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Abstract
Diabetic retinopathy is one complicated eye complication of diabetes and considered
one of the major causes of preventable blindness worldwide. Diabetic retinopathy
occurs when high glucose levels in the blood damage small blood vessels of the retina
over time continuously, resulting in various problems with vision. In its early stages,
DR typically shows no symptoms; thus, early detection is very important in order to
avoid permanent loss of vision. Given the importance of early diagnosis, advanced
machine learning systems, especially those applying deep learning, have been very
important in eye care in recent times. This work presents a new deep learning model
using ensemble learning combined with a hybrid architecture and proposes a deep
learning model named DRDetector. The proposed DRDetector combines ResNet50
for feature extraction with Vision Transformer ViT layers to understand the global
context. This methodology overcomes the challenge of diagnosis and prediction of
diabetic retinopathy with enhanced accuracy while minimizing false positive and
negative cases. DRDetector uses a Convolutional Neural Network (CNN) combined
with a Vision Transformer architecture, with transfer learning for detection of DR
stages. It classifies the retinal images into different classes including healthy, and
different stages of DR: mild, moderate, NPDR, and PDR. The aim of this paper is
to comprehensively assess the performance of DRDetector based on a large dataset
of retinal images, so that its efficacy can be shown in clinics. This would lead to
improved diagnosis with higher accuracy, reduction of diagnostic errors, and in effect,
help the ophthalmologists39; quest for perfection. Moreover, an advanced grading
system can assist healthcare practitioners in grading the severity of the disease for
better management and treatment options for DR. This study has pointed out that
optimized deep learning systems may support early detection, risk evaluation, and
personalized treatment for diabetic retinopathy patients.

Keywords: Diabetic retinopathy; Symtomps; DRDetector; non-proliferative; Deep
Learning.
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Chapter 1

Introduction

Diabetic retinopathy is a sophisticated complication of diabetes affecting the fine
vessels of the retina, characterized by manifestations such as leakage of blood and
fluid. This will cause swelling of the retina and grave impairment of vision. These
conditions can be pathologies for both type 1 and type 2 diabetic patients. The
prevalence increases with aging. In the most case, if left unmanaged, DR may
cause permanent loss of vision, since symptoms often appear when the disease is
at an advanced stage. Global health governing bodies, such as the World Health
Organization, are concerned with DR as one of the priorities in public health. For
instance, it is estimated that DR accounts for about 2.6% of total world blindness,
hence the need for effective mechanisms of screening, which is also accessible for
early detection to prevent the progress of the disease [16].
Management of diabetic retinopathy becomes especially challenging in underdevel-
oped countries because of the inadequacy of facilities in the health sector. This is
the case in India, which has close to 60 million victims of diabetes. The shortage
of ophthalmologists-only two thousand for the entire country-translates into an in-
ability of supply to keep up with demand for eye treatment services. One of the
big challenges in DR management is a lack of awareness, given that many people
with diabetes are unaware of the risks to their vision. In the initial stages, DR is
generally asymptomatic, and diagnosis is possible only in the advanced stage of the
disease. It has been estimated that 18% of patients with diabetes have DR, while
diabetic individuals are 25 times more at risk of developing this eye condition than
non-diabetic people [11]. The serious problem with this belated symptomatology is
that it creates major challenges for the health care system to address the issue of
DR.
Blurred vision, floaters, and partial vision loss will occur when much of the retinal
damage has already been done. These conditions increase the chances of irreversible
blindness if not promptly dealt with. This further creates an urgent need to raise
efforts for the early detection of DR among people throughout the world, at least
in resource settings. Management of DR thus greatly depends on regular screenings
of the retina before the damage has spread widely [24]. Classic screening, however,
requires specialized equipment and trained medical personnel, which are usually
lacking in resource-poor settings. Scaling up the screening programs is also compli-
cated, since the interpretation of the images requires expertise that is usually not
available in areas of acute shortages of ophthalmologists.
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Figure 1.1: Diabetic Retina [8]

More recently, some of these health challenges have found promising solutions with
the improvement in AI and deep learning. These algorithms, particularly deep
learning algorithms, including CNNs and ViT models, have done a great job of
analyzing medical images. They can learn complex patterns from large datasets of
retinal images, thus enabling them to perform highly accurate automatic detection
of diabetic retinopathy. With the use of a deep learning model for screening, this
reduces the workload for health professionals to make certain diagnoses on time.
The research thesis focuses on employing deep learning in building a robust and
efficient system for DR early detection and classification. The proposed model,
called DRDetector, presents a hybrid model by using ResNet50 as the backbone for
feature extraction combined with the ViT layers for modeling the global context.
DRDetector aims to enhance the accuracy and reduce false positives and false nega-
tives, increasing in turn the overall reliability of DR detection, by leveraging transfer
learning and cutting-edge CNN and ViT architectures [21]. The model will be able
to show various stages of DR detection, from mild to severe, including NPDR and
PDR.

The ultimate goal of DRDetector is to provide a robust, scalable clinical solution
that will aid ophthalmologists in timely diagnosing DR, especially in under-resourced
settings.

1.1 Problem Statement
Diabetic retinopathy detection is based on the appearance of specific lesions in the
retinal images, which include MAs, HMs, soft exudates, and hard exudates. MAs
appear like small red dots; however, hemorrhages have larger and bigger irregular
spots. Hard exudates are bright yellow in color due to leakage of plasma, while
soft exudates are white spots caused by the swelling of nerve fibers. Each of these
lesion types has distinct characteristics, with the major players in red lesions being
MAs and HMs, whereas bright lesions represent both soft and hard exudates. DR

3



Figure 1.2: Stages of Diabetic Retinopathy [23]

severity is classified into five stages: no DR, mild, moderate, severe nonproliferative,
and proliferative DR. The classification provides a basis for timely intervention and
treatment.
However, there are some drawbacks with the traditional methods of identification.
Many of them involve subjective examination by medical experts, which is both ex-
pensive and time- consuming. They tend to be subjective and prone to human error,
leading to misdiagnosis and delays [22]. Traditional methods also have the problem
of greatly limited availability due to a lack of necessary expertise and equipment,
especially in resource-poor settings.
While detection with automation has become much easier, as well as time- and cost-
effective, in contrast, much of this recent progress has been enabled by the recent
resurgence of deep learning techniques. DL is a class of machine learning meth-
ods that are based on complex layers for nonlinear processing, unsupervised feature
learning, and pattern recognition. Due to its unprecedented performance in med-
ical image analysis including classification, segmentation, detection, retrieval, and
registration, DL has become an active area of interest in DR detection. Techniques
such as CNNs and ViTs are especially effective, since they can automatically learn
complicated features from big datasets.
This forms the backbone of the CNNs for DL-based detection of DR, which basically
comprises convolution layers, pooling layers, and fully connected layers. These net-
works apply different filters for feature extraction in retinal images, downsampling
images with the help of different pooling techniques like average and max pool-
ing. FC layers summarize the general properties of the image, often using SoftMax
activation functions for classification.
This process is further accelerated with the pre-trained CNN architectures such as
ResNet, VGGNet, Inception-v3, and AlexNet using transfer learning. Then again,
one can tune layers individually or train the whole model from scratch.
ViT was developed to apply self-attention in holistic image processing based on the
transformer architecture. ViTs divide an image into patches, flatten these patches,
and treat them as a sequence of tokens. Given that, the ability of ViTs in mod-
eling long-range dependencies could enhance overall understanding of the images.
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Very key elements underpinning their design thus include patch embedding, posi-
tion embedding, and self-attention mechanisms that provide a way for these models
to achieve competitive or even state-of-the-art performance on large-scale image
classification tasks.
The family includes pre-trained ViT models: Swin Transformer, DeiT, original ViT,
and MedT; their use in a transfer learning framework can significantly improve the
performance of the model at reduced training time. These models should be able to
generalize their learned representation of global images well for specialized tasks in
medical imaging, object detection, or segmentation.
Typically, dataset collection, preprocessing for image enhancement, and feeding into
the DL model for feature extraction constitute the general workflow of most works
on DL-based DR detection and classification.

1.2 Research Objective
In this study, we propose an efficient deep learning method for identifying and
estimating the severity of retinal diseases, with a focus on DR. With the assis-
tance of CNNs and ViT, specifically making a deep learning model with the help of
CNN architectures and ViT architectures, we will apply it on the dataset that we
formed, which has highest number of meaningful data available in terms of dataset
volume,image quality and has enough data for every DR stages.Keeping all the
prerequisites in mind we have formed a dataset namely ” Diabetic RetinoScope”,
collecting the best images from the existing datasets like ”Diabetic Retinopathy De-
tection 2015” and ”Aptos 2019 Blindness Detection” which are available on Kaggle
[8]. The objectives of our research are as follows:

1. Design an efficient deep learning model„especially DRDetector, which can au-
tomatically detect DR in the retinal images.

2. Data collection shall be done, and a dataset should be created with emphasis
on the production of a reliable training, validation, and testing dataset.

