Boosting Hive Efficiency:
A Novel Dual-Process Architecture for Asynchronous and
Parallel Data Loading

by

Mohammad Ashekur Rahman
21166025

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
M.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
October 2024

(©) 2024. Mohammad Ashekur Rahman
All rights reserved.

Declaration
It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Mohammad Ashekur Rahman

21166025

Approval

The thesis titled “Boosting Hive Efficiency: A Novel Dual-Process Architecture for
Asynchronous and Parallel Data Loading” submitted by

1. Mohammad Ashekur Rahman (21166025)

Of Fall, 2024 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of M.Sc. in Computer Science and Engineering on October 16,
2024.

Examining Committee:

External Examiner:
(Member)

M.M.A. Hashem, PhD

Professor
Department of Computer Science and Engineering
Khulna University of Engineering & Technology

Internal Examiner:

(Member)
Muhammad Igbal Hossain, PhD
Associate Professor
Department of Computer Science and Engineering
Brac University
Supervisor:
(Member)

Farig Yousuf Sadeque, PhD
Associate Professor

Department of Computer Science and Engineering
Brac University

i

Program Coordinator:
(Member)

Head of Department:
(Chair)

Md Sadek Ferdous, PhD

Associate Professor
Department
Brac University

Sadia Hamid Kazi, PhD

Chairperson and Associate Professor
Department of Computer Science and Engineering
Brac University

il

Ethics Statement

Throughout the research process, I have made extensive use of various scholarly
sources, including journals, conference publications, and reputable websites, in com-
pliance with academic standards. I also utilized assistance from Al-based tools like
ChatGPT and Copilot to aid in the development of ideas and in refining the struc-
ture of the report. All sources and tools used have been duly acknowledged, and no
part of this work has been copied or plagiarized without proper citation.

v

Abstract

The efficiency of data loading processes in Hive, a critical component of modern
big data ecosystems, is often hindered by sequential bottlenecks that limit overall
performance. This thesis proposes a novel asynchronous and parallel data load-
ing architecture designed to address these challenges, enhancing Hive’s data inges-
tion capabilities. The architecture comprises two distinct processes: the Landing
Batch Process, which manages data loading into the Hadoop Distributed File Sys-
tem (HDFS), and the Staging Batch Process, responsible for loading data into Hive
tables. By operating these processes asynchronously and in parallel, the proposed
design significantly accelerates data handling.

Experimental evaluations compared the performance of the proposed architecture
in scenarios without parallelism and with two parallel processes against the tradi-
tional sequential approach. Three diverse datasets—NOAA weather data, Threat
data, and Stock market data—were tested to assess the scalability and robustness of
the solution. The results revealed substantial performance improvements across all
datasets. The NOAA dataset exhibited a reduction in total processing time of 42%,
the Threat dataset achieved a 42.5% reduction, and the Stock dataset showed the
greatest improvement, with a 43.42% decrease in total processing time. Notably,
parallel processing reduced the landing time from 451 seconds to 402.66 seconds
for the NOAA dataset, from 861 seconds to 763 seconds for Threat data, and from
2,643 seconds to 2,342 seconds for Stock data. Additionally, the average landing
iteration time was significantly reduced across the datasets, further underscoring
the efficiency gains of parallel execution.

These findings demonstrate the broad applicability and efficiency of the proposed
architecture, making it a powerful tool for overcoming the traditional limitations of
Hive’s data loading processes in high-volume environments. This thesis concludes
that the asynchronous and parallel approach offers a significant advancement in data
loading efficiency, making it a viable solution for high-volume data environments.
Future research will explore further optimization of the staging process, scalabil-
ity analysis with additional parallel processes, and integration with real-time data
frameworks, aiming to establish a robust and scalable architecture for big data ap-
plications in Hive and beyond.

Keywords: Data Loading; Hive; Parallel Processing; Asynchronous Processing;
Multiprocessing; Big Data; Data Warehouse; Data Lake; Hadoop

Dedication

This thesis is dedicated to my loving parents, whose unwavering support has always
been my strength; to my beloved wife, whose patience and encouragement kept me
motivated throughout this journey; and to my esteemed supervisor, Dr. Farig
Yousuf Sadeque, whose guidance and wisdom were instrumental in the successful
completion of this work.

vi

Acknowledgement

First and foremost, I would like to express my deepest gratitude to Allah for giving
me the strength and determination to complete this thesis.

I would like to extend my sincere appreciation to my supervisor, Dr. Farig Yousuf
Sadeque, for his steadfast support, guidance, and invaluable advice. His door was
always open, and whenever I sought his help, he welcomed me with a smile and
provided the assistance I needed to stay on track.

A special thank you goes to my beloved parents and wife, whose constant love, un-
derstanding, and encouragement fueled my drive to succeed in this endeavor.

Finally, I would like to thank my colleagues and friends for their support throughout

this journey. Their encouragement made the challenging moments more bearable,
and their understanding during my busy thesis days was greatly appreciated.

vil

Table of Contents

Declaration
Approval

Ethics Statement
Abstract
Dedication
Acknowledgment
Table of Contents
List of Figures
List of Tables
Nomenclature

1 Introduction

1.1 Motivation
1.2 Research Gap and Contribution
1.3 Significance of the Proposed Solution
1.4 Research Questions
1.5 Methodological Approach
1.6 Outline of the Thesis

2 Literature Review

2.1 Literature Review

3 Background Study

3.1 ApacheHive
3.1.1 Key Features of Apache Hive
3.1.2 Hive Architecture
3.1.3 Hive Table Types
3.1.4 Hive Data Model
3.1.5 Common Use Cases
3.1.6 Advantages and Limitations

3.2 Apache Hive Data Loading Architecture

viil

ii

iv

vi

vii

viii

xi

xii

xiii

3.2.1 Data Sources 20

3.2.2 Key Components of Hive Data Loading 20
3.2.3 Data Loading Methods in Hive 21
3.2.4 Partitioning and Bucketing in Hive 22
3.2.5 File Formats and Compression 23
3.2.6 Schema Evolution and Data Management 26
3.2.7 Best Practices for Data Loading in Hive 26
3.2.8 Data Loading Workflow in Hive 26
3.3 Traditional Hive Data Ingestion Architecture (Any File Type) 27
3.4 Choosing Right File Type 29
3.4.1 Challenges of Storing Any Type of File 29
3.4.2 Why ORC is Best for Transactional Data, Performance, and
Size . .. 29
3.5 Traditional Hive Data Ingestion Architecture (Any File type to ORC) 30
3.5.1 Landing Batch Process 31
3.5.2 Staging Batch Process 31
3.5.3 Benefits of This Architecture. 32
3.6 Sequential Process Bottlenecks 33
3.6.1 Why Sequential Processing is Slow 33
3.6.2 Potential Improvements 33
Research Methodology 35
4.1 Proposed Architecture L. 35
4.1.1 Two Asynchronous Processes 35
4.1.2 Master Landing & Staging Batch Process 37
4.1.3 Child Landing Batch Process 38
4.1.4 Child Staging Batch Process 41
4.1.5 Required Configuration for Data Loading 42
4.1.6 One Single INSERT Query to Start Data Loading 45
4.2 Experimental Environment and Assumptions 45
Implementation 46
5.1 Dataset 46
5.1.1 Dataset Descriptions 46
5.1.2 Dataset Composition 47
5.1.3 Data Format and Characteristics 49
5.1.4 Relevance to the Study 49
5.1.5 Challenges and Solutions 51
5.2 Environment Setup 54
52.1 Amazon EMR 54
5.2.2 EMR Cluster Configuration 54
5.2.3 Integration with Apache Hive and Apache Spark 55
5.2.4 Gateway/Staging/Edge Node 55
5.3 Data Preprocessing 56
54 Data Loading 58
5.4.1 Traditional Architecture 58
5.4.2 Proposed Architecture 59

1X

6 Result and Analysis
6.1 Data Size Analysiso
6.1.1 Traditional Data Loading with Raw Files
6.1.2 Optimized Data Storage with ORC Format
6.1.3 Comparison of Storage Reduction
6.1.4 Implications for Data Warehousing
6.2 Landing Batch Process with No Parallel
6.3 Landing Batch Process with 2 Parallel
6.4 Analysis of Both Landing Batch Process
6.5 Staging Batch Process L.
6.6 Performance Comparison L.
6.6.1 Analysis
6.6.2 Key Observations:
6.6.3 Detailed Dataset-Specific Performance Comparison
6.6.4 Overall Improvement Comparison

7 Conclusion and Future Work

7.1 Conclusion .
7.2 Limitations
7.3 Future Work

Bibliography

61
61
61
62
62
63
63
65
67
68
70
70
71
72
73

74
74
5
5

78

List of Figures

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

6.1

6.2

6.3

Hive Architecture 15
Hive Data Model o 19
Traditional Hive Data Ingestion Architecture (Any File Type) 27
Traditional Hive Data Ingestion Architecture (Any File type to ORC) 30
Proposed Architecture — Two Asynchronous Processes. 35
Master Landing & Staging Batch Process 37
Child Landing Batch Process 39
Child Staging Batch Process 41
Normal Distribution of Landing Batch Process with No Parallel for

NOAA Dataset 64
Normal Distribution of Landing Batch Process with 2 Parallel for

NOAA Dataset 66
Normal Distribution of Staging Batch Process 69

x1

List of Tables

3.1
3.2

6.1
6.2
6.3
6.4
6.5

6.6
6.7

6.8

6.9

6.10

Comparison of Hive Managed and External Tables 18
Comparison of File Formats and Properties. 23
Comparison of File Formats and Storage Sizes Across Datasets 62
Storage Reduction with ORC Format Across Datasets 62
Landing Batch Process with No Parallel - Normal Distribution Values

for NOAA Dataset 63
Landing Batch Process with 2 Parallel - Normal Distribution Values

for NOAA Dataset 66
Comparison of Non-Parallel and 2 Parallel Landing Batch Process for

All Datasets 68
Staging Batch Process - Normal Distribution Values (NOAA Dataset) 69

Performance Comparison of Traditional and Proposed Architectures

for NOAA Dataset 72
Performance Comparison of Traditional and Proposed Architectures
for Threat Data 72
Performance Comparison of Traditional and Proposed Architectures
for Stock Data 72
Comparison of Landing and Total Improvements Across Different
SOUTCES .+ v v v v o e e e e 73

x1i

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ACITD Atomicity, Consistency, Isolation, and Durability

ETL Extract, transform, and load

HADOOP High Availability Distributed Object Oriented Platform
HDF'S Hadoop Distributed File System

HPCC High Performance Computing Cluster

JDBC Java Database Connectivity

LLAP Live Long and Process

M PP Massively Parallel Processing

ODBC Open Database Connectivity

ORC Optimized Row Columnar

SQL Structured Query Language

xiil

Chapter 1

Introduction

1.1 Motivation

Data analytics plays a crucial role in modern organizations by providing insights
that inform strategic decisions. Central to data analytics is the process of data
integration, which consolidates historical data from diverse sources into a central-
ized data warehouse. The Extract Transform Load (ETL) process stands out as a
popular and efficient method for achieving this integration. ETL has been widely
adopted across domains such as finance, healthcare, and telecommunications. As
the utilization of ETL continues to expand, gaining insights into its research ad-
vancements and practical applications becomes increasingly important [19].

Extraction, Transformation, and Loading (ETL) processes are vital for the backend
operations of a data warehouse architecture. They involve extracting data from
various source datastores, transforming the data for homogenization and cleansing,
and then loading it into a central data warehouse. ETL processes have been inte-
gral to database technology since its inception. The ETL workflow includes three
main steps: extraction, transformation, and loading. These processes are crucial in
modern corporate environments, necessitating a dedicated team for designing and
maintaining ETL functionalities. There is a need for a unified algebra or a declar-
ative language for formally describing ETL processes, optimizing the entire ETL
workflow, and expanding ETL capabilities beyond traditional data warehouse envi-
ronments [3].

Big data encompasses a wide range of content, scope, methods, advantages, chal-
lenges, and privacy concerns. It is not solely about managing large volumes of data
but also about extracting meaningful insights and value from it. Essential analysis
methods include distributed programming, pattern recognition, data mining, natural
language processing, sentiment analysis, statistical and visual analysis, and human-
computer interaction [7]. Key technologies for big data analysis include Hadoop
and High-Performance Computing Cluster (HPCC). Hadoop, a Java-based frame-
work, incorporates a distributed file system, analytics and data storage platforms,
and a layer for managing parallel computation, workflow, and configuration admin-
istration. In contrast, HPCC is a distributed data-intensive open-source computing
platform offering comprehensive big data workflow management services. Privacy
and security issues are significant in the realm of big data. Despite its numerous ben-

efits, big data presents challenges such as data growth, infrastructure, governance,
integration, velocity, variety, compliance/regulation, and visualization. Addressing
these challenges requires continuous research, improvement, and development in the
field. Moreover, managers and analysts must develop a deep understanding of big
data applications to leverage its full potential effectively.

A data lake implementation necessitates the integration of data from various sources,
including existing operational systems, data warehouses, and new data streams.
Given Hadoop’s capabilities as a general-purpose, large-scale distributed processing
platform, it is particularly well-suited for this task. The initial step in enabling
analytics within this data lake is the data loading process. Traditionally, data was
extracted from operational systems and loaded into a data warehouse in batch form.
Historically, no single tool in the Hadoop ecosystem could handle data loading from
all systems and formats. Instead, a variety of tools were developed, each optimized
for specific systems and data formats. This approach can lead to complexity when
loading data from multiple sources in different formats. The complexity is further
compounded by factors such as the frequency of data loading from source systems,
which can influence the choice of the most appropriate tool. Regardless of the source
type, data structure, and tools used for loading, all data in a Hadoop-based platform
is ultimately stored in HDF'S. Since Hive serves as the SQL layer on Hadoop, data
must be loaded into HDFS before it can be queried through Hive [14].

Hive is an open-source data warehousing solution built on top of Hadoop, designed
to manage petabyte-scale data sets using commodity hardware. It provides a SQL-
like declarative language known as HiveQL, which translates into MapReduce jobs
executed by Hadoop. HiveQL supports complex data types and allows users to
incorporate custom MapReduce scripts. The architecture of Hive comprises several
key components:

e Metastore: Stores metadata about tables, partitions, and other data ware-
house objects.

e Compiler: Generates execution plans for queries.
e Execution Engine: Executes the compiled queries by interacting with Hadoop.

e JDBC/ODBC Server: Enables integration with other applications.

Hive’s storage model organizes data into tables, partitions, and buckets, which are
stored in HDFS directories. It supports multiple file formats and SerDes (serial-
ization/deserialization) for efficient data processing. The query compiler in Hive
optimizes HiveQL statements using techniques such as column pruning, predicate
pushdown, partition pruning, and join reordering. It also addresses data skew in
GROUP BY operations and uses hash-based partial aggregations in mappers to en-
hance performance [4].

Apache Hive has evolved from a simple ETL tool to a comprehensive, enterprise-
grade data warehouse solution. It is designed to manage substantial big data work-
loads, integrating traditional MPP (Massively Parallel Processing) techniques with

modern big data and cloud computing concepts. Hive supports standard SQL oper-
ations and ACID transactions, ensuring data integrity through Snapshot Isolation
facilitated by a transaction manager built on the Hive Metastore. To enhance query
performance, Hive leverages Apache Calcite for rule-based and cost-based optimiza-
tions, encompassing strategies like join reordering and predicate simplification. Hive
incorporates advanced features such as query reoptimization, results caching, ma-
terialized views with automatic query rewriting, and shared work optimization to
reuse execution plans efficiently. Additionally, Hive serves as a mediator for query-
ing multiple data management systems, utilizing Apache Calcite for optimization
and federated query capabilities. Performance evaluations using industry-standard
benchmarks illustrate substantial enhancements in Hive’s query execution speed and
SQL functionality over successive iterations. Future research directions for Hive in-
clude further refining optimization techniques, implementing multi-statement trans-
actions, and facilitating seamless deployment in cloud environments through con-
tainerization strategies. Hive is adaptable and relevant in the continuously evolving
landscape of data analytics [16].

Significant improvements in Hive include the introduction of an efficient file for-
mat (ORC File), an updated query planner, and a new vectorized query execution
engine that enhances performance by better utilizing modern CPUs [10]. These ad-
vancements are demonstrated through experiments using benchmarks like SS-DB,
TPC-H, and TPC-DS, showing reduced data sizes, faster query execution times, and
more efficient CPU usage. The key improvements include:

1. Optimized Record Columnar File (ORC File): Introduced for efficient
storage, ORC files use lightweight compression and columnar storage. They
support predicate pushdown and include lightweight indexes.

2. Updated Query Planner: Enhancements optimize query execution plans
by considering statistics, partition pruning, and cost-based optimization. Dy-
namic partition pruning skips unnecessary partitions during execution.

3. Vectorized Query Execution: Processing data in batches (vectors) im-
proves performance. SIMD instructions speed up operations, reducing CPU
overhead.

4. LLAP (Live Long and Process): In-memory caching layer for Hive, LLAP
keeps frequently accessed data in memory, reducing disk I/O and providing
low-latency query responses.

5. ACID Transactions: Introduced for data consistency and reliability, ACID
tables support insert, update, and delete operations in Hive.

1.2 Research Gap and Contribution

Despite significant advancements in Hive and related ETL technologies, the tra-
ditional sequential data loading methods remain a major bottleneck in the data
integration pipeline, especially when processing large and diverse datasets. Cur-
rent approaches often struggle to fully exploit parallelism, resulting in inefficient
resource utilization, increased loading times, and a failure to meet the demands of
modern data-intensive applications. Additionally, existing data loading techniques
in Hadoop and Hive environments often rely on a fragmented toolset, which increases
complexity when dealing with data from multiple sources and formats. These lim-
itations underscore the need for a more robust and efficient architecture that can
address these challenges effectively.

This research proposes an innovative asynchronous and parallel data loading archi-
tecture for Hive, which decouples the data ingestion and transformation processes
into two distinct stages: the Landing Batch Process and the Staging Batch Process.
By allowing these processes to operate independently and concurrently, the proposed
architecture maximizes the utilization of system resources and significantly reduces
overall data processing times. This approach not only enhances the performance of
data loading into Hive but also sets a new benchmark for high-throughput, scalable
data warehousing solutions.

1.3 Significance of the Proposed Solution

The proposed asynchronous and parallel data loading architecture holds substan-
tial potential for transforming how data is ingested and processed in big data en-
vironments. By optimizing the data loading workflow, the architecture ensures
faster data availability for downstream analytics, enabling organizations to derive
timely insights and make data-driven decisions more effectively. This architecture
is particularly relevant in sectors like finance, healthcare, telecommunications, and
e-commerce, where large volumes of data must be processed quickly to maintain a
competitive edge.

