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Abstract

Inflation is an acclaimed theory for uncovering how the Universe works and how it
came to be. For years, physicists have attempted to not only cement a theory where
the accelerated expansion of the Universe can help us to explore primordial states
of the Universe, but also to incorporate other existing theories into inflation theory
to produce even more ambitious models. Such models attempt to tie quantum field
theories into those of inflationary cosmology in pursuit of a unified way of describ-
ing the phenoma in the Universe from the smallest of scales to the largest scales
observable to man.

The goal of this thesis is to explore some of these theories and the steps that have
been taken (both mathematically and in idea) to achieve inflationary models that
take elements from field theories.

We begin from Effective Field theories and initial ideas of inflation, to understanding
why inflation is important and why it is a theory so many physicists are invested
in. We attempt to analyze some problems that arise in rationalizing inflation, the
changes made to overcome them as well as the newer theories where further adjust-
ments are made to make inflation as naturally derived as possible.

We venture into string theory and the ideas that lead to the construction of complex
inflationary models such as the KKLMMTmodel. We analyze brane-antibrane inter-
actions and the problems that these interactions bring. We explore how KKLMMT
tries to account for such issues by stabilizing various contenders in the theory to
possibly reach a final concrete model.

Finally, we explore racetrack inflation and reheating, how they arise from the ideas
presented by such string cosmology models and what implications they bring to our
understanding of the Universe.
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Chapter 1

Effective Field Theories

1.1 Kaluza-Klein Theory

It is a classical unified field theory which is constructed around the concept of the
fifth dimension. The Kaluza-Klein theory was one of the first attempts to unite all
fundamental forces under a single law.

It was constructed around considering one extra compactified spatial dimension,
along with the existing three spatial and one time dimensions.[1]

The theory, however, had a few shortcomings:

• It never accounted for the strong and the weak nuclear forces, since they had
not been theorized when the Kaluza-Klein theory was developed.

• Calculated mass and charge of the electron in accordance to Kaluza-Klein
theory did not produce the experimentally-proven values.

• Witten no-go theorem: The standard model requires that the gauge fields
within the Kaluza-Klein theory must chirally couple with massless fermions.
However, this theory cannot easily produce these fermions - introducing extra
gauge fields reduces the purity of the theory itself.

Kaluza-Klein theory is thus a forerunner to many such theories that attempt to
construct a single theory applicable to all forces by considering the presence of com-
pactified extra dimensions. String theory is one such theory.

However, where Kaluza-Klein theory opts for introducing only gravity to a (1+4)-
dimensional spacetime, newer theories want to account for the later-discovered forces
as well.

We need to take into consideration the symmetry groups of the forces we are unifying
with gravity:

• Electromagnetism - U(1)

• Weak Interaction - SU(2)

• Strong Interaction - SU(3)

1



Hence, we obtain SU(3)×SU(2)×U(1) which is the Standard Model (SM) symmetry
group.
In order to describe all possible interactions, the theory has to be extended to higher
dimensions. The topology of spacetime in a higher dimensional model needs to be
preserved.

For example, if we consider a d = (1+ (3+D) - dimensional spacetime, it will have
a topology of M4 × BD. BD has to contain the symmetry subgroups mentioned
above. So, we consider BD = CP 2 × S2 × S1 where the symmetry subgroups are
preserved. CP 2 is a 4-dimensional complex space, S2 is a 2-dimensional sphere and
S1 is a 1-dimensional circle. This gives us D = 7.

Thus, a theory comprising of all forces (by preserving their symmetry subgroups)
would need to have atleast d = (1 + 10) dimensions.

1.2 Effective Field Theory and Inflation

In order to work towards a unified theory, it is necessary to obtain a quantum
field theory that accommodates inflation. There are two possible complementary
methods to reach such a theory [2]:

Figure 1.1: The light degrees of freedom exist below Λ which is the cutoff scale. Effec-
tive field theory is applied here, while the heavy fields are integrated over.(Baumann
and McAllister, 2014, p.54)

Top-Down approach: A theory that begins from high-energy degrees of free-
dom in the ultraviolet (UV) region, such as string theory, and works downwards
to derive inflation in the low-energy region.

We represent the interactions between light fields by the Lagrangian, Ll, those
between heavy fields by Lh and between both sets of fields by Llh. The La-
grangian of the UV theory is then given by:

L[ϕ,Ψ] = Ll[ϕ] + Lh[Ψ] + Llh[ϕ,Ψ] (1.1)

By integrating out over the heavy modes, we obtain a path integral:

eiSeff [ϕ] =

∫
[DΨ]eiS[ϕ,Ψ] (1.2)

The Seff in the above equation is called theWilsonian effective action. This
path integral sums over the heavy modes to try to remove the heavy fields,
denoted by Ψ.
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Toy Model: In the toy model, we take the UV theory Lagrangian as:

L[ϕ,Ψ] = −1

2
(∂ϕ)2 − 1

2
m2ϕ2 − 1

4!
λϕ4 − 1

2
(∂Ψ)2 − 1

2
M2Ψ2 − 1

4
gϕ2Ψ2 (1.3)

Z2 symmetry ϕ→ −ϕ is conserved by this model, where ϕ represents the light
fields. We can thus obtain the Lagrangian for ϕ as:

Leff [ϕ] = −1

2
(∂ϕ)2 − 1

2
m2

Rϕ
2 − 1

4!
λRϕ

4

−
∞∑
i=1

(
ci(g)

M2i
ϕ4+2i +

di(g)

M2i
(∂ϕ)2ϕ2i + ...

) (1.4)

The heavy fields renormalize the mass and λ (the quartic coupling), which
obtain loop corrections.

m2
R = m2 +

g

32π2
(Λ2 −M2ln(Λ2/µ2)) + ...

λR = λ− 3g2

32π2
ln (Λ2/µ2)

(1.5)

We can consider the term ln(Λ2/µ2) = L and after dimensional regularization,
we can simply define L as:

L→ 1

ϵ
+ γ − ln (4π) (1.6)

Upon renormalizing the parameters of the Lagrangian (1.4), we notice that
the quadratic divergences in (1.5) can be absorbed. For values of M → ∞,
decoupling renders the effects of the heavy particles ignorable.

Bottom-Up approach: A theory that begins from low-energy degrees of
freedom in the infrared (IR) region and parameterizes upwards to high-energy
degrees to derive inflation.

We model an effective action based on symmetries of the UV theory that sums
over all operatos Oi[ϕ]:

Leff [ϕ] = Ll[ϕ] +
∑
i

ci
Oi[ϕ]

Λδi−4
(1.7)

Λ is the cutoff scale, δi shows the dimensions of the operators and the pref-
actors ci are called Wilson coefficients and are dimensionless. However, using
symmetries we can still parameterize on the unknown heavy scale using the
cutoff scale in order to obtain inflation through effective field theory, while
accounting for the degrees of freedom from both the inflaton field and the
gravitational field. The resulting action can be represented as:

Seff [ϕ] =

∫
d4x

√
−g
[
M2

pl

2
R + Ll[ϕ] +

∑
i

ci
Oi[ϕ]

Λδi−4

]
(1.8)
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If Wilsonian naturalness is assumed in this case, then the UV couplings as well
as the Wilson coefficients should be of order-unity. This can make it seem as if
certain coefficients are suppressed. However, it can be explained as necessary
in our endeavor to achieve inflation due to the presence of internal symmetries.

A clear clue as to what the cutoff scale for this theory could be is the knowledge
that it cannot be greater than the Planck scale. Violations to the perturbative
unitarity due to graviton-graviton scattering is avoided by ensuring the cutoff
scale is less than or near to equal the Planck scale.

Gravity in EFT:

We can attempt to model gravity as an effective theory by considering the
spacetime metric gµν in flat space:

gµν ≡ ηµν +
1

M2
pl

hµν (1.9)

As mentioned previously in the case of low-energy degrees of freedom that are
below the cutoff scale, we can use this metric by expanding it in the form of
small perturbations.

The Einstein-Hilbert action is given by:

SEH =
M2

pl

2

∫
d4x

√
−gR (1.10)

We now accommodate the perturbations in the Einstein-Hilbert action to get
[2]:

SEH =

∫
d4x

[
(∂h)2 +

1

Mpl

h(∂h)2 +
1

M2
pl

h(∂h)2 + ...

]
(1.11)

which in turn resembles the Yang-Mills action:

SYM =

∫
d4x

[
(∂A)2 + gA2∂A+ g2A4

]
(1.12)

The Einstein-Hilbert action is unlike the Yang-Mills action in that, due to the
presence of the expansion of

√
−g and gµν , there can be an infinite number of

terms. We can assume that all the relevant terms are within the low-energy
effective action and represent it as:

Sg =

∫
d4x

√
−g
[
M4

Λ +
M2

pl

2
R + c1R

2 + c2RµνR
µν

+
1

M2
(d1R

3 + ...) + ...

] (1.13)

Here also, ci and di are dimensionless and can be assumed to be of order-
unity. However, a point of interest lies in the renormalized MΛ which is the
cosmological constant. This gives rise to the cosmological constant problem
since in this context, the value of MΛ is not close to its natural value Mpl.
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1.2.1 Inflation in EFT

As discussed above, we now apply EFT from bottom up to inflation. We take into
account the inflaton field and the gravitational field - both of which are degrees of
freedom for inflation. The Lagrangian for an EFT to model inflation takes the form:

Leff [ϕ,Ψ, g] =
√
−g

[
M2

pl

2
R− 1

2
(∂ϕ)2 − V0(ϕ) +

∑
i

ci
Oi[ϕ,Ψ]

Λδi−4

]
(1.14)

The kinetic term−1/2(∂ϕ)2 and renormalizations can be rewritten as Ll[ϕ]. Minimal
coupling the Lagrangian (1.14) to gravity gives us the effective action for the inflaton
field:

Seff [ϕ] =

∫
d4x

√
−g

[
M2

pl

2
R + Ll[ϕ] +

∑
i

ci
Oi[ϕ]

Λδi−4

]
(1.15)

In this vicinity, we are presented with three scenarios due to ultraviolet sensitivity
[3]:

Eta Problem

To construct a complete idea of inflation in EFT, the problems caused due to heavy
fields beyond the cutoff scale need to be resolved. These problems include:

• renormalization of light-field couplings

• introduction of new interactions that cannot be normalized

A quantum correction to the inflaton mass, ∆m2 ∼ Λ2, needs to be made to reach the
cutoff scale, which leads to a large renormalization of η, an inflationary parameter,
given by:

∆η ∼ Λ2

H2
1 (1.16)

in order to maintain consistency with Λ > H. However, this does not result in
natural slow-roll inflation. This dilemma is called the Eta Problem and can be
summarized as:
Dim-6 -

∆V = V0
ϕ2

Λ2

Λ<Mpl−−−−→ ∆η ≡M2
pl

V ′′

V
≈
M2

pl

Λ2
> 1 (1.17)

Eta problem can have possible solutions in the dimensional gauge coupling.

