
Optimizing American Sign Language Recognition with Binarized
Neural Networks: A Comparative Study with Traditional Models

by

Shakeef Ahmed Rakin
20301046

Mohammed Intishar Rahman
20301191

Md.Tahjid Ahsan
20301209

Afif Alamgir
20301199

Md Sifat Mahmud
20101477

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University

May 2023

© 2023. Brac University
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Shakeef Ahmed Rakin
20301046

Mohammed Intishar Rahman
20301191

Md.Tahjid Ahsan
20301209

Afif Alamgir
20301199

Md Sifat Mahmud
20101477

i

Approval
The thesis titled “Optimizing American Sign Language Recognition with Binarized
Neural Networks: A Comparative Study with Traditional Models” submitted by

1. Shakeef Ahmed Rakin(20301046)

2. Mohammed Intishar Rahman(20301191)

3. Md.Tahjid Ahsan(20301209)

4. Afif Alamgir(20301199)

5. Md Sifat Mahmud(20101477)

Of Spring, 2023 has been accepted as satisfactory in partial fulfillment of the re-
quirement for the degree of B.Sc. in Computer Science on May 25, 2023.

Examining Committee:

Supervisor:
(Member)

Md Tanzim Reza
Lecturer

Department of Computer Science and Engineering
Brac University

Co-Supervisor:
(Member)

A.M. Esfar-E-Alam
Senior Lecturer

Department of Computer Science and Engineering
Brac University

ii

Program Coordinator:
(Member)

Md. Golam Rabiul Alam, PhD
Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Sadia Hamid Kazi, PhD
Chairperson and Associate Professor

Department of Computer Science and Engineering
Brac University

iii

Abstract
Sign language is essential for effective communication among individuals with hear-
ing or speech impairments. Automated recognition systems for sign language are
crucial for facilitating learning and translation across different sign language vari-
ants. However, existing systems often struggle with high computational demands
and large memory footprints, limiting their applicability in real-time and resource-
constrained environments. This research aims to develop an optimized pipeline for
American Sign Language (ASL) recognition, focusing on the comparison between
Binarized Neural Networks (BNNs) and traditional full-precision neural networks.
Using Larq, an open-source Python library for training binarized models, we ex-
ploit BNNs’ advantages of reduced memory and computational needs, making them
ideal for embedded systems and edge devices. The study utilizes a dataset of ASL
alphabet images, encompassing a variety of hand configurations and movements.
Data augmentation techniques are applied to address challenges like data imbalance
and occlusions. Both binarized and traditional models are trained and optimized,
and their performance is evaluated using metrics such as accuracy, precision, re-
call, F1-score, memory footprints and inference times. The results indicate that
BNNs offer competitive performance with significantly lower computational require-
ments, paving the way for more efficient and accessible ASL recognition systems and
demonstrating the potential of binarized models in this domain.

Keywords: Artificial Intelligence (AI), Sign Language, Deep Learning, Ameri-
can Sign Language, CNNs, Larq, BNNs, DenseNet121, ResNet50, VGG16, Binary-
DenseNet45, BinaryDenseNet37, BinaryResNetE18

iv

Table of Contents

Declaration i

Approval ii

Abstract iv

Table of Contents v

1 Introduction 1
1.1 Background . 1
1.2 Research Objective . 2
1.3 Problem Statement . 3
1.4 Research Orientation . 3

2 Literature Review 5

3 Methodology 11
3.1 Dataset Used . 12
3.2 Pre-Processing the Dataset . 13

3.2.1 In-Place Data Augmentation 13
3.3 Dataset Distribution . 14
3.4 Overview of Binarized Models . 14
3.5 LARQ: Library for Binarized Models 15
3.6 Models Used . 16

3.6.1 BinaryDenseNet45 . 16
3.6.2 BinaryResNetE18 . 17
3.6.3 BinaryDenseNet37 . 18
3.6.4 DenseNet121 . 18
3.6.5 Resnet50 . 19
3.6.6 VGG16 . 20

3.7 Experimental Setup . 21
3.7.1 Model Training and Evaluation 21
3.7.2 PC Configuration . 22
3.7.3 Environment and Software Versions 22

4 Results 23
4.1 Performance Measure . 23
4.2 Learning Curves . 24

4.2.1 BinaryDenseNet45 . 24

v

4.2.2 BinaryResNetE18 . 25
4.2.3 BinaryDenseNet37 . 26
4.2.4 ResNet50 . 26
4.2.5 DenseNet121 . 27
4.2.6 VGG16 . 27

4.3 Confusion Matrices . 28
4.3.1 BinaryDenseNet45 . 28
4.3.2 BinaryResNetE18 . 29
4.3.3 BinaryDenseNet37 . 30
4.3.4 ResNet50 . 31
4.3.5 DenseNet121 . 32
4.3.6 VGG16 . 33

4.4 Classification Reports . 34
4.4.1 BinaryDenseNet45 . 34
4.4.2 BinaryResNetE18 . 35
4.4.3 BinaryDenseNet37 . 36
4.4.4 ResNet50 . 37
4.4.5 DenseNet121 . 38
4.4.6 VGG16 . 39

4.5 Score Analysis . 40
4.6 Model Size, Parameters, and Accuracy Comparison 41
4.7 Inference Time Analysis . 41
4.8 Advantages of Binarized Models . 42

5 Conclusion 43
5.1 Future Works . 43

Bibliography 45

vi

Chapter 1

Introduction

Today’s world is interconnected through communication, which plays an essential
role in promoting understanding and engagement among individuals. Conventional
spoken language can present challenges for the deaf and hard of hearing communities.
Sign language, with its gestural and visual aspects, helps to bridge the communica-
tion gap between these individuals and others. Understanding the value of inclusive
communication, researchers and scientists have explored creative ways to help sign
language users connect with the wider population. One promising approach com-
bines deep learning methods with advanced model architectures to improve sign
language recognition. Our research aims to study and analyze the performance of
Binarized Neural Networks compared to other traditional neural network models
for the intent of American Sign Language (ASL) recognition. Some key advantages
of BNNs are reduced memory and computation requirements, making them ideally
applied to embedded systems for real-time edge applications. Our aim is at creating
a highly performing, effective ASL recognition system that recognizes and under-
stands hand movement with good accuracy. To achieve this, we preprocess the ASL
dataset by using data augmentation techniques to handle obstacles like imbalanced
data, huge intra-class variability in hand positions, and occlusions. With this, there
will be a guarantee of enough adaptability of the models to a significant variety of
different conditions. Our study is going to involve the training and optimization of
both Binarized Neural Network (BNN) models and conventional ones in sequence.
We will then compare these two according to various performance measures, includ-
ing: accuracy, precision, recall, and F1-score. So, this research is going to provide
sufficient insight into the strengths and limitations of BNN models over traditional
models. Developing more efficiency and cost-effective ASL identification systems
that are well suited to real-time applications.

1.1 Background
Sign language is visual language that converts body language into words. Currently
in the world, there are over 72 million deaf people according to the World Federation
of the Deaf [20]. Furthermore, there are over 300 sign languages around the world
with 57.6 million people using them in developing countries. Not all people have
the ability to interpret sign language which can cause deaf people a lot of struggles

1

in functioning properly in society. Moreover, sign language can range from simple
gestures to entire sequence of gestures which interpret into sentences which allows
people to bridge the gap between deaf people and society. Consequently, this makes
sign language a steep hill to climb for normal people to learn. Not only that but
also, out of the 500,000 deaf people in the US, only 1% use sign language [9]. The
importance of the integration of sign language into society can improve of the in-
clusivity of people with hearing loss into everyday societal functions. Furthermore,
with the advent of AI, many machine learning based sign language recognition tools
have become available but not yet to the point that they are usable in everyday
life due to various limitations and drawbacks. They deploy various techniques such
as classification algorithms, feature extraction, data augmentation and deep learn-
ing architectures. Some techniques suffer from drawbacks due to not being able to
detect hand gestures in unsatisfactory lighting conditions or backgrounds, different
skin tones, low quality visual inputs etc. which are all crucial points in enhancing
the overall usability and adaptability.

1.2 Research Objective
Our objective is to develop a pipeline for American Sign Language (ASL) recognition
with a primary focus on comparing Binarized Neural Networks (BNN) with tradi-
tional models. Traditional sign language recognition systems encounter challenges
that can be addressed by optimizing deep learning methodologies. For optimization,
we will employ Larq, an open-source Python library designed for training binarized
models. We will investigate the suitability and analyze sign language gestures,
considering the unique advantages of BNN models, such as reduced memory and
computational needs. The objective is to effectively discern the unique patterns
exhibited by hand movements and shapes that are linked to ASL audibles by means
of deep learning methodologies. Additionally, the method tries to reduce the large
amount of memory and processing power consumed by regular full-precision neural
networks by orders of magnitude, while binarized models are naturally resource-
efficient and suited to be enabled in real-time applications on embedded systems
and edge devices.

This report seeks to train and test deep learning models that feature a collection
of pictures of American Sign Language alphabets. Sufficiency of pictures that show
many different hand positions, movements, and signs is critical to the full expression
of ASL. To improve the model’s ability to generalize, we intend to preprocess the
ASL dataset using data augmentation techniques. This will involve resolving issues
such as data imbalance, hand position variability, and occlusions. Subsequently, on
the ASL dataset, we shall train and optimize deep learning models, including both
binarized models and traditional models, to attain optimal recognition accuracy.
We will analyze the performance of the developed ASL recognition system using
metrics like accuracy, precision, recall, and F1-score, comparing it to existing sys-
tems and benchmarks. Eventually, the findings of this study will contribute to the
development of more efficient and economical ASL recognition systems.