3. Utilize state-of-the-art image preprocessing techniques for enhancing the qual-
ity of retinal images, probably resulting in successful DR detection.

4. Investigate deep learning methods in grading different levels of severity of DR.
The stages of the illness are separated out into several.

5. Calculate Sensitivity, Specificity, and Accuracy of deep learning-generated
model in DR detection and severity prediction.

6. Compare the effectiveness and precision of the deep learning methodology to
conventional DR diagnosis techniques.

7. Analyze the deep learning model’s potential for scaling and its usefulness in
actual clinical settings.

8. Some details are provided with the knowledge and suggestions of power deep
learning methods in integrating them into standard DR screening and diag-
nosing procedures.
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These are the research objectives to guide this study towards the development
of an effective and robust deep learning strategy for the diagnosis of diabetic
retinopathy, considering its applicability and potential influence on clinical
practice.
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Chapter 2

Literature Review

2.1 Background Study

2.1.1 Convolutional Neural Network (CNN)
In image processing, a CNN is particularly designed for grid-like data analysis and
many other purposes like image classification, recognition, segmentation, and object
detection. Convolutional Neural Networks can be one-dimensional, two-dimensional,
or three-dimensional. The working of the CNNs took their inspiration from the
visual cortex inside an animal, which acts in response to stimuli within certain areas
of the visible field. It is designed such that CNNs learn features of interest from
input data through various convolution filters or kernels applied to small regions of
the output. These filters sum over element-wise multiplication across the entirety
of the output, thus allowing precise feature detection within the data [25]. CNN
architecture generally includes an Input Layer, a Hidden Layer, and an Output
Layer.The major components of a Hidden Layer include the Convolution Layer, the
Pooling Layer, the Activation Function, and the Fully Connected Layer. Probably
the most important one here is the Convolution Layer, in which a set of filters is
applied to small regions of input. Unlike SIFT, features in a CNN are not predefined;
they are identified and learned during training. The Convolution Layer is succeeded
by the Pooling Layer, which diminishes the size of the input by reducing parameters
or weights and, thus accelerating training [9]. There are two types of pooling: Max-
Pooling, where the highest value from a feature map is taken, and Average-Pooling,
which calculates the mean of values in a pooling window. Non-linear activation
functions, such as ReLU, work element-wise on feature maps by replacing the input
values that are negative with zero. A Fully Connected Layer is fully connected to all
neurons or nodes in one layer to every other neuron in the previous layer: it serves
to map learned features into the final output.

2.1.2 Vision Transfomer (ViT)
The Vision Transformer represents any deep learning model that applies the Trans-
former to process visual information. For the first time developed to solve applica-
tions related to NLP, the Transformer architecture has been reused for execution of
a wide range of different tasks including image classification, object detection, and
image segmentation.In contrast to Convolutional Neural Networks (CNNs), which
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depend on convolutional operations for feature extraction from images, the Vision
Transformer utilizes the self-attention mechanism to identify relationships among
various segments of the image without employing convolutional layers [23]. The ba-
sic concept behind the Vision Transformer is to take an image as a one-dimensional
sequence of small-sized image patches, similar to the words in a sentence, and then
feed it into a Transformer model to process the patches and capture very local and
global image features [22]. ViT models are designed to analyze two-dimensional grid-
like data such as images, where the attention mechanism helps the model focus on
important features from all the patches. A Vision Transformer will have three parts:
an Input Layer, a Transformer Encoder and an output Layer. Each Transformer En-
coder will also include Multi-Head Self-Attention mechanisms, Feed-Forward Neural
Networks and Positional Encoding elements.

2.2 Related Works
For the last several years, deep learning has been one of the most studied topics,
particularly in Convolutional Neural Networks and their use in medical image pro-
cessing. Progress has been noted in computer science during recent years, especially
within the departments of artificial intelligence and deep learning. All the above
innovations have opened new routes for the timely detection of DR and, hence, have
created ways for improving patient outcomes, reducing the risk of visual loss.
The paper [13] by Dai et al., which concerns the diagnosis of DR across its spectrum
of disease, has proposed a framework known as DeepDR. DeepDR, supported by
transfer learning, consists of three deep learning-specific sub-networks, namely image
quality assessment, lesion-aware sub-networks, and a DR grading sub-network. The
presented deep learning uses the integral framework of ResNet and Mask-RCNN ar-
chitectures. Regarding general image quality, the proposed DeepDR system reached
an overall 0.929 – 0.938. The average AUC from the system’s lesion-aware subnet-
work in detecting different types of retinal lesions was 0.94. Finally, the average
AUC for diabetic retinopathy grading performed by the system was 0.955. It is this
unique three-subnetwork architecture that helps DeepDR function in a way that al-
lows the system to automatically grade the quality of a retinal image, detect lesions,
and grade diabetic retinopathy. The approach holds much promise of providing
better diagnosis of diabetic retinopathy.
In their study [2], Hann et al. present a conventional approach that involves the
examination of the morphology and composition of digital photographs in order to
derive diverse features from fundus images. This technique has advantages in terms
of clarity and simplicity. The identification of exudates in close proximity to the
macula in fundus pictures is a pivotal factor in the diagnosis of diabetic macular
edema.This paper also focuses on the DR detection in remote areas which lacks in
terms of internet speed and other facilities.So,they tried to maintain an acceptable
accuracy by reducing the computational expense for that they have used low resource
CNN architectures.
In their study, Pratt et al. [6] introduce a novel strategy utilizing deep learning
techniques for the purpose of diagnosing and categorizing the severity of diabetic
retinopathy (DR) through the analysis of digital fundus images. The authors of
this study discuss the difficulties that arise from the manual diagnosis of diabetic
retinopathy (DR). They argue that the best way of handling such a challenge is the
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employment of a CNN model, which can automatically detect and classify different
features of diabetic retinopathy, such as micro-aneurysms, exudates, and hemor-
rhages. The architecture of CNN used for the classification of diabetic retinopa-
thy is reviewed in great detail in this paper. It explains the different components
of CNN, comprising convolution layers, batch normalization, max-poling, dropout,
and the activation functions involved in each step of classification. Various other
aspects are also brought out by the authors in their discussion: the dataset used,
hardware and software configuration, pre-processing steps that were involved-color
normalization and scaling-and methodology for training followed, which integrated
real-time data augmentation for improvement in performance of the network. The
following sections provide the results of their CNN-based DR classification system
that achieved a specificity of 95%, an accuracy of 75%, and a sensitivity of 30%.
Numerical classification is assigned to different severity categories in the case of DR.
The work of Abràmoff et al. [3] compared the effectiveness of wavelet detectors with
that of the k Nearest Neighbors method in the extraction of clinical characteristics
from fundus images. The obtained AUC value with the presented extraction method
was 0.86 with a Standard Error of 0.0084. It is also interesting to note that the
dataset used in the research was obtained by employing ”non-mydriatic” digital
cameras of the retina. The size of the fundus photographs ranges from 0.15 to 0.5
gigabytes.
The deep learning system for diagnosing diabetic retinopathy was assessed by Gul-
shan et al. in their study [5], utilizing a dataset obtained through the use of a
smartphone. This study emphasizes the possibility of broadening the availability
of diagnostic techniques for diabetic retinopathy to a more extensive and varied
population.
In their publication [7], Mateen et al. propose a methodological enhancement that
encompasses the integration of multiple methodologies, such as a Gaussian mixture
model (GMM), visual geometry group network (VGGNet), singular value decompo-
sition (SVD), principal component analysis (PCA), and softmax. Above-mentioned
strategies have been applied to the level of region segmentation, extraction of high-
dimensional features, selection of features, and classification of fundus images. It is
believed, according to authors, that VGG-19 outperforms both AlexNet and SIFT
by performing better in classification while faster in processing.
In another work related to that, Agurto et al. conducted research [4] where they pre-
sented an approach which was dependent on the multiscale amplitude-modulation
frequency-modulation (AM-FM) techniques to classify fundus images between sub-
jects with and without pathologies. These modulations were applied in various
local regions in the fundus images that covered different lesion types. Then, the
amplitude-frequency response was analyzed in order to get feature vectors for these
locations. According to the authors, one can tell apart normal retinal structures
from diseased lesions by the use of the AM-FM features and establishing statistical
differences.
The authors of the Khalifa et al. work [10] introduced several computational mod-
els in their work. The evaluation of these chosen models was performed on the
mentioned dataset APTOS 2019. The chosen models were AlexNet, ResNet18,
SqueezeNet, GoogleNet, VGG16, and VGG19. The basis behind this selected model
is that they contain lesser layers compared with the other known deep models such as
DenseNet and InceptionResNet. Further reinforcement of the models was done, and
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certain methodologies were applied to restrict their complete absorption of informa-
tion from the dataset. The examination included computing the testing accuracy
and performance metrics to illustrate the robustness of the selected models. The
AlexNet model reached the maximum testing accuracy of 97.9%. These perfor-
mance metrics also further helped in quality improvement. It is important to note
that AlexNet has been set up with a limited number of layers, which helps reduce
computational complexity and training time
Supriya Mishra and Seema Hanchate used the same data with VGG-16 and DenseNet
architectures in paper [12]. They have not applied VGG-16 pre-trained with QWK
and ImageNet, but DenseNet121 has been applied with both QWK and ImageNet
pretraining. The dataset used in this work consists of 3662 images for training and
1928 images for testing or validation. These are divided into five classes, namely,
No DR, Mild DR, Moderate DR, Severe DR, and Prolific DR. Their result indicated
that pretraining with ImageNet provided the most significant increase in the accu-
racy of DenseNet121 with an accuracy rate of 96.1%. Meanwhile, VGG16 resulted
in a much lower accuracy of only 73%.
In the paper [1], Walter et al. have proposed a set of algorithms that could effectively
extract both exudates and optic discs in the retina. The central idea of their paper is
the point of extraction of the exudates by making use of large differences in grayscale
level and detecting their outlines using morphological reconstruction techniques.
The authors AbdelMaksoud et al. in the paper [15] proposed a hybrid model, called
EDenseNet, merging strengths from both the EyeNet and DenseNet models to pre-
cisely identify healthy and DR cases from diverse color fundus images sourced from
four different benchmark datasets. In their contribution, an extended evaluation
was made on the E-DenseNet model against some well-known architectures like
ResNet50, Inception V3, and VGG-19 using the MESSIDOR and IDRiD datasets.
The performance metrics considered are computation time (T), dice similarity coef-
ficient (DSC), sensitivity (SEN), specificity (SPE), accuracy (ACC), and Youden’s
index. Results obtained prove that E-DenseNet performs well, especially when ap-
plied to the IDRiD dataset for DR grading, reaching accuracy of up to 93% and
sensitivity of up to 96.7%. The work will contribute to efforts in place toward the
automation of diabetic retinopathy diagnosis by showing the potential of hybrid
models in improving detection and classification of the condition.
The authors Mushtaq et al., in their paper [14], proposed a new architecture of CNN
that consists of many deep layers. They used a DenseNet-169 for early diagnosis
of the same through their deep learning approach. For this work, two datasets are
considered: ’Diabetic Retinopathy Detection 2015’ and ’APTOS 2019 blindness de-
tection’ from Kaggle. The model propounds a pretty promising outcome, for which
the training accuracy reaches up to 95% and the validation accuracy is up to 90%.Di-
rectly compared, the proposed model outperforms the regression model, yielding a
validation accuracy of 78%. In addition, this study provides a comprehensive review
of a wide range of approaches that span deep learning to the use of classic machine
learning classifiers: the Support Vector Machine, the Decision Tree, and K-Nearest
Neighbour. Among them, the proposed DenseNet-169-based model had a maximum
accuracy rate of 90%. Also, it will provide a feasible path for DR in early diagnosis.
Study [18] Sajan et al. refers to the fact that Diabetic Retinopathy is the most
common cause of blindness among adults with diabetes, and it needs to be identified
at the earliest possible time.It examines the application of the models of machine
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learning with the purpose of enabling an automated classification system to classify
DR into 5 types-80% sensitivity, 82% accuracy, 82% specificity, and 0.904 AUC.
First, the strategy followed for the paper involves collection of diversified retinal
fundus image with variable conditions, pre-processing to enhance image quality and
extract useful features, training on CNN models, which in turn classifies images into
various grades concerning the severity of diabetic retinopathy.
In the paper dihin, Dihin et. all produced ST by replacing MSA with SW-MSA
and leaving rest of the layers intact. They used the Swin-T model combined with
multi-wavelet transformation for feature extraction, yielding an accuracy of 97% in
the case of the test datasets. They also achieved validation accuracy of 0.9891. The
model was more sensitive to detecting No-DR cases, where the sensitivity was 0.97
and specificity was 0.9867. In the case of DR cases, they obtained a sensitivity of
0.9798 and specificity of 0.96.
Another paper [27] by Yang et al. A pre-trained ViT with MAE was used for
better improvement in referable DR. MAE pre-trained it with over 100,000 publicly
available fundus retinal images with dimensions greater than 224×224. Then, the
pre-trained ViT was used for the classification of referable DR and compared the
results to ImageNet. The obtained results were an accuracy of 93.42%, AUC value
of 0.9853, sensitivity of 0.973, and specificity of 0.9539.
In the paper [1], Fernandes implemented the DeiT model-based diabetic retinopa-
thy detection and also compared the results with the performance of the ResNet18
model. She has shown how learning rates of 1E-04 and 1E-05 can improve the F1
score significantly high as 40% compared to the higher learning rates. In this paper,
it was shown that the DeiT model outperformed ResNet18 with a 13% higher F1
score for all the learning rates. This paper presented a relatively better choice of
training parameters for DeiT and showed how, with the right mix of parameters, a
transformer-based model can outperform several CNN-based models.
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Chapter 3