Non-Gaussianity

When constructing models of the primordial Universe, we encounter Gaussian-
distributed density fluctuations which are responsible for the variation in tempera-
ture of the CMB [4].

Unlike slow-roll scenarios where the inflaton (a single scalar field) rolling down its
potential causes density perturbations, there are instances where association with
any other field such as the curvaton could be the cause of these fluctuations. In these
cases, positive non-Gaussianity helps establish that the inflation was not driven by

5



the slow-roll ”ideal” of a single scalar field.

Dim-8 -

∆L =
(∂ϕ)4

Λ4

Λ2<ϕ̇−−−→ fNL ∼ ϕ̇2

Λ4
< 1 (1.18)

Thus, understanding non-Gaussianity is important to correlate cosmological pertur-
bations of the primordial Universe and to determine the exact method behind the
generation of such perturbations.

Lyth Bound

The Lyth Bound is basically a predicted upper bound on the quantity of gravita-
tional waves generated during slow-roll inflation with respect to the inhomogeneities
of the CMB. It restricts how steep an inflationary potential can be.

To denote the power spectrums for two types of fluctuations, while including the
de Sitter fluctiations and curvature perturbations, we obtain:

Scalar fluctuations given by:

Ps =

(
H

π

)2(
H

ϕ̇

)2

(1.19)

Tensor fluctuations given by:

Pt =

(
2

π2

)(
H

Mpl

)2

(1.20)

Using the above, the ratio becomes:

Pt

Ps

= 8

(
ϕ̇

HMpl

)2

(1.21)

We take Pt/Ps = r and obtain:
Dim-∞ -

∆ϕ ∼
( r

0.01

)1/2
Mpl

r>0.01−−−−→ ∆ϕ > Mpl (1.22)

where r > 0.01 shows the Lyth Bound for large field inflation.
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Chapter 2

Basics of Inflation

2.1 de Sitter Space

Inflation dictates that any two objects, not bound together by any force, will drift
apart from each other due to the patch of space between them expanding exponen-
tially with time.

This section of spacetime is modeled as a maximally symmetric Lorentzian manifold,
called the de Sitter space, and it can be described by the metric [5]:

ds2 = −(1− Λr2)dt2 +
1

1− Λr2
dr2 + r2dΩ2 (2.1)

For the metric to hold, it needs to meet the following conditions:

• The vacuum energy density must be constant in space and time. It must also
be proportional to Λ.

• The energy density of the space must be constant. This is denoted by Λ and
is called the Cosmological Constant.

2.2 Why inflation?

Besides providing an insight into why CMB radiation is almost evenly distributed
and in explaining why the Universe appears isotropic, cosmological inflation is also
an intriguing solution to two problems - the Flatness Problem and the Horizon
Problem.

2.3 The Scale Factor

The scale factor is an important parameter of the Friedmann equations, which
characterizes the dynamics of the spacetime geometry. The normalized scale factor,
a(t), scales the energy densities of the cosmological parameters (matter, space and
vacuum) differently.

7



Figure 2.1: The effect of scale factor and density on the fate of the Universe

To relate the proper distance between two moving objects, the scale factor acts as:

d(t) = a(t)d0 (2.2)

Here, d(t) is the proper distance at the current time t while d0 is the distance at an
initial reference time t0. This gives us:

d0 = d(t0) (2.3)

which results in a(t0) = 1, according to 2.2.

However, if we consider the accelerating expansion of the Universe, it would mean
that the first time-derivative of the scale factor, ȧ(t), is increasing over time. This
is because the space between the objects increase faster with time, so an object
observed later would be moving with a smaller velocity than it had when it was
observed earlier.

Thus, if an object emits light at a redshift of z, then the scale factor at the time the
object was initially observed would become:

a =
1

1 + z
(2.4)

This is the scale factor considered when modeling an expanding Universe with the
FLRW metric.

2.4 Flatness Problem

Fine-tuning is the precise adjustment of parameters in a given model to produce
observational results, without a specific known mechanism.

The Flatness problem is an example of a fine-tuning problem, where certain pa-
rameters at the beginning of the Universe take very specific values. Changing these
values, even slightly, alters the appearance of the Universe drastically.[6]

8



Figure 2.2: Density Parameters of the components of cosmological fluid

The dimensionless scale factor, a(t), parameterizes the relative expansion of the
Universe. As mentioned previously, these parameters are the mass densities of mat-
ter (m), radiation (r) and vacuum (Λ). Each component is modeled as a perfect
fluid, given by the general equation of state:

pi = ωiρic
2 (2.5)

To satisfy the weak energy condition, the equation of state parameter ωi must be
constant. We obtain the density parameters (a function of the cosmic time t for
all three components:
The cosmological field equations are as such:

R̈ = −4πG

3

(
ρ+

3p

c2

)
R +

1

3
Λc2R

Ṙ2 =
8πG

3

2

+
1

3
Λc2R2 − c2k

(2.6)

Once we substitute the densities into the second equation, we get:

Ωm + Ωr + ΩΛ − c2k

H2R2
= 1 (2.7)

having taken the Hubble parameter, H = Ṙ
R
. We now define the curvature density

parameter as:

Ωk(t) = − c2k

H2(t)R2(t)

= − k

H2a2

(2.8)
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thus obtaining the relation:

Ωm + Ωr + ΩΛ + Ωk(t) = 1 (2.9)

where all the quantities are based on cosmic time, t.

The spatial curvature, k, determines the value of Ωk. Depending on the value of k,
we face three scenarios:

Open case: if k = −1: Ωm + Ωr + ΩΛ < 1
Flat case: if k = 0: Ωm + Ωr + ΩΛ = 1

Closed case: if k = +1: Ωm + Ωr + ΩΛ > 1

Thus, to understand the Flatness problem, we look into the curvature density. We
obtain its time derivative:

Ω̇k(t) = − 2kḢ

H3(t)a2(t)
− 2kȧ

H2(t)a3(t)

= − 2k

H2a2

(
Ḣ

H
+
ȧ

a

)

= −2Ωk(t)

(
Ḣ

H
+
ȧ

a

) (2.10)

taking H = ȧ/a now, where a is just the scale factor.
The evolution of this scale factor with respect to time is illustrated in the Friedmann
equations:

(
ȧ

a

)2

=
8πGp

3
− k

a2(
ä

a

)
=

4πG

3
(p+ 3P )

(2.11)

2.5 Horizon Problem

From the existence of the first singularity up to the formation of the first atoms,
signals that result in such occurrences were initially thought to have a finite distance
over which they can travel within a given time period. But the anisotropies that we
can observe in the cosmic microwave background radiation far exceeds that distance
limit.
The Horizon Problem is that these ”signals” could not have traveled distances
so large within the time of the creation of the first atoms. Thus a more favoured
theory arose: that while the Universe had an initial state that was inhomogeneous,
anisotropic and curved at the beginning, quasi-de Sitter evolution occured and re-
sulted in the homogeneous, isotropic and relatively flat Universe we observe today.

The Friedmann-Robertson-Walker (FRW) metric is a spatially flat metric which
describes the Universe on large scales [2]:

ds2 = −dt2 + a2(t)dx2 (2.12)
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If the metric is written in terms of conformal time (τ), we obtain:

ds2 = a2(τ)
[
−dτ 2 + dx2

]
(2.13)

∆τ =

∫ t

0

dt′

a(t′)
=

∫ a

0

d ln a

aH
(2.14)

Considering that the photons travel along null geodesics where ds2 = 0, we obtain:

dχ2 = ± dt

a(t)
(2.15)

We can now find the comoving distance a photon would have to travel to reach
modern observers:

χ(z) =

∫ t0

tem

dt

a(t)
(2.16)

χ(z) =

∫ 1

aem

1

a2
H(a) da (2.17)

This will help us find the comoving distance a photon emitted during the time of
recombination would have to travel, where the Hubble Parameter was introduced
into the above integral.

Now accounting for the scale factor a = 1
1+z

, we get:

χ(z) =

∫ z

0

1

H(z)
dz (2.18)

From above, we will now discuss the Hubble parameter. It has been denoted as:

H =
ȧ

a
=
da

dt

1

a
(2.19)

after which, we account for an evolution of the parameter as such:(
H(z)

H0

)2

= Ωm,0(1 + z)3 + ΩΛ,0 (2.20)

We consider the density values for the matter-dominated era since recombination
epoch falls within that time:(

H(z)

H0

)2

= Ωm,0(1 + z)3

H(z) = H0

√
Ωm,0(1 + z)3/2

(2.21)

Introducing the above into our integral for the comoving distance, we get:

χ(z) =
1

H0

√
Ωm,0

∫ z

0

1

(1 + z)3/2
dz (2.22)

When it is solved within the bounds, we obtain an expression for the comoving
distance given by:
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χ(z) =
2

H0

√
Ωm,0

(
1− 1√

1 + z

)
(2.23)

and when we consider that the redshift z ≫ 1, the solution simplifies to:

χ(z) ≈ 2

H0

√
Ωm,0

(2.24)

We want to show that the observable regions could not have been within the limits of
the comoving distance. If these regions are too far for causal signals to travel within
the time frame, then it would suggest that space was not static but was undergoing
inflation.

We consider the angular diameter dA the transverse distance across the Universe
and express it in terms of the comoving distance:

dA(z) =
χ(z)

(1 + z)
(2.25)

dA(z) ≈
2

H0

√
Ωm,0

1

(1 + z)
(2.26)

During recombination, the size of the Universe can be expressed as D, given below
with respect to the transverse distance:

D =
1

1 + z

∫ ∞

z

1

H(z)
dz

≈ 1

1 + z

2

H0

√
Ωm

[
1√
1 + z

]∞
z

≈ 2

H0

√
Ωm

1

(1 + z)3/2

(2.27)

Now we designate two observable regions in the night sky, and find the angle between
them from our point of observation:

δθ =
D

dA
(2.28)

Finally we account for the redshift and take the value of z = 1100 to obtain:

δθ =
1√

(1 + z)
= 0.03rad (2.29)

This value of 0.03 rad or approximately 1.7 suggests that any regions in the sky
further than this could not have been close enough to allow exchange of information,
i.e. the comoving distance would be too great at the recombination period for the
CMB to have uniform temperature as we observe today. This problem leads us to
the realization of inflation being a key occurrence even during the primordial phase
of the Universe.
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2.6 The Inflaton Field

Unlike vector fields such as the electric and magnetic fields, scalar fields do not have
internal degrees of freedom. The inflaton field, ϕ(x, t), is one such field, which is
included to theorize how an inflationary phase arose in the early Universe.

The potential of the inflaton field is denoted by V (ϕ) = 1
2
m2ϕ2. m is the mass of

the field, which basically implies that, when the field is quantised, m denotes the
mass of particles produced.