2

1.3 Problem Statement
In the field of recognizing sign language using deep learning, traditional models face
significant challenges, especially for less complex processes where the nature of those
models leads to high computational power and large memory footprints.

• Traditional neural networks use higher bit weights and activations, leading
to slower inference times and higher energy usage. This becomes particularly
problematic in scenarios requiring real-time processing and immediate feed-
back, such as sign language recognition. The computational complexity and
memory demands of these traditional models make them less suitable for de-
ployment on resource-constrained devices like mobile and embedded systems.

• The large memory footprints of traditional neural networks further limit their
practicality for real-time applications. These models often require substantial
hardware resources to function effectively, which can be a barrier to widespread
adoption, particularly in portable or low-power devices.

1.4 Research Orientation
In the upcoming chapters, we will discuss about some specific topics essential for a
comprehensive understanding of our research. These key topics include:

Literature Review
This segment serves as a foundation by establishing the existing knowledge and
research on our own research topic. The literature review aids in framing our research
inquiries and hypotheses, providing the conceptual framework for our study.

Methodology
The methodology section explains the complexities of our research procedure and
allows the readers to look into the reliability and validity of our study’s conclusion.
This chapter contains various subsections:

• Dataset Used

• Data Preprocessing

• Dataset Distribritution

• Models Used

• Experimental Setup

3

Result Analysis
This step includes the compilation and analysis of our findings.We analyze the find-
ings in accordance with the research questions and hypotheses stated in our study.
This chapter contains the folowing subsections:

• Performance Measures

• Learning Curves

• Confusion Matrices

• Classification Reports

• Score Analysis

• Model Size, Parameters, and Accuracy Comparison

• Inference Time Analysis

• Advantages of Binarized Models

Future Works
This section serves as a bridge between the current study and prospective possibili-
ties for further exploration and development.

Conclusion
Bringing our paper’s results and analyses to a conclusion, this chapter’s focus is only
on summarizing our findings and results.

4

Chapter 2

Literature Review

Hein et al [15] proposed a leap motion based model for sign language recognition
which is divided into two sections namely the training section and the classifica-
tion section. Firstly, a RGB color spaced video is used as an input which is further
enhanced and transformed into YCbCr. Since it is motion based, the video’s compo-
nent which is the head and the hand is detected and localized after which, the skin
component is also trained via machine learning. In the latter section, the sequence
of the sign is taken through a leap motion sign recognition and finally, the output is
shown. Their proposed system 3 different classes and 38 different hand movement
styles which are appropriately labelled. They had access to hand data based on the
Myanmar Sign Language Conversations Book and DVD. They created their dataset
proposed model by having 35 different signers each performing each sign ten times.
The resulting dataset was separated into three groups which had an accuracy of
94.355%, 92.32% and 85.79%. During their testing, they encountered problems re-
garding detecting unconstrained faces. Furthermore, they will be developing their
system by applying YOLO CNN and by having a recognition process based on deep
learning.
In the paper of Raval and Gajjar [17], their proposed model consisted of a convo-
lutional neural network with two different sections which are image processing and
machine learning. In the first part, the images of the hand are captured and pro-
cesses by applying a mask on the hand portion of the image which is then normalized
by 255 and converted into a row matrix to be saved to the database. Later, it is
passed onto the next part which is the CNN algorithm. In the last part, the different
features of the hand are identified and classified using CNN where Keras library is
used. Moreover, 15% of the dataset is testing and the rest for training which consists
of signs of 240 images of 10 images for each alphabet. After the testing, the results
displayed an accuracy of 83.79%. Their testing was purposefully done in different
background and lighting conditions to test the limits of their model. According to
them, their paper can be further developed by converting into a continuous sign
language recognition model where successive frames of a sequence of hand signs
forming sentences can be detected. Moreover, having a dataset consisting of variety
of skin tones and lighting conditions can develop the robustness of their proposed
model even more.
The model by Halder and Tayade [14] consisted of a simplified sign language recog-
nition system using MediaPipe’s open-source framework alongside machine learning
algorithm. MediaPipe is a framework which has support for detecting and tracking

5

human body models which are pre-trained with diverse datasets of Google. More-
over, their model good detect in real-time using SVM. Their proposed model consists
of 3 stages where, in the first stage, the images are preprocessed where the multi-
hand locations are detected and coordinate points are three-dimension normalized.
MediaPipe is then responsible in generating a processed data consisting of different
numbered and labelled sections of each hand. During the second stage, null entries
are cleaned which can lead to blurry images after which, the data is prepared for
splitting where 80% is used for training and the rest for testing. In the final stage,
by using machine learning algorithms and SVM, the datasets are tested. In the final
results, SVM outperformed all the other algorithms as it was more efficient and bet-
ter in high-dimensional spaces. Overall, the average accuracy of the proposed model
was 99% in most of the sign language datasets which were very diverse. Their pro-
posed model using MediaPipe not only proves to be very robust and cost-effective
but also, brings into light, the problem of requiring high computational power in
image preprocessing of hand signs. According to the authors, their work can be
developed further by introducing word detection from video files using MediaPipe.
Harini et al [7] proposed a model of sign language translation containing four mod-
ules namely image capturing, pre-processing, classification and prediction. In their
model, the image-capturing module is taken care of by using the OpenCV library
and the computer’s internal camera. One problem faced by their model was that the
image must be captured properly. Around 3000 images for each sign are collected
and saved to a csv file with appropriate pixel values for improved accuracy. The
next module, pre-processing, focuses on the background condition where the images
are gray-scaled and taken through a background subtraction algorithm. This helps
in detecting the hand in dynamic background conditions. The classification phase
used the CNN algorithm. Finally, the prediction layer displays the accuracy of their
proposed model which was 99.91%. According to the author, facial expressions play
a vital role in sign language and their model is not suited for said task. Furthermore,
the accuracy of their model dipped in low lighting. Future improvements include
more dynamic video signs involving facial recognition and expressions.
In this research [10] article Systems for recognizing sign language are being devel-
oped to overcome hurdles to communication for the deaf. Traditional computer
vision techniques have drawbacks and are expensive. This work suggests a wearable
ASL interpretation system based on sensor fusion and deep learning. For dynamic
ASL gestures, IMUs affixed to the fingertips and back of the hand obtain a 99.81%
recognition rate. The major non-verbal communication method is ASL, which uses
hand gestures, body forms, and facial emotions. Due to ASL’s language and organi-
zation, learning it can be difficult, which makes hearing-impaired people feel alone.
The suggested system raises accessibility and standard of living. IMU sensors and
a tuned RNN with LSTM are used to assess finger and hand movements for precise
classification. Future work will involve healthcare and additional sign languages.
In this review of the research [6], computer vision-based and wearable device-based
methods are highlighted as they relate to gesture and activity recognition systems.
Gesture recognition powered by Wi-Fi signals has become a viable device-free op-
tion, with benefits including greater coverage and the capacity to see items behind
walls. Deep learning models are used by Wi-Fi-based recognition systems to ex-
amine Channel State Information (CSI) features and achieve high accuracy. The

6

proposed deep learning architecture addresses shortcomings of existing systems in
complicated situations with numerous users by leveraging Wi-Fi CSI, CNN, LSTM,
and ABLSTM for sign word recognition. The framework employs noise removal and
offset correction algorithms to achieve excellent recognition accuracy. The suggested
deep learning framework performs better than others in a range of settings, including
single-user and multi-user scenarios. Future enhancements to Wi-Fi-based gesture
recognition systems may be possible with further development of transfer learning
methodologies like ResNet.
This paper [18] introduces H-DNA, a hybrid deep neural architecture for video pro-
duction, translation, and sign language recognition. To provide results of a high
caliber, it makes use of the CNN, LSTM, GRU, and GAN models. The H-DNA
system seeks to advance conventional methods by offering real-time translation and
recognition through an application with a user interface. It is tested through tests
and by humans after being trained on sizable datasets.The first unified deep learn-
ing method for translating and recognizing sign language is H-DNA. To produce
high-resolution sign films, it combines dynamic GAN, MediaPipe library, and neu-
ral machine translation. The framework performs better than earlier methods and
achieves great accuracy. Real-time multimodal and multilingual sign gesture iden-
tification is made possible, bridging the communication gap between groups with
normal abilities and those with impairments.The paper discusses issues including
output blurring, self-occlusion, movement epenthesis, ambiguity, noise, and incor-
rect classification. Using H-DNA is an effective measure in solving the problems
mentioned above and is quite reliable and potent. The system effectiveness has
been proved by the results of experiments using different sets of signs, and the per-
formance measure shows that this system is efficient. In conclusion, a new and
beneficial solution of the H-DNA structure for video generation, translation, and
sign language recognition is presented. It overcomes the drawbacks of the exist-
ing approaches and also has the potential to significantly improve engagement and
interaction among users with hearing or speech challenges.
This research [19] highlights the role played by sign language as a medium of con-
nection for people with speech and hearing impairments. The main focus of the
research project revolves around the need to seal the communication gap and of-
fer fair chances to these individuals. This paper looks into video-based systems to
record and track hand movements, specifically for sign language identification and
understanding. For the 11 often-used words, the developed dataset is made, and the
prime focus is on the Indian Sign Language. Unlike other datasets, a more prac-
tical and natural approach was taken because no external sensors or smart gloves
were utilized to track hand movements. For real-time sign language detection and
recognition, the suggested system integrates LSTM and GRU models using a vision-
based methodology. To improve ISL recognition accuracy, the authors experiment
with different LSTM and GRU layer combinations. The suggested model performs
better than the current methods for ISL recognition, especially for terms that are
used frequently, according to experimental results. The paper makes recommenda-
tions for future developments, including the creation of new datasets, adjustments
to camera angle, and the incorporation of wearable technology.
According to the authors of this paper [4], the survey of research emphasizes the
value of people detection in a range of applications, including surveillance, counting