Dataset

3.1 Description of the Dataset
In this study, we introduce a custom dataset called the Diabetic Retinoscope, which
is designed for diabetic retinopathy classification tasks. The dataset consists of
10,000 fundus images divided into five classes, each class consisting of 2,000 images.
Images were collected from two publicly available Kaggle datasets: APTOS 2019
Blindness Detection dataset (2019) consisting of 3,662 training images; and Diabetic
Retinopathy Detection (2015) provided by EyePACS, which consists of 35,126 im-
ages. To create the Diabetic Retinoscope dataset, we utilized all images in APTOS
2019 and randomly chose 15,000 images from EyePACS. The reason for choosing
most images from APTOS is that this dataset contains better-quality images, and
its overall size is smaller than that of EyePACS hence making it computationally
more efficient. On the other hand, although more images were collected from the
EyePACS dataset, it was less utilized because of its high storage requirement and
inherent noise, which included overexposure and shadowing artifacts. The reason
behind this was to ensure that only quality images made it to the final dataset. We
hence designed a deep learning algorithm using state-of-the-art models: ResNet50
and VGG16. This model was utilized for filtering out the images containing sig-
nificant visual artifacts. This mainly involved the removal of dark images in which
critical features could not be extracted well. We removed all the images for which
brightness was below a threshold value of 40 because the important retinal details
in such images were hard to view. After doing the quality check, we remained with
8,700 high-quality images. For making the dataset balanced and for the desired
total of 10,000 images, perform class-wise data augmentation by cropping, flipping,
and other transformations such that the augmented images retain critical features
related to diabetic retinopathy classification. We then split the dataset into 7:2:1,
where 7000 images allotted for training, 2000 images for validation and 1000 images
were allocated for the test part. The dataset size is 3.5 GB, featuring accompanying
CSV files specifying labels for each image.
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Table 3.1: Severity Levels for Diabetic Retinopathy

ASSIGNED CLASS VALUE SEVERITY
class_0 No DR
class_1 Mild NPDR
class_2 Moderate NPDR
class_3 Severe NPDR
class_4 Proliferative DR

Figure 3.1: Number of images in each class

3.2 Data Sample
Below are images of different diabetic retinopathy eye’s conditions. We have five
different categories, ranging from healthy (normal) to varying severity levels of DR,
including mild, moderate, non-proliferative diabetic retinopathy (NPDR) or severe
and proliferative diabetic retinopathy (PDR). It’s hard to differentiate the issues
with human eyes usually that’s why we have used layers so that it is enough good
for the model to identify the stages precisely.
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Figure 3.2: Dataset Distribution

Figure 3.3: DR samples

3.3 Data Pre-Processing
Preprocessing DR fundus image analysis accentuates the mentioned features, espe-
cially the blood vessel network and lesions. CLAHE enhances the features of the
green channel in fundus images as a preprocessing step, and is particularly use-
ful for enhancing such features. The green channel provides the best contrast for
blood vessel extraction when compared to red and blue channels. What is CLAHE?
CLAHE is an advanced image enhancement technique that improves the contrast
of an image through performing adaptive histogram equalization in small, neigh-
bourhood regions of the image, referred to as tiles. CLAHE differs from the classic
histogram equalization in that, during enhancement, it limits amplification at each
tile-with the result of not over-saturating high-density pixel intensity areas. The
Green Channel: Why choose CLAHE? Blood Vessel Detection : In fundus images,
the green channel is usually most obvious in contrast. It increases this contrast of
blood vessels by making them much more distinguishable from their background.
It, therefore, improves the clarity in detecting it. Lesion Extraction: The manifesta-
tions of lesions such as microaneurysms, hemorrhages, and exudates often appear as
slight changes in intensity that serve as principal markers for DR. CLAHE enhanced
the features in the green channel relating to small, localized variations and improved
the detection ability of the model with regard to these abnormalities. In this way,
it enhances the input the model gets, and thus, it shall be better at detecting the
subtleties that are specifically required for DR.
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Figure 3.4: Application of CLAHE-01

Figure 3.5: Application of CLAHE-02
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Chapter 4

