERTa [41]. We have fine-tuned
each baseline model to optimize the performance of the soft voting classifier. In
Table 3.5, we provide some specific parameters that have employed in these baseline
models.

Table 3.5: Baseline Models parameters of DistilRo

Baseline Models | Parameters

DistilBERT train_batch_size = 16
eval_batch_size = 64
epochs = 11

RoBERTa train_batch_size = 8

eval_batch_size = 32
gradient_accumulation = 4
epochs = 20

We’ve provided a visual representation of its structure in Figure 3.48. This unique
combination of DistilBERT and RoBERTa, working together as a soft voting classi-
fier, is designed to capture and utilize semantic information, ensuring accurate and
reliable results in personality classification.
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Figure 3.48: Structure of DistilRo Model

3.5.3 Bidirectional Long Short-Term Memory (Bi-LSTM)

Bi-LSTM [61] is one kind of LSTM [18] that can learn long-term dependencies
from sequential data in both forward and backward directions. It combines both
LSTM and bidirectional processing for sequence learning. Based on [18], for forward
direction, it can be defined as:

Pk = 0(Wapar, + wiply—1 + d,) (3.25)
Gk = 0(Waqay + Wiglp—1 + dy) (3.26)
ri = o(Weray + wylp_1 + d,) (3.27)
Sk = tanh(wgsay + wisle—1 + dy) (3.28)
Sk =k © Sp—1 + Pk © Sg, (3.29)

I = ri © tanh(sy) (3.30)

where ¢ is sigmoid function, tanh is tan hyperbolic function, ® is point-wise multi-
plication, a; is input vector at time step k. pi, qr, 7, and s are the input, forget,
output, and cell gate respectively. s is cell state, and [ is hidden state at time step
k. w and d are the weight matrices and bias for each gate.

For backward direction:

%
?k = o(%apak—l—ﬁlp l k—1 1+ dp) (331)
A A
Te=0(Wa@p+ Wy 1oy + dy) 3.32
’I"k—O'( ar O |+ lrlk—1+dr) 3.33

%
= tanh(%asﬁk + W[s l k1T
<
§k:?k®?k—l+$k®3k

%
= ?k © tanh(?k)
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For all backward equation, the notation is similar to the forward direction, but
with an overline to indicate the backward direction. Final hidden state concatenate
forward and backward direction that is defined as:

<_
=1, @ 1) (3.37)

where @ denotes the concatenation operation. Final hidden state can be used for
different tasks, in our case it’s a classification task.

3.5.4 Gated Recurrent Unit (GRU)

GRU [28] is a simplified version of LSTM to process a sequence of tokens and
consists of two gates i.e reset gate and update gate. These two gates decide how
much information to keep or discard from the previous and current states [31]. Based
on [28], the equations can be defined as:

My = 0(Wamar + Winlp—1 + d) (3.38)
g = 0(Wanar + Winlp—1 + dy) (3.39)
Iy = tanh(waag + wyly—, + d;) (3.40)
L= (1= np) ® lpy + i O Iy (3.41)

where o is sigmoid function, tanh is tan hyperbolic function, ® is point-wise multipli-
cation, ay is input at time step k, my, and n; are reset and update gates respectively.
lr is candidate hidden state, [, is hidden state. w, and d are the weight matrices
and bias for each gate.

3.5.5 BiG

Our BiG model is a sophisticated soft voting classifier, bringing together the two
baseline models: Bi-LSTM and GRU. We have fine-tuned each baseline model to
optimize the performance of the soft voting classifier. In Table 3.6, and Table3.7,
we provide specific parameters that we’ve employed in these baseline models based
on MFCCs and MELP feature extractions technique respectively.