For an expanding FRW metric in Minkowski spacetime, the action of this field is
given by [7]:

S =

∫
d3x dt

[
1

2
ϕ̇2 − c2

2
∇ϕ · ∇ϕ− V (ϕ)

]
(2.30)

It is important to find the equations of motion for the inflaton ϕ that are consistent
with the principle of least action. We implement a transformation to the inflaton
ϕ→ ϕ+ δϕ and the action varies as such:

δS =

∫
d3x dt

[
ϕ̇δϕ̇− c2∇ϕ · ∇δϕ− ∂V

∂ϕ
δϕ

]
=

∫
d3x dt

[
− ϕ̈+ c2∇2ϕ− ∂V

∂ϕ

]
δϕ

(2.31)

The equation of motion is then obtained by taking δS = 0:

ϕ̈− c2∇2ϕ+
∂V

∂ϕ
= 0 (2.32)

which is basically the Klein-Gordon equation.
In order to generalize the inflaton action :

S =

∫
d3x dt a3(t)

[
1

2
ϕ̇2 − c2

2a2(t)
∇ϕ · ∇ϕ− v(ϕ)

]
(2.33)

S =

∫
d3x dt a3(t)

[
1

2
ϕ̇2 − V (ϕ)

]
(2.34)

The variation of the action now becomes:

δS =

∫
d3x dt a3(t)

[
ϕ̇δϕ̇− ∂V

∂ϕ
δϕ

]
=

∫
d3x dt

[
− d

dt

(
a3ϕ̇
)
− a3

∂V

∂ϕ

]
δϕ

(2.35)

Equation of motion:

ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
= 0 (2.36)
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2.7 Slow-Roll Inflation

Slow-roll inflation couples an inflaton field ϕ to gravity, where V (ϕ) is an arbitrary
inflaton potential. The action is given by [7]:

S =

∫
d4x

√
−g
[
M2

pl

2
R− 1

2
(∂ϕ)2 − V (ϕ)

]
(2.37)

In the equation of motion (2.36), the term 3Hϕ̇ is theHubble drag.We now consider
this Friedman equation:

H2 =
8πG

3c2

(
1

2
ϕ̇2 + V (ϕ)

)
(2.38)

We take the time derivative of this equation to get:

2H

(
ä

a
−H2

)
=

8πG

3c2

(
ϕ̈+

∂V

∂ϕ

)
= −8πG

c2
Hϕ̇2

= − 1

Mpl

Hϕ̇2

(2.39)

After rearranging the terms in (2.39) we get the Raychaudhuri equation:

ä

a
= − 1

3M2
pl

(
ϕ̇2 − V (ϕ)

)
(2.40)

Now we can think of a model, where we begin with a scalar field with small ϕ̇ at the
top of a potential. This scalar rolls down the potential, gains kinetic energy and is
only held back from eternal oscillation due to the presence of the Hubble drag. As
it gains the kinetic energy and stops at some point, it leaves the inflationary period.
We now set V (ϕ) ≫ 1

2
ϕ̇2 - this is our slow roll condition. For slow roll inflation to

occur, the potential must have a value within this limit. Using this, we can now find
that the Friedman equation becomes:

H2 ≈ 8πG

3c2
V (ϕ) (2.41)

We want inflation to last for a longer period of time, which means the scalar must not
accelerate. To ensure no resultant force drives the scalar to accelerate, the Hubble
drag must have the larger value in equation (2.36). This is called the over-damped
regime, where ϕ̈≪ Hϕ̇. The equation of motion now takes the form:

3Hϕ̇ ≈ −∂V
∂ϕ

(2.42)

Inputting a potential V = 1
2
m2ϕ2, we can solve the adjusted Friedman equation as

well as the new equation of motion to find:

H = αϕ

ϕ̇ = −m
2

3α

α2 =
4πGm2

3c2

(2.43)
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Integrating ϕ̇ over time gives us:

ϕ(t) = ϕ0 −
m2

3α
t (2.44)

At t = 0, the scalar field begins rolling from an initial value of ϕ0 and H = αϕ can
be integrated to find the scale factor a(t) during the phase of nearly exponential
expansion (the quasi-de Sitter phase):

a(t) = a(0)exp

[
2πG

c2
(ϕ2

0 − ϕ(t)2)

]
(2.45)

Long as V (ϕ) ≫ ϕ̇2, (2.45) holds up and inflation proceeds. At the end of the
inflationary period tend, where V (ϕ) approaches the value of ϕ̇, inflation will halt.
After the phase of inflation, the universe will be larger that before by a factor of:

a(tend)

a(0)
≈ exp

[
2πGϕ2

0

c2
− 1

3

]
(2.46)

Since the scalar field was positioned higher up the potential, it could roll for longer
and the expansion was also substantially larger.

2.8 Duality and Inflation

When the symmetries of string cosmology are applied to the standard cosmological
equations, we can get duality-based solutions that compare to the standard scenario
solutions. An inflationary evolution is introduced to resolve the naturalness problem,
which is shown by the relation [5]:

r(t) = (aH)−1 (2.47)

This function decreases as time t increases. Thus, if we consider a scale factor where
a(t) ∼ tβ over the period of inflation, we reach the condition:

r(t) = (ȧ)(−1) ∼ t1−β → 0 (2.48)

2.8.1 Class I

This class of inflationary solutions work over the range of cosmic-time coordinates
where t is positive. It is parameterized by:

a ∼ tβ (2.49)

where t is cosmic time and a is the power law scale factor, given the conditions:

β > 1 t > 0 t→ +∞
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Power Inflation

Power inflation is characterized by:
• accelerated expansion

ȧ ∼ βtβ−1 > 0, ä ∼ β(β − 1)tβ−2 > 0

• decreasing curvature

H =
ȧ

a
=
β

t
> 0, Ḣ = − β

t2
< 0

Therefore, this model illustrates the accelerated evolution from a region of higher
curvature to that of a lower curvature, similar to slow-roll inflation.

de Sitter Inflation

In de Sitter inflation, a limiting case β → ∞ is introduced:

a ∼ ekt (2.50)

where t > 0 and t→ +∞. de Sitter inflation shows:
• accelerated expansion

ȧ ∼ kekt > 0, ä ∼ k2ekt) > 0

where curvature k = constant.

• constant curvature, which implies that the horizon does not grow in size either.

Unlike the power inflation case, where the curvature can take different values, in the
de Sitter case the curvature remains at a constant value. Thus, Ḣ = 0
Both of the cases satisfy the condition (2.46) as they concur that accelerated expan-
sion is occurring over time.

2.8.2 Class II

This class of inflationary solutions work over the range of cosmic-time coordinates
where t is negative. It is parameterized by:

a ∼ (−t)β (2.51)

where t is cosmic time and a is the power law scale factor, given the conditions:

β < 1 t < 0 t→ 0

Super Inflation

Also consistent with the idea of the background geometry undergoing accelerated
expansion, we obtain:

• accelerated expansion

ȧ ∼ −β(−t)β−1 > 0, ä ∼ β(β − 1)(−t)β−2 > 0

• increasing curvature

H = − β

(−t)
> 0, Ḣ = − β

t2
> 0

We can once again realize that the condition (2.46) is fulfilled.
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Accelerated Contraction

For values of β such that 0 < β < 1, we get:
• accelerated contraction

ȧ ∼ −β(−t)β−1 < 0, ä ∼ β(β − 1)(−t)β−2 < 0

• increasing curvature

H = − β

(−t)
< 0, Ḣ = − β

t2
< 0

Since Class II backgrounds are defined such that t is negative, the evolution varies
from low to high curvature which is reminiscent of going back in time from the Big
Bang singularity.
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Chapter 3

String Theory and Branes

String Theory: a theory where elementary particles are assumed to behave like
rotating strings, instead of point particles. The ultimate goal of string theory is to
unite the concepts of quantum field theory to those of general relativity in order to
achieve a comprehensive, universal description of fundamental physics. The scope
of string theory is broad, thus, in the context of this paper, only relevant topics shall
be brought forward.

String theory models are based on the assuming the existence of segments of vibrat-
ing strings instead of elementary point-like particles like electrons or quarks.

Each vibration mode present on a string then corresponds to a different particle and
determines its intrinsic features such as mass and charge.

These strings are described to be in a system constituting of 10 or 11 dimensions,
where 6 or 7 dimensions are curled up. While we can generalize the larger dimen-
sions in this scenario to just be space and time dimensions, the ”extra dimensions”
become crucial in characterizing the universe and everything in it as we know it. [8]

Strings may form a segment with two endpoints, where these endpoints do not meet:
this is called an open string. If the end points meet and the string forms a closed
loop, it is called a closed string.

From quantum field theory, we recall [8]:

• Fermionic field: a quantum field where the quanta are called fermions. They
obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation
relations. e.g. the Dirac field which describes fermions with spin-1/2 (
electrons, protons) is a fermionic field and it can be described as either a
4-component spinor or as a pair of 2-component Weyl spinors.

• Bosonic field: a quantum field where the quanta are called bosons. They
obey Bose-Einstein statistics. Bosonic fields obey canonical commutation re-
lations.

In superstring theory, when we consider closed strings, the fermionic fields can be
periodic or anti-periodic on the path around the string. The periodicity depends on
what coordinates have been picked on the worldsheet.
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To start off, we consider a couple of boundary conditions.

• Ramond boundary conditions which accounts for periodic conditions in
the w-frame,

• Neveu–Schwarz boundary conditions which account for anti-periodic con-
ditions in the w-frame.

The conditions reverse in the case of the z-frame for closed strings.
The Neveu–Schwarz sector and Ramond sector are also defined in the open string.
They now depend on the boundary conditions of the fermionic field at the edges of
the open string [10].
Ramond (R) Boundary Condition:

Ψi
+

(π
2
, τ
)
= Ψi

−

(π
2
, τ
)

(3.1)

yields the even-mode expansions:

Ψi
+(σ, τ) =

∑
n:even

dine
−in(τ+σ) (3.2)

Ψi
−(σ, τ) =

∑
n:even

dine
−in(τ−σ) (3.3)

Neveu-Schwarz (NS) Boundary Condition:

Ψi
+

(π
2
, τ
)
= −Ψi

−

(π
2
, τ
)

(3.4)

yields the odd-mode expansions:

Ψi
+(σ, τ) =

∑
r:odd

bire
−ir(τ+σ) (3.5)

Ψi
−(σ, τ) =

∑
r:odd

bire
−ir(τ−σ) (3.6)

The above conditions restrict the oscillators to modes such that we end up with a
massive ground state for R and a massless ground state for NS.

3.1 Calabi-Yau manifolds

Compact, complex Kähler manifolds that accomodate the tiny, hidden extra dimen-
sions are called Calabi-Yau manifolds. They exhibit SU(d) holonomy and can be
represented as having a Ricci-flat metric [11]:

Rij̄ = − ∂

∂z̄ j̄
Γk
ik = 0 (3.7)

The trace of U(1) vanishes. This is responsible for the holonomy lying in SU(d) and
thus plays an important role in providing the Ricci-flat metric.
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3.2 Branes

A brane is defined as a physical object that generalizes the idea of a point particle
to higher dimensions and can propagate through spacetime.
An antibrane is an extended object which has the same tension as the corresponding
brane, but with opposite Ramond-Ramond (R-R) charge. [12]

3.2.1 p-branes

”P-brane” is a term that was given by M. J. Duff et al. in 1988. The ”brane”,
shortened from the word ”membrane”, now refers to a two-dimensional brane while
a p-dimensional brane is generally called ”p-brane”. A p-brane sweeps out a (p+1)-
dimensional volume in spacetime called its worldvolume. Physicists often study
fields analogous to the electromagnetic field, which live on the worldvolume of a
brane.