7

people, human-computer interaction, and people tracking, particularly in outdoor
settings of smart city environments.The great variety of factors like temperature,
light, and backdrop, as well as the need for dispersed sensing and intelligence across
big spaces, make it particularly difficult to detect people outside.This research fo-
cuses on resource-constrained, low-cost IoT end devices that can identify persons
outside while maintaining privacy. The method makes use of thermopile arrays,
a cutting-edge sensor technology, and low-resolution thermal cameras, notably the
Grid-EYE device.The research examines the distinctions in classification accuracy
between the weight representations used by the CMSIS-NN library, which are 8-bit
fixed-point and 32-bit floating-point, respectively. It is described how to use CMSIS-
NN to transfer the trained classifier from TensorFlow to the micro-controller.To il-
lustrate the idea, a prototype consisting of a thermopile-array-based sensor and an
evaluation board is constructed. The micro-controller runs a 3-layer CNN success-
fully, enabling real-time thermal image categorization at 10 Hz with little power
usage.The results demonstrate that the micro-controller-based implementation for
persons detection utilizing low-resolution thermal pictures provides efficient process-
ing and low power consumption. Low precision (8-bit fixed-point) format is used in
the system with minimum performance impact, making it appropriate for deploy-
ment in memory-constrained devices with limited resources.
The growing population of people with hearing or listening impairments—466 mil-
lion as of early 2018 and expected to rise to 400 million by 2050—is discussed in
this analysis . The deaf community uses sign language, a nonverbal communication
system with several sign languages developed for various countries. For the purpose
of enhancing communication between hearing-impaired and hearing-normal people,
trained sign language interpreters are crucial. America, Canada, and other nations
all make extensive use of American Sign Language (ASL). Convolutional neural net-
works (CNNs) have significantly improved image identification compared to shallow
neural networks, which were previously used to study automatic ASL recognition.
The suggested CNN model from this paper [5] (SLRNet-8) outperforms existing
techniques and recognizes ASL signs with high accuracy. The study made use of
openly accessible ASL datasets and assessed the model’s performance across several
datasets. The model may be used in the future to recognize continuous words at
the sentence level in ASL or to recognize ASL from video data.Overall, the study
shows how well the suggested CNN model performs automatic ASL detection and
its potential to improve hearing-impaired communication interface.
In this paper [12], Numerous sectors, including automobile user interfaces, health
and medical systems, crisis management, entertainment, and human-computer/robot
interaction, have found extensive use for sign language based on hand gestures. Re-
searchers have created a variety of deep learning hand gesture recognition models
to aid in efficient communication in these contexts. These models use convolutional
neural networks (CNN), 2D CNN, 3D CNN, and recurrent neural networks (RNN) to
recognize static and moving hand gestures. These models have been demonstrated
to have high classification accuracies ranging from 85.46% to 98.81%, making them
useful for correctly identifying hand gestures. The effectiveness of these models
has been enhanced using a variety of techniques, such as data augmentation, mor-
phological filters, Gaussian mixture models, and shape and texture evidence. The
developments in this area could revolutionize contactless communication in the fields

8

of entertainment, healthcare, and other industries by enabling efficient interaction
and control.
As a crucial means of communication for the deaf and hard of hearing, sign language
recognition has received a lot of attention in the field of computer vision. Similar-
ities in gesture meaning, uncontrolled surroundings, complicated backgrounds, and
lighting circumstances all contribute to the difficulty of sign language recognition.
For effective feature extraction and classification on large sign language databases.
In this paper [8], deep learning models, in particular convolutional neural networks
(CNNs), have been intensively researched. Promising results have been achieved
in real-time sign language recognition through the use of techniques such as grid-
based fragmentation for recognizing hand poses, Haar cascade classifiers for detect-
ing hand regions, Histogram of Oriented Gradients (HOG) feature extraction, and
vision-based feature fusion. However, during training, CNN-based techniques re-
quire a lot of resources, making them inappropriate for embedded platforms with
little hardware. A solution given to this problem is the use of 1-bit quantized binary
weights and activations in binary neural networks (BNNs) for real-time recognition
of two-hand motions against complex backdrops. The BNN architecture has been
proven superior in experimental assessments on the Two hands Indian Sign Lan-
guage (ISL) database, where it has achieved an overall accuracy of 98.8 percent
while also exceeding conventional CNNs in terms of training speed and memory
needs. Future research will focus on implementing the real-time system on software-
programmable FPGAs, as well as addressing missclassifications and expanding the
BNN architecture to enable a greater number of gesture classes.
A well-known dynamic gesture recognition system in the entertainment industry
is the Nintendo Wii, which requires high-resolution cameras to function in real-
time. Higher image quality, however, necessitates more computational resources and
expense, necessitating rigorous field testing to identify the most advantageous cost-
effective approach. When employing thermal cameras with infrared (IR) lighting,
image recognition systems can overcome the difficulties brought on by the lighting
and background fluctuations in RGB images. Thermal cameras produce streamlined,
less-detailed images while operating in complete darkness. In order to perform hand
gesture identification using thermal pictures, this work [13] presents two datasets:
one with clean backdrops for accurate classification and the other with background
noise and objects for added complexity and texture. In order to classify gestures,
a Convolutional Neural Network (CNN) model is suggested. The datasets were
collected using a thermal camera module. For offline training or online upgrades
with new gestures, the CNN model is intended to be extendable. The suggested
model outperforms benchmark models in terms of accuracy and inference times.
Future study will examine ways to process live stream data more quickly using
CNN models like MobileNet V3, add more features, collect data from more people,
and investigate whether good recognition could need object detection.
The authors of this paper [22] present a technique for simultaneously predicting
hand motions, handedness (left or right hand), and hand keypoints (fingertip and
wrist points) using infrared imaging. With three task-specific branches and shared
encoder-decoder layers, they offer a deep multi-task learning architecture. The
model is developed and validated using a proprietary dataset composed of ther-
mal imaging data from 24 people doing 10 hand gestures. The results show good

9

accuracy for localizing wrist points and high accuracy for categorizing gestures, iden-
tifying handedness, and localizing digits. The recommended approach for providing
accurate hand gesture detection combines the benefits of deep learning with infrared
imaging.
A real-time word-level sign language recognition system for Indian Sign Language
(ISL) is developed in this study using deep neural networks. The goal is to im-
prove communication between deaf or mute persons and hearing people. This study
[21] covers challenges of ISL recognition, such as finger angle fluctuations and sign
similarities. The proposed method employs a CNNs trained on an ISL dataset to
recognize hand gestures captured by a camera. The dataset is preprocessed using
techniques including grayscale conversion, image segmentation, edge detection, and
thresholding. With 99% accuracy, CNN recognizes the images and extracts features.
The paper reviews previous research in the field and contrasts various models. The
recommended fix focuses on character-level recognition and provides a practical deep
neural network-based technique for ISL recognition.
The dataset of this particular paper [16] is pre-processed using methods includ-
ing edge detection, threesholding, picture segmentation, and gray scale conversion.
CNN identifies the photos and extracts features with 99% accuracy. The study
compares several models and discusses earlier research in the area. The suggested
remedy emphasizes character-level recognition and offers an efficient deep neural
network-based method for ISL recognition.A system that translates sign language
into spoken language using cutting-edge techniques like transformers and graph
neural networks is covered in the literature that is supplied. The process involves
eliminating the human skeletons from the movies, encoding them using transformers
and graph convolution, pooling the encoded graphs, translating the language, and
finally improving the model by adding different losses. The technology performs a
fantastic job of recognizing sign language and translating it into spoken English.

RGB image processing, while standard, is limited by computational and memory
constraints. Conventional deep learning models, though effective, often struggle with
real-time performance on resource-constrained devices. Binarized Neural Networks
(BNNs) offer a promising solution, providing computational efficiency and reduced
memory usage. This makes them suitable for real-time applications on limited hard-
ware. However, BNNs may be sensitive to noise and complex data, necessitating
further research to improve binarization techniques and maintain accuracy.
The study aims to explore the application of Binarized Neural Networks (BNNs) for
RGB-based sign language recognition, aiming to overcome traditional deep learn-
ing’s limitations. By leveraging advancements in BNNs, the research seeks to develop
efficient systems that operate effectively on standard RGB inputs. This approach
addresses memory management and processing speed challenges, contributing to ro-
bust and cost-effective solutions for improved communication within the deaf and
hard-of-hearing communities. The focus on RGB image processing underscores the
potential to enhance sign language recognition on widely accessible devices, promot-
ing practical applications in real-world settings.

10

Chapter 3

Methodology

Figure 3.1: Research Methodology

11

3.1 Dataset Used
We have collected the Image dataset for alphabets in the American Sign Language
dataset from Kaggle submitted by Akash Nagaraj [24]. These images are an essen-
tial component of our study and have been pivotal in training and evaluating the
performance of our selected models on large datasets.