Table 3.6: Baseline Models parameters of BiG using MFCCs & MoMF

Baseline Model | Parameters

Bi-LSTM regularizer = 0.01

dropout = 0.2

loss = categorical_crossentropy
ephocs = 92 (MFCCs)

ephocs = 95 (MoMF)

GRU batch_size = 64

optimizer = adam

ephocs = 100 (MFCCs)
ephocs = 220 (MoMF)

44



Table 3.7: Baseline Models parameters of BiG using MELP & MEWLP

Baseline Model | Parameters

Bi-LSTM input shape = (81,1)
dropout = 0.2

loss = categorical_crossentropy
ephocs = 114 (MELP)
ephocs = 142 (MEWLP)
GRU batch_size = 64

input shape = (81,1)
optimizer = adam
ephocs = 200 (MELP)
ephocs = 186 (MEWLP)

BiG Model

Soft Voting Classifier

Bi-LSTM GRU

Output

Classification into
HighAgree/LowAgree/HighConscientious/LowConscientious/HighExtrover/Low
Extrover/HighNeurotic/LowNeurotic/HighOpen/LowOpen

Figure 3.49: Structure of BiG Model

We’ve provided a visual representation of its structure in Figure 3.49. This combina-
tion of Bi-LSTM and GRU, working together as a soft voting classifier, is designed
to capture and utilize semantic subtle present in spoken language, ensuring accurate
and reliable results in personality classification.

45



Chapter 4

Results and Discussions

In this section, we’re describing the validation results of our experiments and discuss
about the models on our dataset of Bangla speeches.

The dataset was partitioned, with 80% reserved for training data and the remaining
20% allocated for validation data.

For training our baseline models, we use Google Colab Pro platform [36]. To gauge
how well our models are doing, we used confusion metrics [26], precision, recall,
and F-1 score [9]. These help us to understand how good our models for classifying
personality traits.

4.0.1 Parameter Selection for Feature Extraction

In the context of MELP, each feature vector is composed of the concatenation of
40 default MFCCs features and 40 LPC features. One-hot encoding is employed for
label representation across all feature extraction methods. For MEWLP, 40 LPC
features are specified for each audio file, while the noise_level is fixed at 0.01. In the
case of MFCCs, the number of frames, denoted as T, is set to 40. Concerning MoMF,
parameters are configured as follows: f. = 1000, B = 5, ¢ = 30 in equation (3.13). A
total of 30 mel filters (mel_filters = 30) are utilized in equation (3.16). To prevent
issues associated with the logarithm of zero, € is set to le~®. Furthermore, equation
(3.18) involves a specification of N = 30, representing the number of coefficients.

4.1 Personality Classification using DistilRo

DistilRo uses two models called DistilBERT and RoBERTa as its foundation. These
models are designed to work together to improve the performance of the DistilRo
model.

Additionally, to prevent overfitting when dealing with smaller datasets, the models
use an 12 regularizer mechanisms. DistilBERT and RoBERTa as baseline models
make the DistilRo perform better in classifying the personality traits. In Table 4.1
and Table 4.2, we present the baseline performance of these models when it comes
to categorizing individual personality traits.

In Figure 4.1 and Figure 4.2, which display the confusion matrices of our baseline
models. Table 4.3 provides a detailed classification report for DistilRo, including its
precision, recall, and F1-score for each personality trait. The model performs best
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Table 4.1: RoBERTa classification results

Traits Precision Recall F1l-score
Agreeableness 0.83 0.88 0.85
Conscientiousness 0.73 0.77 0.75
Openness 0.98 0.84 0.91
Extroversion 0.93 0.8 0.86
Neroticism 0.73 0.88 0.79
Macro Average 0.84 0.83 0.84

Table 4.2: DistilBERT classification results

Traits Precision Recall F1l-score
Agreeableness 1.00 0.82 0.9
Conscientiousness 0.76 0.77 0.77
Extroversion 0.85 0.9 0.88
Neroticism 0.81 0.82 0.82
Openness 0.7 0.83 0.76
Macro Average 0.82 0.83 0.83

in classifying Agreeableness and Extroversion, while still achieving good results for
Neuroticism, Conscientiousness, and Openness.