Methodology

In order to determine the most efficient approach, it is imperative that we ensure a
clear understanding of the proposed problem. Our primary objective is to acquire
a comprehensive dataset of diabetic retinopathy, which consists of high quality to-
mographic retinal images. To optimize our model’s performance and achieve the
utmost accuracy, meticulous fine-tuning and dataset balancing are essential. Firstly
,after building our dataset, we have applied necessary pre-processing techniques on
the data for example resizing all the images to the same size,removing the noisy
images,adjust the contrast of the images etc. After that, we have judged the di-
versity of our data through all the DR stages that we are intended to classify.First
of all, the initial data was highly imbalanced. We balanced our data using several
augmentation techniques, which reduced the overfitting of the model. Therefore,
we will segment the data into three: 70% training, 20% validation, and 10% test-
ing. The key intention of this thesis is to build a deep learning model that can
be much better than existing models, yielding more precise and meaningful results
based on their observations. The classification of images for diabetic retinopathy
will be done in the following groups: mild, moderate, severe non-proliferative dia-
betic retinopathy (NPDR), and the most advanced form of the disease, proliferative
diabetic retinopathy (PDR). Our model will be built on CNN architecture and ViT
architecture, since our task involves the processing of images. Dai et al. [13] further
performed a multilayer architecture using ResNet; results from each layer were re-
markable in terms of AUC scores. Additionally, according to the work by Mateen et
al. [7], the VGG-16 model is more effective than AlexNet in terms of classification
accuracy and computational efficiency. Based on the performance of these studies,
we have done our own model, DRDetector, expecting it to perform better. These
will finally be compared with other available empirical results using CNN and ViT
architectures. The proposed system performs the task of automatic classification of
retinal images, which were normal (healthy) to different severity levels of diabetic
retinopathy that included mild and moderate, NPDR, and PDR. We will carry out
an in-depth assessment of the DRDetector with a large data set of retinal images,
which indeed provides valuable information regarding performance and reliability in
a clinical real-world setting. Our method not only improves the diagnostic accuracy
but also minimizes false positives and false negatives, becoming an efficient tool for
ophthalmologists.
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The part below consists of the system architecture of our proposed model as shown
in figure 3.1 .

Figure 4.1: Workflow Diagram

4.1 DR Detector Model

4.1.1 Input Layer:
The model accepts input images with a shape of (224, 224, 3), representing 224x224
pixels with three color channels (RGB).

4.1.2 Backbone (ResNet50):
i) Backbone: Based on the architecture of ResNet50-ResNet50. ResNet50 is a deep
convolutional neural network proposed to be built with residual connections so that
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training will be easier and help mitigate problems involving vanishing gradients.

ii) include_top=False in ResNet50 removes the default classification head in the
network and keeps only the convolution layers for feature extraction.

iii) The output from the last layer of ResNet50 is retained; this provides a rich set
of learned features.

4.1.3 Flattening:
After the ResNet50 backbone, feature maps pass through a Flatten layer to convert
the multidimensional feature maps into a one-dimensional vector. This step prepares
the features for the Vision Transformer section.

4.1.4 Vision Transformer (ViT) Architecture:
i) Embedding layer: This consists of a dense layer with 128 units in order to reduce
the dimensionalities of the flattened feature maps. This way, it’s going to help in
the transformation of high-dimensional output into a decent size which could be
afforded.

ii) The output from the dense layer is reshaped as a sequence of tokens of shape (1,
128). This indicates that the image is treated as a single token, sequence length =
1, and embedding size is 128.

iii) Transformer Encoder Blocks: This is the composition of two transformer encoder
blocks. Each of them contains a MultiHead Self-Attention layer with 4 attention
heads with key dimension 128. This attention allows the model to learn the relation-
ships from other parts of an image, or in other words, sequences. It helps to capture
both local and global dependencies. Residual Connections after the self-attention
layer and after the feed-forward layers help in preserving information so that the
network learns more efficiently. Layer Normalization after each residual connection
is used to stabilize the learning process. Further, this output of the attention mech-
anism is fed into a Feed Forward Network, which is implemented as a dense layer
with 128 units and ReLU activation.

4.1.5 Flattening (Post Transformer):
After the transformer blocks, a flattening layer has been used to arrange the output
for the final classification layer.

4.1.6 Classification Head:
Further feature refinement is done by a dense layer of 128 units with ReLU acti-
vation. The final output layer is a Dense layer with num_classes as 5, softmax
activation function returning a probability distribution across the five categories of
diabetic retinopathy.
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4.1.7 Compilation:
i) Optimizer: One can use Adam Optimizer because the learning rate will tune itself
with the gradients, which could indicate better convergence speed.

ii) Loss Function: It will be the categorical cross-entropy. This is the proper choice
for a multi-class problem where classes of output are completely mutually exclusive.

iii) Metric: Accuracy is the metric on which the model’s performance will be mea-
sured at both training and evaluation.

Figure 4.2: Architecture of DR Detector

4.2 DR Detector Model Built
The custom model uses the advantages of CNN and transformer-based architectures
for classifying the DR fundus images into five severity levels. It starts with a re-
fined version of the ResNet50 backbone, which is from those classes of deep CNN
architectures that are known for their powerful feature extraction capabilities. The
model is the ResNet50 model, without the top classification layer, and concentrates
the model on learning complex visual patterns in the input images, such as networks
of blood vessels and lesions of the retina. This output from ResNet50 is flattened
to turn those multi-dimensional feature maps into a one-dimensional vector ready
for further processing by the Vision Transformer. Then, the embedding layer of the
Vision Transformer architecture reduces the flattened features to a 128-dimensional
vector that is reshaped into a sequence to be fed into transformer encoder blocks.
Each block has a multihead self-attention mechanism with feed-forward networks
and residual connections since the model will establish the relations among different
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regions in the image. This attention mechanism will allow the model to focus on im-
portant parts of the image, such as small lesions or abnormal blood vessels, which are
key manifestations of DR. These features are further flattened after being processed
through the transformer blocks and passed onto a dense layer to reach the softmax
classification head, which gives the probability distribution across five DR classes.
It was then compiled using the Adam optimizer and categorical cross-entropy loss
for the model to classify the input images with high accuracy. This combination of
CNNs and transformers provides the most definite methodology of analyzing fundus
images and their capability of detecting diabetic retinopathy stages precisely.

4.3 DR Detector Model Application
In this regard, the diabetic retinopathy is detected by locating major retinal features
that include lesions, blood vessels, and other abnormalities in fundus images; this
model serves with convolutional layers on one hand-on ResNet50-and transformer
blocks-Vision Transformer-on the other for the precise feature detection.

4.3.1 Blood Vessel Detection:
The convolutional layers are very powerful in ResNet50 in detecting patterns such
as blood vessels by recognizing edges, contours, and textures in the fundus images.
It is well known that CNNs extract low-level features like edges in their early lay-
ers, which play an important role in the discrimination of blood vessels from the
surrounding retinal tissue. Blood vessels represent critical indicators in diabetic
retinopathy, as alterations of structure-vessel dilation, microaneurysms-point to the
progression of the disease. ResNet50 extracts detailed representations of the net-
work of blood vessels so the model can detect certain anomalies, including vessel
leakage or occlusion.

4.3.2 Lesion Detection:
The small lesions that develop, such as microaneurysms, hemorrhages, and exudates,
are the important signs reflective of the severity of diabetic retinopathy. Most of
these often appear as inconspicuous findings of small dark or bright spots or deposits
on the retina. In ResNet50, deeper layers learn complex feature hierarchies that
focus on high-level features of the lesion with respect to texture and shape. It is in
the fine-grained details of such structures that the model performs the classification
to demarcate normal and abnormal regions of the retina.

4.3.3 Vision Transformer (ViT) for Feature Relationships:
It gives a boost to the capability of capturing globally occurring relationships be-
tween different features of an image once Vision Transformer is introduced. While
ResNet50 captures very local relationships between features, the transformer blocks
introduce a layer of understanding spatial dependencies that relate specific features
of interest, for example, lesions and blood vessels. For instance, transformers can
aid in capturing the model to understand how microaneurysms are related with the
general health of the retina by modeling long-range dependencies. This is especially
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important when detecting more complex features of DR such as cotton wool spots or
neovascularization-features that involve several regions of the retina. Its multi-head
attention mechanism in the transformer block provides the model with the ability to
dwell deeper into relevant parts of the image, especially in areas of cooccurrence be-
tween lesions and vessel abnormalities, amplifying the signals that provide evidence
of disease.

4.3.4 Classification into Diabetic Retinopathy Stages:
Once this model has extracted these crucial features related to vessel abnormalities
and lesions, among others, the information goes through the transformer blocks
to refine this feature map, focusing on important patterns across the image. The
dense layers and softmax classification head output from this model finally predict a
probability distribution across five classes representing different levels of severity in
diabetic retinopathy. These might range from no apparent DR-class 0 to proliferative
DR-class 4 depending on the lesion type, extent, and vessel damage.