Moreover, the proposed approach offers a flexible and scalable solution that can
adapt to varying data volumes and formats, reducing dependency on traditional,
tool-specific data loading methods. The architecture’s ability to operate asyn-
chronously means it can better accommodate real-time data integration needs, mak-
ing it highly suitable for applications involving streaming data and continuous up-
dates.

1.4 Research Questions
This study seeks to address the following key research questions:

1. How does the proposed asynchronous and parallel data loading architecture
improve the efficiency of data ingestion in Hive compared to traditional se-
quential methods?

2. What are the performance implications of implementing parallel processing
in the Landing Batch Process, and how does this impact the overall system
throughput?

3. Can the decoupling of data ingestion and transformation processes reduce
bottlenecks and enhance scalability in large-scale data environments?

1.5 Methodological Approach

To evaluate the effectiveness of the proposed architecture, a series of experiments
were conducted comparing the performance of traditional, non-parallel, and parallel
data loading approaches in Hive. The experimental setup involved measuring key
performance metrics such as landing time, staging time, and total processing time
across different scenarios. The analysis focused on quantifying the improvements
in data loading efficiency and assessing the impact of parallelism on system perfor-
mance.

In this thesis, we focus primarily on optimizing data loading processes in Hive,
considering the ideal case where variables such as network congestion and bandwidth
are not limiting factors. However, future research should consider these variables to
explore their impact on the proposed architecture under more realistic conditions.

1.6 Outline of the Thesis

This thesis is structured as follows:

Chapter 2 - Literature Review: This chapter provides a comprehensive overview
of existing ETL processes, data loading techniques in Hive, and related research on
asynchronous and parallel data architectures. It sets the foundation by exploring
current methods and identifying gaps that this research aims to address.

Chapter 3 - Background Study: This chapter covers the background neces-
sary for understanding the proposed architecture, including a detailed description
of Hive, its architecture, and its role in big data environments. It also discusses the
challenges faced with traditional data loading methods and the need for innovative
solutions.

Chapter 4 - Research Methodology: This chapter outlines the research design
and methodology used to evaluate the proposed architecture. It provides a detailed

explanation of the design and implementation of the proposed asynchronous and par-
allel data loading architecture. It covers the architecture’s components, workflows,
and how it integrates within the Hive ecosystem. The methodology for comparing
the proposed architecture with traditional approaches is also detailed.

Chapter 5 - Implementation: This chapter describes the experimental setup,
including datasets, testing environments, and performance metrics.

Chapter 6 - Results and Analysis: This chapter presents the results of the
experiments conducted, including a comparative analysis of the performance of the
proposed architecture versus traditional methods. It highlights the efficiency gains
and discusses observed patterns and implications of the findings.

Chapter 7 - Conclusion and Future Work: This chapter summarizes the key
contributions of the research, addresses the limitations of the study, and provides
recommendations for future research and enhancements. It reflects on how the
proposed architecture can be further optimized and its potential impact on data
processing in big data environments.

Chapter 2

Literature Review

2.1 Literature Review

Efficient data loading is essential for achieving optimal performance in large-scale
distributed deep neural network (DNN) training. In [18], the authors identify per-
formance and scalability issues in current data loading implementations and propose
optimizations that leverage CPU resources to enhance data loader design. The study
employs an analytical model to characterize the impact of data loading on overall
training time and to establish performance trends when scaling up distributed train-
ing. It reveals that the I/O rate constrains the scalability of distributed training,
leading to the development of a locality-aware data loading method. This method
minimizes data loading communication volume by utilizing software caches. The
proposed optimizations, encompassing data loader enhancements, a locality-aware
data loading method, and an analytical model, are evaluated through experiments.
These experiments demonstrate a more than 30x speedup in data loading when using
256 nodes with 1,024 learners, along with a 92% improvement in per-epoch training
cost for Imagenet-1K classification over standard distributed training implementa-
tions. The paper addresses the challenges and solutions for efficient data loading
in large-scale distributed DNN training on high-performance computing (HPC) sys-
tems. It highlights the limitations of existing data loader designs and introduces
performance optimizations, including a locality-aware data loading method that
employs caches to reduce data loading volume and bandwidth requirements. Ex-
perimental results showcase significant speedups in data loading and training times
across various datasets, including Imagenet-1K, UCF101, and a large molecular
dynamics dataset (MuMMI), while maintaining comparable model accuracy. The
proposed optimizations enable distributed DNN training to effectively scale to larger
HPC systems, thereby enhancing the efficiency and performance of large-scale DNN
training.

The methodology proposed in [2] optimizes data warehouse loading procedures to
enable real-time data warehousing. It introduces a solution for continuous data in-
tegration with minimal impact on query execution time, achieved through schema
adaptation. This adaptation involves creating replicas of original schema tables
without constraints, thereby facilitating faster data insertion. The ETL loading
process is streamlined by focusing on inserting new rows into these temporary ta-
bles. The methodology also includes OLAP query adaptation and periodic packing

and reoptimization of the data warehouse database to maintain performance. The
objective is to provide up-to-date decision-making information by efficiently inte-
grating the latest data from OLTP systems into the data warehouse, thus enabling
real-time data warehousing. It emphasizes the importance of minimizing query ex-
ecution impact on users by replicating data structures and adapting query instruc-
tions. It involves updating the data warehouse with record insertions, which avoids
record locking and reduces the time required for data integration. Experimental
evaluations using the TPC-H benchmark demonstrate the functionality of the pro-
posed method. The results indicate that continuous data integration is feasible with
an acceptable increase in query execution time, which is the trade-off for achieving
real-time capabilities in the data warehouse. Future work involves developing an
ETL tool to integrate the methodology with extraction and transformation routines
for OLTP systems and further optimizing query instructions.

Effectively supporting real-time data integration in data warehouses is essential for
real-time enterprises requiring up-to-date decision support. Traditional data ware-
houses have static structures and are not designed for continuous data integration,
resulting in outdated data. To address this, the authors [1] propose a methodol-
ogy that adapts data warehouse schemas and OLAP queries to enable continuous
loading with minimal impact on query execution time. This is achieved using tech-
niques such as table structure replication and query predicate restrictions. The
efficiency of this method is demonstrated through the TPC-H benchmark, show-
ing improved performance with lower transaction rates. The methodology focuses
on adapting data warehouse schemas, ETL loading procedures, OLAP query adap-
tation, and data warehouse packing and reoptimization. It ensures minimal data
update time windows, thereby maximizing data availability and minimizing neg-
ative performance impacts. However, the methodology may not be applicable in
contexts where defining additive attributes for fact tables is challenging. The study
presents a methodology for implementing Real-Time Data Warehousing (RTDW)
by enabling continuous data integration with minimal query execution impact. The
methodology was tested using the TPC-H benchmark across various scenarios with
different transaction rates and data warehouse sizes. Results indicate that system
performance is dependent on transaction rates and available RAM, with an aver-
age increase in query response time as the trade-off for real-time capability. The
methodology proved to be scalable, demonstrating that real-time data warehousing
is achievable. Future work includes developing an ETL tool to integrate the method-
ology with OLTP systems and optimizing query instructions.

SCANRAW | a novel database physical operator designed for in-situ processing over
raw files, seamlessly integrates data loading and external tables while maintaining
optimal performance across query workloads and ensuring zero time-to-query [9].
Leveraging a parallel super-scalar pipeline architecture, SCANRAW overlaps execu-
tion stages, including speculative loading, which utilizes additional I/O bandwidth
during conversion to expedite subsequent queries. Dynamic adjustment to avail-
able system resources allows SCANRAW to efficiently utilize CPU cycles and 1/O
bandwidth. Implemented within a state-of-the-art database system, SCANRAW
has been evaluated using both synthetic and real-world datasets, demonstrating op-
timal performance for query sequences and maximizing resource utilization without

disrupting normal query processing. The speculative loading feature ensures opti-
mal performance across a sequence of queries, performing as efficiently as external
tables for the initial query and surpassing database processing efficiency in the long
run. This feature also enhances the efficiency of full data loading, enabling database
processing with pre-loading to outperform external tables even for a two-query se-
quence. The architecture effectively handles CPU-intensive tasks, making these ex-
ecutions I/O-bound and ensuring optimal resource utilization. By parallelizing the
conversion from text to binary, SCANRAW outperforms other data processing tools
like BAMTools, leading to significant improvements in processing time. Overall,
SCANRAW represents a significant advancement in in-situ data processing, offering
a scalable and efficient solution for handling large raw data files. Future work will
focus on extending support for multi-query processing over raw files.

Invisible Loading is a system designed to reduce the “time-to-first-analysis” in com-
mercial analytical database systems by incrementally loading and organizing data
from raw files into database systems while simultaneously processing the data us-
ing MapReduce jobs [5]. This system leverages MapReduce jobs’ parsing and tuple
extraction operations, allowing for immediate data analysis with minimal upfront
effort and progressively enhancing the long-term performance benefits of database
systems. By piggybacking on MapReduce jobs, Invisible Loading separates parsing
code from data-processing code, reducing loading overhead by only copying verti-
cal and horizontal partitions of data. It also introduces an Incremental Merge Sort
technique for data reorganization, managing different columns at various stages of
loading or reorganization. The system requires minimal human intervention and
does not noticeably increase response time due to loading costs, making it a flexi-
ble and efficient solution for processing large, structured data sets typically stored
in flat files on a file system. Additionally, the paper explores incremental data
reorganization strategies, such as incremental merge sort and database cracking,
and their integration with lightweight compression to improve query performance,
especially over low cardinality data sets. Experimental results demonstrate that
Invisible Loading offers cumulative performance comparable to pre-loading all data
in advance, with minimal impact on MapReduce jobs.

In [14], a comprehensive guide is presented on loading data into Hive, which functions
as a SQL layer on Hadoop. The guide encompasses essential tools and considera-
tions necessary for this process. Key topics covered include designing the layout of
the HDF'S filesystem, selecting optimal schema and data formats to enhance per-
formance, and choosing suitable compression algorithms. Different loading patterns
and tools are examined, including Ambari Files View, Hadoop Command Line,
Sqoop, and Apache Nifi, each offering unique use cases and advantages. The paper
details how to make data accessible in Hive through external tables or the LOAD
DATA statement. The process of loading incremental changes into Hive through
delta files and new partitions is also outlined, emphasizing the ability to update
data without modifying existing partitions. The Hive streaming API is introduced,
enabling continuous ingestion of data into Hive tables or partitions, and ensuring
immediate visibility to subsequent queries. However, limitations are noted, such as
the necessity for the target table to be bucketed, stored in ORC format, and the
need to enable ACID functionality with specific parameters. The paper concludes

by discussing the ongoing need for advancements in real-time data ingestion and
accessibility, highlighting efforts by RDBMS vendors to develop plug-ins for their
CDC technologies.

In [6], Hive, a MapReduce-based data warehouse, is evaluated for managing scientific
data using the SSDB benchmark. The study illustrates that Hive can achieve accept-
able performance for specific data analysis tasks compared to high-efficiency parallel
databases, although it necessitates adjustments in storage configurations and index-
ing mechanisms. The authors detail the methodology for migrating SSDB to Hive,
including query implementation and performance tuning strategies. The evaluation
provides insights into the advantages and limitations of Hadoop/Hive for scientific
data management, proposing avenues for further research and development. Addi-
tionally, the paper examines the impact of key factors such as parallel processing slot
allocation, HDFS block size, data partitioning strategies, and row group size on per-
formance outcomes. This analysis contributes to understanding the applicability of
MapReduce-based frameworks in scientific data processing applications. The paper
contextualizes these findings within the evolution of data processing systems, focus-
ing on MapReduce-based platforms like Hadoop and their relevance in scientific data
management compared to traditional database systems. It discusses benchmarking
approaches specific to scientific data processing. Ultimately, the paper concludes
that with targeted optimizations, MapReduce-based systems can achieve satisfac-
tory performance levels for scientific data analysis tasks. It also highlights SciDB,
a distributed database tailored for scientific array data, as a promising alternative
with notable performance capabilities.

The impact of data organization and modeling strategies on processing times within
Big Data Warechouses (BDWs) implemented using Hive is investigated in [15]. The
study employs the SSB benchmark to compare multidimensional star schemas and
fully denormalized tables across different Scale Factors (SFs), analyzing the in-
fluence of effective data partitioning. The findings reveal that fully denormalized
structures generally outperform multidimensional approaches in terms of query ex-
ecution times, particularly as data volumes scale up. Data partitioning significantly
enhances query performance for both star schema and denormalized table configura-
tions. Overall, the study concludes that while implementing multidimensional Data
Warehouses (DWs) in Hive is feasible, fully denormalized data models offer supe-
rior performance benefits in Hadoop-based BDWs. It emphasizes the importance of
strategic data partitioning based on frequently queried attributes to optimize query
execution times effectively. The paper underscores the need for future research to
explore advanced data partitioning and bucketing strategies, as well as guidelines
for materialized views in the context of Big Data Warehousing. Additionally, it
acknowledges the trade-offs between storage space and query performance inherent
in denormalized tables, affirming that the performance gains typically outweigh the
associated storage costs.

The performance analysis of Meteorological and Oceanographic (MOData) data on
the Hive big data platform is presented in [13]. The study emphasizes the importance
of proper data formatting, loading procedures, and analytical techniques to achieve
efficient data analytics using Hive, compared to traditional database systems. Cus-

10

tom Serialization and Deserialization (SerDe) methods were developed specifically
for MOData to align with Hive’s data format requirements. Data loading and opti-
mization were facilitated using a bash script. The study evaluated the performance
of three query types across indexed and non-indexed tables, spanning data sizes from
20GB to 1TB. The results indicate that Hive offers superior response times com-
pared to traditional databases, particularly for Type 1 queries where indexed tables
consistently outperformed non-indexed ones across varying data sizes. The findings
suggest potential benefits for industries such as oil and gas through the adoption
of big data technologies like Apache Hadoop and Hive for exploratory data anal-
ysis. Future research directions could include optimizing query response times by
minimizing the number of Mappers and exploring the application of meta-heuristic
algorithms tailored to MOData within the Hadoop ecosystem. These efforts aim to
further enhance the efficiency and scalability of data processing for complex scien-
tific datasets.

The study presented in [4] explores the utilization of Hive and Hadoop for data
processing within Facebook’s infrastructure. It provides a comprehensive overview
of the system’s architecture, optimization techniques, and execution engine. Special
attention is given to the challenges associated with resource scheduling, advocating
for the use of separate clusters to handle ad-hoc queries versus reporting queries
efficiently. Furthermore, the paper delves into Hive’s integration with traditional
warehousing tools and outlines ongoing improvements. It discusses future research
directions, including the development of performance benchmarks and enhancements
aimed at improving compatibility with commercial Business Intelligence (BI) tools.

The paper [8] addresses the complexities associated with Big Data integration, par-
ticularly focusing on the diverse range of data formats and the imperative for tech-
nologies that facilitate accessible and actionable data for decision-making. It pro-
poses a semantic Extract-Transform-Load (ETL) framework leveraging semantic
technologies to harmonize data from multiple sources into open linked data. Cen-
tral to this framework is the establishment of a semantic data model utilizing RDF as
the graph data model and SPARQL as the query language. Furthermore, the paper
reviews existing literature on ETL processes and semantic ETL, and it presents a
prototype implementation aimed at integrating public datasets on household travel
and fuel economy. The objective is to enable meaningful data integration to support
innovative Big Data applications and analytics. The discussions provided encompass
various facets of Big Data, including techniques for graph analytics, data provenance,
and the utilization of interlinked RDF data stores for learning classifiers. Addition-
ally, the paper mentions several tools and platforms pivotal for data integration,
such as IBM InfoSphere, Oracle Warehouse Builder, Microsoft SQL Server Integra-
tion Services, Informatica, Talend Open Studio, Pentaho, Protégé Ontology Editor,
Oxygen XML Editor, and Apache Jena.

11

[19] conducts a systematic literature review focusing on Big Data Extraction, Trans-
formation, and Loading (ETL) processes. It explores implementation methodologies,
quality attributes, challenges, and the extent of coverage in current research. Key
findings include:

1. Current ETL implementation techniques predominantly emphasize conceptual
modeling, with limited incorporation of emerging technologies such as artificial
intelligence and machine learning.

2. Data complexity and heterogeneity pose significant challenges in ETL, exac-
erbated by the ongoing growth in data volume and diversity.

3. Critical quality attributes like fault-tolerance and reliability are not sufficiently
addressed in both ETL research and practical applications.

4. There is a recognized gap in research concerning emerging trends and imple-
mentation strategies in ETL, particularly those leveraging new technologies.

5. The application of ETL approaches across specific industries and geographic
regions is underrepresented, indicating a need for broader exploration in re-
search and practice.

6. ETL-related research and publications have shown a decline, possibly due to
the emergence of alternative computing technologies overshadowing traditional
ETL methods.

7. Future research should prioritize developing solutions to these challenges, in-
cluding the integration of innovative technologies into ETL processes and en-
hancing data security throughout the ETL lifecycle.

dbX is a parallel SQL database designed for high performance on commodity hard-
ware and cloud systems. It utilizes a vector execution model that leverages par-
allelism across multiple levels, including 10, data partitioning, intra-operator, op-
erator, and intra-query [12]. Several techniques are proposed for optimizing load
performance, such as parallel 10, file system & big 10, parallel task scheduling,
minimal locking, transaction logging, data distribution, parallel loads, and the han-
dling of constraints and indexes. Issues affecting data load and extract performance
are examined, including synchronous 10, kernel buffering, IO contention, disk frag-
mentation, compute load, locking, ACID compliance, integrity constraints, data
partitioning, parallel configuration, and error handling. Performance results from
dbX on Amazon cloud and commodity systems demonstrate linear scale-up with
cluster scale-out. The study also explores the impact of concurrent clients on load
rates and the sustainability of load rates over extended periods and with larger file
sizes. The need for further research and development in optimizing database load
and extraction for the big data era is emphasized, highlighting the ongoing chal-
lenges and opportunities in this field.