The dataset we have used is a compilation of 87,000 images of the alphabets accord-
ing to the American Sign Language which are segmented into 29 folders to represent
the classes. Each image measures a resolution of 200×200 pixels. Out of the 29
classes, the letters A-Z are separated into 26 classes and the remaining 3 classes in-
clude SPACE, DELETE and NOTHING. In real-time application and classification,
these 3 classes are very necessary and helpful.

• Folder ”A” contained 3000 RGB images representing letter A.

• Folder ”B” contained 3000 RGB images representing the letter B.

• The other directories contain the rest of the 3000 images per class, totalling
87000 images.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

(y) (z) (del) (nothing) (space)

Figure 3.2: RGB images corresponding to: (a) Alphabet A .. (space) Space

12

The large size of this dataset—with 87,000 images of the American Sign Language
alphabet broadly spans class representation and is important not only for the light-
ing condition variation and hand postures but also for the wide-range possibilities
that closely resemble the various situations in which ASL can be applied in the real
world. The wide range of circumstances in lighting captures dimming and bright-
ening, shading, source refraction, and overall illumination in the process affecting
the appearance of the signs in different environments. At the same time, variabil-
ity in hand positioning in sign language motions captures the originality and thus
accounts for a wide range of hand shapes, orientation, and movements that can in
turn influence the visual appearance of the signs.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Different RGB images of the alphabet A

3.2 Pre-Processing the Dataset

3.2.1 In-Place Data Augmentation
For the purpose of the present study, we applied data augmentation techniques so
as to bring more variability into the current dataset for the purpose of our models’
training. This strategy included random rotation by a maximum of 30°, alteration
of magnification level within the range of 0.6 to 1, and modification of the level of
brightness by a factor of 0.05 to 1.5 times the original intensity level.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Augmented Images Representing letter A

13

The data augmentation is for introducing much more variability and diversity into
the dataset which is crucial for reducing overfitting and understand the model’s
performance on unseen data. Having different hand orientations in different lighting
conditions, the models will be able to generalize more effectively.

3.3 Dataset Distribution
Training Set: The training set consists of input data and corresponding labels
used to teach the model. Through optimization techniques, the model refines its
internal parameters to minimize errors, gaining expertise from this data.

Testing Set: The testing set, separate from training, evaluates the model’s gener-
alization ability. It assesses how well the model predicts unseen data by comparing
its outputs to actual results.

Validation Set: The validation set assists in tuning model parameters. It gauges
performance on unseen data, aiding in adjustments to enhance generalization and
prevent overfitting.

Dataset Number of Images Percentage
Train 60,900 70%
Test 13,050 15%

Validation 13,050 15%
Total 87,000

Table 3.1: Dataset Split

3.4 Overview of Binarized Models
Binary Neural Networks (BNNs) utilize binary weights and activation function pa-
rameters to replace full-precision values, simplifying the complex calculations of
Convolutional Neural Networks (CNNs) into simple bitwise operations. This opti-
mization significantly reduces computation and memory storage requirements, re-
sulting in lower area and power consumption compared to full-precision models.
Despite these advantages, the binarization process impacts the performance and
accuracy of the models [11].

sign(x) =

{
+1 if x ≥ 0,

−1 otherwise.

Training BNNs involves forward and backward propagation, similar to traditional
neural networks. However, in BNNs, binarization techniques are applied to both
weights and activations. During forward propagation, inputs pass through the net-
work, with binary convolutions performed using XNOR and pop-count operations.

14

In backward propagation, gradients are calculated using techniques like the Straight-
Through Estimator (STE) to handle the non-differentiable sign function effectively.

Forward: ro = sign(ri)
Backward: ∂c

∂ri
= ∂c

∂ro
1|ri|≤tclip

BNNs are applied in various domains, including image classification, object detec-
tion, and speech recognition [23]. Common datasets used in these applications
include:

• MNIST, CIFAR-10, and SVHN for initial experiments and small-scale tasks.

• ImageNet for large-scale image classification.

• COCO and PASCAL VOC for object detection tasks.

In our application, RGB images of sign language images are not complex which
proves to be a good scenario where binary neural networks can prove to be use-
ful. BNNs, with their binary weights and activations, drastically reduce the com-
putational complexity further, making them efficient for processing sign language
imagery, even on resource-constrained devices.

3.5 LARQ: Library for Binarized Models
LARQ is a TensorFlow-based library that facilitates the training and deployment
of Binary Neural Networks. Developed by Plumerai, LARQ aims to provide a user-
friendly interface for building, training, and evaluating BNN models, empowering
both researchers and practitioners to leverage the benefits of binary networks in
their deep learning workflows [11].

• Efficient Binary Operations: LARQ implements efficient binary operations
and custom layers optimized for BNNs, ensuring fast and memory-efficient
execution of binary computations.

• Pre-trained Binarized Models: LARQ comes with pre-trained BNN models
and comprehensive tutorials to help users get started quickly and explore the
capabilities of binary networks.

• Integration with TensorFlow Ecosystem: Being built on TensorFlow, LARQ
seamlessly integrates with the broader TensorFlow ecosystem, allowing users
to leverage existing TensorFlow functionalities and tools.

Binarrised models would be loaded from Larq Zoo. It is a Python library that
comes with pre-trained binary models. They are compared against the full precision
TensorFlow models.

15

3.6 Models Used
Our model selection procedure prioritised the inclusion of both binarized and classi-
cal full-precision models, which are well-known and used in image classification. To
compare these models on comprehensive ground, we selected models that spanned
across a wide variety of topologies and complexities. The most relevant purpose of
this comparison is to contrast binarized neural network models against applications
with standard full-precision models. We see evidence of equivalently performing
binarized models, when compared with traditional models, that could exist with
memory and computational efficiency benefits measured by the metrics of accuracy,
precision, and recall across diverse classes of domains.

3.6.1 BinaryDenseNet45
BinaryDenseNet-45 is a variation of DenseNet that incorporates binary weights and
binary activations. Binary networks aid in reducing the use of memory and lowering
computational complexity during inference. These improvements are added to the
45-layer model without losing the dense connectivity architecture, which is of key
importance for feature reuse and effective gradient propagation in DenseNet. This
architecture achieves deep information extraction efficiently and still keeps amazing
classification accuracy, such that it really becomes helpful in resource-constrained
conditions [3].

Figure 3.5: BinaryDenseNet45 Model Architecture

16

3.6.2 BinaryResNetE18
BinaryResNetE18 uses the ResNet architecture, which is a very efficient way to train
deep neural networks. On its part, BinaryResNetE18 has 18 layers and maintains
residual connections; it uses only binary weights and activations for efficient inference
but retains residual connections. Being a balanced network in terms of depth and
computational efficiency, BinaryResNetE18 comes in handy in deep learning tasks
for it works well for moderately deep networks with high demands on performance.
[3].

Figure 3.6: BinaryResNetE18 Model Architecture

17

3.6.3 BinaryDenseNet37
BinaryDenseNet37 is another DenseNet adaptation that uses binary weights and
activations to have efficient inference [3]. Similar to the BinaryDenseNet45 model,
BinaryDenseNet37 makes use of DenseNet’s dense connection structure to enable
feature re-use and good gradient flow during training. BinaryDenseNet37 strikes a
balance between model depth and computational efficiency. Thus, it forms a good
architecture for tasks that desire moderately deep networks with efficient inference
abilities.

Figure 3.7: BinaryDenseNet37 Model Architecture

3.6.4 DenseNet121
DenseNet121 is an advanced convolutional neural network with dense blocks for
image classification. This network has different layers that are connected directly
to each other, efficiently interchanging information and features through four dense
blocks having a number of layers. It attains accuracy using a growth rate of 32,
together with transition layers applied for downsampling, with only 7 million pa-
rameters and 121 layers [2]. This architecture is very effective for picture datasets

18

like ImageNet because it is capable of optimizing precision through feature reuse
and dense connections.

Figure 3.8: DenseNet121 Model Architecture

3.6.5 Resnet50
ResNet50, with its 50-layer deep architecture, is another CNN that is designed
specifically to classify images. The uniqueness of the model is in the use of iden-
tity shortcuts which are helpful in preventing the vanishing gradient, that simply
allows each block to shortcut its layers from an input to an output with identity
mapping. ResNet50 uses 7x7 convolutions and max pooling, to begin with, followed
by 0 convolutions, which results in reducing dimensionality to the required levels
[1]. Batch normalisation, which is introduced before the activation itself, will make
the training much faster. The ResNet50 architecture balances complexity with sim-
plicity, having 23 million parameters. That remaining connection goes to help exact
feature learning, which can be deployed on an outstanding performance in image
recognition applications..

19

Figure 3.9: ResNet50 Model Architecture

3.6.6 VGG16
VGG16 belongs to those famous designs of convolutional neural networks that per-
form remarkable in picture classification duties. One of the major characteristics of
the VGG16 architecture is its homogeneity, consisting of 16 weight layers arranged
in convolutional blocks with max-pooling in between, making it easy to deploy and
understand. VGG16 performs the best on many datasets despite its simple archi-
tecture. However, its large parameter count, approximately 138 million, makes it
computationally expensive compared to more modern architectures.

20

Figure 3.10: VGG16 Model Architecture

3.7 Experimental Setup

3.7.1 Model Training and Evaluation

Model Batch Size Epochs Optimizer Learning Rate
BinaryDenseNet45 32 30 Adam 1× 10−5

BinaryResNetE18 32 30 Adam 1× 10−5

BinaryDenseNet37 32 30 Adam 1× 10−5

ResNet50 32 30 Adam 1× 10−5

DenseNet121 32 30 Adam 1× 10−5

VGG16 32 30 Adam 1× 10−5

Table 3.2: Parameter Comparison of Different Models

For all models, the following steps were performed:

1. Model Initialization: Initialize the respective model architecture with ap-
propriate parameters, including input shape (200x200) and number of classes
(29).