4.3.5 Why the Model is Effective:
It leverages the strengths of a CNN in the detection of local features with those of
transformers in the capture of global relationships, hence an overall understanding
of the retinal image. These two approaches ensure that the system will be able to
detect subtle changes in blood vessels and lesions-those features considered critical
in diagnosing and grading diabetic retinopathy.
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Chapter 5

Pre-Trained Model

5.1 ResNet-50
ResNet 50 is very powerful in image classification, proposed by Microsoft Research.
This is built upon the ”Residual Network” architecture. It is some kind of deep con-
volutional neural network designed in working with image classification and having
a depth of 50 layers. This architecture works well in recognizing images through
residual connections that help in mapping input to the desired output. This would
enable the model to learn the connections among them better and thus probably
give better performance than in earlier stages.Architecture-wise, ResNet 50 starts
with convolutional layers in order to derive features from the input image. Generally
speaking, there are two types of blocks where the processing and transformation of
inputs take place: the identity block and the convolutional block. Lastly, the final
classification in ResNet-50 is done by the fully connected layers. In other words,
this was the overall description of the architecture of ResNet 50.The significant ad-
vantage of this model is that it resolves the problem of a vanishing gradient in a
highly innovative way. Hence, it can handle the gradient even when the number of
layers reaches up to a thousand or so, out of reach for many models. ResNet 50
is preferred due to the simplification of the training process as a result of residual
mapping, which can bear heavy complexities for mapping and make the process of
deep learning simpler [17]. Most of the core components remain similar in extensions
of ResNet across different configurations. Adding residual connections after a num-
ber of blocks that includes convolutional and max pooling layers combined, we are
going to focus on constructing ResNet 50 using images that are each 224x224 pixels.
These optimized variants include tuned hyperparameters for our needs of learning
rate and dropout rates, among others, for further improvements in optimization and
avoidance of overfitting.Then, for all the variants of ResNet we experimented with,
we set the search space for learning rates to be from 0.0001 to 0.1, and the dropout
rate ranged from 0.0 to 0.9. We iterated 10 times, randomly selecting the learning
and dropout rates, running each configuration for 3 epochs to get the best settings
based on testing accuracy. The key difference between various ResNet models is
the size of the input images and the number of convolutional layers, which will be
elaborated on in the implementation section.
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Figure 5.1: Architecture of Resnet-50 [9]

5.2 VGG 16
VGG16 is one of the most widely used and user-friendly models for image classi-
fication. It consists of sixteen layers, each containing learnable parameters, also
referred to as weights. This model can accurately classify images into one of 1000
predefined categories. The overall architecture includes 21 layers in total, of which
13 are convolutional layers, 5 are Max Pooling layers, and 3 are Dense layers.. From
these, only 16 are weight layers, that is, layers with learnable parameters. One of
the salient features of VGG16 is its simplicity in design instead of relying on a large
number of hyperparameters; it relies on stacks of convolutional filters of size 3x3
with stride 1, while padding is always the same. Max Pooling layers use 2x2 filters
with a stride of 2. It is in this consistent pattern of convolution and pooling layers
that the architecture for VGG16 is defined.
While VGG19, being more complex and having 19 layers, yields better accuracy with
reduced loss, even VGG16 is computationally expensive- demanding much from the
processor. However, correctly implemented, the VGG16 gives an accuracy of more
than 90%. VGGNet, in all its variants, takes in images whose input dimensions are
224x224. For instance, its convolutional layers have very small receptive fields, for
example, 3x3 kernels with the stride of 1 and padding of 1; thus, capturing very di-
rected features. It also uses 1x1 con-volutions to linearly transform the input. VGG
uses ReLU activation functions just like AlexNet, which provide positive outputs for
any positive input but zero out for any non-positive input. VGG does not include
LRN since its memory usage is too high.

Figure 5.2: Architecture of VGG 16 [9]
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Max Pooling follows each convolutional block for reducing the spatial dimensions
of feature maps without losing key features. Fully connected layers follow after the
final convolution and pooling to help in making predictions. The last fully connected
layer is connected to the output with neurons representing target classes, using the
SoftMax activation function for classification. Training a VGG16 from scratch can
thus become very resource-intensive, since successive convolutional layers lead to
computationally intensive procedures. Transfer learning by means of pre-trained
VGG16 can allow a more efficient approach where changes are necessary only at the
fully connected layers in order to adapt to certain classification tasks.

5.3 InceptionV3
InceptionV3 is a very deep (up to 42 layers) convolutional neural network archi-
tecture that was introduced in the year of 2015 by Google. It has been widely
popular in different areas, including medical image analysis because of its great per-
formance for solving the problem of Image Classification. This model is very useful
in identifying the different stages of diabetic retinopathy, thanks to its capability to
extract highly sophisticated features from images of retinaueling Fast data process-
ing power InceptionV3 is actually the third version of Inception series and includes
lots of improvement compared to its predecessors. Inception was highly influenced
by the success of previous architectures like AlexNet and VGG in 2012 ImageNet
competition, hence wanting to achieve both great accuracy but also effective use
of computational resources.Indeed the key characteristic that drastically separates
Inception from its predecessors is a more extensive utilization for a diversified scale
including multi-scales operation enabled with inception modules. It does this by
using 1x1,3x3 and 5 x 5 convolutions at parallel in Conv layer then the combined
output is used to train the next layers. The architecture also innovates by using
factorized convolutions and asymmetric convolutions, which lower computational
cost without losing accuracy. As such, rather than utilizing large convolution filters
(which—let’s say—a 5x5 will have too many parameters), InceptionV3 factorizes
them and then parametrize the resulting smaller operations. For instance two 3x3
convolutions instead of a single one with bigger size. It does not only increase in
efficiency, but also feature extraction.

Figure 5.3: Architecture of InceptionV3 [9]
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Furthermore, InceptionV3 uses batch normalization extensively to stabilize and ac-
celerate training by normalizing intermediate layers, leading to faster convergence
and better generalization. Another notable feature is global average pooling, which
replaces fully connected layers with a pooling mechanism that significantly reduces
the number of parameters while retaining essential information. This contributes
to the model’s efficiency, making it ideal for large-scale image analysis, including
medical imaging tasks.

5.4 Xception
The Xception architecture is a sophisticated convolutional neural network developed
by researchers at Google, utilizing depth-wise separable convolutions. It bases its
architecture on the reinterpretation of Inception modules in convolutional networks
to serve as a bridge between the depth-wise separable convolutions and the usual
convolutions. A depthwise separable convolution can be seen as an Inception module
with the maximum number of towers. It comprises a depthwise convolution followed
by a pointwise convolution. This led to the creation of Xception, which builds on In-
ception by replacing its modules with depthwise separable convolutions for improved
computational efficiency. Instead of traditional convolutional layers, the architec-
ture employs depthwise separable convolutions, where the pointwise convolution—
a 1 × 1 convolution—merges the output channels to enhance interactions, while
the depthwise convolution decreases the overall computations. To facilitate better
gradient flow and convergence during training, Xception incorporates residual con-
nections around several layers. Due to these connections, the model will be able to
learn more powerful representations since it reduces the risk of vanishing gradients
for deeper layers. Besides, the residual connection of this model helps to remove
the problems about disappearing gradients in deeper layers. Diabetic retinopathy
is a kind of detection process, finding particular lesions and abnormalities such as
microaneurysms or hemorrhages from the global and local features in the retinal
fundus images for better accuracy [9]. The Xception model extracts both tiny de-
tails and global patterns from the images using depth wise separable convolutions,
reducing the computational load for swifter training and inference. This algorithm
will classify DR phases based on feature correlations and will learn how to identify
DR-related features such as textures and forms based on annotated fundus images.
Xception is an ideal architecture for medical imaging owing to its excellent preci-
sion and effectiveness in DR stage detection. While Xception models are still quite
expensive to train, they are a significant improvement on Inception. A part of the
solution to adapt such algorithms for your specific purpose is transfer learning. In-
stead of using parallel convolutions of different sizes, as in Inception modules. This
was replaced, in Xception, with depth wise separable convolutions where the convo-
lution is split into two parts: Depthwise convolution: Only one convolution filter is
applied on each channel. Pointwise convolution: It uses 1x1 convolutions in order to
combine the output of the depthwise convolution. It achieves very good performance
with drastically reduced total number of parameters and computational cost. For
tasks like classification into different stages of diabetic retinopathy, this separation
of the convolutions allows Xception to capture much more intricate spatial details
and better hierarchical information. The architecture of the Xception model is made
up of 36 convolutional layers that are structured in a modular fashion. Each mod-
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ule in Xception ends with a residual connection similar to ResNet. These residual
connections allow the network to be much deeper, as they avoid the problem of
vanishing gradients.

Figure 5.4: Architecture of Xception [9]

This approach significantly reduces the number of parameters and computational
cost, while still maintaining high performance. By separating these convolutions,
Xception allows the network to capture more complex spatial features and learn bet-
ter hierarchical representations, which are crucial for tasks like identifying different
stages of diabetic retinopathy. Xception’s architecture consists of 36 convolutional
layers structured into modules, with each module ending in a residual connection,
similar to ResNet. These residual connections help combat the vanishing gradient
problem and allow the network to go deeper without losing performance.