3.2.2 D-branes and Boundary Conditions

Dirichlet membranes, or D-branes, are a class of extended objects in ten dimen-
sional string theory, where if open strings end, they obey the Dirichlet boundary
conditions:

δXM(τ, σ) = 0

Dp-branes depict branes of p spatial dimensions.

D0 - brane is a point particle.

D1 - brane is a string.

D2 - brane is a membrane.

Endpoints of an open string propagating through spacetime must lie on the surfaces
of D-branes. The dynamics of the worldvolume of a D-brane has (p+1) dimensions
including the temporal dimension, and can be described by a gauge theory. The
Ramond-Ramond (R-R) potential Cp+1 charges the Dp-brane; the electrical coupling
is given by the Chern-Simons action:

SCS = µp

∫
∑

p+1

Cp+1 (3.8)

Here, µp denotes the brane charge and
∑

p+1 is the worldvolume of the Dp-brane.
In Type II string theory, there are two cases:

• Type IIA string theory features stable Dp-branes, where p = even.

• Type IIB string theory also has stable Dp-branes, where p = odd.

These branes can be pictured as a result of a Kaluza–Klein compactification of the
eleven dimensional M-theory. Addition of a single U(1) vector field accomodates
this theory in the string action. The presence of more gauge fields (like in the case
of SU(2)) would then theoretically link to higher dimensional theories that have
been compactified.
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Figure 3.1: In a 3-dimensional target spacetime, the embedding of a closed string makes
a cylindrical worldsheet, and an open string makes a strip-like worldsheet.

3.3 Bosonic String Theory

String Theory is based on considering one-dimensional extended objects (strings) as
the fundamental objects. While a point-particle can only map a worldline, a string
can map a (1+1) dimensional manifold called a worldsheet, Σ , in spacetime. [9]

Σ is parametrized by:

τ - proper time

σ - spatial length of the string

The worldsheet of the string is embedded into a D-dimensional Minkowski target
spacetime, and is characterized by the function XM(τ, σ).

Thus, we get the Nambu-Goto string action, which is parametrisation invariant:

SNG = − 1

2πα′

∫
Σ

d2σ
√

−det(∂αXM∂βXNηNM) (3.9)

where

ηNM is the Minkowski spacetime metric

d2σ = dσ0dσ1

ls is string length. The relation used is l2s = α′

The tension τ of the string is τF1 = 1/2πα′

Since the quantisation of the theory through Nambu-Goto action is very difficult,
we bring in an auxiliary field hαβ(σ) which is a worldsheet metric. The dynamics of
a bosonic string propagating through D-dimensional Minkowski spacetime is then
shown by the Polyakov string action:

SP = − 1

4πα′

∫
Σ

d2σ
√
−hhαβ(∂αXM∂βX

NηNM) (3.10)

The existence of the energy-momentum tensor Tαβ on the worldsheet puts Virasoro
constraints on the dynamical fields XM when Tαβ = 0. The Polyakov action also
preserves a number of symmetries:

21



• Poincaré transformations: The Polyakov action (3.10) is invariant under
Lorentz transformations and translations to the spacetime vector XM in the
target spacetime.

XM 7→ X ′M = ΛM
N︸︷︷︸

Lorentz Transformation

XN +

Spacetime Translation︷︸︸︷
aM

• Diffeomorphism: Given a reparametrisation to the worldsheet: σα 7→ σ′α =
fα(σ), the following transformations occur:

hαβ(τ, σ) =
∂fγ

∂σα

∂f δ

∂σβ
hγδ(τ

′, σ′)

XM(τ, σ) = X ′M(τ ′, σ′)

The Polyakov action (3.10) is invariant under these reparametrisation trans-
formations.

• Weyl Transformation: We consider a conformal gauge with a diagonal
worldsheet metric:

hαβ = e2ω(τ,σ)ηαβ (3.11)

where the metric is η =

(
−1 0
0 1

)
. The Polyakov action (3.10) should be

invariant under the transformations:

hαβ 7→ e2ω(τ,σ)hαβ(τ, σ)

X ′M(τ, σ) = XM(τ, σ)
(3.12)

Now that the gauge is considered, we can obtain the Polyakov action in a form
consistent with the conformal gauge:

SP =
1

4πα′

∫
d2σ(∂τX

M∂τX
N − ∂σX

M∂σX
N)ηMN (3.13)

Upon including light cone coordinates (σ± = τ ± σ) and derivatives of the
form ∂± = ∂/∂σ±, we obtain a relativistic wave equation:

(∂2τ − ∂2σ)X
M = ∂+∂−X

M = 0 (3.14)

A boundary condition, ∂σX
MδXM |σ0

0 = 0 supplements the equation of motion,
and the Virasoro constraints are also included.

3.4 Superstrings

Superstring theory includes supersymmetry in string theory in order to model grav-
ity. While bosonic string theory accounts only for bosons, superstring theory extends
to both fermions and bosons. [13]
Type I is based on unoriented open and closed strings with one supersymmetry in
the ten-dimensional sense (16 supercharges). We shall discuss type II in further
detail below.
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3.4.1 Type II Superstrings

In the ten-dimensional scenario, Type II string theories have two supersymmetries,
and hence 32 supercharges. While IIA theory is parity conserving (non-chiral), the
IIB theory is parity violating (chiral).
Type IIA and type IIB string theory are related by T-duality, a type of duality
symmetry, that implies all five superstring theories are different versions of an eleven-
dimensional theory; the M-theory.

Type IIA Superstrings

Eleven-dimensional supergravity has maximum Poincaré invariance as well as space-
time supersymmetry. Type IIA supergravity arises after the compactification of 11-D
SUGRA on S1. It has two Majorana-Weyl spinors with opposing chiralities, and
32 real supercharges. This theory accomodates two bosonic fields, with 128 bosonic
states. The bosonic action is [8]:

2κ211S11 =

∫
d11x

√
−G(R− 1

2
|F 4|2)− 1

6

∫
A3 ∧ F4 ∧ F4 (3.15)

where GMN is the metric and F4 is the field strength of the 3-form potential AMNP ,
which is denoted by A3.
Since the algebra of this theory is ideal, we can obtain an action for type IIA theory
by dimensional reduction of the action (3.15).
First, we reconfigure the metric.
The metric GMN corresponds to the earlier eleven-dimensional theory, while we
obtain a new metric, Gµν , which is ten-dimensional to fit the IIA theory. [8]

ds2 = G11
MN(X

µ)dxMdxN

= G10
µν(x

µ)dxµdxν

+ exp(2σ(xµ))[dx10 + Aν(x
µ)dxν ]

2

(3.16)

The metric (3.16) has been reduced to a ten-dimensional metric, an A1 gauge field
and a scalar σ.
The type IIA action is given by:

SIIA = SNS + SR + SCS (3.17)

For fields in the Neveu-Schwarz sector:

SNS =
1

2κ210

∫
d10x

√
−Ge−2Φ

(
R + 4∂µΦ∂

µΦ− 1

2
|H3|2

)
(3.18)

In the above equation, Φ represents the dilaton while the H3 is the field strength:
H3 = dB2. The B2 can be identified as a 2-form gauge potential.
For fields in the Ramond sector:

SR = − 1

4κ210

∫
d10x

√
−G
(
|F2|2 + |F̃4|

2
)

(3.19)
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The Ramond fields have a 1-form gauge potential and the field strength is derived
with respect to this gauge potential C1. So, the field strength terms in (3.19) are
basically F2 = dC1 and F4 = dC3.
The fields in both sectors, given by the Chern-Simons action:

SCS = − 1

4κ210

∫
B2 ∧ F4 ∧ F4 (3.20)

Thus the type IIA action can be written as:

SIIA =
1

2κ210

∫
d10x

√
−Ge−2Φ

(
R + 4(∂Φ)2 − 1

2
|H3|2

)
− 1

4κ210

∫
d10x

√
−G
(
|F2|2 + |F̃4|

2
)
− 1

4κ210

∫
B2 ∧ F4 ∧ F4 (3.21)

Type IIB Superstrings

The type IIB action is given by:

SIIB = SNS + SR + SCS (3.22)

For fields in the Neveu-Schwarz sector (the same as in IIA):

SNS =
1

2κ210

∫
d10x

√
−Ge−2Φ

(
R + 4∂µΦ∂

µΦ− 1

2
|H3|2

)
(3.23)

For fields in the Ramond sector:

SR = − 1

4κ210

∫
d10x

√
−G
(
|F1|2 + |F̃3|

2
+

1

2
|F̃5|

2
)

(3.24)

The fields in both sectors, given by the Chern-Simons action:

SCS = − 1

4κ210

∫
C4 ∧H3 ∧ F3 (3.25)

Adding the terms gives us the type IIB action:

SIIB =
1

2κ2

∫
d10X

√
−Ge−2Φ

[
R + 4(∂Φ)2 − 1

2
|H3|2

]
− 1

4κ2

∫
d10X

√
−G

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
− 1

4κ2

∫
C4 ∧H3 ∧ F3 (3.26)

and here we define:

F̃3 = F3 − C0 ∧H3

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3
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For F̃5, the equation of motion and Bianchi identity are given by:

d ∗ F̃5 = dF̃5 = H3 ∧ F3 (3.27)

A constraint on the solution is:
∗F̃5 = F̃5 (3.28)

in order to keep them consisted with the spectrum of the IIB string (degrees of
freedom must be self dual). To apply Weyl rescaling to the action (3.26), we choose
the Einstein frame metric:

GEµν = e−Φ/2Gµν (3.29)

The axio-dilaton τ is defined as:

τ = C0 + ie−Φ (3.30)

And we let:

M ij =
1

Im τ

[
|τ |2 −Re τ

−Re τ 1

]
F i
3 =

[
H3

F3

] (3.31)

We focus on SL(2,R) symmetry, where the kinetic term for τ is invariant and the
kinetic term for F3 transforms as:

M ′ = (Λ−1)TM Λ−1 (3.32)

We obtain the type IIB action [8]:

SIIB =
1

2κ210

∫
d10x

√
−GE

(
RE − ∂µτ∂

µτ

2(Im τ)2
− M ij

2
F i
3 · F

j
3 − 1

4
|F̃5|2

)
− ϵij

8κ210

∫
C4 ∧ F i

3 ∧ F
j
3 (3.33)

3.5 de Sitter vacua

Compactified dimensions in string theory had to be stabilized in order for inflation to
occur. In type IIB string theory, we include two canonically normalized fields, given
by φ which is the dilaton field, and ρ whcih denotes the volume of the compactified
space. Compactification would result in an effective potential within the effective
4D theory [14]:

V (φ, ρ, ϕ) ∼ exp (
√
2φ−

√
6ρ)Ṽ (ϕ) (3.34)

Ṽ (ϕ) works towards inflation if the fields φ and ρ remain constant, but this is unlikely
since the exponent in the above effective potential drives dilaton to −∞ and ρ is
consequently pushed to +∞. [15]
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Chapter 4

Inflation in String Theory

In the previous chapters, we covered inflation and the basic premise of how it came
to be a sustaining theory and why it is important. However, we want to establish
a model that is consistent from the microscopic to the macroscopic scales. In this
scenario, we utilize the ideas of string theory and incorporate quantum fluctuations
and superstrings into the pre-existing concepts to find such a model.