A comprehensive review of popular Big Data processing tools—Drill, HAWQ), Hive,
Impala, Presto, and Spark—emphasizes the importance of efficiently managing mas-
sive and complex data volumes [17]. Evaluating these tools using the TPC-H
benchmark, the review discusses their architectures, functionalities, and performance

12

across different workloads and query types. SQL-on-Hadoop systems are highlighted
for their user-friendly SQL interface, stressing the need to choose the right tool
for specific analytical requirements. The tools are compared based on scalability,
throughput, parallelism, SQL support, distributed architecture, fault tolerance, and
machine learning capabilities. Experimental results show HAW(Q and Presto as the
fastest tools for a 10 GB dataset, outperforming others significantly. Impala per-
forms well but struggles with complex queries, while Hive generally surpasses Spark
except in complex joins. The review also examines the influence of file formats like
ORC and Parquet on performance, noting their efficient compression and encoding.
No single tool fits all Big Data processing needs; each has strengths and weaknesses
based on the use case. The review covers various aspects of Big Data tools within
the Hadoop ecosystem, including their application in diverse contexts such as stock
market analysis and scientific image analytics. The evolution of Hadoop-based sys-
tems is explored, focusing on SQL database integration and query engines. The
review underscores the importance of selecting appropriate tools for Big Data ana-
lytics, considering performance, scalability, and ease of use.

Handling and analyzing large volumes of data in the era of the Internet of Things
(IoT) presents significant challenges. To address these, a user-friendly system called
BigLoader is proposed [11]. BigLoader is designed to assist users in loading data
from various sources into the most suitable NoSQL system. Bigloader enables
users to specify the conceptual schema of the data to be loaded and identify the
sources from which the data should be gathered. It also outlines intelligent strate-
gies for selecting the most appropriate NoSQL system for deploying the conceptual
schema. The emphasis is on creating a system that centers on the user, integrating
data management strategies, smart and social recommendation services, innovative
user interaction approaches, and intelligent systems for choosing the most suitable
NoSQL system. A nested data model design is discussed, which is more intuitive
for users than normalization, can handle inherently nested data, and is compatible
with various formats. The need for ongoing research and development in optimiz-
ing database load and extraction for the big data era is highlighted, stressing the
importance of continued innovation in this field.

13

Chapter 3

Background Study

3.1 Apache Hive

Apache Hive is a data warehousing and SQL-like query language system built on
top of Apache Hadoop. It facilitates the reading, writing, and management of large
datasets residing in distributed storage using SQL-like syntax. Hive is designed for
batch processing and is widely used for data summarization, querying, and analysis
of big data. It has revolutionized how data is processed and analyzed in the big
data ecosystem. Its SQL-like interface, scalability, and integration with the Hadoop
ecosystem make it an essential tool for handling large datasets. Despite its limita-
tions in real-time processing, its strengths in batch processing, data warehousing,
and ETL make it a popular choice for businesses handling vast amounts of data.

3.1.1 Key Features of Apache Hive

1.

SQL-Like Interface (HiveQL): Hive provides an SQL-like query language
called HiveQL (Hive Query Language), which is similar to SQL and makes it
accessible to database professionals. It allows data analysts to perform queries
without deep knowledge of Java or MapReduce.

. Schema on Read: Unlike traditional databases that use a schema-on-write

approach, Hive uses schema-on-read. This approach applies the schema when
reading data, allowing flexibility in data storage formats and structures.

. Integration with Hadoop Ecosystem: Hive integrates seamlessly with

Hadoop, utilizing HDFS for storage and YARN for resource management. It
can run on top of other Hadoop-compatible file systems, including Amazon
S3, and supports execution engines like Apache Tez and Apache Spark.

Scalability and Fault Tolerance: Built on Hadoop, Hive inherits Hadoop’s
ability to scale horizontally across thousands of nodes and its fault-tolerant
nature, which ensures data reliability during query execution.

Extensibility through UDFs and Custom Functions: Users can define
their functions (UDFs) to perform specific data processing tasks, extending
Hive’s capabilities beyond its standard functions.

14

6.

Partitioning and Bucketing: Hive supports data partitioning to manage
large datasets by breaking them into smaller, manageable parts. Bucketing
further segments data within partitions, leading to more efficient query exe-
cution.

3.1.2 Hive Architecture
3.1.2.1 Architecture Components

Hive Clients

4

Hive Storage
and
Computing

CLI \ Metastore Metastore
/ Database

Hive Services

N~
Driver (B
. (Compiler, - Hadoop
ODBC Hive Server Optimizer, Filesystem HDFS

Preeuten J——
- . MapReduce
Thrift Hive Web / \ Execution Tez

Interface Engine spark

Figure 3.1: Hive Architecture

Figure 3.1 shows a detail architecture of Apache Hive [20].

User Interface (UI): Hive provides a CLI, Web UI, and JDBC/ODBC in-
terfaces for users to submit queries.

Driver: The driver receives the queries from the user interface, parses them,
and manages the lifecycle of a query.

Compiler: Converts HiveQL statements into directed acyclic graphs (DAGs)
of MapReduce, Tez, or Spark tasks.

Metastore: A critical component of Hive, the Metastore stores metadata
about tables, partitions, schemas, and other objects.

Execution Engine: The engine manages the execution of tasks generated by
the compiler using MapReduce, Tez, or Spark, coordinating with Hadoop to
process data.

HDFS/YARN: HDFS is the primary storage layer for Hive, while YARN
manages resource allocation across the Hadoop cluster.

3.1.3 Hive Table Types

Apache Hive is an integral part of modern big data ecosystems, designed to manage
and query large datasets stored in Hadoop Distributed File System (HDFS). Hive
offers two primary types of tables for organizing data: Managed (also known as
Internal) tables and External tables. Understanding the differences between these
two types is crucial for designing an efficient data architecture, especially in the
context of optimizing data loading workflows.

15

3.1.3.1 Managed Tables

In Hive, Managed Tables are tables where Hive assumes full responsibility for
the data. When a managed table is created, Hive stores both the metadata (ta-
ble schema) and the actual data in specific directories within the Hive warehouse
directory (typically located at /user/hive/warehouse/).

e Characteristics of Managed Tables:

— Data Ownership: Hive owns the data in the managed table. If the
table is dropped, both the metadata and the actual data files in HDFS
are deleted.

— Data Storage: Data is stored in Hive’s warehouse directory by default.
Hive automatically manages the physical location of the data.

— Ease of Management: Managed tables are easier to manage when the
user wants Hive to control the lifecycle of the data. All data management
tasks (like insertions, deletions, and modifications) are handled by Hive
internally.

— ETL Usage: Managed tables are commonly used in ETL (Extract,
Transform, Load) processes where data is ingested into Hive, processed,
and stored permanently for analysis.

e Example of Managed Table Creation:

1 |CREATE TABLE sales_data (
2 sale_id INT,

3 product STRING,

1 quantity INT,

5 price DOUBLE

¢ |) STORED AS ORC;

In the above example, Hive stores the data for the sales_data table in its default
warehouse directory. Dropping the table will also remove the data from the
warehouse.

e Key Use Cases:
— Permanent Data Storage: When data is created, transformed, and

intended to remain in Hive.

— Complete Data Lifecycle Control: When Hive is responsible for both
storing and managing the data lifecycle, including purging old data.

— Tight Data Coupling: Suitable when Hive is the only system accessing
the data, and the data does not need to be shared externally.
3.1.3.2 External Tables

External Tables, on the other hand, provide a more flexible way to manage data.
These tables allow Hive to reference data stored at an external location in HDF'S or
even outside HDFS (e.g., Amazon S3). With external tables, Hive only manages the

16

schema (metadata), while the data itself is stored and managed outside of Hive’s
control.

e Characteristics of External Tables:

— Data Ownership: Hive only manages the metadata, while the external
data source (e.g., HDFS, S3) owns and manages the data itself. Drop-
ping the table does not affect the underlying data; it simply removes the
metadata.

— Data Storage: The data is stored in a location specified by the user
when the table is created. This location can be within HDFS, another
Hadoop cluster, or even a cloud-based storage system.

— Data Sharing: External tables are useful when data needs to be shared
between Hive and other systems, such as custom MapReduce jobs or
external analytics engines.

— Decoupling Data and Metadata: External tables provide flexibility
by decoupling the data from Hive’s warehouse, allowing the data to be
used by multiple systems.

Example of External Table Creation:

CREATE EXTERNAL TABLE product_data (
product_id INT,
name STRING,
category STRING,
price DOUBLE
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY
LOCATION ;

In this example, the product_data table refers to data located at /data/prod-
uct_data/. Dropping this table will not delete the data stored in HDFS at
that location.

Key Use Cases:
— Shared Data: When the data needs to be accessed and shared by other

systems (e.g., Spark, Flink, external applications).

— Existing Data Sources: When the data already exists in HDFS or an
external system and there is no need to move it into Hive’s warehouse
directory.

— Data Reusability: External tables are useful when the same data is
to be used across multiple environments (e.g., multiple Hive clusters or
environments).

17

Aspect

Managed Table

External Table

Data Location

Data stored in Hive’s ware-
house directory.

Data stored in an external lo-
cation, as specified by the user.

Dat . .
ata . Hive owns and manages the | Data is owned and managed
Ownership
data. externally (by the user or an-
other system).
Table D : .
BZh:Vioiop Deleting the table deletes both | Deleting the table only re-
the data and the metadata. moves the metadata; the data
remains intact.
Use Case Permanent data storage con- | Reference existing data stored

trolled entirely by Hive.

outside of Hive, allowing shar-
ing with other systems.

Data Deletion

Dropping the table removes
the data.

Data is not deleted upon drop-
ping the table.

Best for

Complete Hive data manage-
ment.

Sharing data across different
systems or reusing existing
datasets.

Table 3.1: Comparison of Hive Managed and External Tables

3.1.3.3 Comparison of Managed and External Tables

The table 3.1 compares the key aspects of Managed and External tables in Hive:

3.1.3.4 Role of Managed and External Tables in ETL

In the context of ETL (Extract, Transform, Load) processes, both managed and
external tables play crucial roles:

e Managed Tables are often used for storing intermediate or final pro-
cessed data in Hive, where the data’s lifecycle is tightly controlled, and no
external systems need to access it.

¢ External Tables are typically used to import data from various external
sources (e.g., raw logs, CSV files, data from cloud storage) into Hive for further
transformation. They are also used when Hive is integrated with other data
processing tools like Spark or Flink.

3.1.4 Hive Data Model

Hive organizes data into tables, which are similar to those in relational databases.
Tables are further divided into partitions and buckets, which optimize data pro-
cessing and querying. Relationships between hive tables, partitions and buckets are
shown in Figure 3.2.

e Tables: Analogous to RDBMS tables, stored in HDFS.

e Partitions: Logical divisions of tables, improving query speed.

18

e Buckets: Further subdivision of data within partitions for better optimiza-
tion.

Employee
Details

1 1
1]
1
: Dept - Finance Partitions Dept - HR 1
]
, 1
1

Bucket 2 Bucket Bucket 1 Bucket 2

mg Employee ID

Employee ID

Employee ID

e] D Es] L | D T]

Employee ID

—> Year

Figure 3.2: Hive Data Model

3.1.5 Common Use Cases

1. Data Warehousing and Analytics:
Hive is often used to create large-scale data warehouses, allowing users to run
queries on massive datasets for business analytics.

2. ETL Processes:
Hive is a critical tool in ETL (Extract, Transform, Load) pipelines, processing
raw data into structured forms for further analysis.

3. Log Processing:
Hive is widely used to process logs generated by web applications, transforming
raw logs into structured data for reporting.

4. Business Intelligence and Reporting:
Hive’s SQL-like interface allows integration with BI tools, making it suitable
for data analysis and visualization.

3.1.6 Advantages and Limitations
3.1.6.1 Advantages

e Scalable and Cost-Effective: Hive scales easily, providing cost-effective
processing of big data.

e Compatibility with BI Tools: Hive’'s SQL-like syntax allows easy integra-
tion with popular BI tools like Tableau and Power BI.

e Schema Flexibility: Supports various data formats including text, ORC,
Parquet, Avro, and more.

19

3.1.6.2 Limitations

e Not Suitable for Real-Time Processing: Hive is designed for batch pro-
cessing and is not ideal for real-time data processing needs.

e Performance Overheads: Queries in Hive can be slower compared to other
SQL-based engines because of the overhead of MapReduce.

3.2 Apache Hive Data Loading Architecture

Apache Hive is a data warehousing solution built on top of Hadoop, providing SQL-
like query capabilities for managing and analyzing large datasets. Loading data into
Hive involves several steps and architectural components to ensure that the data is
ingested, stored, and managed efficiently.

3.2.1 Data Sources

The data to be loaded into Hive can come from various sources, such as:

e Local file systems

Distributed file systems (e.g., HDFS)

Relational databases

NoSQL databases

Streaming data sources

3.2.2 Key Components of Hive Data Loading
1. Hive Metastore:

e The Metastore is the central repository for all metadata concerning Hive
tables, including table definitions, column types, partition details, and
the location of data files.

e [t acts as a catalog that enables Hive to map SQL queries to data stored in
Hadoop Distributed File System (HDFS) or other supported file systems.
2. Hive Warehouse Directory:
e This is the default location where Hive stores its managed table data. By
default, it is located at /user/hive/warehouse on HDFS.
e For external tables, data can reside outside the warehouse directory, pro-
viding flexibility in managing the data independently.
3. Hive Tables:
e Managed Tables: Hive manages both the schema and the data. Data
files are moved into the Hive warehouse directory upon loading.

e External Tables: Only the schema is managed by Hive, allowing the
data to reside outside Hive’s control, such as on HDF'S or a cloud storage
system.

20

3.2.3 Data Loading Methods in Hive
1. LOAD DATA Command:

1

The LOAD DATA command is used to move data files into Hive tables
from a specified location, either on the local file system or HDFS.

Syntax:

LOAD DATA [LOCAL] INPATH [OVERWRITE]

INTO TABLE table_name [PARTITION (partcoll=vall,
partcol2=val2 ...)];

Example:

LOAD DATA LOCAL INPATH
INTO TABLE employees;

LOCAL keyword specifies that the file is on the local file system; other-
wise, Hive looks for the file on HDF'S.

OVERWRITE will replace existing data in the table if specified.

2. INSERT INTO/INSERT OVERWRITE:

0 ¥)

These SQL commands allow inserting data into existing Hive tables using
results from queries.

INSERT INTO appends data to a table, while INSERT OVER-
WRITE replaces existing data.

Example:

INSERT INTO employees SELECT * FROM new_employees;

INSERT OVERWRITE TABLE employees
SELECT * FROM updated_employees
WHERE status = ;

3. CREATE TABLE AS SELECT (CTAS):

The CTAS statement creates a new table and directly inserts the results
of a query into it.

This approach is often used to create derived tables or to transform and
load data in a single step.

Example:

CREATE TABLE high_salary_employees
AS

SELECT * FROM employees

WHERE salary > 100000;

21

4. Using Hive Streaming API:

e The Hive Streaming API allows continuous data ingestion into Hive ta-
bles, particularly useful for near real-time analytics.

e [t supports incremental data loading, where data is streamed into Hive
tables without needing batch processing.

5. Bulk Import with Apache Sqoop:

e Apache Sqoop is often used for bulk data import from relational databases
into Hive.

e Data is imported directly into Hive tables using Sqoop commands, facil-
itating efficient loading of large datasets.

3.2.4 Partitioning and Bucketing in Hive

1. Partitioning:

e Partitioning divides a table into parts based on the values of a specific
column, improving query performance by limiting the amount of data
scanned.

e For example, partitioning by date or region allows queries to focus only
on relevant partitions.

e Example:

1 |CREATE TABLE sales (
product STRING,
amount INT, date STRING

¥

)
PARTITIONED BY (region STRING);

2. Bucketing:

e Bucketing further divides data within each partition into buckets based
on the hash of a column, which helps improve query performance during
joins and sampling.

e Example:

1 |CREATE TABLE orders (
2 orderid INT,

3 customer_name STRING

c)

5 | CLUSTERED BY (customerid)
¢ | INTO 4 BUCKETS;

22

3.2.5 File Formats and Compression

1. File Formats:
Choosing the right file format is critical for performance optimization. Table
3.2 compares various file formats used in Hive, highlighting their properties
such as columnar support, compressibility, readability, handling of complex
data types, schema evolution, space utilization, and support for ACID trans-
actions. Here’s a detailed breakdown of each format and its capabilities:

. Complex Space
File For.mat/ Columnar | Compressible | Readable Data Scherr'la Utilization ACID.
Properties Evolution Transactions

Types Rank

Text File No Yes Yes No No 6 No
Sequence File No Yes Yes Yes Yes 5 No
RC File Yes Yes No Yes Yes 2 No
ORC File Yes Yes No Yes Yes 1 Yes
Avro No Yes No Yes Yes 4 No
Parquet Yes Yes No Yes Yes 3 No

Table 3.2: Comparison of File Formats and Properties

(a) Text File:

Columnar: Text files store data in rows, making them inefficient
for column-based queries.

Compressible: Text files can be compressed using algorithms like
Gzip or Snappy, though not as efficiently as columnar formats.
Readable: Plain text is human-readable, making it easy to debug
or inspect the data.

Complex Data Types: Does not natively support complex data
types like structs, arrays, or maps without additional serialization.
Schema Evolution: Schema changes are not natively supported;
modifications need careful data handling and manual adjustments.
Space Utilization Rank: Least space-efficient among the formats,
as plain text takes up more storage without any inherent data opti-
mization.

ACID Transactions: Does not support ACID properties, making
it unsuitable for transactional processing.

(b) Sequence File:

Columnar: Data is stored in a binary format with key-value pairs
but not in a columnar layout.

Compressible: Supports compression at the record and block levels,
which can improve performance by reducing 1/O overhead.

Readable: Binary format is readable through Hadoop tools but not
as straightforward as plain text.

Complex Data Types: Can handle complex data types, making it
versatile for various data structures.

Schema Evolution: Supports changes to the data schema without
needing to rewrite existing data.

23

Space Utilization Rank: More efficient than plain text but less
optimized compared to columnar formats.

ACID Transactions: Does not support ACID properties, limiting
its use in transactional systems.

(¢) RC File (Record Columnar File):

Columnar: RCFile stores data in a columnar format, making it
efficient for queries that access specific columns.

Compressible: Supports compression, which helps in reducing the
storage footprint and speeding up query performance.

Readable: Not easily readable due to its binary format and colum-
nar storage structure.

Complex Data Types: Capable of storing complex data types such
as structs, arrays, and maps.

Schema Evolution: Allows schema modifications, providing flexi-
bility in data handling over time.

Space Utilization Rank: Highly efficient in space utilization due
to its columnar nature and compression.

ACID Transactions: Lacks native support for ACID properties,
making it less suitable for applications requiring strong consistency.