5.5 ViT
Google researchers introduced the Vision Transformer (ViT) as a novel approach for
image recognition, based on the Transformer architecture commonly used in natural
language processing. ViT eliminates convolutional layers in aid of a self-attention
mechanism that treats image patches as sequences of tokens, similar to words in a
sentence, this is known as patch embedding. Since transformers do not have built-in
awareness of where each patch sits in the overall image, the ViT first adds positional
encoding, which keeps track of each patch’s original location. This helps a model
understand the spatial relationships within an image-for instance, where certain fea-
tures such as vessels or lesions appear in a retinal scan.In these layers, each patch
can interact with all others using a self-attention mechanism, which allows the model
to “see” the entire image context at once. The self-attention mechanism will help
ViT determine such complex patterns by learning how different regions of an image
are related to one another, which is highly useful when analyzing retina images for
diabetic retinopathy. Another great thing in ViT is the special token it has, [CLS],
which serves like a summary of all patch information so that the model may summa-
rize the whole image for the classification task, say, classifying the level of diabetic
retinopathy. The architecture is efficient in handling the image to the extent that
both small changes and larger patterns which include the structure of blood vessels
can be learnt. It works better in pre-training on large datasets and then fine-tuning
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with it to grab details of the image specifically [23]. Diabetic retinopathy detection
from the images of the retina requires both local and global features detection. It
would cause minor changes in the retina, including microaneurysms, hemorrhages,
and blood vessels distortions, which are not constrained to only one area. The
self-attention mechanism of the ViT model detects long-range dependencies; hence,
it will analyze an entire image and decide how different regions interact with one
another. Meanwhile, considering diabetic retinopathy with complex patterns, ViT
is very effective due to its ability to process detailed local features and global image
structure simultaneously.

Figure 5.5: Architecture of standard ViT [23]

This model is particularly effective in analyzing retinal images because it can un-
derstand both small changes (like lesions) and larger patterns (such as blood vessel
structure). When pre-trained on huge datasets and fine-tuned to capture the im-
age’s unique characteristics, this architecture performs better. Both local and global
features must be found in retinal imaging in order to diagnose diabetic retinopa-
thy. It results in minor, non-localized alterations in the retina, including microa-
neurysms, hemorrhages, and blood vessel abnormalities. By identifying long-range
relationships, ViT’s self-attention mechanism is able to examine the entire image
and ascertain how various parts interact with one another. All things considered,
ViT is especially useful for recognizing the intricate patterns connected to diabetic
retinopathy because of its capacity to comprehend both global image structure and
fine-grained local information at the same time.

5.6 DeiT
Data-efficient Image Transformer is a vision transformer model designed to perform
image classification efficiently, especially when the dataset provided is small. DeiT
takes the standard Vision Transformer (ViT) structure and optimizes it for scenar-
ios where large labeled datasets may not be available, which is a common challenge
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in image classification. The process starts with a patch embedding layer and mov-
ing the patches into a high-dimensional space. Then, using positional encoding, it
maintains spatial relationships between patches, which ensures that patch location
is maintained when we are identifying patterns across the images.The patches with
distillation tokens are passed through all the transformation layers. Self-attention
is utilized in every layer such that the patched images can interact with each other.
This enables DeiT to grasp complex spatial relationships, which may be very infor-
mative for those images in which salient features may not reveal themselves distinctly
in one specific region alone, as in the case of fundus images for diabetic retinopathy
detection. The reason this distillation token is so important in the process is that
it is trained from the CNN teacher model. It will, in fact, help DeiT identify the
most salient features present in an image and even improve its performance when
dealing with smaller sets of data. This setup is especially useful in medical imaging,
where labeled data can be scarce and quite costly. For diabetic retinopathy de-
tection, DeiT’s architecture can effectively identify finegrained patterns and larger
structures in fundus images. Diabetic retinopathy involves a range of abnormali-
ties, from small microaneurysms to larger hemorrhages, that require both detailed
local and global context analysis. This is achieved by transformer layers in DeiT by
keeping long-range dependencies and hence enabling it to recognize features scat-
tered in an image. The distillation token aids this process of understanding such
key DR-specific patterns by DeiT [20]. Further, it will contribute to learning both
the exact details, like the shape and color variations of lesions, and the general
spatial arrangement of vessels or abnormal spots on the retina. Effectiveness: The
second strength with DeiT is. The design of DeiT represents an efficient adaptation
of the Vision Transformer for data-constrained environments, hence very suitable
for diabetic retinopathy detection. By combining transformer learning of global
context with the CNN-guided supervision through a distillation token, DeiT can
handle complex retinal images with high accuracy. This makes it appropriate for
medical applications, given the need for accuracy in classification and efficiency in
data usage, hence allowing for efficient and scalable detection of DR stages in fundus
images.

Figure 5.6: Architecture of DeiT [20]
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For diabetic retinopathy detection, DeiT’s architecture can effectively identify fine-
grained patterns and larger structures in fundus images. Diabetic retinopathy in-
volves a range of abnormalities, from small microaneurysms to larger hemorrhages,
that require both detailed local and global context analysis. DeiT’s transformer
layers handle this complexity by preserving long-range dependencies, which allows
it to recognize features scattered across an image. The distillation token assists
DeiT in understanding these critical DR-specific patterns. It helps in learning both
exact details, such as the form and color variations of lesions, and the overall spatial
arrangement of vessels or aberrant spots in the retina.Additionally, DeiT provides
an advantage in terms of effectiveness. DeiT’s design is an efficient adaptation of
the Vision Transformer for data-constrained environments, making it an excellent
choice for diabetic retinopathy detection. By combining the transformer’s global
context learning with CNN-guided supervision through the distillation token, DeiT
can handle complex retinal images with high accuracy. This makes it suitable for
medical applications where precise classification and efficient data use are essential,
allowing for effective and scalable detection of DR stages in fundus images.

5.7 Swin
Swin Transformer extends all previous models of visual processing and relies on
an effective mechanism for image processing, namely shifted windowing. Previous
models of CNN are always based on fixed receptive fields. Unlike these, in Swin
Transformer, images are treated by first dividing them into non-overlapping win-
dows and then performing self-attention within those local windows:. The central
novelty of Swin resides in its hierarchically representational architecture, the mech-
anism of shifted windows, allowing both local and global feature extraction without
sacrificing computational efficiency as in [19]. This provides the model with the abil-
ity to represent fine-grained details and to capture broader contextual information
over multiple scales. The self-attention proposed in the Swin Transformer confines
itself within several small-sized windowing and reduces the computational complex-
ity drastically compared to global attention mechanisms. In this way, the model still
captures long-range dependencies across the whole image by shifting the position
of the window in different layers. This design makes the Swin Transformer excel in
tasks that require both localized and large-scale pattern understandings; hence, it is
well-suited for applications like DR detection. Diabetic retinopathy detection refers
to the identification of subtle lesions and abnormalities such as microaneurysms and
hemorrhages scattered within the retina. Hence, the Swin Transformer can model
not only the fine details within a small window but also the greater structure of
the retina for more precise feature detection. The model learns the DR-related
patterns at several levels in the retina, such as changes in the structure of blood ves-
sels, through a hierarchical structure [26]. It also involves layer normalization and
residual connections that improve the flow of gradients, hence allowing for better
convergence during training. This prevents a number of issues such as vanishing gra-
dients, therefore enabling the model to learn even on deep architectures. Besides, its
efficiency opens ways to large-scale medical image analysis, enabling faster training
and high-accuracy inference. Applications such as DR detection give Swin Trans-
former a good edge since Swin deals with highresolution images that encompass
feature extraction in both the local and global sense. This provides performance
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increments through training on big datasets and subsequent fine-tuning regarding
specific medical tasks such as the analysis of retinal images. Hence, making the Swin
Transformer a strong tool in medical image areas for improved accuracy in detection
and enhancing computational efficiency with respect to the traditional convolutional
models.

Figure 5.7: Architecture of Swin [19]

The model learns the DR-related patterns at several levels in the retina, such as
changes in the structure of blood vessels, through a hierarchical structure. It also
involves layer normalization and residual connections that improve the flow of gradi-
ents, hence allowing for better convergence during training. This prevents a number
of issues such as vanishing gradients, therefore enabling the model to learn even on
deep architectures. Besides, its efficiency opens ways to large-scale medical image
analysis, enabling faster training and high-accuracy inference. Applications such
as DR detection give Swin Transformer a good edge since Swin deals with high-
resolution images that encompass feature extraction in both the local and global
sense. This provides performance increments through training on big datasets and
subsequent fine-tuning regarding specific medical tasks such as the analysis of reti-
nal images. Hence, making the Swin Transformer a strong tool in medical image
areas for improved accuracy in detection and enhancing computational efficiency
with respect to the traditional convolutional models.
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Chapter 6

Model Implementation

6.1 Performance of Pre-Trained Models

6.1.1 ResNet-50
Prior to placing the input images into the model, we scaled them to 224 x 224.
The output layer was adjusted to fit five classes in order to determine the degree of
diabetic retinopathy severity. Both Xception and Inception-v3 provide completely
connected layers. It was then adjusted using our unique dataset. We obtained the
validation accuracy of 90.83% and a training accuracy of 96.30% using the Resnet-
50 model. The training and validation figures are shown in the picture below. The
figure suggests that training accuracy increases with time.