4.1 Two Problems

4.1.1 I

It is contradictory for a string to be breaking and bounding a domain wall simulta-
neously.
For a D1 brane that couples to a 4-D massless field C(2) while ending on a D3 brane,
we can write the effective action in four dimensions [8]:

1

2

∫
|dC(2)|2 + |G(2)|2 +G(2) ∧ C(2) (4.1)

where the field equation for C(2) is:

d ∗4 dC(2) = G(2) (4.2)

We are keeping only the terms that can affect the local dynamics. B(2) takes the
place of the F-string in the scenario of a wrapped D-brane in higher dimensions.
The axion field for C(2) is:

dC(2) = ∗4(dϕ+ A(1)) (4.3)

Here, A(1) is a brane gauge field, and ϕ undergoes the following non-linear transfor-
mation under its gauge transformation:

δA(1) = dλ

δϕ = −λ
(4.4)

The Higgs mechanism removes the axion, thus no domain wall exists. When mass
becomes 1, D-string breaking arises because, at infinity, the R-R field exponentially
falls. The D-string is thus unstable, and dissolves to become a tube of flux.
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4.1.2 II

To resolve the issue with the instability of the D-string, we think of a string with
stable topology in association with a broken U(1) gauge symmetry. This string,
called ” ϕ-string, would have newer degrees of freedom as well as a higher energy
scale - the existence of the string would be reliant on the topology of the field space
with higher energy.

To produce a ϕ-string, we use the Kibble argument in a vacuum manifold [8]:

U(2)× U(1)

U(1)× U(1)
= S3 (4.5)

where the presence of a D3−D3 pair is included to model how it would have been
during inflation. However, the problem begins when we account for the nonlinear
Higgsing. It leads to breakage of the U(1) denominator. There is once again no stable
D-string in this situation because any strings produced in this way will simply fade
away as inflation progresses.

4.2 Brane-World Scenario

In the early Universe, the attractive force between branes and antibranes arose as
a result of potential energy. This energy was thought to drive inflation, while the
annihilation of a brane and antibrane resulted in reheating.

After the realization that models with large extra dimensions could help resolve the
heirarchy problems originating from the large discrepancy between the gravitational
scale (MP) and the electroweak interaction scale (MW) In D = (4 + n) dimensions,
the gravi-dilaton action becomes [16]:

S = − 1

2λd−2
s

∫
dDx

√
|gD|e−ϕ[RD + gAB∂Aϕ∂Bϕ] (4.6)

4-D Einstein action is given by:

−M
2
P

2

∫
d4x
√
|g|R4(g) (4.7)

Effective gravitational coupling and extra dimensional volume:

M2+n
s Vn = g2sM

2
P (4.8)

4.3 The KKLT Model

This model of string inflation was based on disconnecting a Klebanov-Strassler (KS)
deformed connifold, then attaching a Calabi-Yau manifold. A D3 anti-brane is then
introduced at the tip of the connifold, which breaks supersymmetry and allows the
AdS minimum to be lifted to a dS minimum.
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Figure 4.1: A warped Calabi-Yau manifold. Z2 denotes the orientifold.

The Tadpole condition is given by:

χ(X)

24
= ND3 +

1

2κ210T3

∫
M

H3 ∧ F3 (4.9)

where T3 is the tension of the D3 brane, H3 and F3 are 3-form fluxes arising in
the NS and R sector in type IIB theory (as shown in (3.25)) and ND3 is the net
number of (D3−D3) branes within the noncompact dimensions. The deforming of
this M-theory model to a locus allows it to be thought of as an orientifold of a type
IIB CY compactification.

On the assumption that the model has one Kähler modulus, and another modulus
frozen due to taking a limit for the F-theory, we confirm the fluxes are non-zero.
Then, taking τ as a IIB axiodilaton, the Calabi-Yau moduli have a superpotential
[16]:

W =

∫
M

(F3 − τH3) ∧ Ω

=

∫
M

G3 ∧ Ω

(4.10)

Introducing this into the tree-level Kähler potential gives:

V = eK

(∑
a,b

gabDaWDbW − 3|W |2
)

→ eK

(∑
i,j

gijDiWDjW

)
(4.11)

Taking the potential over i,j is done to leave out moduli field running over ρ; it is
then used to fix moduli at certain values which ensure G3 to be imaginary self-dual.
The presence of fluxes means a warp factor must exist, hence this model is a warped
compactification.

4.4 The KKLMMT Model

The first idea was to consider a pair of branes: D3 and D3 in warped geometry.
The role of the inflaton field ϕ in this model, which is known as the Kachru-Kallosh-
Linde-Maldacena-McAllister-Trivedi (KKLMMT) model, could be played by the
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interbrane separation. The separation between the brane and the antibrane is the
inflaton. There is a large gravitational redshift at the throat. Upon the annihilation
of this inflaton, reheating occurs.
A description of this situation in terms of the effective 4d supergravity involved
Kähler potential [17]:

k = −3 log (ρ− ρ− k(ϕ, ϕ)) (4.12)

The KKLMMT model was derived from the idea of the type IIB string theory on
a Calabi-Yau manifold, orientifolded by a Z2 symmetry. Its isolated fixed points
become O3 - planes and the warped spacetime metric can be expressed as:

ds2 = e2A(x⊥)ηµνdx
µdxν + ds2 (4.13)

Here, eA(x⊥) is normalized and turns into O(1) for most of the manifold.

The annihilation of a D3-brane and an anti-D3-brane, which takes place in the
throat, leads to release of energy, some of which goes into reheating. The redshift
is accounted for as eA0 ≪ 1 which limits the measurable energy scales by factor of
eA0.

With regard to the production of strings, the KS throat in the KKLMMT model
does not count since the S2’s topology causes it to collapse and the strings produced
disintegrate quickly. We want to obtain strings which are more stable, so we are
reliant on the D1 brane. Either the existence of branes which comply with the SM
fields (i.e. the SM field can exist on the brane) is necessary, or the throat of the
model must contain D3 branes such that the modulus stabilization can allow for a
situation where the produced strings can last.

Since we are only concerned with branes that will help in production of stable cosmic
strings (i.e. they do not disintegrate throughout the inflationary phase), we want
to look at a few instances where the branes are either at the throat or intersect the
throat, and what results they may give. [8]

• No branes located in the throat: the branes in this situation are outside
the throat where inflation occurs. We quickly realize branes within the throat
must fluctuate while branes outside the throat cannot aid in production of the
strings. However, in the case of D3 branes wrapping the S3 inside the KS
throat are baryons that are unsupressed by the warp factor. Since KKLMMT
model puts a lower limit on M , it allows a D3 brane to exist in the throat.
Long asM12 the antibrane in the throat is stable and the baryon driven decay
will not cause the (p, q) strings to become unstable. The baryon mass is given
by:

σ = TD3VS3 (4.14)

So that :

TD3 =
1

(2π)3α′2gs
(4.15)
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ρ = µp,q − µp−M,q (4.16)

Warp factor does not suppress this mechanism since the decay takes place in
the throat and occurs rapidly over a wide range of parameters.

• Stabilizing D3 branes that exist in the throat: in which case the N
D3 branes and ∆ +N D3 branes which cause inflation, all exist in the same
throat. For a tachyon vacuum manifold:

U(N)× U(∆ +N)

U(N)× U(∆)
(4.17)

the excess antibranes must tend to zero to enable existence of a U(1). KKLMMT
allows for a system where stabilizing the branes in this throat does not imme-
diately cause the (p, q) strings to break, thereby the stability of the strings is
possible.

4.4.1 Brane - Antibrane Inflation

Type IIB string theory accomodates inflation in a process involving moduli stabi-
lized by fluxes, which we will further explore in the next chapter.

To start off, we introduce a parallel pair of branes: a D3 brane and a D3 brane
(antibrane) where the separation is given by ya. We want to obtain an equation
of motion for F5 while staying consistent with the form derived for charge-carrying
branes as they couple with gauge fields:∑

i

µ
(i)
D3

∫
M

(i)
4

A4 (4.18)

where M
(i)
4 denotes the world volume and the brane/antibrane µ

(i)
D3

has a charge of
i. The Chern-Simons couplings have allowed the sourcing of F5 and the equation of
motion is [17]:

∂a(
√
−gF aαβγδ) +

∑
i

µ
(i)
D3δ

(6)(ya − yai )ϵ
αβγδ (4.19)

As mentioned above, ya represents the separating vector between the branes and
the values of a = 5, ..., 9. The permutation terms αβγδ can take any values from
0, 1, 2 and 3.
When we use this expression and integrate it over a compact manifold, we can
obtain: ∫

dF +
∑
i

µD
(i)
3 = 0 (4.20)

We can observe clearly that this integral vanishes, as expected of gauge fields (since
they abide by Gauss’ Law). Now if we consider the distance between the two branes
as r and the scaling of the gravitational potential to be 1

r4
with respect to the D3

brane, we can express the dual branes to have a total potential of:

Vtotal =
4G10

π2r4

(
− τ 23 ± µ2

3

g2s

)
(4.21)
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The G10 is the Newton constant in 10 dimensions which can be written in terms of
the string mass scale, Ms:

G10 =
(2π)6g2s
8M8

s

(4.22)

Also, the τ3 in the potential stands for the brane tension of D3:

τ3 =
M

(3+1)
s

(2π)3gs
(4.23)

The interactions between the branes are basically that between the D3 − D3 and
then between the D3−D3. The tension above is related to the charge such that:

τ3 =
µ3

gs
(4.24)

The ”+” is applicable to the D3 − D3 interaction and the potential term cancels.
However, for D3 − D3, the ”-” in the potential allows a potential to exist - which
could possibly drive inflation.
An expression for r in this space becomes:

r(xµ) =

(∑
a

(ya(xµ)− ya(xµ))2
) 1

2

(4.25)

where we have considered the separation to be the inflaton field and xµ is simply a
coordinate that is parallel to the separation distance r.
We are now on course to obtain a Lagrangian for the brane-antibrane inflation. A
kinetic term is required. The D3 brane in Minkowski space has a DBI action which
is:

SD3/D3 =

∫
d4x|ηµν + ∂µy

a∂νy
a|

1
2 (4.26)

To enable inflation, we must account for background to be homogenous and isotropic.
For such a case, we obtain:(

ηµν + ∂µy
a∂νy

a

)
= diag

(
− 1 +

∑
a

(ẏa)2,+1, ...,+1

)
(4.27)

We set y = y(t) for time period t. Taking the determinant, we end up with the
following: ∣∣∣∣det(ηµν + ∂µy

a∂νy
a

)∣∣∣∣ 12 =

√
1−

∑
a

(ẏa)2 (4.28)

The kinetic term is then obtained upon Taylor expanding the term on the left, while
limiting the velocities to only small values:

S =
1

2
τ3
∑
a

(ẏa)2 +O(ẏa)4 (4.29)

Thus the inflaton field, canonically normalized, becomes:

ϕ =
√
τ3|−→y −−→

y | (4.30)
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We define the 10-dimensional Planck scale M10,pl as:

M−8
10,pl = 8πG10,N (4.31)

This is incorporated into the Lagrangian for the D3−D3 brane-antibrane inflation
[18]:

L =
1

2
ϕ̇2 + 2τ3

(
1− 1

2π3

τ 33
M8

10,P lϕ
4

)
(4.32)

or:

L =
1

2
ϕ̇2 + 2

(
τ3 −

c

ϕ4

)
(4.33)

where we have taken c = 4G10τ
4
3/π

2.