(d) ORC File (Optimized Row Columnar File):

Columnar: ORC is a columnar storage format, optimized for fast
data retrieval, especially in analytic workloads.

Compressible: ORC files provide efficient compression, reducing
both storage costs and read times.

Readable: Not human-readable; requires Hive or other tools for
data interpretation.

Complex Data Types: Fully supports complex data types, making
it ideal for structured data analysis.

Schema Evolution: Supports adding or changing columns without
needing to rewrite the entire dataset.

Space Utilization Rank: The most space-efficient format due to
advanced compression techniques and columnar storage.

ACID Transactions: ORC supports ACID properties, making it
suitable for applications requiring transactional integrity.

(e) Avro:

Columnar: Avro stores data in a row-oriented format, focusing on
efficient data serialization.

Compressible: Supports various compression algorithms, which
help minimize the storage and improve data transfer speeds.

Readable: Data is stored in a binary format, which is not human-
readable but optimized for machine processing.

Complex Data Types: Strong support for complex data struc-
tures, making it suitable for varied data types.

24

(f)

e Schema Evolution: Avro excels in handling schema evolution, al-
lowing forward and backward compatibility for schema changes.

e Space Utilization Rank: Efficient but not as optimized as colum-
nar formats like ORC or Parquet.

e ACID Transactions: Does not support ACID transactions, limit-

ing its use in environments requiring strong consistency guarantees.
Parquet:

e Columnar: Parquet is a highly efficient columnar storage format
that optimizes both read and write performance.

e Compressible: Supports compression, which helps to significantly
reduce the storage footprint and improve 1/O performance.

e Readable: Data is stored in a columnar binary format that requires
specific tools for access.

e Complex Data Types: Capable of storing complex data types,
enhancing its use in data warehousing and analytics.

e Schema Evolution: Allows schema changes, making it versatile for
evolving data models.

e Space Utilization Rank: Highly efficient in space utilization, es-
pecially for large, complex datasets.

e ACID Transactions: Does not support ACID properties, which
restricts its use in transactional applications.

Key Insights:

Columnar Formats (ORC, Parquet, RCFile): Best suited for ana-
lytical workloads due to their ability to store data in columns, allowing
efficient query processing and reduced I1/0.

Compressibility: All formats support compression, but columnar for-
mats typically offer better compression rates due to their data organiza-
tion.

Schema Evolution: Avro, ORC, and Parquet handle schema changes
gracefully, which is crucial for data systems that undergo frequent up-
dates.

Space Utilization: ORC is the most space-efficient, followed by Par-
quet and RCFile, due to their advanced data compression and storage
optimization techniques.

ACID Support: Only ORC supports ACID transactions, making it the
preferred choice for use cases that require transactional integrity.

This analysis helps to choose the appropriate file format in Hive based on the
specific needs of storage efficiency, query performance, and schema manage-
ment capabilities.

25

2. Compression:

e Compression reduces storage space and can improve 1/O performance by
minimizing data transfer times.

e Supported compression algorithms include Snappy, Gzip, and Bzip2, with
Snappy being commonly used due to its balance between compression
speed and size.

3.2.6 Schema Evolution and Data Management

1. Schema Evolution:

e Hive supports schema evolution, allowing changes to table schemas with-
out rewriting existing data. For example, adding new columns or chang-
ing data types is possible through the ALTER TABLE command.

2. Table Management Commands:

e ALTER TABLE: Used for schema changes.

¢ MSCK REPAIR TABLE: Updates the metadata for tables with newly
added partitions.

3.2.7 Best Practices for Data Loading in Hive

1. Use External Tables for Large Datasets: This approach keeps data man-
agement independent of Hive, providing more control over data storage and
deletion.

2. Partition and Bucket Large Tables: This strategy optimizes query per-
formance by reducing the data read during queries.

3. Choose Columnar File Formats for Analytics: Formats like ORC and
Parquet significantly improve query performance by reading only the necessary
columns.

4. Utilize Compression for Storage Efficiency: Apply compression to re-
duce storage costs and improve data retrieval speeds.

5. Maintain Metadata Consistency: Regularly update the Hive Metastore,

especially when working with external data sources, to ensure data accuracy.

3.2.8 Data Loading Workflow in Hive

1. Extract Data: Data is extracted from various sources such as databases,
APIs, or flat files.

2. Transform Data: Data may be transformed using tools like Apache Spark,
Pig, or ETL scripts before loading into Hive.

3. Load Data: The data is loaded into Hive using LOAD DATA, INSERT INTO,
INSERT OVERWRITE, or other methods based on requirements.

26

4. Optimize Storage: Partitioning, bucketing, and file format optimization are
applied to improve performance.

5. Manage Data: Regular schema updates and data maintenance are performed
to ensure data consistency and accessibility.

3.3 Traditional Hive Data Ingestion Architecture
(Any File Type)

This architecture outlines the traditional approach used in Hive to ingest data,
typically stored in HDFS (Hadoop Distributed File System), and organize it into
partitions for efficient querying. Here’s a detailed step-by-step explanation of the
architecture depicted in the Figure 3.3:

partition table loaded into specific partition ‘
based on directory name v
'y
Select data from hive
| using partition name
Create partition folder inside Load files from
external partition table » staging/gateway server to
directory in HDFS external partition directory

Figure 3.3: Traditional Hive Data Ingestion Architecture (Any File Type)

1. Create External Partition Table:

e Purpose: An external table in Hive is defined, which points to data
stored outside the Hive database in HDF'S. This is useful because it allows
data to be managed independently of Hive and does not delete data when
the table is dropped.

e Benefits: It allows you to work with large datasets stored in HDF'S while
maintaining flexibility in managing the table schema.

2. Create Partition Folder Inside External Partition Table Directory
in HDF'S:

e Purpose: After creating the external table, you create directories (fold-
ers) in HDFS corresponding to the partitions of the table. Each partition
represents a subset of the data, typically organized by a column (e.g.,
date, region) for efficient query performance.

e Example: If the partition column is a date, folders like year=2023 /month=09/day=04
would be created.

3. Load Files from Staging/Gateway Server to External Partition Di-
rectory:

27

e Purpose: Data files are loaded into the partition folders from a staging
or gateway server. This staging server acts as an intermediary where data
is initially uploaded or processed before being transferred to the HDFS
partition directories.

e Data Types: The files can be of any type (e.g., CSV, JSON, Parquet),
but the type must align with the table schema defined in Hive.

4. Files Will Be Automatically Loaded into Specific Partitions Based
on Directory Name:

e Automation: Hive automatically maps the files to the corresponding
partitions based on the folder names in HDFS. This is a key feature of
partitioning, as it enables Hive to only scan relevant data during queries.

e Benefit: This reduces the amount of data read and processed, improving
performance for large datasets.

5. Select Data from Hive Using Partition Name:

e Query Execution: Once the data is loaded into the partitions, it can
be queried using HiveQL (Hive Query Language). Queries can filter data
based on partition columns, significantly reducing the query time.

¢ Example: A query like

1 | SELECT * FROM table_name
> | WHERE partition_column = ;

will only scan the data in the relevant partition.

Key Advantages:

e Improved Performance: By partitioning data, Hive can significantly reduce
the amount of data read during queries.

e Scalability: This architecture is highly scalable, allowing for the ingestion of
large volumes of data.

e Flexibility: The use of external tables keeps the data management flexible,
as the underlying data in HDFS can be independently managed.

Use Case:

This architecture is commonly used in data warehousing environments where large
datasets are ingested periodically (e.g., daily logs) and need to be efficiently queried
based on specific criteria like date or category.

28

3.4 Choosing Right File Type

For large-scale data warehouses or data lakes, the approach to data storage can
significantly impact the performance, storage efficiency, and overall manageability of
the system. Here’s an explanation of why simply storing any type of file is not ideal,
and why ORC (Optimized Row Columnar) is considered the best for transactional
data, performance, and size.

3.4.1 Challenges of Storing Any Type of File

e Lack of Optimization: Different file formats (e.g., plain text, CSV) do
not offer the necessary optimizations for reading, writing, and querying data
efficiently. This can lead to slower performance when processing large volumes
of data.

e Inefficient Space Utilization: Generic file formats are often not space-
efficient. For instance, text files or CSVs store data in raw format without
any compression, leading to higher storage costs, especially when dealing with
terabytes or petabytes of data.

e Complex Data Handling: Many file types lack support for complex data
types, such as nested structures, which are often required in modern data
analytics.

e Limited Support for Schema Evolution: Not all file formats support
schema evolution, making it difficult to handle changes in the data schema
over time without impacting existing data.

3.4.2 Why ORC is Best for Transactional Data, Perfor-
mance, and Size

e Columnar Storage: ORC is a columnar file format, which means that data
is stored column by column rather than row by row. This allows for efficient
data retrieval and is particularly advantageous for analytical queries that only
need access to a few columns.

e High Compression: ORC offers high compression rates, which significantly
reduce storage requirements. It uses advanced compression techniques that
are optimized for columnar data, resulting in smaller file sizes compared to
other formats like Parquet or Avro.

e Improved Performance: ORC is designed for high-performance read and
write operations, which is crucial for transactional data. It uses indexes,
lightweight compression, and in-file data statistics to speed up data retrieval,
making it faster than other file formats for most analytical workloads.

e Support for ACID Transactions: ORC supports ACID (Atomicity, Consis-
tency, Isolation, Durability) transactions, which is essential for ensuring data
integrity and consistency in data lakes and warehouses where transactional
data is frequently updated.

29

e Schema Evolution: ORC supports schema evolution, allowing changes to
be made to the data schema without breaking existing queries or applications.
This flexibility is critical in environments where data structures change over
time.

e Space Efficiency: With its columnar layout, ORC achieves excellent space
utilization, ranking as one of the most space-efficient formats, which helps
reduce storage costs significantly in large-scale environments.

While it may seem convenient to store data in any format, using optimized formats
like ORC is crucial in large-scale data warehouses or lakes. ORC’s columnar storage,
high compression, performance optimization, support for complex data types, and
ACID compliance make it an ideal choice for managing large volumes of transactional
data efficiently.

3.5 Traditional Hive Data Ingestion Architecture
(Any File type to ORC)

In the realm of big data, efficient data ingestion and storage are paramount for ensur-
ing optimal performance and scalability. Apache Hive, a data warehousing solution
built on top of Hadoop, provides robust mechanisms for managing and querying
large datasets. The Architecture given in Figure 3.4 delves into the traditional Hive
data ingestion architecture, specifically focusing on the process of converting vari-
ous file types into the ORC (Optimized Row Columnar) format. By leveraging this
architecture, organizations can achieve significant improvements in data processing
efficiency, storage optimization, and query performance. The following sections pro-
vide a detailed analysis of each step involved in this architecture, highlighting the
key components and their roles in the data ingestion pipeline.

Landing Batch Process —— Staging Batch Process

|

Copy data from gateway Create temporary external
server to temporary HDFS table on temporary HDFS
directory directory

|

Insert data from temporary
table to final partitioned
table

Figure 3.4: Traditional Hive Data Ingestion Architecture (Any File type to ORC)

30

3.5.1 Landing Batch Process
1. Copy Data from Gateway Server to Temporary HDFS Directory

e Description: This initial step involves transferring raw data files from
an external gateway server to a temporary directory within the Hadoop
Distributed File System (HDFS).

e Purpose:

— Data Ingestion: This step ensures that the data is ingested into
the Hadoop ecosystem, making it accessible for further processing.

— Temporary Storage: The temporary HDFS directory acts as a
staging area where data can be temporarily stored before it is pro-
cessed and moved to its final destination.

e Process:

— Data is copied using tools like scp, rsync, or Hadoop-specific tools
like DistCp (Distributed Copy).

— The temporary directory is typically named to reflect the batch or
date of ingestion for easy tracking.

3.5.2 Staging Batch Process
1. Create Temporary External Table on Temporary HDFS Directory

e Description: An external table is created in Hive that points to the
data stored in the temporary HDFS directory.
e Purpose:

— Data Management: This step allows Hive to manage and query
the data without physically moving it from the temporary directory.
— Schema Definition: The external table defines the schema of the
data, specifying the structure and data types of the columns.
e Process:

— A HiveQL command is used to create the external table. For exam-
ple:

1 | CREATE EXTERNAL TABLE temp_table (
2 columnl STRING,
3 column2 INT,

50D
¢ |ROW FORMAT DELIMITED
7 |[FIELDS TERMINATED BY
s | LOCATION ;

— This command specifies the schema and the location of the data in
HDF'S.

31

2. Insert Data from Temporary Table to Final Partitioned Table

e Description: The data from the temporary external table is inserted
into a final partitioned table in Hive.

e Purpose:

— Data Transformation: This step involves transforming the data

as needed (e.g., filtering, aggregating) before loading it into the final
table.

— Optimized Storage: The final table is partitioned and stored in

the ORC format, which is optimized for performance and storage
efficiency.

e Process:

— A HiveQL command is used to insert the data. For example:

N

INSERT INTO final_table PARTITION (
partition_column)

SELECT columnl, column2,

FROM temp_table;

This command transfers the data from the temporary table to the
final partitioned table, applying any necessary transformations.

The final table is defined to use the ORC format for storage:

CREATE TABLE final_table (
columnl STRING,
column2 INT,

)
PARTITIONED BY (partition_column STRING)
STORED AS ORC;

3.5.3 Benefits of This Architecture

Scalability: The architecture is designed to handle large volumes of data
efficiently.

Performance: Using ORC format for the final table ensures fast query per-
formance due to its columnar storage and compression capabilities.

Flexibility: The use of external tables allows for flexible data management
and easy integration with various data sources.

Data Organization: Partitioning the final table helps in organizing the data
and improving query performance by reducing the amount of data scanned.

This architecture ensures that data is ingested, managed, and stored in an optimized
manner, making it suitable for large-scale data warehouses or data lakes.

32

3.6 Sequential Process Bottlenecks

The sequential nature of the landing and staging batch processes can indeed slow
down the ingestion of large volumes of data. Let’s delve into why this happens and
explore potential improvements.

1. Landing Batch Process:

e Copying Data: This step involves transferring data from the gateway
server to a temporary HDFS directory. The speed of this process depends
on network bandwidth and the size of the data. Large datasets can take
a significant amount of time to transfer.

2. Staging Batch Process:

e Creating Temporary External Table: Once the data is in the tempo-
rary HDFS directory, an external table is created. This step is relatively
quick but still adds to the overall processing time.

e Inserting Data into ORC: This is the most time-consuming step. Con-
verting data to ORC format involves reading the data from the temporary
table and writing it into the final partitioned table. This process is 1/O
intensive and can be slow for large datasets.

3.6.1 Why Sequential Processing is Slow

e Dependency: Each step depends on the completion of the previous one.
The landing process must finish before the staging process can begin. This
sequential dependency creates a bottleneck, especially when dealing with large
volumes of data.

e Resource Utilization: Sequential processing can lead to underutilization
of resources. While one process is running, other resources may remain idle,
leading to inefficiencies.

3.6.2 Potential Improvements

1. Parallel Processing;:

e Data Partitioning: Split the data into smaller chunks and process them
in parallel. This can significantly reduce the time required for data trans-
fer and conversion.

e Concurrent Execution: Run the landing and staging processes con-
currently where possible. For example, start processing the first chunk of
data in the staging process while the next chunk is being copied in the
landing process.

2. Incremental Data Ingestion:

e Instead of waiting for the entire dataset to be copied, start processing data
incrementally. This approach can help in reducing the overall processing
time.

33

3. Optimized Data Transfer:

e Use faster data transfer protocols and optimize network bandwidth to
speed up the data copying process.

4. Efficient Resource Management:

e Allocate resources dynamically based on the workload. Use resource man-
agement tools to ensure that the system is not overloaded and resources
are utilized efficiently.

By implementing these improvements, one can significantly reduce the time required
for data ingestion and make the process more efficient.

34

Chapter 4

Research Methodology

4.1 Proposed Architecture

4.1.1 Two Asynchronous Processes

A Proposed Architecture that separates the Landing Batch Process and Staging
Batch Process into two asynchronous processes is shown in Figure 4.1. Let’s break
down how this new architecture works and its potential benefits:

Landing Batch Process Staging Batch Process

Figure 4.1: Proposed Architecture — Two Asynchronous Processes

1. Landing Batch Process

e Purpose: This process is responsible for the initial data ingestion.
e Steps:

— Copy data from gateway server to temporary HDFS direc-
tory: Similar to the traditional approach, data is transferred from
the gateway server to a temporary HDFS directory. However, this
process runs independently of the staging process.

2. Staging Batch Process

e Purpose: This process handles the transformation and loading of data
into the final format.

35

e Steps:

— Create temporary external table on temporary HDFS direc-
tory: Once the data is available in the temporary HDF'S directory,
an external table is created.

— Insert data from temporary table into Final Table: Data is
then inserted from the temporary table into the final partitioned
table in ORC format.

4.1.1.1 Benefits of Asynchronous Processing

1. Parallel Execution:

e By separating the landing and staging processes, they can run in parallel
rather than sequentially. This reduces the overall processing time as both
processes can utilize system resources simultaneously.

2. Improved Resource Utilization:

e Resources are better utilized since both processes can run concurrently.
This reduces idle time and ensures that the system is working efficiently.

3. Scalability:

e The architecture can handle larger volumes of data more effectively. As
data ingestion and processing are decoupled, each process can be scaled
independently based on the workload.

4. Flexibility:

e This approach allows for more flexibility in managing data workflows. For
example, if there is a delay in data transfer, the staging process can still
proceed with the available data without waiting for the entire dataset to
be copied.

5. Reduced Bottlenecks:

e By decoupling the processes, bottlenecks caused by sequential dependen-
cies are minimized. This leads to faster data processing and ingestion
times.

4.1.1.2 Flow of Processes

e Landing Batch Process: Runs independently to copy data from the gateway
server to the temporary HDFS directory.

e Staging Batch Process: Runs independently to create a temporary external
table and insert data into the ORC format.

This proposed architecture can significantly improve the efficiency and speed of data
ingestion and processing, especially for large datasets.

36

4.1.2 Master Landing & Staging Batch Process

The proposed architecture outlines a Master Landing & Staging Batch Process that
separates the responsibilities between a master process and multiple child processes
is shown in Figure 4.2. Here’s a detailed explanation:

Master process completes
after initiating individual Landing/Staging Master

processes. Process
- Configuration table holds

all the configurations to
make the framework no-

<+————> Configuration Data

code.
Landing/Staging Landing/Staging R Landing/Staging
Individual Source Process Individual Source Process Individual Source Process

Figure 4.2: Master Landing & Staging Batch Process

1. Landing/Staging Master Process

e Role: The master process is responsible for initiating and coordinating
the data loading tasks for each individual source.

e Steps:

— Initiate Individual Source Processes: The master process reads
the configuration data and initiates the landing and staging processes
for each data source. This ensures that each source is handled inde-
pendently and asynchronously.