Figure 6.1: Graph of Resnet-50

6.1.2 VGG 16
We achieved the validation accuracy of 88.33% and the training accuracy of 94.72%
using the VGG 16 model on our dataset. The training and validation graphs are
shown in the figure below. The figure suggests that training accuracy increases with
time.
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Figure 6.2: Graph of VGG 16

6.1.3 InceptionV3
Before feeding the input images into the model, we reduced them to 224 by 224,
just like the Xception model. The output layer was modified to fit five classes in
order to determine the degree of diabetic retinopathy severity. Both Xception and
Inception-v3 provide fully connected layers. Then, just like we did for Resnet-50,
it was adjusted on our own dataset. In the end, we achieved 95% train accuracy,
92% validation accuracy, 98% train auc, and 95% val auc. The figure suggests that
training accuracy improve with time.

Figure 6.3: Graph of InceptionV3

6.1.4 Xception
We’ve used pretrained Xception model and then fine-tuned it on our custom dataset.
For fine- tuning firstly we freezed the early layers and then later we unfreeze the last
few layers gradually. As for learning rate, we start with a lower learning rate which
is 0.0001 but we used a learning rate scheduler and optimizer to adjust the learning
rate while training. We resized the image to 224×224 before putting them into the
model. Besides, we did data augmentation for enhancing generalization. Finally,
we got 96% train accuracy and 92.33% validation accuracy. As for the auc value we
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got 98% for train data and 96% for validation data. We can observe from the figure
that the training accuracy improves over time.

Figure 6.4: Graph of Xception

6.1.5 ViT
We fine-tuned the pre-trained model by starting with a learning rate of 3e-4 and
then gradually reduced to 1e-4 for fine tuning. Also, we used the AdamW optimizer
and Cosine Annealing Scheduler here. By freezing earlier and then unfreezing later
gradually helped us performing better. Finally, we achieved 94.38% accuracy on the
train data and 89.22% on the validation data. As for auc value we got 97% on train
data and 92% on validation data. for auc value we got 97% on train data and 92%
on validation data. for auc value we got 97% on train data and 92% on validation

Figure 6.5: Graph of standard ViT

data.

6.1.6 DeiT
We resized the image to 224×224 pixels. Then we used rotation, flipping, color jitter
and CLAHE filter and after that we imported pre-trained DeiT model. We used
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the patch size as 32×32 and used the AdamW optimizer so that we can prevent
overfitting by weight decay. Initially we started training with 0.0001 learning rate
and then used Cosine Annealing Learning Rate Scheduler to reduce the learing rate
followed by a cosine curve so that we get stability in terms of accuracy. Finally, we
got 93% train accuracy, 85% validation accuracy, 96% train auc and 92% validation
auc. We can observe from the figure that the training accuracy improves over time.

Figure 6.6: Graph of DeiT

6.1.7 Swin
After resizing, rotating,flipping and applying CLAHE filter on the image, we fine-
tuned the model on our dataset by freezing, unfreezing layers. Here, AdamW was
used and we used a small weight decay of 0.01 to regularize the model and prevent
overfitting. Eventually we got 95.81% train accuracy, 89.66% validation accuracy,
98% train auc and 94% validation auc.

Figure 6.7: Graph of Swin
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6.2 Performance of DR Detector
After implementing DiabeticRetinoScope dataset in our DRdetector model ,it shows
an accuracy of 97.38% and a validation accuracy of 91.23% . For every class, the
model’s test accuracy was 89.40%. Comparing our pre-trained Resnet-50 model to
other pre-trained models, we managed to get superior outcomes for the transformer
layers, which include the Multi-Head Self-Attention layer, Residual Connections,
Layer Normalization, and A Feed Forward Network. With adequate dataset prepro-
cessing, we were able to get this outcome. As we continue to examine the shortcom-
ings, we hope to increase the accuracy of this dataset on the DRDetector model.
As we can see in the figure, both the training and validation accuracy increase over
time.

Figure 6.8: Accuracy Graph of DRDetector

Figure 6.9: Good Test and Bad Test for DRDetector

6.2.1 Class 0:
For class 0 our DR Detector model got a precision accuracy of 87.8%, recall of 91%
and F-1 score of 89.37%.
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6.2.2 Class 1:
Our model performed well for class 1 also. It got a precision accuracy of 90.2%,
recall of 93% and F-1 score of 91.6%.

6.2.3 Class 2:
For Class 2 this model gained a precision accuracy of 87.8%, recall of 86.5% and F-1
score of 87.18%.

6.2.4 Class 3:
DR Detector gained a well enough performance for class 3, precision accuracy of
89.5%, recall of 89.5% and F-1 score of 89.5%.

6.2.5 Class 4:
For class 4 our DR Detector model got a precision accuracy of 91.5%, recall of 87%
and F-1 score of 89.1%.

Figure 6.10: Confusion Matrix of DR Detector model class wise
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Chapter 7

Performance Analysis

We underlined in the thesis that our main focus would be on two deep learning
models, namely ResNet-50 and layers of vision transformers. The choice of ResNet
and ViT is because of the detailed related literature where these models have shown
better performance in predicting retinopathy compared to the availability of other
models. Our first choice was ResNet because it introduced the use of skip connec-
tions in its architecture. ResNet50, one variation in the ResNet family of models,
has a total of 50 layers and was used architecturally for this study. Therefore, the
images in the Diabetic RetinoScope dataset were then split into training, valida-
tion, and testing sets; the former contained 70% of the total images, while the latter
contained 20% and 10%, respectively. Later, we labeled the training images with
the severity labels found within the associated CSV files. All images were resized
to 224x224 pixels, ensuring uniformity in the dimension of the images. We set the
batch size for training the neural network to 8, with a learning rate of 1e-4. Further,
we put in a total training epoch to 100.
In this work, a pre-trained model was used for feature extraction, following the
ResNet50 architecture. Additional layers were added in order to adapt the model
for the requirements of ViT on the dataset that we have created, namely Diabetic
RetinoScope. First of all, we froze all the layers of the model by setting their
trainable attribute to False. This was a precautionary measure in order not to
update the weights of these layers. Next, we schedule the model for fine-tuning
by strategically unleashing the last five layers such that only their weights can be
updated in successive training iterations. In addition, fine-tune the whole model for
more training. Then, test the model on the test set, and draw some metrics needed
like a confusion matrix, other diagrams to verify its performance.

7.1 Result Evaluation
We see, among the pre-trained models Resnet-50 performed the best on our dataset
(Diabetic RetinoScope). With a accuracy of 86.89% and F1 score of 88.52%, among
all the pre-trained models. Secondly, Xception, Swin and InceptionV3 got a good
enough result on our dataset also ranging near the mark of 95%. From this, we had
the inspiration to build custom model based on Resnet-50 adding some prominent
Transformer layers to the model. We named the model as, DRDetector. Which aims
to have a higher accuracy than these pre-trained models. As we see the DRDetector
model perform best among all the models that was run with our dataset(Diabetic
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RetinoScope). As we have seen that the train and validation accuracy was gradually
increasing for the DRDetector model, with some more fine tuning we will get higher
accuracy result on our dataset.

Table 7.1: Performance Comparison of Different Models

MODEL NAME ACCURACY PRECISION RECALL F1-SCORE
DR Detector 89.40% 89.36% 89.40% 89.35%
RESNET-50 86.89% 87.11% 86.89% 86.93%

VGG 16 84.56% 84.59% 84.56% 84.52%
INCEPTION-V3 85.18% 85.22% 85.18% 85.20%

XCEPTION 85.84% 85.91% 85.84% 85.87%
VIT 85.04% 85.19% 85.04% 85.11%

DEIT 82.77% 82.69% 82.77% 82.72%
SWIN 86.13% 86.07% 86.13% 86.09%
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Chapter 8

Conclusion

The key objective of the carried-out research work is to consider the identification
and prognosis of DR, a very critical subject with the aim of mitigating visual impair-
ment as well as ocular blindness in people suffering from diabetes. In that respect,
a novel deep learning technique is designed for diagnosis and severity grading of the
retinal conditions, which is to be named as DRDetector. With the pressing need
for early detection of DR, we have performed extensive work in problem definition,
data collection, and the development of a particular deep learning model. In par-
ticular, we have gainfully employed the capabilities of CNNs and ViT, especially
ResNet, in extending the capability for automatic diagnosis of retinal diseases. This
development has been achieved by merging the best data from two independent
datasets, namely ”Diabetic Retinopathy Detection 2015” and ”Aptos 2019 Blind-
ness Detection”, in our build dataset named ”DiabeticRetinoScope”. Further, our
research goals are an improvement of the state of current severity grading of the
retinal diseases for early detection and eventually the treatment of the patients.
The deep learning technologies are being proved to bring a paradigm shift in the de-
tection of DR by performance of in-depth evaluation and comparative analysis with
traditional diagnostic methods. A literature review was performed and, after this
review, we found numerous deep learning-based methods which contributed much
to the advancement of the diagnosis of diabetic retinopathy (DR). The emphasis on
employing a variety of techniques and architectures in these methods points toward
possible automation within the healthcare domain and, correspondingly, fighting
diseases such as DR. This work rests on a structured approach, whose steps include
the following: data collection, preparation, model selection, model training, and
model evaluation. For this work, our model is further improved by incorporating
advanced CNN and ViT with pre-trained ResNet50 and transformer layers like Mul-
tiHead Self-Attention layer, Layer Normalization, and Feed Forward Network. This
paper tends to enable early DR detection for which medical doctors can diagnose
and perform more accurate and early interventions in curing this debilitating dis-
ease. It would be our vision that, in some time to come when advanced technology
would meet clinical practice, vision loss on account of diabetic retinopathy would
be prevented and appropriately managed. Generally, this study further consolidates
deep learning among the vast set of conventional methods for diabetic retinopathy
screening and diagnosis. This can eventually bring a complete transformation in the
management of diabetic retinopathy and improvement in the outcome.