To enable inflation, the energy density for the small fields cannot be negative. For
such Coulomb-like potential, we can get inflation in regimes where r ≫ ls.

V must remain finite as r approaches zero. However, as r nears a certain value at
y2c - the critical separation - it gives rise to a tachyonic instability. The mass of a
tachyon can be represented as:

m2
T =M2

s

(
y2

y2c
− 1

)
(4.34)

and at the critical separation, given by:

y2c =
2π2

M2
s

(4.35)

this tachyon can be taken as the ground state of the string stretching between the
two branes D3 and D3. Since the mass-squared is negative for a tachyon, it results
in instability which causes the branes to annihilate.

Considering the canonically normalized potential V (ϕ):

V (ϕ) = 2τ3

(
1− 1

2π3

τ 33
M8

10,P lϕ
4

)
(4.36)

we realize it cannot be flat enough unless r is sufficiently larger in size than that of
the extra dimensions - which is impossible. Furthermore, introducing asymmetric
compactifications also do not help, because there was no concrete method through
which the moduli in this compactification could have been stabilized. Assuming
stabilization to keep the potential V flat enough to allow inflation was not a good
enough solution either.

4.4.2 Eta Parameter

The slow roll parameters are given by:

ϵ ≡ M2
Pl

2

(
V ′

V

)2

η ≡M2
Pl

(
V ′′

V

) (4.37)
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In order to find a relation between the 4D Planck mass and the ten dimensional
space, we integrate out the extra dimensions in the 10D SUGRA action to obtain:

S =
1

16πGN

∫
d4x

√
−gR (4.38)

The volume of X6 is:

L6 =
G10

GN

=
M2

pl

M8
10,pl

(4.39)

We calculate the eta parameter:

η = −10

π3

(
L

r

)6

∼ −0.3

(
L

r

)6
(4.40)

This proves that the distance between the branes would have to be much larger than
the value of L in order to attain a potential flat enough to allow inflation.

4.4.3 Flux Compactification

We now look into the compactifications with fluxes on the CY-orientifolds in further
detail. These compactifications are in correspondence with type IIB string theory.
We consider a general warped CY cone, and a 10 dimensional line element. We can
write the metric with 4D Poincaré symmetry as such [2]:

ds2 = e2A(y)ηµνdx
µdxν + e−2A(y)gmndy

mdyn (4.41)

The effect of the five-form contribution with respect to α(y) and a local warping
factor must be considered. The five-form in question is variable throughout the
compact dimension, and with the 10-D Hodge star it can be represented as:

F̃5 = (1 + ⋆10)dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 (4.42)

Now we get the Einstein equation in trace-reversed form with TMN standing for
stress tensors of the SUGRA fields:

RMN = κ210

(
TMN − 1

8
gMNT

)
(4.43)

After obtaining a modified Bianchi identity in terms of α(y), with proper assump-
tions we can discover the two conditions that will help satisfy the equations of motion
in SUGRA. These conditions are:

⋆6G3 = iG3

e4A = α
(4.44)

The G3 in the above condition is a finite 3-form flux and it is imaginary self dual.
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Now if we look at the action for type IIB theory in these fluxes:

Vflux =
1

2κ2

∫
d10X

√
−GE

[
−|G3|2

2Im(τ)

]
(4.45)

we can see that the G3 flux creates potential for both the axio-dilaton as well as the
complex structure moduli. Dimensional reduction will then allow us to find classical
potentials which will allow the compact spaces to be stable at higher mass values.
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Chapter 5

Brane-Antibrane Inflation in Flux
Compactifications

In this section, we attempt to detail inflation in branes to understand the construc-
tion of inflationary models and find some solutions to the problems that arise.

In the early Universe, the attractive force between branes and antibranes arose as
a result of potential energy. This energy was thought to drive inflation, while the
annihilation of a brane and antibrane resulted in reheating. However, there are
certain limitations to this idea:

• The potential was not flat enough by default for inflation to commence.

• There was no guarantee that choosing constant moduli would assure that the
degree of flatness would be preserved.

5.1 Flatness of potential

The inflaton potential must be flat in order to let prolonged slow-roll inflation take
place. Potential however is not naturally flat.

5.2 Modulus Stabilization

Moduli are zero energy deformations which form as a result of cycles of Calabi-Yau
manifolds. These cycles are different in topology, and the generated moduli are
characteristic of Calabi-Yau compactifications [19].

A modulus field is a massless scalar field, with a vacuum expectation value (vev)
unconstrained by a scalar potential, which arises due to the fluctuations of metric
in theories with extra dimensions. The vev of such a field is called a modulus.

We need to resort to modulus stabilization, a means to reign in any instabilities
in the moduli. The mechanism for stabilization has to be known, for instance, by
finding vacua where the moduli have positive masses-squared.

Some problems posed by unstable moduli include:

35



• Unspecified mechanism can lead to arbitrary vev which makes the outcomes
of the theory harder to predict. For type II-B theory, this generates free
parameters. Parameters that are time-dependent contradict observation.

• Polonyi problem: models where supersymmetry breaking is caused by the
Polonyi-type field. Light scalar fields which usually undergo subsequent os-
cillations and when these fields decay, they create issues for processes like
baryogenesis to occur.

• Obtaining Standard Model masses from a base theory which offers no free
parameters does not feel plausible until modulus stabilization enables the in-
troduction of a string landscape.

We observe type II-B string theory, where the moduli on the Calabi-Yau manifold
can be stabilized using fluxes of the R-R and NS-NS gauge fields. The small hi-
erarchies produced with the ratio of fluxes can then be used to generate a warped
throat with an exponentially large hierarchy without causing the hierarchy problem.

However, this form of compactification does not stabilize the Kähler modulus. It
only works to stabilize the dilaton moduli and complex structure moduli.
The case for complex structure modulus stabilization features a scalar potential:

VF = eK(KabDaWDbW − 3|W |2) (5.1)

where K is the Kähler potential and W denotes the superpotential. We obtain the
volume modulus field after checking it against the effective 4D theory.

VD̄3 =
k

T 2
(5.2)

Vinf =
k′

T 2|ψ − ψ0|4
(5.3)

T represents the volume modulus field. Further instances of volume stabilization
will come up later.

5.3 Warped Compactification

The conifold is a 6-dimensional Calabi-Yau manifold with a 5-dimensional base
which can contain conical singularities. It can be described in terms of complex
coordinates wi with the following condition constraining it [17]:

4∑
i=1

ω2
i = 0 (5.4)

The singularity occurs at wi = 0 and the topology of the base is given by S2 × S3.

4∑
i=1

ω2
i = z (5.5)
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Figure 5.1: Deformed conifold

This condition deforms the conifold so that it is not singular, and z represents the
complex structure modulus here. Upon setting the background values of the R-R
field (type II-B) and NS-NS Kalb-Ramond field to non-zero values, this deformed
conifold can yield the solution to Einstein’s equations.

As mentioned previously, the fluxes of these gauge fields are used to obtain the
warped throat. They can be thought of as having 3 lines of flux - 3 cycles which are
consistent with Gauss’ law: specifically the F3 and H3 background fluxes are asso-
ciated with A cycle and the Poincaré dual B cycle and then they can be quantized.

1

2πα′

∫
A

F3 = 2πM

1

2πα′

∫
B

H3 = 2πK

(5.6)

M and K are the integer values and α′ is the slope parameter. By setting conditions
upon the 3 cycles of fluxes, the subspace S3’s size can be stabilized. Now, the
complex structure modulus simplifies to:

z = e−2πK/Mgs ≡ a3(r0) (5.7)

The 3 cycle fluxes also affect the rest of the conifold by warping it when turned on.
The 10-D line element is given by:

ds2 =
dxµdxµ√
h(r)

+
√
h(r)

(
dr2 + r2ds2T1,1

)
(5.8)

where T1,1 represents the Einstein-Sasaki space (a 5D base manifold). Incorporating
the ideas of string landscape in the Randall-Sundrum model yields the Klebanov-
Strassler throat:

h(r) =
R4

r4

(
1 + gs

M

K
× (ln r correction)

)
∼=
R4

r4

(5.9)

where R4 = 27/4π gsNα
′2 and N = MK from the quantization shown above. The

h(r) represents the warp factor. The conifold singularity or the tip is basically the
base of this throat where:

r0
R

= z1/3 = a(r0) = warp factor (5.10)
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While inflation on the AdS5 space is not relevant, we can consider narrowing it in
the range of values for r0. Within r0 < r < rmax, we can find that this space gives
rise to a potentially applicable toy model to better understand the throats produced
by the fluxes.

To explore the role of the Klebanov-Strassler throat, we consider a D3 brane and
a D3 brane. The gauge forces and gravitational forces act on both of these branes,
however the cancelation of these forces on the D3 brane means that this brane does
not feel any resultant force at the throat. On the other hand, the forces add for the
D3 brane and causes it to be pushed to the bottom. This is easily observed in the
action for a brane at the location r = r1:

S = −τ3
∫
d4x

1

h(r1)

√
1− h(r1)(∂r1)2 ± τ3

∫
d4x(C4)0123 (5.11)

The forces cancel for D3 represented by the ”+” and add for D3 represented by the
”-” sign. We can then write the DBI action as:

SDBI = −τ3
∫
d4x

√
−G (5.12)

The resulting induced metric appearing on the D3 brane can be expressed as:

Gµν = GAB
∂XA

∂xµ
∂XB

∂xν
=

1√
h
ηµν −

√
h∂µr∂νr (5.13)

The equation of motion for the R-R field, in terms of the C4 gauge potential and
the warp factor, becomes:

(C4)αβγδ =
1

h(r1)
ϵαβγδ (5.14)

If we take into consideration ∂r1 = 0, a point where the transverse fluctuations
vanish, then the above equation simplifies further - owing to the two extra terms in
the action to also vanish for D3 and add for D3:

S = −2τ3

(r1
R

)4 ∫
d4x = −2τ3a

4(r1)

∫
d4x (5.15)

The term τ3a
4 is the 4 dimensional potential that arises as a result of the warped

brane tension. This potential is reduced to a minimum at the bottom of the throat
and the D3 sinks.