In Figure 4.3, which display the confusion matrices of DistilRo model. Table 4.4
provides a comparison between the performance of baseline models and the ensemble
model. We can see that RoBERTa performs well for Extroversion and DistilRo
performs well for all other traits. Overall model performance, DistilBERT achieve
83% F-1 score, RoOBERTa achieve 84% F-1 score and DistilRo achieve 89% F-1 score
in the speech-to-text modality. In Figure 4.4, we display the accuracy and F-1 score
of each model.

Table 4.3: DistilRo classification results

Traits Precision Recall F1l-score
Agreeableness 0.95 0.9 0.92
Conscientiousness 0.9 0.85 0.87
Openness 0.89 0.92 0.9
Neroticism 1.00 0.8 0.89
Extroversion 0.71 0.97 0.82
Macro Average 0.89 0.88 0.89

4.2 Personality Classification using BiG

BiG uses two models called Bi-LSTM and GRU as its foundation. These models are
designed to work together to improve the performance of the BiG model. Addition-
ally, to prevent overfitting when dealing with smaller datasets, we use 12 regularizer
and early stopping mechanisms. Bi-LSTM and GRU as baseline models make the
BiG model perform better in classifying the personality traits.
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Normalized confusion matrix
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Figure 4.1: Confusion matrix of RoBERTa. RoBERTa effectively captures the
Agreeable and Open personality traits. However, a discernible inconsistency of
17% in data alignment with Agreeable is observed within the Conscientious trait.
Additionally, a 14% data mismatch is identified between Neurotic and Open traits.
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Figure 4.2: Confusion matrix of DistilBERT. DistilBERT effectively captures the
Extrover personality traits. However, 13% data mismatch is identified between
Conscientious and Extrover traits. Additionally, a 14% data mismatch is identified
between Neurotic and Open traits.

Table 4.4: Comparing F-1 score of three models

Traits DistilBERT RoBERTa DistilRo
Agreeableness 0.9 0.85 0.92
Conscientiousness 0.77 0.75 0.87
Extroversion 0.88 0.91 0.9
Neroticism 0.82 0.86 0.89
Openness 0.76 0.79 0.82

4.2.1 MFCC base findings

In Table 4.5 and Table 4.6, we present the baseline performance of these models
when it comes to categorizing individual personality traits. In Table 4.5, we see
that HC, HE, LC, and LE traits are highly identified by Bi-LSTM based on MFCCs
and promising at HA, LA, HN, LN and HO traits but struggle with LO trait.
Furthermore, In Table 4.6, we see that HC, HE, and LE traits are highly identified
by GRU based on MFCCs and promising at HA, LC, and LN traits but struggle
with HN, LA, and LO traits.

In Figure 4.5 and Figure 4.6, which display the confusion matrices of our baseline
models. Table 4.7 provides a detailed classification results for BiG, including its
precision, recall, and Fl-score for each personality traits where HighAgree, LowA-
gree, HighExtrover, LowExtrover, HighOpen, LowOpen, HighNeurotic, LowNeu-
rotic, HighConscientious, LowConscientious are considering as HA, LA, HE, LE,
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Figure 4.3: Confusion matrix of DistilRo. DistilRo highly captures the Agreeable,
Conscientious, Neurotic, and Open personality traits. It encounters challenges in
accurately representing the Extrover trait, particularly in establishing distinctions
with Neurotic and Open personality traits.
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Figure 4.4: Each Model Accuracy and F-1 score of Speech-to-text Modality
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Table 4.5: Bi-LSTM classification results based on MFCCs