39



Bibliography

[1] T. Walter, J.-C. Klein, P. Massin, and A. Erginay, “A contribution of image
processing to the diagnosis of diabetic retinopathy-detection of exudates in
color fundus images of the human retina,” IEEE Transactions on Medical
Imaging, vol. 21, no. 10, pp. 1236–1243, 2002.

[2] C. E. Hann, J. A. Revie, D. Hewett, J. G. Chase, and G. M. Shaw, “Screening
for diabetic retinopathy using computer vision and physiological markers,”
Journal of Diabetes Science and Technology, vol. 3, no. 4, pp. 819–834, 2009.

[3] M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal imaging and image
analysis,” IEEE Reviews in Biomedical Engineering, vol. 3, pp. 169–208, 2010.

[4] C. Agurto, V. Murray, E. Barriga, et al., “Multiscale am-fm methods for di-
abetic retinopathy lesion detection,” IEEE Transactions on Medical Imaging,
vol. 29, no. 2, pp. 502–512, 2010.

[5] V. Gulshan, L. Peng, M. Coram, et al., “Development and validation of a
deep learning algorithm for detection of diabetic retinopathy in retinal fundus
photographs,” JAMA, vol. 316, no. 22, pp. 2402–2410, 2016.

[6] H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, “Convo-
lutional neural networks for diabetic retinopathy,” Procedia Computer Science,
vol. 90, pp. 200–205, 2016.

[7] M. Mateen, J. Wen, Nasrullah, S. Song, and Z. Huang, “Fundus image classifi-
cation using vgg-19 architecture with pca and svd,” Symmetry, vol. 11, no. 1,
p. 1, 2018.

[8] Anonymous, “Aptos 2019 blindness detection,” APTOS 2019 Blindness De-
tection, 2019. [Online]. Available: https ://www.kaggle .com/competitions/
aptos2019-blindness-detection/data.

[9] S. H. Kassani, P. H. Kassani, R. Khazaeinezhad, M. J. Wesolowski, K. A.
Schneider, and R. Deters, “Diabetic retinopathy classification using a modi-
fied xception architecture,” in 2019 IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT), IEEE, 2019, pp. 1–6.

[10] N. E. M. Khalifa, M. Loey, M. H. N. Taha, and H. N. E. T. Mohamed, “Deep
transfer learning models for medical diabetic retinopathy detection,” Acta In-
formatica Medica, vol. 27, no. 5, p. 327, 2019.

[11] W. L. Alyoubi, W. M. Shalash, and M. F. Abulkhair, “Diabetic retinopathy de-
tection through deep learning techniques: A review,” Informatics in Medicine
Unlocked, vol. 20, p. 100 377, 2020.

40



[12] S. Mishra, S. Hanchate, and Z. Saquib, “Diabetic retinopathy detection using
deep learning,” in 2020 International Conference on Smart Technologies in
Computing, Electrical and Electronics (ICSTCEE), IEEE, 2020, pp. 515–520.

[13] L. Dai, L. Wu, H. Li, et al., “A deep learning system for detecting diabetic
retinopathy across the disease spectrum,” Nature Communications, vol. 12,
no. 1, p. 3242, 2021.

[14] G. Mushtaq and F. Siddiqui, “Detection of diabetic retinopathy using deep
learning methodology,” in IOP Conference Series: Materials Science and En-
gineering, IOP Publishing, vol. 1070, 2021, p. 012 049.

[15] E. AbdelMaksoud, S. Barakat, and M. Elmogy, “A computer-aided diagnosis
system for detecting various diabetic retinopathy grades based on a hybrid
deep learning technique,” Medical Biological Engineering Computing, vol. 60,
no. 7, pp. 2015–2038, 2022.

[16] S. Bai, J. Li, and Y. Zhang, “Transformer-based model for detection of diabetic
retinopathy in retinal images,” in 2022 International Conference on Medical
Image Computing and Computer-Assisted Intervention (MICCAI), Springer,
2022, pp. 435–445.

[17] X. Zhao, Q. Yang, and L. Zhang, “Comparative study of cnn and vision trans-
former for diabetic retinopathy classification,” in 2022 International Con-
ference on Artificial Intelligence and Data Science (ICAIDS), IEEE, 2022,
pp. 115–120.

[18] A. K. Anumol Sajan and M. S. M. Kurian, “Diabetic retinopathy detection
using deep learning,” Journal Name, 2023.

[19] R. A. Dihin, E. Alshemmary, and W. A. M. Al-Jawher, “Diabetic retinopathy
classification using swin transformer with multi wavelet,” Journal of Kufa for
Mathematics and Computer, vol. 10, no. 2, pp. 167–172, Aug. 2023.

[20] V. Fernandes, “Using data-efficient image transformers for diabetic retinopa-
thy severity classification,” Research Gate, vol. 6, no. 1, pp. 7–9, 2023.

[21] J. George and R. Varma, “Deep learning approaches for diabetic retinopathy:
A comprehensive review,” Applied Sciences, vol. 13, no. 2, p. 853, 2023.

[22] I. Mohsen, L. Khedher, and A. Khelifa, “Multi-modal approach for diabetic
retinopathy detection using cnn and vision transformer,” Journal of Healthcare
Engineering, vol. 2023, pp. 1–12, 2023.

[23] W. Nazih, A. O. Aseeri, O. Y. Atallah, and S. El-Sappagh, “Vision trans-
former model for predicting the severity of diabetic retinopathy in fundus
photography-based retina images,” IEEE Access, vol. 11, no. 3, pp. 117 546–
117 561, 2023.

[24] A. Singh, V. Kumar, and R. Gupta, “A comparative study of vision trans-
former and cnn for medical image classification tasks,” Journal of Medical
Systems, vol. 47, no. 2, p. 75, 2023.

[25] Y. Tahiri, A. Moussaoui, and K. Abdelkader, “A vision transformer for classi-
fying diabetic retinopathy from fundus images,” Journal of Biomedical Imag-
ing, vol. 2023, pp. 1–10, 2023.

41



[26] Y. Wang, Y. Zhao, and X. Liu, “Exploring the efficacy of swin transformer for
medical image analysis: A case study on diabetic retinopathy,” IEEE Trans-
actions on Medical Imaging, vol. 42, no. 5, pp. 1580–1592, 2023.

[27] T. Yang, H. Wang, and Y. Chen, “A hybrid cnn-vit model for automated di-
abetic retinopathy detection,” Frontiers in Bioengineering and Biotechnology,
vol. 11, p. 1342, 2023.

42


	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgement
	Table of Contents
	List of Figures
	Introduction
	Problem Statement
	Research Objective

	Literature Review
	Background Study
	 Convolutional Neural Network (CNN)
	Vision Transfomer (ViT)

	Related Works

	Dataset
	Description of the Dataset
	Data Sample
	Data Pre-Processing

	Methodology
	DR Detector Model
	Input Layer: 
	Backbone (ResNet50):
	Flattening: 
	Vision Transformer (ViT) Architecture:
	Flattening (Post Transformer): 
	Classification Head: 
	 Compilation: 

	DR Detector Model Built
	DR Detector Model Application
	Blood Vessel Detection:
	Lesion Detection:
	Vision Transformer (ViT) for Feature Relationships:
	Classification into Diabetic Retinopathy Stages:
	Why the Model is Effective:


	Pre-Trained Model
	ResNet-50
	VGG 16
	InceptionV3
	Xception
	ViT
	DeiT
	Swin

	Model Implementation
	Performance of Pre-Trained Models
	ResNet-50
	VGG 16
	InceptionV3
	Xception
	ViT
	DeiT
	Swin

	Performance of DR Detector
	Class 0:
	Class 1:
	Class 2:
	Class 3:
	Class 4:


	Performance Analysis
	Result Evaluation

	Conclusion
	Bibliography