Just because D3 can stay afloat without ”sinking” does not imply it can be imple-
mented anywhere within a compact space. Branes have charge so the insertion of
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one requires adjustment of background, accounted for through the Tadpole Condi-
tion:

χ

24
= ND3 −ND3 +

1

κ210T3

∫
C−Y

H3 ∧ F3 (5.16)

where, within a certain topology, the net change in charge due to introduction of
branes must result in a similar adjustment of the background fluxes. The Euler
number χ of the Calabi-Yau imposes a limit upon how many branes can be added
within a topology in this way.

5.4 Randall - Sundrum Model

The idea of this model was to dissociate hierarchies from a a higher-dimensional
theory, and then generate different coupling constants as well as masses from this
theory, as a means of solving the Hierarchy problem.
The Randall-Sundrum model aims to be an improved version of a previous 5D the-
ory, the Kaluza-Klein Theory. Unlike KK theory, this model includes a compact
dimension which is basically a circle with a marked upper and lower half (instead
of a manifold). This is an orbifold.

To define, an orbifold is a generalized manifold that can be described asO = S1/Z2,
in terms of a group, Z acting on S1 [20]:

S1 → S1

eiϕ 7→ e−iϕ
(5.17)

O can be thought of as an interval whose functions are even and determined by the
functions that are on the circle.

Gravity in five dimensions can be expressed in terms of the cosmological constant
(Lambda), the Ricci scalar (Ri), a 5D mass M and the length (L) of interval O :

S =

∫
R1,3

∫ L

−L

√
−g(M3Ri− Λ)dyd4x (5.18)

We incorporate this idea into the Minkowski metric to obtain vacuum solutions to
Einstein equations.
The warp factor decays as A(y) = k|y| in the Randall-Sundrum case, and the k is
real even when comological constant is negative.
The 4D part in Einstein equation can then be expressed as:

(6A′2 − A′′2)gµν = 6k2gµν (5.19)

Locating a brane at y = L now allows us to concot a 4D theory where matter can

39



live on a brane. The goal is to produce a weak scale, so we consider a Higgs like
theory with action:

SHiggs =

∫ √
−gL(gL((Dh†), (Dh))− κ(h†h− v2)2)d4x (5.20)

The physical Higgs term can be found using the Randall-Sundrum metric:

SHiggs =

∫ (
η((Dĥ)†, (Dĥ))− κ(ĥ † ĥ− e−2kLv2)2

)
d4x (5.21)

Since there is no hierarchy affiliation in this case, the large value of ν can be nar-
rowed down by kL, to a value νeff that would work with the weak scale.

In 4D Planck scale, after the metric is perturbed, we can integrate the action over
compact dimension as such:∫ L

−L

e−2k|y|dy = 2

∫ L

0

e−2kydy = −1

k
(e−2kL − 1) (5.22)

It leads us to the solution:

M2
Pl =

M3

k
(1− e−2kL) (5.23)

which implies that the weak scale is dependent on L, and for large enough values of
L the dependence of Planck scale on extra dimensions is almost negligible.
Randall-Sundrum model is important in explaining reheating in different warped
throats, which will be covered in a later chapter.

5.5 Warped case of Brane-Antibrane Inflation

We want to move to the KKLMMT idea of brane-antibrane inflation occuring within
the Klebanov-Strassler throat. When trying to accomodate both branes at the same
time, we need to account for the perturbations caused in the background by the D3
brane at r = r1. We want to find the interaction energy of the two branes, for which
we assess the background perturbation as [17]:

h(r) → h(r) + δh(r)

C4(r) → C4(r) + δC4(r)
(5.24)

We include the perturbations in the C4 field caused by the D3 brane too. The
Poisson equation in 6D (since none of the 6 dimensions other than r are reliant on
xµ) helps us obtain:

∇2δh = Cδ(6)(−→r −−→r 1) (5.25)
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We take r ≪ r1 so that the perturbed field is now:

δh =
R4

Nr41
, δC4 =

δh

h2
(5.26)

The solution we obtain is simply:

h(r) = R4

[
1

r4
+

1

Nr1

]
(5.27)

For the D3 brane, we use the perturbed field forms and inflaton ϕ =
√
τ3r1 to

determine the Lagrangian:

L =
1

2
τ3(∂r1)

2 − 2τ3

(r0
R

)4(
1−

(r0
R

)4 R4

Nr41

)
=

1

2
(∂ϕ)2 − 2τ3a

4
0

(
1− a40

R4τ 23
Nϕ4

) (5.28)

We also take a0 = a(r0). At the end of the KS throat, the D3 brane appears to
be exponentially light, which is suggested by the presence of warping in the DBI
action. We can now find the eta parameter:

η = a40ηunwarped (5.29)

We see that a ≪ 1 which gives us η ≪ 1 and, while this exhibits slow roll to be
possible due to warping, it does not account for the role of the Kähler modulus
which has not been stabilized. The Káhler modulus affects the η-parameter and
thus, it must also be stabilized.

Possible solutions to the eta problem:

• Superpotential corrections

• Tuning the length of the KS throat

• Multibrane inflation

• DBI inflation

• Shift Symmetry

• Racetrack Inflation
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5.6 Volume Stabilization

While warped geometries can help us to construct viable models for inflation, it
is important for the compactification volume to first undergo stabilization, lest it
results in decompactification [21].

For a no-scale 4D (N = 1) SUGRA, we have a Kähler potential with ϕ representing
fields of the D-brane:

K(ρ, ρ, ϕ, ) = −3log(ρ+ ρ− k(ϕ, ϕ) (5.30)

The massless fields that are significant here are those of the volume, the position
(ϕ) and the axion of the branes. The axion here represents a circle over the moduli
space ϕ with the metric:

ds2 =
3

2r2
(dr2 +

(
dχ+

1

2
ik,j dϕ

j − 1

2
ik,j dϕ

j
)2

) +
3

r
k,ij dϕ

idϕj (5.31)

The moduli space defined above arises from the four form potential coupled to the
worldvolume of the mobile D3. ρ is a complex variable with the axion being imagi-
nary and the real part can be expressed as:

2r = ρ+ ρ− k(ϕ, ϕ) (5.32)

Thus the real part of ρ helps bring the Kähler potential to the metric form. If we
now look at a superpotential W where W = W0, we note that W0 is constant. For
variables that run over ρ and ϕ, we have gab∂aK∂bK = 3 so the cancelation in the
potential gives us:

V = eK
(
gabK,aK,b |W |2 − 3|W |2

)
= 0 (5.33)

Finally, we want to allow mobility of the D3 branes without compromising volume
stabilization. We take advantage of the fact that the Káhler potential functions
unconventionally when k is undergoing Kähler transformations - thus we use the
transformations:

k(ϕ, ϕ) → k + f(ϕ) + f(ϕ)

ρ→ ρ+ f

ρ→ ρ+ f

(5.34)

which allows the volume (of internal dimensions) to be invariant while the circle
constructed by the axion is fibered over ϕ. Thus the volume stays stable.

5.6.1 Stabilizing the Superpotential

We can attempt to stabilize the volume by introducting a nonperturbative super-
potential for ρ [21]:

W (ρ) = W0 + Ae−aρ (5.35)
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This can be considered a source for the superpotential. For our model to work,
the superpotential must meet certain requirements. We have already established
that, for the invariance of the volume under Kähler transformations to hold, the
superpotential must rely on ϕ to some extent. For a scenario where W = W (ρ) and
the energy V > 0:

V (r, ϕ) =
X(ρ)

rα

=
X(ρ)(
ρ− ϕϕ

2

)α
(5.36)

X(ρ) relies on the energy source, which will tend to zero for compact manifolds that
are large. Since the energy for inflation must come from brane tension or the flux
energy, the above is consistent. The system we are using to stabilize will work on ρ
and not r so the potential changes as such:

V = V0

(
1 + α

ϕϕ

2r
+ ...

)
(5.37)

Basically, this change in potential occurs due to the change in ϕ as the brane moves.
For a D3 brane, the 4D effective potential is:

V =
1

6r

(
∂ρW∂ρW

(
1 +

1

2r

k,ϕ k,ϕ
k,ϕϕ

)
− 3

2r

(
W∂ρW +W∂ρW

))
(5.38)

We now deal with the D3 brane so that the above idea works for both types of
branes. The D3 brane will cause an extra term to be added owing to its positive
tension. The effective potential for the D3 becomes:

V =
1

6r

(
∂ρW∂ρW

(
1 +

1

2r

k,ϕ k,ϕ
k,ϕϕ

)
− 3

2r

(
W∂ρW +W∂ρW

))
+

D

(2r)2
(5.39)

Instead of ρ, we have a new scalar φ which is responsible for the movement of D3.
We want to take (5.40) and say it has a de Sitter minimum, consider the minimum
ρ as well as the potential at the minimum, W (ρ) to be real. The new scalar is set
as:

φ = ρ

√
3

(ρ+ ρ)
(5.40)

We modify the potential (5.40) with the derivatives of ρ as follows:

V =

(
W ′(ρ)2ρ− 3W (ρ)W ′(ρ) +

D

4

)(
ρ− ϕϕ

2

)−2

(5.41)

43



V0 is expressed in a way that we can include the new scalar:

V0(ρc) =
1

ρ2c

(
W ′(ρc)

2ρc − 3W (ρc)W
′(ρc) +

D

4

)
(5.42)

which results in:

V =
V0(ρc)(
1− φφ

3

)2

≈ V0(ρc)

(
1 +

2

3
φφ

) (5.43)

The field defined by φ has gained the mass which, in terms of φ turns out to be:

m2
φ =

2

3
VdS = 2H2 (5.44)

This mass is in alighnment with the coupling:

δV =

(
1

6
RAdS

)
φφ (5.45)

and result is consistent with what one would get for a conformally coupled scalar.
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Chapter 6

Reheating after Inflation

Inflationary theories suggest that the matter created in the Universe was as a result
of a period of reheating after inflation. Reheating can be defined as the production
of Standard Model particles (matter) after accelerated expansion results in massive
energy density storage within oscillations of the inflaton field ϕ.

There are aspects of the weak nuclear force and gravity that present large differences
between them, giving rise to a type of Hierarchy problem [23].