Traits Precision Recall F1-score
HighAgree 0.73 0.84 0.76
HighConscientious 0.92 0.90 0.91
HighExtrover 0.97 0.94 0.96
HighNeurotic 0.71 0.81 0.75
HighOpen 0.76 0.68 0.70
LowAgree 0.86 0.68 0.77
LowConscientious  0.83 0.95 0.88
LowExtrover 0.97 0.94 0.95
LowNeurotic 0.74 0.85 0.79
LowOpen 0.49 0.53 0.50
Macro Average 0.80 0.79 0.79

Table 4.6: GRU classification results based on MFCCs

Traits Precision Recall F1l-score
HighAgree 0.59 0.93 0.72
HighConscientious 0.97 0.90 0.93
HighExtrover 0.92 0.98 0.95
HighNeurotic 0.55 0.84 0.67
HighOpen 0.55 0.31 0.40
LowAgree 0.97 0.36 0.53
LowConscientious  0.72 0.90 0.80
LowExtrover 0.88 0.98 0.93
LowNeurotic 0.72 0.74 0.73
LowOpen 0.67 0.39 0.49
Macro Average 0.75 0.73 0.73

Table 4.7: BiG classification results based on MFCCs

Traits Precision Recall F1-score
HighAgree 0.77 1.00 0.87
HighConscientious 0.94 1.00 0.97
HighExtrover 1.00 1.00 1.00
HighNeurotic 0.74 0.87 0.80
HighOpen 0.73 0.50 0.59
LowAgree 0.94 0.62 0.75
LowConscientious  0.68 0.94 0.79
LowExtrover 0.97 0.97 0.97
LowNeurotic 0.87 0.87 0.87
LowOpen 0.56 0.50 0.53
Macro Average 0.82 0.83 0.81

HO, LO, HN, LN, HC, LC respectively. The model BiG performs best in classifying
HC, HE, LE, while still achieving good results for HA, HN, LN, LC, LA and struggle
with HO and LO. In Figure 4.7, which display the confusion matrices of BiG model.
Bi-LSTM performs well for HO, LA, LC traits and BiG performs well for all other
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traits. Overall model performance, Bi-LSTM achieve 79% F-1 score, GRU achieve
73% F-1 score and BiG achieve 81% F-1 score in the speech modality.
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Figure 4.5: Confusion matrix of Bi-LSTM based on MFCCs. Bi-LSTM effectively

capture all the personality traits.

4.2.2 MoMF base findings

In Table 4.8 and Table 4.9, we present the baseline performance of these models
when it comes to categorizing individual personality traits. In Table 4.8, we see
that HA, HC, HE, HN, and LC traits are highly identified by Bi-LSTM based on
MoMF and promising at HO, LA, LE, LN, and LO traits. Furthermore, In Table
4.9, we see that HA, HC, HE, LE traits are highly identified by GRU based on
MoMF and promising at LC, LN, LO traits but struggle with HN, HO, and LA.
In Figure 4.8 and Figure 4.9, which display the confusion matrices of our baseline
models. Table 4.10 provides a detailed classification report for BiG, including its
precision, recall, and F1-score for each personality traits. The model BiG performs
best in classifying HA, HC, HE, LE, and LN, while still achieving good results for
HN, LA, LC, LO but struggle with HO. In Figure 4.10, which display the confusion
matrices of BiG model. Bi-LSTM performs well for HN, HO, and LC traits. GRU
performs well for HC, and LO traits and BiG performs well for all other traits.
Overall model performance, Bi-LSTM achieve 80% F-1 score, GRU achieve 79% F-1
score and BiG achieve 84% F-1 score in the speech modality.