2. Model Compilation: Compile the model using the mentioned optimizer and
loss function, and accuracy as the evaluation metric.

3. Callback Definition: Define callbacks, such as EarlyStopping for stopping
the training process if the metric stops improving for a certain number of
epochs preventing over-fitting (Patience = 5). Also, ModelCheckpoint to save
the weights at intervals which allows us to use the best performing model
based on validation set performance.

21

4. Model Training: Train the model using the fit method with the train-
ing data, specifying the number of epochs (30) and batch size (32). Include
validation data for monitoring performance during training.

5. Model Saving: Save the trained model weights to a file for future use.

6. Best Model Loading: Load the the model with the highest performance
based on the validation set from the saved checkpoint file.

7. Performance Visualization: Visualize the loss and accuracy curves of the
validation and training sets, to visualize the model’s learning progress over
epochs.

3.7.2 PC Configuration
The model’s training and testing were run on a mid-range desktop computer with
a Ryzen 5 3600 processor, 16 GB of RAM running on 3200 MHz, Nvidia GeForce
GTX 1060, and a 64-bit version of Windows 10 professional.

3.7.3 Environment and Software Versions
The following software versions were used in this research:

• Windows 10 Pro Version 10.0.19045 Build 19045

• Python version: 3.8.0

• TensorFlow version: 2.4.0

• NumPy version: 1.22.4

• Matplotlib version: 3.7.4

• Keras version: 2.4.0

• Larq version: 0.13.1

• Larq Zoo version: 2.3.2

• OpenCV version: 4.9.0

22

Chapter 4

Results

4.1 Performance Measure
Train-Validation curve: Two sets of curves are generated for training and val-
idation. One set represents the loss function, indicating the evolution of the loss
value throughout training. The loss function measures the disparity between the
model’s predicted outputs and the actual target values. The other set illustrates the
accuracy function, showcasing how the model’s accuracy improves or remains con-
sistent during training. Initially, the model’s predictions may deviate significantly
from the actual labels, leading to relatively low accuracy. As training progresses and
the model adjusts its internal parameters based on labeled data, accuracy gradually
improves.

Confusion Matrix: A confusion matrix is a table used to evaluate the perfor-
mance of a model. It provides a detailed breakdown of the model’s predictions
compared to the actual ground truth values.

• True Positive: Count of positive predictions on positive data.

• False Positive: Count of positive predictions on negative data.

• True Negative: Count of negative predictions on negative data.

• False Negative: Count of negative predictions on positive data.

The matrix makes it more convenient and easier in determining how the model
performed in it’s testing phase.

Recall: Recall measures the ability of a classification model to correctly identify
all relevant instances (true positives) among the total actual positive instances.

Recall = True Positives (TP)
True Positives (TP) + False Negatives (FN)

23

Accuracy: Accuracy refers to the proportion of accurately classified cases within
a model that classifies variables.

Accuracy =
True Positives (TP) + True Negatives (TN)

Total Instances

Precision: Precision, in a classification model, is the ability to correctly identify
relevant instances (true positives) among the expected positive cases.

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)

F1-Score: The F1-score is the balanced harmonic mean of precision and recall.

F1-Score = 2 · Precision · Recall
Precision + Recall

Total Parameters, Size and Inference Time: These parameters show the
model’s memory utilisation and, hence, its suitability for resource-constrained sit-
uations or low bandwidth applications. The total number of parameters indicates
each model’s complexity. Inference time refers to how long it takes for a trained
machine learning model to predict new data after deployment.

4.2 Learning Curves

4.2.1 BinaryDenseNet45

Figure 4.1: Loss and Accuracy curves of BinaryDenseNet45

The learning curves show the performance of the BinaryDenseNet45 model in terms
of loss and accuracy during training and validation over epochs. Owing to the

24

large adjustments of model weights by the data, there is a great fluctuation in the
curve of loss and accuracy, especially at the initial training stage. For the advanced
training process, the fluctuations in both the loss and accuracy tend to become
stable, with a tendency of increased convergence to the optimal. The early stopping
mechanism halted training at the 24th epoch, triggered by validation loss plateauing
or deteriorating beyond a predefined threshold, preventing overfitting and ensuring
the model’s generalization ability. The total training time of approximately 25278.10
seconds reflects the computational effort required for each epoch, influenced by the
model’s complexity and the dataset size.

4.2.2 BinaryResNetE18

Figure 4.2: Loss and Accuracy curves of BinaryResNetE18

BinaryResNetE18 model exhibit similar characteristics to the previously discussed
BinaryDenseNet45. Initially, there are noticeable spikes in both loss and accuracy
curves, reflecting the model’s rapid adjustments to training data. As training pro-
gresses, these fluctuations diminish, indicating improved stability and convergence.
The early stopping mechanism intervened at the 15th epoch, likely triggered by vali-
dation metrics no longer improving or even worsening, thereby preventing overfitting
and ensuring the model’s ability to generalize to unseen data. The total training
time of approximately 23221.23 seconds.

25

4.2.3 BinaryDenseNet37

Figure 4.3: Loss and Accuracy curves of BinaryDenseNet37

The learning curves for the BinaryDenseNet37 model depict a similar pattern as ob-
served in the previous model discussions. Initially, there are noticeable fluctuations
in both loss and accuracy curves during early epochs, indicative of the model’s rapid
adaptation to the training data. As training progresses, these fluctuations stabilize,
demonstrating improved convergence and consistency in performance. At the 20th
epoch, early stopping was activated since the validation loss stopped its improve-
ment in order to prevent overfitting and assure the generalization of the model to
new data. The total training time amounted to approximately 15652.22

4.2.4 ResNet50

Figure 4.4: Loss and Accuracy curves of ResNet50

Learning curves for the ResNet50 model are regular. The validation loss and ac-
curacy curves show oscillations at the beginning: these are usual behaviors in the
learning of a model when it adapts to patterns in the training data. These initial
oscillations gradually settle and finally show better convergence and consistency in
the performance measurements. Early stopping was incorporated during the 17th
epoch of training to effectively control overfitting and generalize the model. Total
time around 17151.21 seconds for training.

26

4.2.5 DenseNet121

Figure 4.5: Loss and Accuracy curves of DenseNet121

The learning curves of DenseNet121 show a typical training behavior of a neural
network; they fluctuate in both validation metrics. The high rate of validation loss
and accuracy in the early epochs is because the model is highly sensitive to early
changes with respect to model training data and learning dynamics. After that, the
spikes become less frequent and, generally, the training tends to stabilize and thus
finally move in the direction of ideal performance. Early stopping was triggered at
the 18th epoch as the validation metrics became flat or degraded above a preset
tolerance limit. This helped in reducing the chances of overfitting and increasing
generalization. The training took about 14593.10 seconds

4.2.6 VGG16

Figure 4.6: Loss and Accuracy curves of VGG16

The initial epochs show relatively larger variations in loss and accuracy, which is
common as the model begins to learn and adapt to the dataset. As training pro-
gresses, these fluctuations decrease, indicating the model’s improved stability and
convergence towards optimal performance. Early stopping was initiated at the 16th

27

epoch. The total training time of approximately 19213.21 seconds reflects the com-
putational resources consumed per epoch, influenced by the model’s architecture
complexity and dataset size.

4.3 Confusion Matrices

4.3.1 BinaryDenseNet45

Figure 4.7: Confusion Matrix for BinaryDenseNet45

There are 9387 True Positives, 11296 True Negatives, 306 False Positives and 1011
False Negatives. The model performs well for most classes, with high numbers along
the diagonal. However, there are notable misclassifications, particularly for class 28
(second to last row), where many instances are incorrectly classified as class 2, 9,
22, and 27. Class 13 also shows some confusion with class 12. Classes 11, 12, 16,
26, and 29 have perfect or near-perfect classification.

28

4.3.2 BinaryResNetE18

Figure 4.8: Confusion Matrix for BinaryResNetE18

There are 16725 True Positives, 16563 True Negatives, 323 False Positives and 389
False Negatives. The BinaryResNetE18 model shows strong diagonal elements, indi-
cating good overall accuracy. However, there are notable misclassifications, particu-
larly in the last two rows and columns. Class 27 (third from last) shows significant
confusion with several other classes, suggesting it may be a challenging category
to distinguish. The model performs exceptionally well for some classes, achieving
perfect classification (e.g., classes 1, 24, and 26). There’s also noticeable confusion
between classes 12 and 13, as well as among classes 20, 21, 22, and 23. The varying
levels of misclassification across different class pairs suggest that some categories are
more easily distinguishable than others for this model.

29

4.3.3 BinaryDenseNet37

Figure 4.9: Confusion Matrix for BinaryDenseNet37

There are 11801 True Positives, 11961 True Negatives, 345 False Positives and 343
False Negatives. the BinaryDenseNet37 model seems to perform well, with most
classes having high correct classification counts along the diagonal. However, there
are some notable misclassifications, particularly for class 27, which is frequently
confused with classes 8 and 17. Class 13 also shows some confusion with class 12.
The matrix reveals that certain classes (e.g., 1, 2, 3, 10, 16, 26, 28, 29) have very
high accuracy, while others (e.g., 27) have more room for improvement.