— Configuration Data Interaction: The master process interacts
with a configuration table that holds all the necessary configurations.
This makes the framework no-code, meaning changes can be made
by updating configurations rather than altering the code.

2. Landing/Staging Individual Source Processes (Child Processes)
e Role: Each child process is responsible for executing the data loading
for a specific data source.
e Steps:

— Landing Process: Copy data from the gateway server to the tem-
porary HDF'S directory for the specific source.

— Staging Process: Create a temporary external table on the tem-
porary HDF'S directory and insert data into the final ORC table.

37

4.1.2.1 Benefits of This Architecture

1. Asynchronous Processing:

e By separating the master and child processes, data loading tasks can
be executed asynchronously. This reduces the overall processing time as
multiple data sources can be processed in parallel.

2. Scalability:

e The architecture is highly scalable. New data sources can be added by
simply updating the configuration table, without needing to modify the
code.

3. Modularity:

e Each child process operates independently, making the system modular.
This improves maintainability and allows for easier troubleshooting and
updates.

4. Efficiency:

e The master process ensures that all child processes are initiated and man-
aged efficiently. This reduces the risk of bottlenecks and improves re-
source utilization.

5. Flexibility:

e The no-code approach allows for greater flexibility. Changes to the data
loading process can be made quickly by updating the configuration data.

4.1.2.2 Flow of Processes

e Master Process: Reads configuration data and initiates individual source
processes.

e Child Processes: Each child process handles the landing and staging for a
specific data source, running independently and in parallel with other child
processes.

This architecture is designed to improve the efficiency and manageability of data
ingestion and processing, especially when dealing with multiple data sources.

4.1.3 Child Landing Batch Process

The Child Landing Batch Process is a crucial component of the proposed data inges-
tion architecture, designed to handle the initial stages of data processing indepen-
dently for each data source. This process involves dynamically creating temporary
and backup directories, ensuring that data is securely stored and readily available
for further processing. By managing data through distinct stages—backup, tem-
porary, and reject directories—the Child Landing Batch Process ensures efficient
handling, logging, and storage of data. This modular approach not only enhances
the flexibility and scalability of the data ingestion framework but also improves

38

resource utilization and reduces processing time by allowing parallel execution of
tasks. Figure 4.3 outlines the Child Landing Batch Process.

Live Directory
]
v

Backup Directory <+—— Temporary Directory ——> Reject Directory

‘ r Dynamically creates-
- Landing log table
- Processedfile list

HDFS Landing Directory table

Dynamically creates-
- temporary, backup
and reject directory

1 2 LI N n

- H.DFS landing - Temporary file list
directory table
for the first time. for the first time in HIVE.

Figure 4.3: Child Landing Batch Process

1. Temporary Directory

e Function: This is the initial stage where data is first stored.
e Steps:

— Data Ingestion: Data is ingested into the temporary directory.

— Processing Steps (1 to n): The data undergoes various processing
steps such as validation, transformation, and preparation for final
storage.

2. HDFS Landing Directory
e Function: After processing in the temporary directory, data is copied to
the HDFS landing directory.
e Purpose: Acts as the central hub for storing processed data before it is
moved to the final destinations.
3. Backup Directory
e Function: After data is copied to the HDFS landing directory, it is also
backed up.
e Purpose: Ensures that there is a secure backup of the data for recovery
and integrity purposes.
4. Reject Directory
e Function: Any data that fails validation or processing steps is moved to
the reject directory.

e Purpose: Manages rejected data by creating log tables and storing any
data that doesn’t meet the criteria. This helps in tracking and managing
errors or discrepancies in the data.

39

4.1.3.1 Flow of Processes

1.

Data is first stored in the Temporary Directory: This is where initial
data ingestion and processing occur.

. Data is copied to the HDFS Landing Directory: After processing, data

is moved to the HDFS landing directory for centralized storage.

. Data is backed up in the Backup Directory: Ensures data integrity and

recovery by creating a backup.

. Rejected data is moved to the Reject Directory: Manages and logs any

data that doesn’t meet the criteria.

4.1.3.2 Dynamic Creation of Directories and Tables

Temporary Directory: The temporary directory is dynamically created to
handle the initial data ingestion and processing steps. This ensures that the
system can adapt to varying data loads and requirements without manual
intervention.

HDFS Landing Directory: The HDFS landing directory is dynamically
created to store data after it has been processed in the temporary directory.
This ensures that there is a centralized and organized location for all processed
data, facilitating efficient data management and retrieval.

Backup Directory: The backup directory is dynamically created for the first
time to ensure that there is a secure backup of the data.

Reject Directory: The reject directory is dynamically created to manage
rejected data.

Landing Log Tables: Tables that log the details of the data landing process.

Processed File List Tables: Tables that keep track of files that have been
processed.

Temporary File List Tables: Tables that list temporary files created during
the process.

This dynamic creation approach ensures that the system is flexible and can handle
varying data loads efficiently. It also simplifies the management and maintenance
of the data ingestion process by automating the creation of necessary directories
and tables. This architecture ensures a systematic and efficient approach to data
ingestion, processing, and management, with clear stages for temporary storage,
backup, and rejection handling.

40

4.1.4 Child Staging Batch Process

The Child Staging Batch Process is a critical component of the proposed data inges-
tion architecture, designed to efficiently manage and process data through various
stages. This process involves dynamically creating staging raw tables and a stag-
ing live table in Hive, ensuring that data from multiple sources is systematically
organized and prepared for analysis. Data initially stored in the HDFS landing di-
rectories is transferred to corresponding staging raw tables, and then consolidated
into a staging live table through dynamically generated selection queries. This struc-
tured approach not only enhances data management and processing efficiency but
also ensures scalability and flexibility in handling large volumes of data. Figure 4.4
outlines the Child Landing Batch Process.

HDFS Landing Directory

1 2 = n 1 2 | n 1 2 | n

Dir: Landing id 1 Dir: Landing id 2 LR Dir: Landing id n

Staging Raw Table 1 Staging Raw Table 2 Staging Raw Table n
— ‘\\ e .
T~ \ — Dynamically creates-
TSN \ _— - Staging raw table for

Dynamically creates- SV each Ia.mding directory
- Staging log table Staging Live Table - SeIeFtlon query from
- Staging live table stag!ng raw table to
for the first time in HIVE. staging live table

on each iteration.

Figure 4.4: Child Staging Batch Process

1. HDFS Landing Directory
e Function: Acts as the initial storage location for data after it has been
processed in the landing batch process.

e Components: Multiple directories labeled as “Dir: Landing id 1,” “Dir:
Landing id 2,” up to “Dir: Landing id n,” indicating that data from
various sources is stored here.

2. Staging Raw Tables

e Function: Each landing directory has a corresponding staging raw table
in Hive.
e Dynamic Creation: These staging raw tables are dynamically created
for the first time in Hive to store raw data from the landing directories.
3. Staging Live Table
e Function: Consolidates data from the staging raw tables into a single
staging live table.

e Process: Data is selected from each staging raw table and inserted into
the staging live table on each iteration.

41

e Dynamic Creation: The staging live table is dynamically created for
the first time in Hive.

4. Staging Log Table

e Function: Logs the details of the staging process.

e Dynamic Creation: The staging log table is dynamically created for
the first time in Hive to track the staging process.

5. Selection Query

e Function: Moves data from staging raw tables to the staging live table.

e Dynamic Creation: The selection query is dynamically created for each
iteration to ensure that data is accurately moved from the staging raw
tables to the staging live table.

4.1.4.1 Flow of Processes

1. Data is stored in the HDFS Landing Directory: Data from various
sources is initially stored in the respective landing directories.

2. Data is moved to Staging Raw Tables: Each landing directory’s data is
transferred to its corresponding staging raw table.

3. Data is consolidated into the Staging Live Table: Data from the staging
raw tables is selected and inserted into the staging live table on each iteration.

This architecture ensures efficient data staging by organizing data through multiple
stages, from landing directories to raw tables, and finally to a live table, facilitating
better data management and processing.

4.1.5 Required Configuration for Data Loading

In the proposed architecture for data loading, a set of essential configurations ensures
efficient and accurate ingestion of data. These parameters define how files are picked
up, processed, and distributed within the system. From specifying source directories
and file patterns to determining parallel processes and minimum file requirements,
each configuration plays a crucial role in maintaining smooth data flow. Let’s explore
these settings in detail to understand their significance in the data loading process.

1. Source id:

e This parameter serves as a small, unique identifier without spaces. It
likely corresponds to a specific data source or category. For instance,
the example “noaa_hourly” could represent hourly weather data from the
National Oceanic and Atmospheric Administration (NOAA).

e [t’s essential for organizing and managing data, especially when dealing
with multiple sources.

42

. Server ip:

e The “Server ip” refers to the IP address of the server responsible for file
distribution and executing batch processes. It’s the gateway server.

e The gateway server plays a crucial role in handling data transfers, pro-
cessing, and distribution.

. Live directory:

e The “Live directory” specifies the physical directory on the gateway server
where files are actively processed.

e For example, “/landing_batch_process/noaa_hourly/data/” indicates the
location where incoming files related to the “noaa_hourly” source are
stored.

. File pattern:
e This parameter defines the pattern used to identify source files. The

wildcard character “*” can be used to match any characters.

e For instance, “*.csv” would include all CSV files within the specified
directory.

e This setting ensures that the system processes the correct file types.
. Parallel process:

e “Parallel process” indicates the number of concurrent processes required
for the landing batch process.

e Typically, it’s set to 1 unless performance issues (such as slowness) are
observed.

. Maximum files per landing process:

e Determines the maximum file processing capacity on each iteration of the
landing batch process.

e Values can be 50, 100, 500, 1000, or 5000.

. Threads per process:

e These threads are responsible for loading files into the Hadoop Dis-
tributed File System (HDFS) during the landing batch process.

e The default value is 5, but adjustments may be necessary based on system
performance.

. Minimum files requirement:

e The minimum number of files needed to initiate the landing batch process.

e The specific requirement depends on the data source. For example, it
could be 10, 20, 100, 500, or 1000 files.

43

10.

11.

12.

13.

14.

15.

. Landing status:

e Indicates whether the landing batch process is active or inactive.

e Values: 0 (inactive) or 1 (active).
Maximum landing per staging:

e Sets the maximum number of landing batch process data to select for
each iteration.

e Depends on the data source (e.g., 1, 2, 5, or 10).
Fields name:

e Refers to source field names separated by commas.

e Example: “field_ name_1, field name_2, field_name_3.”
Field delimiter:

e Specifies the character that separates each column in the data.

(13X

e For example, a comma (“,”) is commonly used.
Enclosed by:

e If fields are enclosed by any characters (e.g., quotes), this field provides
that information; otherwise, it remains blank.

File date identifier:

e Describes the logic for identifying the file date from the file name.

e Used for extraction in Hive; logic may differ for different sources (e.g.,
“yyyymmdd”).

Staging status:

e Indicates whether the staging batch process is active or inactive.

e Values: 0 (inactive) or 1 (active).

These configurations play a crucial role in setting up data loading processes within
the proposed architecture. Adjusting these parameters correctly ensures efficient
data ingestion and management.

44

N

4.1.6 One Single INSERT Query to Start Data Loading

Before starting the data loading process, an INSERT query is used to insert con-
figuration data into the configuration table. This query is essential as it triggers
the data loading process according to the proposed architecture, ensuring that all
configurations are correctly set for seamless data ingestion into the target tables.

insert into configuration_table_name (
source_id, server_ip, live_dir, file_pattern,

parallel _process, max_files_per_iter,
threads_per_process, min_files_requirement,
landing_status, max_landing_per_staging, fields_name,
field_delim, enclosed_by, file_date_identifier,
staging_status

)

values (

4.2 Experimental Environment and Assumptions

In this study, the performance of the proposed asynchronous and parallel data load-
ing architecture was evaluated in an idealized experimental environment. The focus
was on measuring the efficiency of the Landing Batch and Staging Batch processes
under controlled conditions. Key factors such as network congestion, bandwidth
variability, and hardware limitations were deliberately excluded from the experi-
mental setup.

While excluding these factors helped in providing a clearer assessment of the ar-
chitecture’s performance gains, it is important to recognize that real-world environ-
ments often face constraints such as network latency, data transfer bandwidth, and
processing bottlenecks. These factors could influence the actual performance of the
proposed architecture, and future experiments should aim to evaluate its robustness
under more variable network conditions.

45

Chapter 5

Implementation

5.1 Dataset

A detailed overview of the dataset used in this study’s implementation phase is pro-
vided. The dataset is crucial in validating the proposed data ingestion architecture
and serves as a real-world example of large-scale data processing.

5.1.1 Dataset Descriptions

This study utilizes three distinct datasets to evaluate the effectiveness of the pro-
posed architecture. These datasets vary in size, complexity, and structure, repre-
senting real-world challenges in big data processing.

Dataset 1: Global Hourly Weather Observations

The first dataset is the Global Hourly Weather Observations dataset, providing
comprehensive hourly weather data from multiple global weather stations, available
through the National Centers for Environmental Information (NCEI).

e Source Name: Global Hourly Weather Observations

Source URL: https://www.ncei.noaa.gov/data/global-hourly /archive/csv/

Dataset Year: 1989

Size: 10.78 GB

e File Count: 10,840
e Column Count: 54
e Record Count: 36,290,914

Dataset 2: CERT Insider Threat Detection Research

The second dataset comes from CERT Insider Threat Detection Research and fo-
cuses on security logs related to insider threats. Only the http.csv file is considered
for this experiment, providing large-scale network data.

e Source Name: CERT Insider Threat Detection Research

46

Source URL: https://www.kaggle.com/datasets/mrajaxnp/cert-insider-threat-
detection-research?select=http.csv

Size: 20.67 GB

e File Count: 20,653
e Column Count: 7
e Record Count: 28,706,668

Dataset 3: Stock Market Data - Nifty 100 Stocks Data
The third dataset contains stock market data of 101 companies, sampled at 5-minute
intervals, spanning from January 2015 to February 2022.

e Source Name: Stock Market Data - Nifty 100 Stocks Data

Source URL: https://www.kaggle.com/datasets/debashis74017 /stock-market-
data-nifty-50-stocks-1-min-data?resource=download

Size: 61.60 GB

File Count: 63,095

Column Count: 60

Record Count: 63,944,474

5.1.2 Dataset Composition

The three datasets represent a wide range of data structures and characteristics, each
serving as a unique test case for evaluating the performance and scalability of the
proposed asynchronous and parallel architecture. This diversity in data composition
allows for a comprehensive assessment of how the architecture handles different types
of workloads and data challenges.

1. Dataset 1: Global Hourly Weather Observations (NOAA)

e Structure: This dataset consists of structured time-series data, with
each record representing hourly weather observations from various weather
stations around the globe.

e Key Attributes: The dataset includes 54 columns, capturing a broad
range of meteorological parameters such as temperature, humidity, wind
speed, and precipitation. Additionally, each record is tagged with meta-
data like station IDs, timestamps, and geographical coordinates.

e Challenges:

— Large file count (10,840) and relatively large dataset size (10.78
GB).

— Handling time-series data with sequential dependencies, making it
ideal for testing partitioning strategies based on temporal data (e.g.,
year and station ID).

47

— Requires efficient compression and query optimization for time-based
retrieval in Hive.

e Use Case: Evaluates the architecture’s ability to handle structured,
multi-dimensional data with temporal components, a common require-
ment in meteorological and environmental analytics.

2. Dataset 2: CERT Insider Threat Detection Research

e Structure: This dataset consists of log data related to insider threats,
with HT'TP traffic records forming the basis of the analysis. The data is
semi-structured, with seven columns containing key information such as
timestamps, source/destination IP addresses, and HTTP methods.

e Key Attributes: 7 columns, which is considerably fewer than the other
datasets, but a massive record count (28.7 million records) and file count
(20,653).

e Challenges:

— Managing millions of small files, which can cause performance bot-
tlenecks during file ingestion in Hadoop HDF'S.

— High data volume requires a parallel processing approach to handle
the large number of records efficiently.

e Use Case: Provides a real-world scenario for testing how the architecture
handles cybersecurity log data, which is critical for organizations focused
on monitoring insider threats and abnormal user behavior. This dataset
is ideal for testing large-scale log analysis workflows with anonymization
requirements.

3. Dataset 3: Stock Market Data - Nifty 100 Stocks Data

e Structure: The dataset contains minute-level stock market data for 101
companies over a 7-year period, with each record representing stock prices
and related metrics at 5-minute intervals. The data is highly structured
and time-series-based.

e Key Attributes:

— A massive dataset with 63.9 million records and 60 columns, cap-
turing details such as open, high, low, close (OHLC) prices, trading
volume, and other financial indicators.

— The data spans a long time period (2015-2022), making temporal
partitioning critical for efficient query performance.

e Challenges:

— Handling extremely large files (63,095 files), which are spread across
multiple stock symbols and time periods.

— Ensuring efficient data partitioning based on stock symbol and date,
especially given the large number of columns, which can lead to per-
formance challenges during data insertion and retrieval.

— Maintaining data integrity while processing large amounts of histor-
ical financial data across multiple companies.

48

e Use Case: This dataset allows the proposed architecture to be tested in
a financial services context, where large volumes of high-frequency stock
market data need to be processed and analyzed. It tests the architecture’s
ability to support time-series analysis and quick query retrieval, which is
essential for financial analytics and trading systems.

5.1.3 Data Format and Characteristics

The dataset is provided in CSV format, which, while straightforward and easy to
read, presents certain limitations when dealing with large-scale data. CSV files are
not inherently optimized for performance, lack built-in support for schema evolution,
and are not space-efficient. As part of the ingestion process, these files can be con-
verted into more efficient formats such as ORC or Parquet, which support advanced
features like compression, indexing, and optimized columnar storage, significantly
enhancing performance and storage efficiency.

5.1.4 Relevance to the Study

The inclusion of three diverse datasets in this study is fundamental to providing a
comprehensive evaluation of the proposed asynchronous and parallel architecture.
Each dataset introduces unique characteristics and challenges, allowing for a thor-
ough assessment of the architecture’s flexibility, scalability, and performance under
varying real-world conditions. By testing across these diverse data types, this study
demonstrates the architecture’s ability to handle multiple use cases typically en-
countered in big data environments.