4.2.3 MELP base findings

In Table 4.11 and Table 4.12, we present the baseline performance of these models
when it comes to categorizing individual personality traits. In Table 4.11, we see
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Figure 4.6: Confusion matrix of GRU based on MFCCs. GRU effectively capture
all the personality traits except LA, HO and LO. However, most data of LA are
mismatch with LC, LN, and HA traits. Additionally, 52 and 40 data of HO and LO

traits are considering as HN and HA traits respectively.
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Figure 4.7: Confusion matrix of BiG based on MFCCs. BiG effectively capture all
the personality traits except HO and LO.
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Figure 4.8: Confusion matrix of Bi-LSTM based on MoMF. Bi-LSTM effectively

capture all the personality traits but a discernible inconsistency of LA is observed
alignment with LC.
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Figure 4.9: Confusion matrix of GRU based on MoMF. GRU effectively capture all
the personality traits except LA and HO. However, most data of LA are identifying
as LC. Additionally, for HO trait data, model don’t separate HO and HN traits
adequately.
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Table 4.8: Bi-LSTM classification results based on MoMF

Traits Precision Recall F1l-score
HighAgree 0.89 0.91 0.90
HighConscientious 0.74 0.97 0.84
HighExtrover 0.96 0.76 0.85
HighNeurotic 0.86 0.96 0.91
HighOpen 0.67 0.75 0.71
LowAgree 0.89 0.59 0.71
LowConscientious 0.74 0.89 0.81
LowExtrover 0.73 0.87 0.79
LowNeurotic 0.77 0.67 0.72
LowOpen 0.86 0.62 0.72
Macro Average 0.81 0.80 0.80

Table 4.9: GRU classification results based on MoMF

Traits Precision Recall F1l-score
HighAgree 0.95 0.86 0.90
HighConscientious 0.95 0.95 0.95
HighExtrover 0.99 0.97 0.98
HighNeurotic 0.66 0.67 0.67
HighOpen 0.66 0.54 0.59
LowAgree 0.89 0.56 0.69
LowConscientious  0.62 0.86 0.72
LowExtrover 0.90 0.94 0.92
LowNeurotic 0.79 0.69 0.74
LowOpen 0.66 0.89 0.76
Macro Average 0.80 0.79 0.79

Table 4.10: BiG classification results based on MoMF

Traits Precision Recall F1-score
HighAgree 0.95 1.00 0.98
HighConscientious 0.89 1.00 0.94
HighExtrover 1.00 1.00 1.00
HighNeurotic 0.69 0.96 0.80
HighOpen 0.71 0.45 0.56
LowAgree 1.00 0.62 0.77
LowConscientious  0.64 1.00 0.78
LowExtrover 0.91 1.00 0.95
LowNeurotic 0.93 0.87 0.90
LowOpen 0.86 0.60 0.71
Macro Average 0.86 0.85 0.84

that HA, HC, HE, HN, LA, LC, and LE traits are highly identified by Bi-LSTM
based on MELP and promising at HO, LN, and Lo traits. Furthermore, In Table
4.12, we see that HC, HE, LC, and LE traits are highly identified by GRU based
on MELP and promising at HA, HN, LA, and LN traits but struggle with HO, and
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Figure 4.10: Confusion matrix of BiG based on MoMF. BiG effectively capture all
the personality traits but model struggle with HO trait data.

LO traits.
Table 4.11: Bi-LSTM classification results based on MELP

Traits Precision Recall Fl-score
HighAgree 0.89 0.90 0.89
HighConscientious 0.91 0.90 0.91
HighExtrover 0.94 0.93 0.92
HighNeurotic 0.91 0.96 0.94
HighOpen 0.70 0.73 0.71
LowAgree 0.94 0.81 0.87
LowConscientious  0.86 0.91 0.88
LowExtrover 0.89 0.90 0.89
LowNeurotic 0.79 0.81 0.80
LowOpen 0.90 0.63 0.73
Macro Average 0.87 0.85 0.85