30

4.3.4 ResNet50

Figure 4.10: Confusion Matrix for ResNet50

There are 12945 True Positives, 12970 True Negatives, 105 False Positives and 30
False Negatives. The ResNet50 model shows strong performance overall, with high
values along the diagonal indicating correct classifications. However, there are a few
notable areas of confusion. Class 27 seems particularly problematic, with significant
misclassifications spread across several other classes, especially classes 8 and 17.
There’s also some confusion between classes 13 and 12, and between classes 15 and
16. Classes 1, 2, 3, 4, 10, 17, 25, 26, and 29 show very high accuracy with few or no
misclassifications. The last row and column (class 29) show perfect classification.

31

4.3.5 DenseNet121

Figure 4.11: Confusion Matrix for DenseNet121

There are 11910 True Positives, 12219 True Negatives, 273 False Positives and 648
False Negatives. The DenseNet121 model shows strong diagonal elements, indicating
good overall performance across most classes. However, there are some notable
areas of confusion. Class 0 (first row) shows some misclassifications spread across
multiple other classes. There’s significant confusion between classes 10 and 21, with
95 instances of class 10 being misclassified as class 21. Classes 4 and 18 also show
some mutual confusion. The model performs perfectly on several classes (e.g., 1,
3, 24, 26, 28) with all 450 instances correctly classified. Some classes like 27 show
scattered misclassifications across multiple other classes.

32

4.3.6 VGG16

Figure 4.12: Confusion Matrix for VGG16

There are 11455 True Positives, 11447 True Negatives, 207 False Positives and 941
False Negatives. The VGG16 model performs well, with most classes having high
correct classification counts (400+) along the diagonal. However, there are some
notable confusions, such as between classes 13 and 14 (64 instances of class 14
misclassified as class 13), and between classes 20 and 23 (36 instances of class 23
misclassified as class 20). Classes 7, 16, and 17 show some mutual confusion. The
model struggles most with class 21, which has the lowest correct classification count
(339) and is often confused with classes 18, 23, and 29. Despite these issues, the
model generally demonstrates strong performance across most classes.

33

4.4 Classification Reports

4.4.1 BinaryDenseNet45

Class Precision Recall F1-score Support
A 0.97 0.99 0.98 450
B 0.64 1.00 0.78 450
C 0.97 0.99 0.98 450
D 0.99 0.93 0.96 450
E 0.98 0.97 0.97 450
F 0.99 0.94 0.96 450
G 1.00 0.96 0.98 450
H 1.00 0.93 0.96 450
I 0.93 0.90 0.91 450
J 0.99 0.96 0.97 450
K 0.99 0.84 0.91 450
L 0.86 1.00 0.93 450
M 0.99 0.83 0.91 450
N 0.87 0.98 0.92 450
O 0.98 0.99 0.98 450
P 1.00 0.96 0.98 450
Q 0.99 1.00 0.99 450
R 0.97 0.94 0.96 450
S 0.97 0.87 0.92 450
T 0.96 0.96 0.96 450
U 0.91 0.93 0.92 450
V 0.83 0.96 0.89 450
W 0.76 0.99 0.86 450
X 0.97 0.93 0.95 450
Y 0.91 0.98 0.94 450
Z 1.00 0.87 0.93 450
del 0.95 1.00 0.97 450
nothing 1.00 0.34 0.51 450
space 0.92 1.00 0.96 450
Accuracy 0.93 13050
Macro avg 0.94 0.93 0.93 13050
Weighted avg 0.94 0.93 0.93 13050

Table 4.1: Classification report for BinaryDenseNet45

34

4.4.2 BinaryResNetE18

Class Precision Recall F1-score Support
A 0.97 0.94 0.96 450
B 0.85 1.00 0.92 450
C 1.00 0.99 0.99 450
D 0.98 0.98 0.98 450
E 0.99 0.97 0.98 450
F 0.99 0.98 0.98 450
G 0.98 0.97 0.98 450
H 1.00 1.00 1.00 450
I 0.86 1.00 0.92 450
J 0.90 1.00 0.95 450
K 0.83 1.00 0.91 450
L 0.98 1.00 0.99 450
M 0.95 0.89 0.92 450
N 0.92 0.93 0.93 450
O 0.99 1.00 0.99 450
P 0.99 0.98 0.99 450
Q 1.00 0.99 0.99 450
R 0.87 0.93 0.90 450
S 0.93 0.96 0.94 450
T 0.96 0.98 0.97 450
U 0.99 0.76 0.86 450
V 0.83 0.97 0.90 450
W 0.86 0.94 0.90 450
X 0.91 0.95 0.93 450
Y 0.97 1.00 0.99 450
Z 0.99 0.98 0.99 450
del 0.96 1.00 0.98 450
nothing 1.00 0.22 0.37 450
space 0.95 0.96 0.96 450
Accuracy 0.94 13050
Macro avg 0.95 0.94 0.93 13050
Weighted avg 0.95 0.94 0.93 13050

Table 4.2: Classification report for BinaryResNetE18

35

4.4.3 BinaryDenseNet37

Class Precision Recall F1-score Support
A 1.00 0.97 0.98 450
B 0.87 0.99 0.92 450
C 0.98 0.98 0.98 450
D 0.96 0.99 0.98 450
E 0.96 0.97 0.96 450
F 0.99 0.98 0.98 450
G 1.00 0.92 0.96 450
H 0.99 0.93 0.96 450
I 0.77 0.94 0.84 450
J 0.90 1.00 0.94 450
K 0.98 0.94 0.96 450
L 0.98 0.99 0.98 450
M 0.90 0.96 0.93 450
N 1.00 0.89 0.94 450
O 1.00 0.98 0.99 450
P 0.99 0.87 0.93 450
Q 0.94 1.00 0.97 450
R 0.63 1.00 0.77 450
S 0.98 0.90 0.94 450
T 0.93 0.98 0.95 450
U 0.94 0.92 0.93 450
V 0.92 0.92 0.92 450
W 0.91 0.94 0.92 450
X 0.99 0.93 0.96 450
Y 1.00 0.96 0.98 450
Z 0.96 0.98 0.97 450
del 0.95 1.00 0.97 450
nothing 1.00 0.20 0.33 450
space 0.92 1.00 0.96 450
Accuracy 0.93 13050
Macro avg 0.94 0.93 0.92 13050
Weighted avg 0.94 0.93 0.92 13050

Table 4.3: Classification report for BinaryDenseNet37

36

4.4.4 ResNet50

Class Precision Recall F1-score Support
A 0.96 1.00 0.98 450
B 0.98 1.00 0.99 450
C 0.99 1.00 0.99 450
D 0.93 0.99 0.96 450
E 0.94 0.98 0.96 450
F 1.00 0.96 0.98 450
G 1.00 0.97 0.99 450
H 0.97 0.98 0.97 450
I 1.00 0.95 0.97 450
J 0.97 0.98 0.98 450
K 0.97 0.98 0.98 450
L 0.99 0.98 0.98 450
M 0.86 0.99 0.92 450
N 1.00 0.82 0.90 450
O 1.00 0.91 0.95 450
P 0.95 0.97 0.96 450
Q 1.00 0.94 0.97 450
R 0.93 0.96 0.94 450
S 0.94 0.98 0.96 450
T 0.99 0.95 0.97 450
U 0.98 0.75 0.85 450
V 0.92 0.97 0.94 450
W 0.99 0.97 0.98 450
X 0.91 0.95 0.93 450
Y 0.98 0.99 0.99 450
Z 0.98 0.99 0.99 450
del 0.94 0.99 0.96 450
nothing 0.95 0.20 0.19 450
space 0.87 1.00 0.93 450
Accuracy 0.96 13050
Macro avg 0.96 0.96 0.96 13050
Weighted avg 0.96 0.96 0.96 13050

Table 4.4: Classification report for ResNet50

37

4.4.5 DenseNet121

Class Precision Recall F1-score Support
A 1.00 0.88 0.94 450
B 0.92 1.00 0.96 450
C 0.98 1.00 0.99 450
D 1.00 1.00 1.00 450
E 1.00 0.85 0.92 450
F 1.00 0.98 0.99 450
G 1.00 0.98 0.99 450
H 1.00 0.97 0.98 450
I 0.57 0.99 0.72 450
J 0.96 1.00 0.98 450
K 1.00 0.76 0.86 450
L 0.93 1.00 0.97 450
M 0.95 0.99 0.97 450
N 0.99 0.97 0.98 450
O 1.00 0.99 0.99 450
P 1.00 1.00 1.00 450
Q 1.00 1.00 1.00 450
R 0.93 0.99 0.96 450
S 0.87 0.97 0.92 450
T 1.00 0.97 0.98 450
U 1.00 0.89 0.94 450
V 0.79 0.98 0.88 450
W 0.92 0.99 0.95 450
X 0.95 0.97 0.96 450
Y 0.99 1.00 1.00 450
Z 0.97 1.00 0.98 450
del 0.98 1.00 0.99 450
nothing 1.00 0.08 0.15 450
space 0.91 1.00 0.95 450
Accuracy 0.94 13050
Macro avg 0.95 0.94 0.93 13050
Weighted avg 0.95 0.94 0.93 13050