6.1 Chaotic Inflation

If we consider a scalar field, denoted by ϕ, which has a mass m, the potential energy
density is given by:

V (ϕ) =
1

2
m2ϕ2 (6.1)

With a minimum at ϕ = 0, the equation of motion for this scalar field should be the
same as that of the harmonic oscillator:

ϕ̈ = m2ϕ (6.2)

This would have been the case if the universe was not undergoing inflation. Due
to the expansion of space, the Hubble constant introduces an additional term. The
equation of motion for the scalar field ϕ now becomes:

ϕ̈+ 3Hϕ̇ = −m2ϕ (6.3)

which is the Klein-Gordon equation. Thus, for a homogeneous universe, the Einstein
equation becomes:

H2 +
k

a2
=

1

6

(
ϕ̇2 +m2ϕ2

)
(6.4)

6.2 Hybrid Inflation

In a model with two scalar fields, σ and ϕ, that interact, the end of inflation is
brought about by the slow-roll of ϕ that in turn causes a rapid-roll of σ - this is
called the ’waterfall’ regime, which can be interpolated to either reach slow-roll or
first order phase transition, depending on the set parameters. [23]
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The effective potential of the hybrid inflation model to permit a waterfall regime is
given by:

V (σ, ϕ) =
1

4λ
(M2 − λσ2)

2
+
m2

2
ϕ2 +

g2

2
ϕ2σ2 (6.5)

where σ denotes the Higgs field that takes only positive values. This is to ensure no
domain walls form in order for symmetry breaking to occur spontaneously. [5]

The effective potential can have a single minimum at σ = 0, provided that ϕ > ϕc =
M/g where ϕc is the critical value of the inflaton. If this condition is not met, and
the inflaton field starts to become smaller than the critical value, phase transition
happens which leads to the breaking of symmetry.

m2ϕ2
c = m2M

2

g2
≪ M4

λ
(6.6)

Then, the Hubble constant during the phase transition period becomes:

H2 =
2πM4

3λM2
p

(6.7)

To ensure the inflaton field value is always above critical value (to facilitate inflation),
we make assumptions for both m and M :

M2 ≫ λm2

g2
, m2 ≪ H2 (6.8)

This gives us the condition:

M2 ≫ mMp

√
3λ

2π
(6.9)

which asserts that the Universe undergoes inflation when the inflaton ϕ > ϕc. Since
this type of inflation occurs through the efforts of vacuum energy density instead of
the inflaton field’s energy density, it was named Hybrid inflation.

6.3 Reheating

Reheating is defined as the production of SM particles through coupling of the
inflaton field ϕ, to SM matter, after a period of accelerated expansion. Reheating
involves [23]:

• Degrees of freedom within the Standard Model must be heated to a temper-
ature that allows for a process called baryogenesis to occur. Baryogene-
sis is essentially the physical process that led to the production of baryonic
asymmetry, which results in the presence of a larger number of baryons than
antibaryons in the Universe.

• The dynamics of the tachyon field determines what ultimately happens to the
false vacuum energy that exists because of the tension between a pair of branes
undergoing annihilation. Thus, when brane-antibrane inflation comes to an
end, this complex field influences the production of topological defects.
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Topological defects occur as a result of phase transitions that violate symmetry.
These defects are sorted on the basis of the topology of the vacuum manifold:

• Monopoles: magnetic monopoles are zero-dimensional defects formed as a
result of breaking spherical symmetry, that can be diluted and hence left out.

• Domain Walls: two-dimensional defects occuring in the form of a singularity
that can be localized to a space.

• Cosmic Strings: these one-dimensional defects are naturally-occuring within
string theory

When discussing the reheating problem in the scenario of brane-antibrane inflation,
it is important to recognize that models of hybrid inflation relate more closely than
the usual inflationary models. [18]

At the end of inflation in either type of model, the field is orthogonal to a tachyonic
inflaton. However, when we consider hybrid inflation, the second field ends up at
a minimum which is stable. It then oscillates near this minimum which results in
reheating.

The tachyonic field can be described by Sen’s effective action:

S = −
∫
dp+1xe−|T |2/a2

(√
1− |∂T |2

)
(6.10)

The mode of an open string which exists between a brane and an antibrane will be-
come tachyonic when the distance between the branes is not large enough, i.e. there
exists a critical value for the separation, and for distances smaller than that, the
mode becomes tachyonic. At both zero and non-zero string coupling scenarios, we
cannot obtain reheating from the model because of the decaying closed string states.

To resolve this issue, we relocate inflation to a different throat. It cannot be present
at the same throat as the SM. For this seperate throat situation, the geometry
resembles the one in Randall-Sundrum model:

ds2 = a2(y)dx2 + dy2 + y2dΩ2
5 (6.11)

The decaying of the tachyon condensate causes closed string states to attain the
correct quantum numbers which would turn them into Kaluza-Klein gravitons.

Along the y-direction, there is exponential increase within the throats. So when
subjected to strongly warped throats, the decay of these Kaluza-Klein gravitons
results in most of it ending up as particles on branes. Therefore, for the SM brane
to initiate reheating, it will have to exist in the deepest throat where warping is
strong.

47



Figure 6.1: A representation of the two-throat scenario, and a graphical representation
of the KK graviton wave function
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Chapter 7

Racetrack Inflation

In a previous section, we mention the problems arising due to modulus stabilization,
and how an undefined criteria for stabilization and setting these moduli can lead to
inflation not happening.

The initial assumption was to fix all moduli, other than the inflaton, by an unknown
mechanism. Since the scales chosen were much larger than those considered in in-
flation, the fixing was thought to not affect the inflationary dynamics. [25]

However, with the recent study of brane/antibrane inflation, the KKLT scenario for
moduli fixing is a better replacement for the fixed unknown modulus fixing.

At its core, racetrack inflation is essentially a form of topological inflation which
is concordant to the KKLT model and occurs in string moduli space. It is driven
by the racetrack potential, which emerges with respect to type IIB string theory.

7.0.1 The Effective Theory

Gauginos: In supersymmetry theories of particle physics, a gaugino is the hypo-
thetical fermionic supersymmetric field quantum (superpartner) of a gauge field, as
predicted by gauge theory combined with supersymmetry. All gauginos have spin
1/2, except for gravitino (spin 3/2).

Conventionally, in KKLT the nonperturbative superpotential would be obtained
through gaugino condensation in the gauge theories on D7 branes. The classical
Kähler potential is written as:

k = −3 ln (T + T ) (7.1)

However, in this case, the gauginos condense to become a product, specifically
SU(N)×SU(M) when we enlarge the group. With a = 2π/N and b = 2π/M and
considering a compactification in KKLT form with a single Kähler modulus T , we
obtain the racetrack superpotential:

W = W0 +Ae−aT + Be−bT (7.2)
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where W0 denotes the flux superpotential that remains constant, while a and b are
also constants. Here, A and B are prefactors. These prefactors are dependent on
the vacuum expectation values (vevs) of the stabilized moduli. It is to be noted that
W0 is applicable only in cases of fields like the dilaton and complex structure moduli
since they have already been fixed. This route essentially functions on using only
moduli compactification to obtain inflation instead of introducing the D3 brane.
The scalar potential can be written as:

V = VF + δV (7.3)

where the two terms in the total potential arise from KKLT.
For a Kähler potential, K, and with i, j that covers all moduli fields, the first term
of the potential is:

VF = eK
(∑

i,j

KijDiWDjW − 3|W |2
)

(7.4)

This term comes from the N = 1 SUGRA formula, which is taken from the KKLT
scenario. The Kähler potential used here is the result obtained from CY compacti-
fication, thus giving it the weak coupling form: K = −3log(T + T ∗).

The second term is the non-supersymmetric potential which arises when there is
tension amidst the D3 branes. The energy density contribution relies on CY volume
and no extra moduli are added due to the fluxes which fix the position of the D3
brane. With E being the function of tension of the brane and X being the warp
factor, this term is written as:

δV =
E

Xα
(7.5)

In the case of D3 branes being present at the end of the CY throat, then the α in
the above potential term takes the value α = 2. Since warped regions are favoured
by the D3 brane, only for unwarped regions, the value of α changes to α = 3.
Thus the potential depends on the type of model in this scenario - for example, it
depends on how many Kähler moduli are present from the CY manifold or even on
the type of superpotential induced as a result of these moduli.

7.0.2 The Scalar Potential

After understanding the model reliance, we move to the shape of the potential itself.
The goal is to try and find any regions within the model where slow roll inflation
could possibly emerge.

For a field T:
T ≡ X + iY (7.6)

we express it as two separate terms, one real and the other imaginary. Any fields
that roll slowly in the Y direction help account for the eta problem which is present
in F-term inflation.
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In the previous section, we obtained (7.4). We bring it back along with the weak-
coupling Kähler modulus, and use the derivatives with respect to the field T , to
obtain a potential in this form:

VF =
1

8X3

[
1

3
|2XW ′ − 3W |2 − 3|W |2

]
(7.7)

By setting 2XW ′−3W = 0, the solutions we get are the supersymmetric configura-
tions which are then used in VF . This will generate values of VF such that VF ≤ 0 -
such values align with the Minkowski vacua. Including the supersymmetry breaking
terms into the scalar potential, we get a potential with many de-Sitter minima:

V =
E

Xα
+
e−aX

6X2

[
aA2(aX + 3)e−aX + 3W0aAcos(aY )

]
+

=
e−bX

6X2

[
bB2(bX + 3)e−bX + 3W0bBcos(bY )

]
+

=
e−(a+b)X

6X2

[
AB2(2abX + 3a+ 3b) + cos((a− b)Y )

] (7.8)

The values of these minima are dependent on the values of all the parameters de-
noted by letters as well as W0.

In a standard racetrack model, the value of (a− b) is usually quite small, by picking
favourably large values for M and N to influence the values of a and b. For a situa-
tion where W0 is zero and the limit (a− b) → 0, the Y direction in the potential in
(7.6) turns completely flat. These parameters can be tuned again to obtain regions
flat enough to enable inflation.

Also, a large Calabi-Yau volume, given by X = ReT , should have extrema under
circumstances that both M and N have a discrete fine tuning. This is advantage-
nous and unlike the KKLT scenario in that, it does not rely onW0. Even for models
where W0 is a non zero value, there can exist several local minima, and it allows
us to pick a value for E so that the potential’s minimum can be tuned to vacuum
energy in the present.

Such a model must have two degenerate minima so that there may be causally
disconnected regions. with domain walls between them, located in separate vacua.
At the point between them, eternal inflation can take place long as the field is close
to saddle point and conditions to enable slow-roll are met. Then we can obtain
regions that are near to the saddle, where inflation happens while sparing a large
enough time period to explain the homogeniety and flatness of the universe.
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Chapter 8

Conclusion

We have now arrived at the conclusion that string cosmology models such as KKLMMT
may be difficult to establish, but through stabilization of potentials and various ad-
justments, it can be possible to produce inflation naturally.

Inflationary theories have attempted to explain phenomena in the Universe in ways
that csnnot be rationalized in most other ways. Regardless, there are many problems
that arise. Whether it be dependence on certain parameters, ultraviolet sensitivity
or inconsistencies in particular scenarios, the KKLMMT model is still a promising
theory in its attempts to resolve a lot of theories while staying consistent with the
existing ideas in both cosmology and string theory. In the future, this model might
shed light upon even more aspects of the Universe that we do not understand as of
now. Showing that inflation can arise in string theory may just be the first step.
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