In Figure 4.11 and Figure 4.12, which display the confusion matrices of our baseline
models. Table 4.13 provides a detailed classification results for BiG, including its
precision, recall, and F1-score for each personality traits. The model BiG performs
best in classifying HA, HC, HE, HN and LE, while still achieving good results for
LA, HO, LC, LN and LO. In Figure 4.13, which display the confusion matrices of
BiG model. Bi-LSTM perfoms well for HN traits and GRU performs well for HC,
LE, LA, LC, LE traits and BiG performs well for all other traits. Overall model
performance, Bi-LSTM achieve 85% F-1 score, GRU achieve 82% F-1 score and BiG
achieve 88% F-1 score in the speech modality.
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Figure 4.11: Confusion matrix of Bi-LSTM based on MELP. Bi-LSTM effectively
capture all the personality traits.
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Figure 4.12: Confusion matrix of GRU based on MELP. GRU effectively capture all
the personality traits except LO trait. Additionally, most of the data of LO trait
are considering as HA trait.
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Table 4.12: GRU classification results based on MELP

Traits Precision Recall F1l-score
HighAgree 0.65 0.97 0.78
HighConscientious 0.97 0.91 0.94
HighExtrover 0.97 0.98 0.98
HighNeurotic 0.72 0.84 0.78
HighOpen 0.68 0.63 0.65
LowAgree 0.96 0.81 0.88
LowConscientious 0.91 0.96 0.94
LowExtrover 0.90 0.99 0.94
LowNeurotic 0.82 0.79 0.81
LowOpen 0.79 0.41 0.54
Macro Average 0.84 0.83 0.82

Table 4.13: BiG classification results based on MELP

Traits Precision Recall F1l-score
HighAgree 1.00 1.00 1.00
HighConscientious 0.94 0.89 0.91
HighExtrover 0.96 1.00 0.98
HighNeurotic 0.84 0.94 0.89
HighOpen 0.94 0.71 0.81
LowAgree 1.00 0.64 0.78
LowConscientious  0.68 1.00 0.81
LowExtrover 0.88 1.00 0.93
LowNeurotic 0.89 0.86 0.88
LowOpen 0.78 0.88 0.82
Macro Average 0.89 0.89 0.88

4.2.4 MEWLP base findings

In Table 4.14 and Table 4.15, we present the baseline performance of these models
when it comes to categorizing individual personality traits. In Table 4.14, we see
that HA, HC, HE, HN, LA, LC, and LE traits are highly identified by Bi-LSTM
based on MEWLP and promising at HO, LN, and LO traits. Furthermore, In Table
4.15, we see that HC, and HE traits are highly identified by GRU based on MEWLP
and promising at LE, and HN traits but struggle with HA, HO, LA, LC, LN, and
LO traits.

In Figure 4.14 and Figure 4.15, which display the confusion matrices of our baseline
models. Table 4.16 provides a detailed classification results for BiG, including its
precision, recall, and F1l-score for each personality traits. The model BiG performs
best in classifying HA, HC, HE, HN, LE, and LN traits while still achieving good
results for HO, LA, LC, and LO traits. In Figure 4.16, which display the confusion
matrices of BiG model. Bi-LSTM performs well for HA, LA, LC, and LO traits and
BiG performs well for all other traits. Overall model performance, Bi-LSTM achieve
87% F-1 score, GRU achieve 57% F-1 score and BiG achieve 90% F-1 score in the
speech modality.
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Figure 4.13: Confusion matrix of BiG based on MELP. BiG correctly capture all
the personality traits but struggle with LA trait. However, to identify LA trait it

sometime consider LC trait.
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Figure 4.14: Confusion matrix of Bi-LSTM based on MEWLP. Bi-LSTM effectively
capture all the personality traits.
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Figure 4.15: Confusion matrix of GRU based on MEWLP. GRU can’t capture all
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Figure 4.16: Confusion matrix of BiG based on MEWLP. BiG effectively capture
all the personality traits except LO.
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Table 4.14: Bi-LSTM classification results based on MEWLP