Table 4.5: Classification report for DenseNet121

38

4.4.6 VGG16

Class Precision Recall F1-score Support
A 0.97 0.89 0.93 450
B 0.93 0.99 0.96 450
C 0.97 0.99 0.98 450
D 1.00 0.98 1.00 450
E 1.00 0.83 0.91 450
F 1.00 0.97 0.99 450
G 0.99 0.96 0.98 450
H 0.99 0.98 0.99 450
I 0.56 0.98 0.71 450
J 0.97 0.99 0.98 450
K 0.98 0.78 0.87 450
L 0.92 0.99 0.95 450
M 0.94 1.00 0.97 450
N 0.98 0.95 0.97 450
O 0.99 0.96 0.97 450
P 1.00 1.00 1.00 450
Q 1.00 1.00 1.00 450
R 0.96 0.98 0.97 450
S 0.88 0.96 0.92 450
T 0.99 0.98 0.99 450
U 1.00 0.91 0.95 450
V 0.81 0.96 0.88 450
W 0.95 0.98 0.97 450
X 0.94 0.96 0.95 450
Y 1.00 1.00 1.00 450
Z 0.97 0.99 0.98 450
del 0.99 0.99 0.99 450
nothing 1.00 0.09 0.16 450
space 0.92 1.00 0.96 450

Accuracy 0.94 13050
Macro avg 0.96 0.94 0.94 13050
Weighted avg 0.96 0.94 0.94 13050

Table 4.6: Classification Report for VGG16

39

4.5 Score Analysis

Model Precision Recall F1-Score Accuracy
BinaryDenseNet45 0.94 0.93 0.93 0.93
BinaryResNetE18 0.95 0.94 0.93 0.94
BinaryDenseNet37 0.94 0.93 0.92 0.93
ResNet50 0.96 0.96 0.96 0.96
DenseNet121 0.95 0.94 0.93 0.94
VGG16 0.96 0.94 0.94 0.94

Table 4.7: Comparison of Precision, Recall, F1-Score, and Accuracy

The table above demonstrates that binarized neural networks (BNNs) like Bina-
ryDenseNet45 and BinaryResNetE18 achieve impressive precision, recall, F1-score,
and accuracy metrics, closely trailing behind traditional models such as ResNet50
and VGG16. For instance, BinaryResNetE18 maintains a high precision of 0.95 and
an accuracy of 0.94, comparable to DenseNet121 and VGG16. Overall, it shows
that Binarized Neural Networks (BNNs) such as BinaryDenseNet45, BinaryRes-
NetE18, and BinaryDenseNet37 maintain high performance metrics close to their
non-binarized counterparts like ResNet50, DenseNet121, and VGG16.

Figure 4.13: Model Accuracies Bar Chart

40

Despite the marginal differences in precision, recall, and F1-score, the accuracy of
BNNs remains competitive as displayed by the barchart above. However, comparing
binarized models to their non-binarized counterparts reveals distinct advantages and
trade-offs in various performance metrics.

4.6 Model Size, Parameters, and Accuracy Com-
parison

Model Model Size (MiB) Total Parameters Accuracy
BinaryDenseNet45 7.35 13.9M 0.93
BinaryResNetE18 4.00 11.7M 0.94
BinaryDenseNet37 5.13 8.7M 0.93
ResNet50 93.46 25.6M 0.96
DenseNet121 33.00 8.1M 0.94
VGG16 503.54 138M 0.94

Table 4.8: Comparison of Model Sizes, Total Parameters, and Accuracy

The table above clearly demonstrates the efficiency of BNNs. For instance, Bina-
ryResNetE18, with an accuracy of 94%, has a model size of only 4.00 MiB and
11.7M parameters, compared to DenseNet121 which has the same accuracy but a
higher model size of 33.00 MiB. Compared to the VGG16 model, it has a model
size of 503.54 MiB and 138M total parameters which also has the same accuracy
as the BinaryResNetE18 model. This makes binarized models such as the Bina-
ryResNetE18 highly advantageous for deployment on resource-constrained devices
with similar performance. Overall the binarized models like BinaryDenseNet45, Bi-
naryResNetE18, and BinaryDenseNet37 exhibit competitive precision, recall, and
F1-score metrics comparable to non-binarized models like ResNet50, DenseNet121,
and VGG16. The binarized models exhibit significantly lower model sizes compared
to the other models while having very similar performance metrics.

4.7 Inference Time Analysis

Model Average Inference Time/Image (ms)
BinaryDenseNet45 5.139
BinaryResNetE18 4.223
BinaryDenseNet37 3.999
ResNet50 7.978
DenseNet121 9.056
VGG16 9.126

Table 4.9: Comparison of Average Inference Time per Image

41

The table compares the average inference time per image across various models,
highlighting the efficiency of binarized neural networks (BNNs) compared to tradi-
tional architectures. For example, BinaryDenseNet37 and BinaryResNetE18 achieve
average inference times of 3.999 ms and 4.223 ms, respectively, significantly outper-
forming ResNet50, DenseNet121, and VGG16, which require 7.978 ms, 9.056 ms,
and 9.126 ms, respectively. Also, BinaryResNetE18 compared to DenseNet121 and
VGG16, have the same accuracy but a significantly lower model size and average
inference time. This efficiency advantage of BNNs underscores their suitability for
real-time applications, where rapid processing of data is crucial, making them an
optimal choice for resource-constrained environments.

4.8 Advantages of Binarized Models
Binarized Neural Networks (BNNs) offer several key advantages over traditional
neural networks (NNs):

• Reduced Model Size: BNNs have significantly smaller model sizes, enabling
easier deployment on resource-constrained devices.

• Lower Computational Requirements: BNNs require fewer computational
resources, leading to faster inference times.

• Comparable Performance: Despite their smaller size and lower computa-
tional requirements, BNNs maintain competitive performance metrics (preci-
sion, recall, F1-score) compared to traditional NNs.

In the context of RGB images of sign language, where the input data is simple,
having a smaller model size and fewer parameters can be advantageous. Binarized
models are less computationally intensive, allowing them to run efficiently on de-
vices with limited processing capabilities. Moreover, their reduced memory footprint
makes them more suitable for deployment on edge devices or embedded systems, en-
abling real-time detection without relying heavily on cloud-based processing. Spe-
cific comparisons, such as BinaryResNetE18 versus VGG16 and DenseNet121, illus-
trate that BNNs provide a similar level of accuracy and other performance metrics
while significantly reducing model size and inference time. This makes BNNs ideal
for real-world applications. Binarized Neural Networks (BNNs) can be efficient al-
ternatives to traditional neural networks. The trade-offs in accuracy are minimal,
highlighting BNNs as a promising solution for various practical implementations.

42

Chapter 5

Conclusion

To conclude, this research focuses on the potential of binarized neural networks by
comparing them to traditional neural networks on American Sign Language (ASL)
recognition using RGB imagery. This combination of deep learning algorithms and
RGB images has the potential to overcome the obstacles and communication gaps
among hearing-impaired individuals. The study comprises a comprehensive litera-
ture review, augmented suitable dataset collection for RGB imagery, and the ex-
ecution of deep learning models and algorithms for sign language detection. The
optimized pipeline we developed demonstrates the potential of binarized neural net-
works (BNNs) in sign language recognition by interpreting distinct visual patterns
associated with hand gestures. Furthermore, the research highlighted the potential
of using binarized models, as their accuracies are competitive with those of tradi-
tional models. The reduced computational complexity, leading to better efficiency
and lower memory requirements, are potential factors for accessibility and more ef-
ficient real-time deployments. Further investigation into more advanced binarized
network architectures and multimodal approaches can elevate the optimized deep
learning pipeline. We hope that this research initiates more investigations, innova-
tions, and advancements into both binarized models and sign language recognition,
eventually leading to improved communication experiences for the deaf and hearing-
impaired communities.

5.1 Future Works
• Real-Time Deployment: Despite numerous claims and research highlight-

ing the resource efficiency, speed, and lightweight nature of binarized models,
our models have yet to undergo real-world testing. For practical deployment,
especially in real-time applications, it is crucial to validate these models under
real-world conditions. This involves extensive testing with a broader dataset to
ensure reliability and performance. Moreover, deploying these models in real-
world applications will provide insights into their operational effectiveness and
identify potential areas for further optimization and improvement.

43

Bibliography

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” 2015. arXiv: 1512.03385 [cs.CV].

[2] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” 2018. arXiv: 1608.06993 [cs.CV].

[3] J. Bethge, H. Yang, M. Bornstein, and C. Meinel, “Back to simplicity: How
to train accurate bnns from scratch?,” 2019. arXiv: 1906.08637 [cs.LG].

[4] G. Cerutti, R. Prasad, and E. Farella, “Convolutional neural network on em-
bedded platform for people presence detection in low resolution thermal im-
ages,” pp. 7610–7614, 2019. doi: 10.1109/ICASSP.2019.8682998.

[5] M. M. Rahman, M. S. Islam, M. H. Rahman, R. Sassi, M. W. Rivolta, and
M. Aktaruzzaman, “A new benchmark on american sign language recognition
using convolutional neural network,” pp. 1–6, 2019. doi: 10.1109/STI47673.
2019.9067974.

[6] M. Bastwesy, N. Elshennawy, and M. Saidahmed, “Deep learning sign language
recognition system based on wi-fi csi,” International Journal of Intelligent
Systems and Applications, vol. 12, pp. 33–45, Dec. 2020. doi: 10.5815/ijisa.
2020.06.03.

[7] R. Harini, R. Janani, S. Keerthana, S. Madhubala, and S. Venkatasubrama-
nian, “Sign language translation,” pp. 883–886, 2020. doi: 10.1109/ICACCS48705.
2020.9074370.

[8] M. Jaiswal, V. Sharma, A. Sharma, S. Saini, and R. Tomar, “An efficient bina-
rized neural network for recognizing two hands indian sign language gestures
in real-time environment,” pp. 1–6, 2020. doi: 10.1109/INDICON49873.2020.
9342454.