1. Handling of Time-Series Data
e Weather Data (NOAA) and Stock Market Data (Nifty 100):

Both the weather data and stock market data are inherently time-series
datasets, which require efficient handling of large volumes of temporally
ordered data. These datasets pose challenges related to time-based par-
titioning, sequential dependencies, and efficient retrieval of records over
specific periods.

— Relevance to the Study: Time-series data is common in a va-
riety of fields, including meteorology, finance, and IoT (Internet of
Things). The architecture’s performance in processing these datasets
showcases its ability to efficiently ingest, partition, and query time-
dependent data, an essential feature for systems dealing with real-
time analytics or historical data analysis.

— Parallel Processing Benefits: By employing parallel processing
techniques, the architecture can optimize data ingestion and retrieval,
significantly reducing latency and improving throughput for large
time-series datasets. This is particularly beneficial in scenarios like
financial market analysis, where real-time data processing is critical
for decision-making.

49

2. Event Logs and Cybersecurity Use Case

e CERT Insider Threat Dataset:
The CERT dataset consists of HT'TP traffic logs, a form of event-based
log data typically found in cybersecurity, network monitoring, and user
behavior analysis. Log data can be highly unstructured and voluminous,
often requiring sophisticated techniques for real-time processing, filtering,
and analysis.

— Relevance to the Study: Event log data, such as security logs or
system audits, are vital in industries like cybersecurity, where real-
time detection of threats and anomalies is crucial. Testing the archi-
tecture on this type of data ensures it can handle high-velocity log
streams and large volumes of semi-structured data while supporting
real-time or near-real-time monitoring.

3. Scalability Across Large Datasets

e The three datasets combined represent over 95 million records and nearly
100 GB of data, spread across over 100,000 files. Each dataset poses its
own set of challenges in terms of data volume, file count, and record
structure.

— Relevance to the Study: Scalability is one of the key criteria for
evaluating big data architectures. Testing the architecture with such
large datasets provides insights into how well it handles large-scale
data ingestion, storage, and retrieval. Additionally, it evaluates the
efficiency of the architecture in terms of resource utilization (CPU,
memory, I/O) and throughput, especially under high data loads.

4. Multiple Data Structures and Use Cases

e Structured Data (Stock Market and Weather Data): These datasets
are highly structured, with clearly defined columns and predictable data
types. Handling structured data effectively is essential for applications in
finance, meteorology, supply chain analytics, and more.

e Semi-Structured Data (CERT Logs): The CERT dataset introduces
a semi-structured data format, commonly encountered in logs, click-
streams, and other forms of machine-generated data. Processing such
data efficiently is crucial for industries dealing with event monitoring,
auditing, and cybersecurity.

— Relevance to the Study: Testing across both structured and semi-
structured data formats allows the study to demonstrate the versa-
tility of the architecture. It shows how the system adapts to different
data formats, ingesting structured data efficiently while also being ca-
pable of processing less organized, semi-structured logs. This is espe-
cially important for enterprises that deal with hybrid environments,
requiring flexibility to process various types of data simultaneously.

20

5. Real-World Conditions

e The diverse datasets reflect real-world scenarios faced by businesses and
organizations across industries. Meteorological data (NOAA) simulates
weather forecasting or environmental monitoring applications. Financial
stock market data (Nifty 100) mirrors the needs of financial services for
real-time analysis and decision-making. The CERT log data is represen-
tative of cybersecurity monitoring, where event logs need to be processed
in real time to detect potential insider threats.

— Relevance to the Study: Testing the architecture under these
varied conditions validates its applicability to a wide range of real-
world use cases. By covering industries like meteorology, finance,
and cybersecurity, the study proves that the architecture can deliver
reliable, scalable, and efficient performance across multiple sectors.

5.1.5 Challenges and Solutions

The ingestion, processing, and analysis of the three diverse datasets used in this
study present several technical challenges. These challenges are tied to the size,
structure, and performance demands of the datasets. However, the proposed asyn-
chronous and parallel architecture addresses these obstacles through a series of opti-
mized strategies, ensuring that the system remains efficient, scalable, and adaptable
across various data environments.

1. High Volume: Managing Large Files and Data Sizes

e Challenge:

— The datasets used in the study amount to over 90 GB in size and
consist of over 100,000 files. Managing such large volumes of data is
inherently challenging due to I/O bottlenecks, storage requirements,
and the need for efficient data retrieval mechanisms.

— Processing large datasets without overwhelming system resources
(CPU, memory, disk) requires careful optimization, particularly when
dealing with multiple files simultaneously.

e Solution:

— Parallel Data Ingestion: The architecture uses a parallel data
ingestion process, where files are loaded into the system simultane-
ously, reducing the overall time required to handle large datasets.
This is particularly useful when dealing with thousands of files, as
the system can process them concurrently instead of sequentially.

— Batch Processing: The architecture groups files into batches for
processing, which allows it to manage high-volume data more effi-
ciently. Batch processing reduces the load on system resources and
ensures that data is ingested and processed without overwhelming
the cluster.

— Distributed File System (HDFS): Leveraging the Hadoop Dis-
tributed File System (HDFS) ensures scalability by distributing files

51

across multiple nodes. This helps balance the storage requirements
and prevents individual nodes from becoming bottlenecks during data
ingestion and processing.

2. Data Structure Complexity: Handling Different Schemas and Data
Types

e Challenge:

— The datasets exhibit different structural complexities, with varying
column counts, data types, and levels of structure. The NOAA
weather dataset contains 36 columns, the CERT insider threat dataset
has 7 columns, and the Nifty 100 stock market dataset consists of 60
columns. Each of these datasets requires unique schema definitions
for processing and storage.

— In addition to varying column counts, the datasets involve different
data types, including numeric data, timestamps, categorical vari-
ables, and possibly unstructured text (in event logs). These differ-
ences make schema handling and data transformation complex.

e Solution:

— Flexible Schema Management: The architecture is designed to
be schema-agnostic, meaning it can handle datasets with varying
structures without requiring significant reconfiguration. The system
dynamically adapts to each dataset’s schema during ingestion, en-
suring that different column counts and data types are managed ef-
ficiently.

— Schema Evolution Support: In environments where data struc-
tures may change over time (e.g., new columns being added or ex-
isting ones being modified), the architecture supports schema evolu-
tion. This is particularly useful for continuously updated datasets like
stock market or weather data, where the data format might evolve.

— Data Format Optimization: The system converts raw data into
optimized formats, such as ORC or Parquet, that are well-suited
for big data processing in distributed environments. These columnar
storage formats provide faster access to specific columns, reduce stor-
age costs through compression, and enable better schema handling,
especially for wide tables like the stock market data with 60 columns.

3. Performance Optimization: Efficient Data Loading, Querying, and
Parallel Processing

e Challenge:

— Ingesting, transforming, and querying large datasets in a timely man-
ner is critical for big data applications. Performance bottlenecks can
occur during data loading, format conversion, and querying, espe-
cially when the system needs to handle millions of records (nearly 30
million in the CERT dataset, and over 60 million in the stock market
dataset).

52

— High query performance is also necessary to ensure that data scien-
tists and analysts can extract insights from these datasets without
experiencing long delays, especially in real-time or near-real-time en-
vironments (e.g., financial market data analysis).

e Solution:

— Parallel Processing Architecture: The core feature of the pro-
posed architecture is the parallelization of processes, both during the
data ingestion phase (Landing Batch Process) and the transforma-
tion phase (Staging Batch Process). By executing multiple processes
concurrently, the architecture reduces processing times and balances
the workload across the cluster.

x Example: During the landing process, two parallel processes
were used to handle data ingestion, resulting in significant reduc-
tions in processing time compared to a single-process approach.

— Data Format Conversion and Compression: Converting data
into efficient storage formats like ORC (Optimized Row Columnar)
ensures faster queries and reduced 1/O overhead. These formats are
designed to store large datasets compactly while providing high per-
formance for query execution, particularly for columnar operations.

4. Balancing Resource Utilization and System Efficiency

e Challenge:

— Balancing the system’s resource utilization (CPU, memory, disk 1/0O)
while processing large datasets is critical to avoid bottlenecks that
could degrade performance. Inefficient resource management can
lead to excessive memory usage, disk thrashing, and reduced overall
throughput.

e Solution:

— Resource Allocation and Tuning: The architecture includes re-
source management strategies to ensure that CPU, memory, and 1/O
are utilized efficiently. Resource tuning configurations, such as ad-
justing the number of parallel processes or the size of data chunks,

allow the system to optimize resource utilization based on the work-
load.

— Distributed Processing Framework (YARN): The architecture
utilizes YARN (Yet Another Resource Negotiator) for resource man-
agement in the Hadoop ecosystem. YARN ensures that tasks are
distributed across the cluster in a way that optimally uses available
resources, balancing load and preventing any one node from becom-
ing a bottleneck.

23

5.2 Environment Setup

This section provides details on the environment setup used for processing the three
diverse datasets: the Global Hourly Weather Observations, the CERT Insider Threat
Detection Research, and the Stock Market Data - Nifty 100 Stocks datasets. With a
combined total of over 90 GB of data distributed across approximately 94,000 files,
the environment needed to be robust, scalable, and capable of handling complex,
high-volume data processing.

The EMR cluster was specifically configured to handle the high data volume and
complexity, providing an efficient and scalable solution for big data processing. The
cluster was integrated with Apache Hive and Apache Spark to manage the data
pipeline and facilitate analytics.

5.2.1 Amazon EMR

Amazon EMR is a managed cluster platform that simplifies running big data frame-
works such as Apache Hadoop, Spark, Hive, and HDFS. It is well-suited for pro-
cessing and analyzing vast datasets, providing scalability, flexibility, and integration
with other AWS services like Amazon S3. For this work, Amazon EMR was selected
for its ability to process large datasets efficiently and its seamless integration with
the data storage and analytics ecosystem.

5.2.2 EMR Cluster Configuration

The EMR cluster was configured with optimized settings to manage the batch pro-
cessing of the dataset and support large-scale data analytics. The following are the
key configurations and specifications of the EMR cluster:

e Cluster Version: Amazon EMR version 6.x, which includes Apache Hadoop,
Apache Hive, and Apache Spark.

e Instance Types: The cluster was set up with different node types, each
serving a specific role in the data processing pipeline:

— Master Node: 1 instance (m5.xlarge) with 16 GB RAM, 4 vCPUs —
responsible for managing the cluster, coordinating tasks, and resource
allocation.

— Core Nodes: 4 instances (mb.xlarge), each with 16 GB RAM and 4
vCPUs — responsible for running the Hadoop Distributed File System
(HDFS) and executing data processing tasks.

— Task Nodes: 2 instances (mb.large), each with 8 GB RAM and 2 vC-
PUs — dedicated to processing tasks using Spark and Hive, providing
additional computational power to the cluster.

e Storage Configuration: Each Core node was equipped with Elastic Block
Store (EBS) volumes to provide ample disk space for intermediate data pro-
cessing and HDF'S storage. HDFS served as the main storage system within
the cluster, allowing for high-throughput data access.

o4

5.2.3 Integration with Apache Hive and Apache Spark

The cluster was configured with Apache Hive and Apache Spark, key components
in the big data ecosystem that allow for efficient data processing, querying, and
analytics:

e Apache Hive: Hive was installed on the EMR cluster to facilitate SQL-like
querying on large datasets stored in HDF'S. Hive provides a structured query
language (HiveQL) that is similar to SQL, making it easier to work with large-
scale data. The Hive environment was configured to interact seamlessly with
HDFS, allowing data to be accessed, transformed, and managed within the
cluster.

e Apache Spark: Spark was included in the cluster configuration to provide
fast, in-memory data processing capabilities. Spark’s data processing speed
and support for complex transformations made it ideal for handling the batch
processing of the dataset. Spark jobs were executed on the Task nodes, lever-
aging the parallel processing power of the cluster to process data efficiently.

The EMR cluster setup provided a powerful and scalable environment to process
and analyze all three datasets: Global Hourly Weather Observations, CERT Insider
Threat Detection Research, and Stock Market Data - Nifty 100 Stocks. The integra-
tion of Apache Hive and Apache Spark within the EMR ecosystem enabled efficient
data handling, from ingesting raw data to performing complex queries and analytics
across a wide variety of data structures and formats.

The environment was carefully configured to optimize resource utilization for the
diverse datasets, ensuring efficient parallel processing of over 94,000 files with a com-
bined size of more than 90 GB. Key configurations focused on handling the distinct
challenges of each dataset, such as processing high-volume time-series data, manag-
ing large event logs, and working with complex financial data structures. Security
was also prioritized, particularly for sensitive information in the CERT dataset.

This setup provided a robust, scalable platform that aligned with the architecture’s
objectives, ensuring that each dataset could be processed efficiently while supporting
advanced analytics and high-performance data transformations.

5.2.4 Gateway/Staging/Edge Node
1. Purpose of Gateway/Staging/Edge Node:

e The Gateway or Edge Node acts as an intermediary between the external
data sources (like Amazon S3) and the EMR cluster. It is responsible for
tasks such as data ingestion, preprocessing, and staging before the data
is loaded into HDF'S.

e This node helps in decoupling data loading tasks from the core and master
nodes, ensuring that the main nodes focus on data processing and not on
data transfer.

95

2. Node Selection for Gateway/Staging;:

e A Task Node was dedicated solely as an Edge Node. This node won’t
store HDFS data permanently and won’t contribute to the processing
workload, allowing it to focus entirely on data staging and loading tasks.

3. Configuration for Edge Node:

e Instance Type: A Task Node (mb.xlarge) with 16 GB RAM, 4 vCPUs
was chosen.

e Storage: Attached sufficient EBS (Elastic Block Store) volumes to pro-
vide temporary storage for incoming data before it is transferred to

HDEF'S.

e Network Setup: Ensured that the Edge Node has proper access to
external data sources (like Amazon S3) and internal cluster components

(HDFS, Hive).

5.3 Data Preprocessing

The preprocessing of data is a critical step in preparing the diverse datasets for
efficient processing and analysis in the EMR environment. This project uses three
datasets: Global Hourly Weather Observations, CERT Insider Threat Detection,
and Stock Market Data - Nifty 100 Stocks. Each dataset requires specific prepro-
cessing steps to ensure it is ready for ingestion and analysis. Below are the detailed
steps involved in the data preprocessing phase:

1. Data Acquisition:

¢ Global Hourly Weather Observations: This dataset was downloaded
from the NOAA website in compressed format (ZIP). The initial down-
load was approximately 1 GB, containing historical weather data in CSV
format.

e CERT Insider Threat Detection: The http.csv file, around 20.67
GB in size, was downloaded from Kaggle, containing security event logs
related to insider threats.

e Stock Market Data - Nifty 100 Stocks: This dataset, sized at 61.59
GB, was downloaded from Kaggle, consisting of time-series data in CSV

format for stock prices with a 5-minute interval from January 2015 to
February 2022.

2. Uploading Data to Amazon S3: After downloading, the compressed files
for each dataset were uploaded to an Amazon S3 bucket. Amazon S3 was used
as the primary storage location, providing scalable, durable, and secure data
storage. It facilitated easy management, ensuring all datasets were ready for
further processing.

3. Transferring Data to the Edge Node: Each dataset was then transferred
from S3 to the Edge Node of the EMR cluster. This was done using AWS

CLI commands such as aws s3 cp to ensure efficient data transfer without

56

overwhelming the core nodes responsible for HDFS storage and processing.

aws s3 cp s3://<bucket-name>/<file-name>.zip /local/path/
on/edge-node/

This approach ensures that data movement is streamlined and does not directly
interfere with the core nodes responsible for HDF'S storage and processing.

. Extracting the Zipped File: On the Edge Node, the compressed files were
extracted using standard UNIX commands (unzip or tar). Each dataset had
varying sizes and record counts:

¢ Global Hourly Weather Observations: Expanded into 10,840 indi-
vidual CSV files, totaling approximately 10.78 GB.

e CERT Insider Threat Detection: Expanded into over 20,653 CSV
files, with a total size of 20.67 GB.

e Stock Market Data: Expanded into 63,095 CSV files, with a total size
of 61.59 GB.

Example extraction command:

unzip /local/path/on/edge-node/<file-name>.zip -d /local/
path/on/edge-node/extracted/

The extraction process is essential for converting the single compressed file
into multiple readable CSV files, ready for further ingestion into the data
processing pipeline.

. Data Verification and Integrity Check: After extraction, integrity checks
were performed to ensure that files were correctly extracted and no data was
corrupted. File counts and total sizes were verified using commands such as
Is -1 — wc -1 and du -sh to match the expected values:

¢ Global Hourly Weather Observations: 10,840 files, 10.78 GB.
e CERT Insider Threat Detection: 20,653 files, 20.67 GB.
e Stock Market Data: 63,095 files, 61.59 GB.

. Directory Structuring: The extracted files for each dataset were organized
into structured directories on the Edge Node, making them easily accessible
for subsequent processing and ingestion. Directory naming conventions were
maintained for each dataset to facilitate the smooth loading of files into HDF'S,
ensuring that different batches could be identified and processed efficiently.

. Data Cleanup: Temporary files and logs generated during the extraction
and transfer processes were cleaned up to free up space on the Edge Node.
This step was essential to ensure optimal performance during the data loading
phase and to prevent unnecessary overhead in the system.

These preprocessing steps are critical in ensuring that the data is in the correct
format and location for further processing within the data pipeline. By carefully
managing the data extraction and transfer processes, the dataset is prepared effi-
ciently, maintaining data integrity and performance throughout the pipeline.

o7

5.4 Data Loading

The data loading process in this work is divided into two main sections: the Tra-
ditional Architecture and the Proposed Architecture. Each section consists of two
phases: the Landing Batch Process and the Staging Batch Process. The goal is
to evaluate the performance of both architectures by comparing execution times,
standard deviation, and mean across multiple datasets. While the NOAA dataset
was tested over 10 iterations for each step, the CERT Insider Threat Detection and
Stock Market datasets were tested with only 1 iteration per step. Below is a detailed
explanation of the implementation steps for each architecture.

5.4.1 Traditional Architecture
5.4.1.1 Landing Batch Process

¢ Loading Files into HDF'S: In the traditional architecture, the Landing
Batch Process sequentially loads the extracted data files from the edge node
into HDFS. The files are processed one by one, without any parallelism, en-
suring that each file is completely transferred before the next file is processed.
This step applies to all three datasets.

e Sequential Data Loading: No parallel processing is employed, meaning
each file is loaded into HDFS individually. This simple, straightforward ap-
proach guarantees correct order and data integrity but is relatively slow when
compared to parallel loading techniques.

e Performance Evaluation: For the NOAA dataset, this process was executed
10 times to gather performance metrics such as average execution time, stan-
dard deviation, and mean values, which serve as a benchmark for comparing
with the proposed architecture.