Traits Precision Recall F1-score
HighAgree 0.93 0.96 0.94
HighConscientious 0.90 0.94 0.92
HighExtrover 1.00 0.93 0.95
HighNeurotic 0.88 0.91 0.89
HighOpen 0.75 0.80 0.77
LowAgree 0.93 0.81 0.86
LowConscientious  0.80 0.96 0.88
LowExtrover 0.91 0.86 0.87
LowNeurotic 0.77 0.95 0.85
LowOpen 0.90 0.70 0.79
Macro Average 0.88 0.88 0.87

Table 4.15: GRU classification results based on MEWLP

Traits Precision Recall F1l-score
HighAgree 0.53 0.20 0.29
HighConscientious 0.96 0.97 0.97
HighExtrover 0.97 0.98 0.98
HighNeurotic 0.48 0.83 0.61
HighOpen 0.31 0.16 0.21
LowAgree 0.77 0.37 0.50
LowConscientious  0.57 0.47 0.51
LowExtrover 0.64 0.96 0.77
LowNeurotic 0.41 0.90 0.56
LowOpen 0.50 0.17 0.25
Macro Average 0.61 0.60 0.57

Table 4.16: BiG classification results based on MEWLP

Traits Precision Recall F1l-score
HighAgree 0.87 1.00 0.93
HighConscientious 1.00 1.00 1.00
HighExtrover 1.00 1.00 1.00
HighNeurotic 0.88 0.96 0.92
HighOpen 0.81 0.77 0.79
LowAgree 0.94 0.71 0.81
LowConscientious  0.68 0.94 0.79
LowExtrover 0.97 1.00 0.98
LowNeurotic 0.94 1.00 0.97
LowOpen 0.93 0.65 0.76
Macro Average 0.91 0.90 0.90
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Chapter 5

Conclusion

Our primary research focus centered around the classification of personality traits us-
ing Bangla speech, conducted in two distinct modalities: speech-to-text and speech
analysis.

We created our own dataset, comprising 1,750 speeches for the speech-to-text modal-
ity and 1,000 acted speeches for the speech modality. Dataset will be made available
to public to support progress of the research in this area. In the former, we cate-
gorized the data into five distinct personality trait classes, while the latter featured
ten classes. Our ensemble models, DistilRo and BiG, delivered impressive results
in accurately classifying personality traits across both phases. DistilRo achieved an
outstanding 89% F-1 score in the speech-to-text modality, while BiG achieved an
impressive 81% F-1 score based on MFCCs, 84% F-1 score based on MoMF, 838% F-1
score based on MELP, and 90% F-1 score based on MEWLP in the speech modality.

Total training time energy consumed is 50.40 kWh and carbon emissions 30.24 Kg.

One of the main obstacles we faced during our research was related to creating
datasets. We recorded an experimental dataset featuring a non-professional speaker.
As our speaker lacked professional acting skills, so it was a high challenge for him
to act for each personality traits. Our acessors were unfamiliar with the speaker
and were only given the speech to annotate. The short textual data in our speeches
presented a challenge for the classification task. We extracted signal-based features
that captured acoustic speech properties. We observed that in the DistilRo model,
DistilBERT struggled somewhat in classifying conscientiousness and openness.

Similarly, in the BiG model, the GRU faced confusion when distinguishing between
high and low agreeableness (HA, LA) and high and low openness (HO, LO). In most
cases, machine consider openness trait data as neuroticism trait data. These difficul-
ties stem from the limited amount of data available for each personality trait and we
also notice that in data reliabilty openness trait Gaussian curves mostly overlap that
means distinguishing between high and low trait are less straightforward. However,
the models performed well in discriminating between high and low extroversion in
both phases.

For future research, we intend to focus on factor reduction, particularly exploring
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the correlations between NEO-FFI factors and prosodic and acoustic signal-based
features. While our present dataset was collected from a single non-professional
speaker, our future experiments will encompass both professional and non-professional
speakers, as well as a more diverse range of text materials. Additionally, we see po-
tential in investigating the identification of emotions and exploring the relationship
between emotions and personality traits within speech, offering promising avenues
for further research in this field.
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