[9] S. Lacke, “Do all deaf people use sign language?,” 2020. [Online]. Available:
https://www.accessibility.com/blog/do-all-deaf-people-use-sign-language#:
~:text=That's%5C%20because%5C%20not%5C%20all%5C%20deaf ,1%
5C%25%5C%20%5C%E2%5C%80%5C%94%5C%20use%5C%20sign%5C%
20language..

[10] B. G. Lee, T.-W. Chong, and W.-Y. Chung, “Sensor fusion of motion-based
sign language interpretation with deep learning,” Sensors, vol. 20, no. 21,
p. 6256, Nov. 2020, issn: 1424-8220. doi: 10.3390/s20216256. [Online]. Avail-
able: http://dx.doi.org/10.3390/s20216256.

44

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1906.08637
https://doi.org/10.1109/ICASSP.2019.8682998
https://doi.org/10.1109/STI47673.2019.9067974
https://doi.org/10.1109/STI47673.2019.9067974
https://doi.org/10.5815/ijisa.2020.06.03
https://doi.org/10.5815/ijisa.2020.06.03
https://doi.org/10.1109/ICACCS48705.2020.9074370
https://doi.org/10.1109/ICACCS48705.2020.9074370
https://doi.org/10.1109/INDICON49873.2020.9342454
https://doi.org/10.1109/INDICON49873.2020.9342454
https://www.accessibility.com/blog/do-all-deaf-people-use-sign-language#:~:text=That's%5C%20because%5C%20not%5C%20all%5C%20deaf,1%5C%25%5C%20%5C%E2%5C%80%5C%94%5C%20use%5C%20sign%5C%20language.
https://www.accessibility.com/blog/do-all-deaf-people-use-sign-language#:~:text=That's%5C%20because%5C%20not%5C%20all%5C%20deaf,1%5C%25%5C%20%5C%E2%5C%80%5C%94%5C%20use%5C%20sign%5C%20language.
https://www.accessibility.com/blog/do-all-deaf-people-use-sign-language#:~:text=That's%5C%20because%5C%20not%5C%20all%5C%20deaf,1%5C%25%5C%20%5C%E2%5C%80%5C%94%5C%20use%5C%20sign%5C%20language.
https://www.accessibility.com/blog/do-all-deaf-people-use-sign-language#:~:text=That's%5C%20because%5C%20not%5C%20all%5C%20deaf,1%5C%25%5C%20%5C%E2%5C%80%5C%94%5C%20use%5C%20sign%5C%20language.
https://doi.org/10.3390/s20216256
http://dx.doi.org/10.3390/s20216256

[11] T. Bannink, A. Bakhtiari, A. Hillier, L. Geiger, T. de Bruin, L. Overweel,
J. Neeven, and K. Helwegen, “Larq compute engine: Design, benchmark, and
deploy state-of-the-art binarized neural networks,” 2021. arXiv: 2011.09398
[cs.LG].

[12] D. S. Breland, S. B. Skriubakken, A. Dayal, A. Jha, P. K. Yalavarthy, and
L. R. Cenkeramaddi, “Deep learning-based sign language digits recognition
from thermal images with edge computing system,” IEEE Sensors Journal,
vol. 21, no. 9, pp. 10 445–10 453, 2021. doi: 10.1109/JSEN.2021.3061608.

[13] D. S. BRELAND, “Hand gestures recognition using thermal images,” p. 70,
2021. [Online]. Available: https://uia.brage.unit.no/uia-xmlui/handle/11250/
2823720.

[14] A. Halder and A. Tayade, “Real-time vernacular sign language recognition
using mediapipe and machine learning,” vol. 2, pp. 9–17, 5 2021. [Online].
Available: https://www.ijrpr.com/uploads/V2ISSUE5/IJRPR462.pdf.

[15] Z. Hein, T. P. Htoo, B. Aye, S. M. Htet, and K. Z. Ye, “Leap motion based
myanmar sign language recognition using machine learning,” pp. 2304–2310,
2021. doi: 10.1109/ElConRus51938.2021.9396496.

[16] J. Kan, K. Hu, M. Hagenbuchner, A. C. Tsoi, M. Bennamounm, and Z. Wang,
“Sign language translation with hierarchical spatio-temporalgraph neural net-
work,” 2021. arXiv: 2111.07258 [cs.CV].

[17] J. J. Raval and R. Gajjar, “Real-time sign language recognition using computer
vision,” pp. 542–546, 2021. doi: 10.1109/ICSPC51351.2021.9451709.

[18] N. Bala, R. Elangovan, E. R., K. Kotecha, A. Abraham, L. Gabralla, and S.
V, “Development of an end-to-end deep learning framework for sign language
recognition, translation, and video generation,” IEEE Access, vol. PP, pp. 1–1,
Jan. 2022. doi: 10.1109/ACCESS.2022.3210543.

[19] D. Kothadiya, C. Bhatt, K. Sapariya, K. Patel, A. Gil, and J. Corchado Ro-
dríguez, “Deepsign: Sign language detection and recognition using deep learn-
ing,” Electronics, vol. 11, p. 1780, Jun. 2022. doi: 10.3390/electronics11111780.

[20] D. Younis, ““dawwie” in sign language,” 2022. [Online]. Available: https :
//www.unicef . org/egypt/stories/dawwie - sign - language#:~ : text=Not%
5C % 20all % 5C % 20words % 5C % 20are % 5C % 20expressed , World % 5C %
20Federation%5C%20of%5C%20the%5C%20Deaf..

[21] M. R. K, H. Kaur, S. K. Bedi, and M. A. Lekhana, “Image-based indian sign
language recognition: A practical review using deep neural networks,” 2023.
arXiv: 2304.14710 [cs.CV].

[22] S. Li, S. Banerjee, N. K. Banerjee, and S. Dey, “Simultaneous prediction of
hand gestures, handedness, and hand keypoints using thermal images,” 2023.
arXiv: 2303.01547 [cs.CV].

[23] R. Sayed, H. Azmi, H. Shawkey, A. Khalil, and M. Refky, “A systematic
literature review on binary neural networks,” IEEE Access, vol. PP, pp. 1–1,
Jan. 2023. doi: 10.1109/ACCESS.2023.3258360.

[24] “Asl alphabet,” doi: 10.34740/KAGGLE/DSV/29550. [Online]. Available:
https://www.kaggle.com/dsv/29550.

45

https://arxiv.org/abs/2011.09398
https://arxiv.org/abs/2011.09398
https://doi.org/10.1109/JSEN.2021.3061608
https://uia.brage.unit.no/uia-xmlui/handle/11250/2823720
https://uia.brage.unit.no/uia-xmlui/handle/11250/2823720
https://www.ijrpr.com/uploads/V2ISSUE5/IJRPR462.pdf
https://doi.org/10.1109/ElConRus51938.2021.9396496
https://arxiv.org/abs/2111.07258
https://doi.org/10.1109/ICSPC51351.2021.9451709
https://doi.org/10.1109/ACCESS.2022.3210543
https://doi.org/10.3390/electronics11111780
https://www.unicef.org/egypt/stories/dawwie-sign-language#:~:text=Not%5C%20all%5C%20words%5C%20are%5C%20expressed,World%5C%20Federation%5C%20of%5C%20the%5C%20Deaf.
https://www.unicef.org/egypt/stories/dawwie-sign-language#:~:text=Not%5C%20all%5C%20words%5C%20are%5C%20expressed,World%5C%20Federation%5C%20of%5C%20the%5C%20Deaf.
https://www.unicef.org/egypt/stories/dawwie-sign-language#:~:text=Not%5C%20all%5C%20words%5C%20are%5C%20expressed,World%5C%20Federation%5C%20of%5C%20the%5C%20Deaf.
https://www.unicef.org/egypt/stories/dawwie-sign-language#:~:text=Not%5C%20all%5C%20words%5C%20are%5C%20expressed,World%5C%20Federation%5C%20of%5C%20the%5C%20Deaf.
https://arxiv.org/abs/2304.14710
https://arxiv.org/abs/2303.01547
https://doi.org/10.1109/ACCESS.2023.3258360
https://doi.org/10.34740/KAGGLE/DSV/29550
https://www.kaggle.com/dsv/29550

	Declaration
	Approval
	Abstract
	Table of Contents
	Introduction
	Background
	Research Objective
	Problem Statement
	Research Orientation

	Literature Review
	Methodology
	Dataset Used
	Pre-Processing the Dataset
	In-Place Data Augmentation

	Dataset Distribution
	Overview of Binarized Models
	LARQ: Library for Binarized Models
	Models Used
	BinaryDenseNet45
	BinaryResNetE18
	BinaryDenseNet37
	DenseNet121
	Resnet50
	VGG16

	Experimental Setup
	Model Training and Evaluation
	PC Configuration
	Environment and Software Versions

	Results
	Performance Measure
	Learning Curves
	BinaryDenseNet45
	BinaryResNetE18
	BinaryDenseNet37
	ResNet50
	DenseNet121
	VGG16

	Confusion Matrices
	BinaryDenseNet45
	BinaryResNetE18
	BinaryDenseNet37
	ResNet50
	DenseNet121
	VGG16

	Classification Reports
	BinaryDenseNet45
	BinaryResNetE18
	BinaryDenseNet37
	ResNet50
	DenseNet121
	VGG16

	Score Analysis
	Model Size, Parameters, and Accuracy Comparison
	Inference Time Analysis
	Advantages of Binarized Models

	Conclusion
	Future Works

	Bibliography