For the CERT and Stock Market datasets, the process was executed only once
due to the large size of the files and limited experimental scope. The perfor-
mance metrics were recorded after the single iteration for these datasets.

5.4.1.2 Staging Batch Process

e Inserting Data into Hive: After the data is loaded into HDF'S, the Staging
Batch Process is responsible for inserting the data from HDF'S into Hive tables.
In the traditional approach, this is done sequentially, one file at a time.

e Performance Repetition: Similar to the Landing Batch Process, the stag-
ing process for the NOAA dataset was executed 10 times to capture average
execution time, standard deviation, and mean values.

For the CERT and Stock Market datasets, the process was performed only
once, with the results recorded for comparison with the proposed architecture.

o8

5.4.2 Proposed Architecture

The proposed architecture introduces parallel processing capabilities to improve the
efficiency of the loading and staging processes. This architecture was tested under
two configurations: (1) without parallelism and (2) with two parallel processes. The
goal is to evaluate whether parallelism and asynchronous task handling can enhance
the overall data processing performance.

5.4.2.1 Landing Batch Process with No Parallel

e Asynchronous Data Loading: This approach begins similarly to the tradi-
tional method, where data is loaded into HDFS from the edge node, but now
under the proposed architecture framework. The extracted files are loaded
into HDF'S without any parallel threads, but the architecture allows for asyn-
chronous management of tasks. This modification aims to minimize idle time
and improve efficiency slightly even when operating without explicit paral-
lelism.

e Iteration and Evaluation: For the NOAA dataset, this process was re-

peated 10 times to capture performance metrics such as average execution
time, standard deviation, and mean values.
For the CERT and Stock Market datasets, the process was executed only once,
and metrics were recorded accordingly. The results from these single iterations
provide an initial comparison point with the traditional approach and will help
gauge improvements when parallelism is introduced.

5.4.2.2 Landing Batch Process with 2 Parallel

e Parallel Data Loading: To further enhance performance, this setup in-
troduces parallelism, allowing two data streams to run concurrently, thereby
reducing total data loading time. Two parallel processes are used to load data
into HDF'S simultaneously. This configuration significantly speeds up the pro-
cess as files are processed concurrently, unlike the sequential approach used
previously. This approach efficiently utilizes system resources, particularly
when working with large volumes of data, reducing overall data loading time.

e Performance Assessment: For the NOAA dataset, this process was re-
peated 10 times to analyze the improvements in execution time, standard
deviation, and mean values compared to the sequential approaches.

For the CERT and Stock Market datasets, the process was only executed once.
This single iteration still provided valuable insights into the potential benefits
of parallelism when applied to high-volume, large-scale datasets.

5.4.2.3 Staging Batch Process

e Asynchronous Data Insertion: The final step in the proposed architecture
is the Staging Batch Process, where data loaded into HDFS is inserted into
Hive tables asynchronously. Unlike the traditional approach, the proposed
staging process allows for the data insertion to be handled asynchronously,
meaning data can be staged and loaded into Hive tables concurrently with

29

ongoing data loads. This non-blocking approach improves throughput and
reduces the total time required for data to become available for analysis.

Repeated Execution for Performance Metrics: For the NOAA dataset,
this process was executed 10 times, capturing performance metrics such as
execution time, standard deviation, and mean values to evaluate improvements
compared to the traditional approach.

For the CERT and Stock Market datasets, the process was executed once, and
performance metrics were recorded after that single iteration.

60

Chapter 6

Result and Analysis

6.1 Data Size Analysis

The effectiveness of data storage formats and replication strategies plays a cru-
cial role in optimizing storage utilization, especially when dealing with large-scale
datasets in data lakes or data warehouses. We analyzed the impact of different data
loading architectures and storage formats, focusing on the comparison between tra-
ditional raw file storage and the optimized ORC (Optimized Row Columnar) format
across three datasets: NOAA Global Hourly Weather Observations, CERT Insider
Threat Detection, and Stock Market data. The table below summarizes the impact
of replication and storage formats on dataset size across all three datasets.

6.1.1 Traditional Data Loading with Raw Files

In the traditional data loading approach, the extracted files from the edge node are
directly copied into HDF'S without any optimization in the storage format. HDF'S by
default replicates each file three times to ensure fault tolerance and data redundancy.
This replication drastically increases the storage requirements for raw files:

e NOAA Weather Data:

— Initial File Size: 10.78 GB
— Size After 3 Replications: 32.4 GB

e CERT Insider Threat Data:

— Initial File Size: 20.67 GB
— Size After 3 Replications: 62.01 GB

e Stock Market Data:

— Initial File Size: 61.59 GB

— Size After 3 Replications: 184.77 GB
As seen in Table 6.1, the replication factor of 3 results in a substantial increase in
the storage space required. For instance, the NOAA dataset grows from 10.78 GB to
32.4 GB, and the CERT and Stock Market datasets expand similarly. This highlights

the inefficiency of using raw file formats for large datasets, as the storage footprint
significantly increases, leading to higher storage costs and resource consumption.

61

Dataset Extracted File Size Raw File Size ORC File Size ORC File Size
(GB) (GB) After Replication | (GB) Before Replication | (GB) After Replication

NOAA Weather Data 10.78 32.4 0.8663 2.6

CERT Insider Threat Data 20.67 62.01 1.63 4.88

Stock Market Data 61.59 184.77 4.84 14.53

Table 6.1: Comparison of File Formats and Storage Sizes Across Datasets

6.1.2 Optimized Data Storage with ORC Format

To address the storage inefficiencies of raw files, the datasets were loaded into Hive
tables using the ORC format. ORC is a highly optimized columnar storage format
that provides efficient data compression, faster read/write performance, and is es-
pecially suited for analytical workloads. The table below illustrates the data size
reduction when using ORC format:

e NOAA Weather Data:

— ORC File Size Before Replication: 866.3 MB
— ORC File Size After 3 Replications: 2,598.6 MB

e CERT Insider Threat Data:

— ORC File Size Before Replication: 1.63 GB
— ORC File Size After 3 Replications: 4.88 GB

e Stock Market Data:

— ORC File Size Before Replication: 4.84 GB
— ORC File Size After 3 Replications: 14.53 GB

By converting the raw data into ORC format, the storage size is significantly reduced.
ORC format compresses the data and optimizes it for faster query performance due
to its columnar structure. For example, the NOAA dataset shrinks to just 866.3
MB from its original size of 10.78 GB before replication, a substantial reduction in
storage footprint.

6.1.3 Comparison of Storage Reduction

The transformation from raw file storage to ORC format demonstrates a significant
reduction in storage requirements across all three datasets are shown in Table 6.2.

Dataset Percentage Size Reduction | Size Reduction Factor (Times)
NOAA Weather Data 92.17% 12.77
CERT Insider Threat Data 92.13% 12.70
Stock Market Data 92.14% 12.72

Table 6.2: Storage Reduction with ORC Format Across Datasets

¢ NOAA Weather Data: The ORC format reduced the file size by 92.17%,
shrinking the dataset by a factor of 12.77 times.

62

e CERT Insider Threat Data: The file size was reduced by 92.13%, com-
pressing the dataset 12.70 times.

e Stock Market Data: ORC reduced the file size by 92.14%, with a 12.72
times reduction.

This analysis confirms the effectiveness of the ORC format in significantly reducing
data size, even after HDF'S replication. The storage space required for ORC files is
far less than raw files, making ORC a highly efficient choice for large-scale datasets.

6.1.4 Implications for Data Warehousing

The results clearly show that ORC is an optimal choice for storing large-scale
datasets in data warehousing environments. The drastic reduction in size not only
saves storage space but also enhances the overall performance of data loading and
querying processes. Smaller file sizes reduce disk I/0, enable faster read and write
speeds, and lower resource consumption, which directly improves cost efficiency and
scalability of the data warehouse.

Additionally, using ORC format tables in Hive allows for better integration with
analytical tools and faster processing times, making it a preferred choice for large-
scale data analytics platforms.

The results validate the superiority of ORC format over traditional raw file storage,
especially in environments dealing with high data volumes and frequent access pat-
terns. This substantial reduction in storage size and performance benefits makes
ORC a strategic choice for optimizing data storage in modern data warehousing
solutions. Selecting the right data format is crucial for balancing storage efficiency,
performance, and cost in large-scale data processing systems.

6.2 Landing Batch Process with No Parallel

Landing Time (sec) | Normal Distribution
397 0.00359840
407 0.00525122
408 0.00543041
447 0.01101185
451 0.01108002
457 0.01092724
466 0.01015904
470 0.00963991
496 0.00507402
oll 0.00276401

Table 6.3: Landing Batch Process with No Parallel - Normal Distribution Values
for NOAA Dataset

63

We analyzed the performance of the landing batch process without parallelism for
three datasets: NOAA Weather Data, CERT Insider Threat Data, and Stock Market
Data. The landing times were measured across 10 iterations for the NOAA dataset,
while the CERT and Stock datasets were measured once due to their larger size.
The landing times were analyzed to determine the average, standard deviation, and
normal distribution for the NOAA dataset, and key performance metrics for the
other two datasets.

0.014

0.012

0.01

0.008

0.006

Probability Density
o
o
<

0.002

Figure 6.1

380 400 420 440 460 480 500 520
Landing Time (sec)
: Normal Distribution of Landing Batch Process with No Parallel for

NOAA Dataset

e NOAA Weather Data: The data collected from 10 iterations of the landing
batch process for the NOAA Weather Data are shown in Table 6.3.

Average Landing Time: The average (mean) landing time was calcu-
lated to be 451 seconds. This value represents the central tendency of
the landing times across the 10 iterations.

Standard Deviation: The standard deviation of the landing times was
36.01 seconds, indicating how much the landing times vary from the
average.

Normal Distribution Analysis: The normal distribution values pro-
vided for each landing time indicate how frequently each landing time
occurs relative to the others. The Figure 6.1 of the normal distribution
shows a bell-shaped curve, which is characteristic of a normal distribu-
tion. The peak of the curve corresponds to the average landing time, and
the spread of the curve is influenced by the standard deviation.

Consistency of Landing Times: The average landing time of 451 sec-
onds suggests that, on average, the landing batch process takes around
7.5 minutes to complete. The standard deviation of 36.01 seconds in-
dicates that most landing times fall within a range of approximately 415
to 487 seconds (mean + one standard deviation).

64

e CERT Insider Threat Data: For the CERT Insider Threat dataset, the
landing batch process was executed without parallelism, and the landing time
was recorded for a single run:

— Landing Time: The recorded landing time for the CERT dataset was
861 seconds, which is significantly higher than that of the NOAA dataset
due to the larger file size (20.67 GB compared to 10.78 GB for NOAA).

— Execution Duration: This landing time indicates that the CERT dataset
took approximately 14.35 minutes to complete the landing process.

e Stock Market Data: The Stock Market dataset, being the largest of the
three, also went through the landing batch process without parallelism, with
the following results:

— Landing Time: The recorded landing time for the Stock dataset was
2,643 seconds, reflecting the considerable size of this dataset (61.59
GB).

— Execution Duration: This landing time translates to approximately

44 minutes, demonstrating the impact of file size on landing time in a
non-parallel architecture.

e Summary of Landing Times (No Parallel):

— NOAA Weather Data (10 Iterations):

« Average Landing Time: 451 seconds (7.5 minutes)
* Standard Deviation: 36.01 seconds

— CERT Insider Threat Data (Single Run):
* Landing Time: 861 seconds (14.35 minutes)
— Stock Market Data (Single Run):
* Landing Time: 2,643 seconds (44 minutes)

This analysis illustrates that, as dataset size increases, so too does the time
required for the landing batch process, especially when no parallelism is em-
ployed. While the NOAA dataset exhibited a stable landing time with low
variation, the larger CERT and Stock datasets showed a significant increase
in time required for completion due to their larger file sizes.

6.3 Landing Batch Process with 2 Parallel

We analyzed the performance of the proposed asynchronous and parallel architecture
for Hive, focusing on the landing batch process executed with 2 parallel processes.
The data loading times were measured across 9 iterations for the NOAA dataset,
while the CERT Insider Threat and Stock Market datasets were measured once due
to their larger size. The results were analyzed to determine the distribution, average,
standard deviation, and key performance metrics.

¢ NOAA Weather Data: The data collected from 9 iterations of the landing
batch process with 2 parallel executions for the NOAA Weather Data are
shown in Table 6.4.

65

Landing Time (sec) | Normal Distribution
376 0.003957647
391 0.020439397
398 0.028330066
401 0.029909463
403 0.030138070
407 0.028573784
410 0.025856269
412 0.023508814
426 0.006369608

Table 6.4: Landing Batch Process with 2 Parallel - Normal Distribution Values for
NOAA Dataset

— Average Landing Time: The average (mean) landing time for NOAA
was calculated to be 402.67 seconds, representing the central tendency
across 9 iterations.

— Standard Deviation: The standard deviation of the landing times was
found to be 13.23 seconds. This indicates the amount of variation or
dispersion from the average landing time. A lower standard deviation
suggests that the landing times are more consistent, while a higher stan-
dard deviation indicates greater variability.

0.035

0.03

©
o
N
al

0.02

0.015

Probability Density

0.01

0.005

370 380 390 400 410 420 430
Landing Time (sec)

Figure 6.2: Normal Distribution of Landing Batch Process with 2 Parallel for NOAA
Dataset

— Normal Distribution Analysis: The normal distribution values pro-
vided for each landing time indicate how frequently each landing time
occurs relative to the others. The Figure 6.2 of the normal distribution
shows a bell-shaped curve, which is characteristic of a normal distribu-
tion. The peak of the curve corresponds to the average landing time, and
the spread of the curve is influenced by the standard deviation.

66

— Consistency of Landing Times: The average landing time of 402.67
seconds suggests that, on average, the landing batch process takes around
6.7 minutes to complete when executed with 2 parallel processes. The
standard deviation of 13.23 seconds indicates that most landing times
fall within a range of approximately 389.44 to 415.90 seconds (mean
+ one standard deviation).

e CERT Insider Threat Data: For the CERT Insider Threat dataset, the
landing batch process was executed with 2 parallel processes, and the landing
time was recorded for a single run:

— Landing Time: The recorded landing time for the CERT dataset was
763 seconds (approximately 12.7 minutes), significantly faster than the
non-parallel execution time of 861 seconds.

— Execution Duration: This reduction highlights the efficiency gains
achieved through parallel execution, with a reduction of nearly 100 sec-
onds compared to the non-parallel process.

e Stock Market Data: The Stock Market dataset, being the largest of the
three, also went through the landing batch process with 2 parallel processes,
with the following results:

— Landing Time: The recorded landing time for the Stock dataset was
2,342 seconds (approximately 39 minutes), compared to 2,643 seconds
in the non-parallel architecture.

— Execution Duration: The parallel architecture reduced the landing
time by about 301 seconds, or approximately 5 minutes, demonstrat-
ing the impact of parallel processing on large datasets.

e Summary of Landing Times (2 Parallel):

— NOAA Weather Data (9 Iterations):

« Average Landing Time: 402.67 seconds (6.7 minutes)
%+ Standard Deviation: 13.23 seconds

— CERT Insider Threat Data (Single Run):
« Landing Time: 763 seconds (12.7 minutes)
— Stock Market Data (Single Run):
« Landing Time: 2,342 seconds (39 minutes)

6.4 Analysis of Both Landing Batch Process

Comparing the landing times with and without parallel execution across all datasets
highlights the efficiency gains achieved through parallel processing are shown in
Table 6.5.

¢ NOAA Weather Data: The average landing time decreased from 451 sec-
onds to 402.67 seconds with parallel execution, demonstrating a notable

67

Dataset Execution Type | Average Landing Time
NOAA Weather Data N; nf-)an;?(lallel fgglj@:?ifgzg ZZ(;;
CERT Insider Threat Data N; 1}—)53;12113161 E;gzl% zgz

Stock Market Data N; 1;53;?3161 g:gig Zzz

Table 6.5: Comparison of Non-Parallel and 2 Parallel Landing Batch Process for All
Datasets

performance improvement. Additionally, the standard deviation dropped sig-
nificantly from 36.0056 seconds to 13.23 seconds, indicating greater con-
sistency in the landing times.

e CERT Insider Threat Data: Parallel execution reduced the landing time
from 861 seconds to 763 seconds, a reduction of nearly 11.4%. This im-
provement, while significant, couldn’t be accompanied by standard deviation
analysis due to the limited number of iterations.

e Stock Market Data: The landing time for the stock dataset was reduced
from 2,643 seconds to 2,342 seconds, an efficiency gain of approximately
11.4%, similar to the CERT dataset. Like the CERT data, standard deviation
values were not available due to single-run execution.

These findings validate the effectiveness of the asynchronous and parallel architec-
ture in improving the data loading process, particularly for larger datasets. The
parallel execution consistently reduced landing times across all datasets and im-
proved the consistency of the NOAA dataset, as seen in the reduced standard devi-
ation. The architecture demonstrates promising scalability and enhanced efficiency,
especially in high-volume data processing environments.

6.5 Staging Batch Process

The performance of the proposed asynchronous and parallel architecture for Hive
was analyzed in the staging batch process across three different datasets: NOAA
Weather Data, CERT Insider Threat Data, and Stock Market Data. Each dataset
was processed with a focus on staging time, with the NOAA dataset being tested 10
times to gather detailed performance statistics, while the CERT and Stock datasets
were tested with a single iteration due to their larger size.

¢ NOAA Weather Data: The data collected from 10 iterations of the staging
batch process for the NOAA Weather Data are shown in Table 6.6. Key
performance metrics for the NOAA dataset are as follows:

— Average Staging Time: The average (mean) staging time across 10

iterations was calculated to be 578.7 seconds. This value represents the
central tendency of the data insertion times.

68

Staging Time (sec) | Normal Distribution
047 0.007562859
249 0.008140645
952 0.009009748
555 0.009864609
572 0.013447348
575 0.013701245
578 0.013810101
613 0.006823502
620 0.004968462
626 0.003612533

Table 6.6: Staging Batch Process - Normal Distribution Values (NOAA Dataset)

— Standard Deviation: The standard deviation was 28.88 seconds, re-
flecting the consistency of the process. A smaller deviation indicates that
the staging times were closely clustered around the mean.

0.016

0.014

o
o
-
N

0.01

0.008

0.006

Probability Density

o
o
S
S

0.002

0
540 550 560 570 580 590 600 610 620 630

Staging Time (sec)

Figure 6.3: Normal Distribution of Staging Batch Process

— Normal Distribution Analysis: The normal distribution values pro-
vided for each staging time indicate how frequently each staging time
occurs relative to the others. The Figure 6.3 of the normal distribution
shows a bell-shaped curve, which is characteristic of a normal distribu-
tion. The peak of the curve corresponds to the average staging time, and
the spread of the curve is influenced by the standard deviation.

— Consistency of Staging Times: The average staging time of 578.7
seconds (around 9.6 minutes) indicates that the process was stable, with
most times falling within the range of 549.82 to 607.58 seconds (mean +
one standard deviation).

69

e CERT Insider Threat Data: The CERT Insider Threat dataset is consid-
erably larger and more complex than the NOAA dataset. As a result, staging
was tested once for this dataset. The key performance metric is:

— Staging Time: The staging time for the CERT dataset was 1,121 sec-
onds (around 18.7 minutes), significantly higher than the NOAA dataset
due to the dataset’s larger size and complexity.

e Stock Market Data: The Stock Market dataset, being the largest and most
complex of the three, also had its staging batch process tested once. The
performance metric is:

— Staging Time: The staging time for the Stock dataset was 3,401 seconds
(around 56.7 minutes), indicating the heavy load and complexity involved
in processing this dataset.

6.6 Performance Comparison

This section compares the performance of the traditional architecture and the pro-
posed asynchronous and parallel architecture across three datasets: NOAA Weather
Data, CERT Insider Threat Data, and Stock Market Data. The comparison high-
lights improvements in both landing and total processing times, focusing on paral-
lelism and its effects on performance.

6.6.1 Analysis

1. Traditional Architecture: The traditional architecture serves as the base-
line and lacks any form of parallel processing. This results in the longest
landing and total processing times across all datasets. For instance, in the
NOAA dataset, the traditional landing time was 451 seconds, with a total
time of 1,029.7 seconds. This setup did not require iterative landing pro-
cesses. Similarly, the CERT dataset took 861 seconds for landing and 1,982
seconds in total, while the Stock dataset had a landing time of 2,643 seconds
and a total time of 6,044 seconds.

2. Proposed Architecture (No Parallelism):

e In the proposed architecture without parallel processing, while the land-
ing time remained the same as the traditional architecture, the total
processing time was significantly reduced.

— For the NOAA dataset, the landing time stayed at 451 seconds, but
the total time was reduced to 599.20 seconds, marking a 41.81%
improvement over the traditional architecture.

— In the CERT dataset, the landing time was also identical to the
traditional method (861 seconds), but the total time decreased to
1,142 seconds, yielding an improvement of 42.38%.

— Similarly, for the Stock dataset, the landing time remained unchanged
at 2,643 seconds, but the total time dropped to 3,421.98 seconds, pro-
viding an improvement of 43.38%.

70

e These results show the effectiveness of the proposed architecture even
without parallelism, particularly in reducing total time.

3. Proposed Architecture (Parallelism with 2 Processes):

e Introducing parallelism in the landing process further reduced the landing
and total times.

— In the NOAA dataset, with two parallel processes, the landing time
was reduced to 402.66 seconds, and the total time fell to 597 seconds,
resulting in a 42.02% improvement over the traditional approach.

— In the CERT dataset, the landing time decreased to 763 seconds,
with a total time of 1,139.61 seconds, yielding a slightly better im-
provement of 42.50% over the traditional method.

— In the Stock dataset, parallelism reduced the landing time to 2,342
seconds, and the total time to 3,419.59 seconds, resulting in an im-
provement of 43.42%.

e These results highlight the efficiency of parallel processing in the proposed
architecture, particularly in reducing landing times and further optimiz-
ing total processing times, especially for large datasets like CERT and
Stock.

6.6.2 Key Observations:

e Significant Time Reductions: The proposed architecture significantly out-
performs the traditional approach across all datasets, showing more than 40%
reductions in total processing time. This improvement is consistent, regardless
of whether parallelism is applied or not.

e Parallelism Impact: The use of two parallel processes consistently reduced
landing times in all datasets, leading to further reductions in total process-
ing time. However, the improvements in total time between non-parallel and
parallel processing were modest, due to the unchanged staging times.

e Dataset Size Sensitivity: Larger datasets, such as CERT and Stock, ben-
efited more from parallel processing in terms of both landing and total time
reductions. The Stock dataset showed the greatest improvement in landing
time with a 43.42% total time improvement.

71

6.6.3 Detailed Dataset-Specific Performance Comparison

6.6.3.1 NOAA Weather Data

The following Table 6.7 shows the performance comparison between the traditional
architecture and the proposed architecture for the NOAA dataset, with and without

parallelism:
. ?arallell‘sm Landing Ave. La.ndlng Staging Total Improvement
Architecture in Landing Time (sec) Iteration Time (sec) | Time (sec) (%)
Batch Process Time (sec) ?
Traditional Not Applicable 451.00 Not Required 578.70 1,029.70 -
Proposed Landing with 451.00 20.50 578.70 599.20 41.81%
no parallel
Proposed Landing with 402.66 18.30 578.70 597.00 42.02%
parallel 2

Table 6.7: Performance Comparison of Traditional and Proposed Architectures for
NOAA Dataset

6.6.3.2 CERT Insider Threat Data

The CERT dataset results show similar trends as NOAA but with higher baseline
times due to the larger dataset size in Table 6.8.

. Parallell‘sm Landing Ave. La?dmg Staging Total Improvement
Architecture in Landing Time (sec) Iteration Time (sec) | Time (sec) (%)
Batch Process Time (sec) 0
Traditional Not Applicable 861.00 Not Required 1,121.00 1,982.00 -
Proposed Landing with 861.00 21.00 1,121.00 1,142.00 42.38%
no parallel
Proposed Landing with 763.00 18.61 1,121.00 1,139.61 42.50%
parallel 2

Table 6.8: Performance Comparison of Traditional and Proposed Architectures for

Threat Data

6.6.3.3 Stock Market Data

The Stock Market dataset, being the largest among the three, demonstrates the
greatest total time improvements in Table 6.9.

. !?arallell.sm Landing Ave. Lafldmg Staging Total Improvement
Architecture in Landing Time (sec) Iteration Time (sec) | Time (sec) (%)
Batch Process Time (sec) 0
Traditional Not Applicable 2,643.00 Not Required 3,401.00 6,044.00 -
Proposed Landing with 2,643.00 20.98 3,401.00 3,421.98 43.38%
no parallel
Proposed Landing with 2,342.00 18.59 3,401.00 3,419.59 43.42%
parallel 2

Table 6.9: Performance Comparison of Traditional and Proposed Architectures for

Stock Data

72

6.6.4 Overall Improvement Comparison

The Table 6.10 summarizes the improvements in landing and total time across all
datasets, comparing the improvements achieved by the proposed architecture with
and without parallel processing:

Landing Total Improvement | Total Improvement
Source | Improvement (%) (%)
(%) Landing No Parallel | Landing Parallel 2
NOAA 10.72% 41.81% 42.02%
Threat 11.38% 42.38% 42.50%
Stock 11.39% 43.38% 43.42%

Table 6.10: Comparison of Landing and Total Improvements Across Different
Sources

73

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis introduces an innovative asynchronous and parallel architecture for op-
timizing data loading in Hive. The architecture overcomes the limitations of tradi-
tional sequential processing, delivering significant performance improvements across
multiple datasets, including NOAA, Threat, and Stock. By leveraging parallelism,
the proposed design successfully accelerates data ingestion and reduces total pro-
cessing time, marking a substantial advancement in big data management.

Key findings of the study include:

e Significant Performance Gains: The proposed architecture demonstrated
consistent performance improvements across all three datasets. For NOAA,
the total processing time was reduced by 42%, while the Threat dataset saw
a 42.5% improvement, and the Stock dataset showed the highest improve-
ment at 43.42%. These results affirm the scalability and effectiveness of the
architecture in different data environments.

¢ Enhanced Landing Efficiency: Parallelism led to significant reductions in
landing time. For NOAA data, landing time was reduced from 451 seconds
to 402.66 seconds. Similarly, Threat data saw a reduction from 861 to 763
seconds, and Stock data from 2,643 to 2,342 seconds. This demonstrates the
efficiency of parallelism in managing varying data sizes.

e Iterative Process Optimization: Parallel processing also optimized itera-
tion times across the datasets. For NOAA, the average landing iteration time
dropped from 20.50 to 18.30 seconds. In the Threat dataset, it reduced from
21.00 to 18.61 seconds, and in the Stock dataset, from 20.98 to 18.59 sec-
onds. This improvement in iteration speed contributes to overall processing
efficiency.

e Potential for Further Optimization: Despite these gains, staging times
remained consistent across all datasets, suggesting that further optimizations
could unlock even greater performance improvements, particularly for large-
scale datasets like Stock.

74

The results unequivocally demonstrate that the proposed asynchronous and parallel
data loading architecture outperforms conventional methods, establishing it as a
superior alternative for modern data processing needs in Hive.

7.2 Limitations

Although the architecture presents significant advancements, there are some limita-
tions:

e Staging Process Performance: The staging phase, despite improvements
in landing times, did not see a parallelized performance boost. For all datasets,
staging times remained static, suggesting a need for further investigation into
parallelizing or optimizing this phase.

¢ Fixed Parallelism Configuration: This study explored the effects of using
two parallel processes. However, the impact of different levels of parallelism
(e.g., 4 or more processes) remains unexplored. It’s unclear how the architec-
ture would behave with different configurations, especially for larger datasets
like the Stock data.

e Resource Utilization and Efficiency: The introduction of parallel process-
ing likely increases the demand for computational resources (CPU, memory),
but a comprehensive cost-benefit analysis was not performed. The trade-off
between improved performance and resource utilization needs further explo-
ration.

e Data Skew and Load Balancing: The architecture assumes even data dis-
tribution across parallel processes. However, in real-world scenarios, data skew
could affect efficiency, potentially requiring advanced load balancing mecha-
nisms for optimal performance.

e Variable Factors - Network Congestion and Bandwidth: The results
of this experiment were obtained under idealized conditions, with variables
like network congestion and bandwidth excluded from consideration. As such,
while the findings demonstrate significant performance improvements in data
loading, real-world implementations may encounter additional challenges re-
lated to these factors.

e Limited Validation Scope: The testing environment was confined to a
Hadoop-based Cloudera setup. Broader validation across other platforms (e.g.,
cloud-based data lakes, different big data frameworks) and data formats would
provide a more comprehensive understanding of the architecture’s versatility.

7.3 Future Work

To build on these transformative findings, future research should focus on:

e Advanced Staging Optimization: FExplore strategies to parallelize the
staging process or optimize data transformations, aiming to further reduce
processing time and maximize the benefits of the proposed architecture.

75

Scalability and Parallelism Exploration: Investigate the impact of vary-
ing levels of parallelism (e.g., 4, 8, or more parallel processes) to determine the
scalability limits and identify the optimal configuration for different workloads.

Hybrid Processing with Real-Time Integration: Examine the potential
of integrating the proposed architecture with real-time data processing frame-
works like Apache Kafka or Flink, enabling a hybrid approach that combines
batch and stream processing for more dynamic data environments.

Resource Efficiency and Cost-Benefit Analysis: Conduct a detailed eval-
uation of resource consumption and cost implications to balance the perfor-
mance improvements with the overhead introduced by parallel processing.

Implementation of Load Balancing Techniques: Test advanced load
balancing algorithms to enhance data distribution across parallel processes,
ensuring even greater efficiency and performance stability.

Validation Across Diverse Platforms: Extend the research to various data
environments, including cloud data lakes, enterprise-scale data warehouses,
and different data formats, to confirm the robustness and versatility of the
proposed architecture.

76

Bibliography

1]

[10]

[11]

R. J. Santos and J. Bernardino, “Real-time data warehouse loading method-
ology,” in Proceedings of the 2008 international symposium on Database engi-
neering & applications, 2008, pp. 49-58.

R. J. Santos and J. Bernardino, “Optimizing data warehouse loading proce-
dures for enabling useful-time data warehousing,” in Proceedings of the 2009
International Database Engineering € Applications Symposium, 2009, pp. 292—
299.

P. Vassiliadis and A. Simitsis, “Extraction, transformation, and loading.,” Fn-
cyclopedia of Database Systems, vol. 10, 20009.

A. Thusoo, J. S. Sarma, N. Jain, et al., “Hive-a petabyte scale data warehouse
using hadoop,” in 2010 IEEE 26th international conference on data engineer-
ing (ICDE 2010), IEEE, 2010, pp. 996-1005.

A. Abouzied, D. J. Abadi, and A. Silberschatz, “Invisible loading: Access-
driven data transfer from raw files into database systems,” in Proceedings of
the 16th International Conference on Extending Database Technology, 2013,
pp. 1-10.

T. Liu, J. Liu, H. Liu, and W. Li, “A performance evaluation of hive for
scientific data management,” in 2013 IEEFE International Conference on Big
Data, IEEE, 2013, pp. 39-46.

S. Sagiroglu and D. Sinanc, “Big data: A review,” in 2013 international con-
ference on collaboration technologies and systems (CTS), IEEE, 2013, pp. 42—
47.

S. K. Bansal, “Towards a semantic extract-transform-load (etl) framework
for big data integration,” in 2014 IEEE International Congress on Big Data,
IEEE, 2014, pp. 522-529.

Y. Cheng and F. Rusu, “Parallel in-situ data processing with speculative load-
ing,” in Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, 2014, pp. 1287-1298.

Y. Huai, A. Chauhan, A. Gates, et al., “Major technical advancements in
apache hive,” in Proceedings of the 2014 ACM SIGMOD international confer-
ence on Management of data, 2014, pp. 1235-1246.

M. Mesiti and S. Valtolina, “Towards a user-friendly loading system for the
analysis of big data in the internet of things,” in 2014 IEEE 38th Inter-
national Computer Software and Applications Conference Workshops, IEEE,
2014, pp. 312-317.

77

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

K. Sridhar and M. Sakkeer, “Optimizing database load and extract for big
data era,” in Database Systems for Advanced Applications: 19th International
Conference, DASFAA 2014, Bali, Indonesia, April 21-24, 2014. Proceedings,
Part I 19, Springer, 2014, pp. 503-512.

A. U. Abdullahi, R. Ahmad, and N. M. Zakaria, “Big data: Performance pro-
filing of meteorological and oceanographic data on hive,” in 2016 3rd interna-
tional conference on computer and information sciences (ICCOINS), IEEE,
2016, pp. 203-208.

S. Shaw, A. F. Vermeulen, A. Gupta, et al., “Loading data into hive,” Practical
Hive: A Guide to Hadoop’s Data Warehouse System, pp. 99-114, 2016.

E. Costa, C. Costa, and M. Y. Santos, “Efficient big data modelling and or-
ganization for hadoop hive-based data warehouses,” in FEuropean, Mediter-

ranean, and Middle Fastern Conference on Information Systems, Springer,
2017, pp. 3-16.

J. Camacho-Rodriguez, A. Chauhan, A. Gates, et al., “Apache hive: From
mapreduce to enterprise-grade big data warehousing,” in Proceedings of the
2019 International Conference on Management of Data, 2019, pp. 1773-1786.

M. Rodrigues, M. Y. Santos, and J. Bernardino, “Big data processing tools:
An experimental performance evaluation,” Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, vol. 9, no. 2, €1297, 2019.

C.-C. Yang and G. Cong, “Accelerating data loading in deep neural network
training,” in 2019 IEEFE 26th International Conference on High Performance
Computing, Data, and Analytics (HiPC), IEEE, 2019, pp. 235-245.

J. C. Nwokeji and R. Matovu, “A systematic literature review on big data ex-
traction, transformation and loading (etl),” in Intelligent Computing: Proceed-
ings of the 2021 Computing Conference, Volume 2, Springer, 2021, pp. 308—
324.

A. Adamov, “Large-scale data modelling in hive and distributed query pro-
cessing using mapreduce and tez,” arXiv preprint arXiw:2301.12454, 2023.

78

	Declaration
	Approval
	Ethics Statement
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Research Gap and Contribution
	Significance of the Proposed Solution
	Research Questions
	Methodological Approach
	Outline of the Thesis

	Literature Review
	Literature Review

	Background Study
	Apache Hive
	Key Features of Apache Hive
	Hive Architecture
	Hive Table Types
	Hive Data Model
	Common Use Cases
	Advantages and Limitations

	Apache Hive Data Loading Architecture
	Data Sources
	Key Components of Hive Data Loading
	Data Loading Methods in Hive
	Partitioning and Bucketing in Hive
	File Formats and Compression
	Schema Evolution and Data Management
	Best Practices for Data Loading in Hive
	Data Loading Workflow in Hive

	Traditional Hive Data Ingestion Architecture (Any File Type)
	Choosing Right File Type
	Challenges of Storing Any Type of File
	Why ORC is Best for Transactional Data, Performance, and Size

	Traditional Hive Data Ingestion Architecture (Any File type to ORC)
	Landing Batch Process
	Staging Batch Process
	Benefits of This Architecture

	Sequential Process Bottlenecks
	Why Sequential Processing is Slow
	Potential Improvements

	Research Methodology
	Proposed Architecture
	Two Asynchronous Processes
	Master Landing & Staging Batch Process
	Child Landing Batch Process
	Child Staging Batch Process
	Required Configuration for Data Loading
	One Single INSERT Query to Start Data Loading

	Experimental Environment and Assumptions

	Implementation
	Dataset
	Dataset Descriptions
	Dataset Composition
	Data Format and Characteristics
	Relevance to the Study
	Challenges and Solutions

	Environment Setup
	Amazon EMR
	EMR Cluster Configuration
	Integration with Apache Hive and Apache Spark
	Gateway/Staging/Edge Node

	Data Preprocessing
	Data Loading
	Traditional Architecture
	Proposed Architecture

	Result and Analysis
	Data Size Analysis
	Traditional Data Loading with Raw Files
	Optimized Data Storage with ORC Format
	Comparison of Storage Reduction
	Implications for Data Warehousing

	Landing Batch Process with No Parallel
	Landing Batch Process with 2 Parallel
	Analysis of Both Landing Batch Process
	Staging Batch Process
	Performance Comparison
	Analysis
	Key Observations:
	Detailed Dataset-Specific Performance Comparison
	Overall Improvement Comparison

	Conclusion and Future Work
	Conclusion
	Limitations
	Future Work

	Bibliography

