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Abstract

Natural disasters like the 2023 earthquake in Turkey have significant social and eco-
nomic effects, making it important to use analytical methods for creating strong,
disaster-ready communities. In our work, we analyze public sentiment on social
media after the earthquake, focusing on the rise in prices that followed. We clas-
sify public reactions into three categories: negative, positive, and neutral. To do
this, we use several machine learning models, deep learning models, and two trans-
former based models. By analyzing the connection between people’s feelings and
socio-economic factors like consumer spending, inflation, and price hikes, we aim to
understand how public sentiment relates to policy decisions made in response to the
crisis. Among all models tested, modified DistilBERT stood out, delivering the best
performance with an accuracy of 82.20% and an F1-score of 84.30%. This shows
that transformer-based models, particularly DistilBERT, are highly effective for sen-
timent analysis in this context. DistilBERT’s strong precision, recall, and F1-score
suggest that it could be a valuable tool for informing policy changes to reduce the
socio-economic impacts of natural disasters. Additionally, we used Explainable AI
to help explain the model’s results, ensuring that policymakers can make informed
decisions based on the data. Our research highlights the importance of advanced
natural language processing (NLP) techniques for developing evidence-based policies
in disaster management.

Keywords: NLP; Machine Learning; Deep Learning; Transformer; XAI; Sentiment
Analysis, Earthquake
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Chapter 1

Introduction

1.1 Introduction

Communities around the world face immense challenges due to natural disasters,
which have serious socioeconomic impacts that require effective policy solutions.
The 2023 earthquake in Turkey is a reminder of how environmental events can
affect socio-economic stability. Following the earthquake, rising prices worsened
conditions for those affected, emphasizing the need for evidence-based policies to
build disaster resilience.

Disasters like earthquakes can cause significant socioeconomic disruptions, such as
damaged infrastructure, loss of jobs, and higher costs of goods and services. These
events often break supply chains and reduce the availability of essential goods, lead-
ing to price increases that further strain affected communities. The 2023 earthquake
in Turkey had a profound impact, with many people facing higher prices for basic
necessities, making recovery even harder. This highlights the importance of under-
standing and addressing public sentiment to effectively support those in need. Nat-
ural Language Processing (NLP) is an essential tool for identifying disaster-related
posts on social media and understanding their semantic, spatial, and temporal con-
text, enabling better preparedness and response in disaster-prone areas [1]. This
helps improve preparedness and response in disaster-prone areas. By analyzing so-
cial media sentiment, NLP provides insights into the concerns and feelings of affected
individuals.

Public sentiment is crucial in these situations because it reflects the immediate reac-
tions, needs, and priorities of those affected by disasters. Machine learning models,
deep learning models, and transformer-based models like DistilBERT and XLNet
are essential for enhancing NLP techniques [2] [3]. This can analyze social media
comments to inform policy making. These models help uncover public sentiments
and guide more responsive and compassionate policy measures. Using NLP to an-
alyze social media comments allows policymakers to understand public sentiment
and adjust their strategies accordingly [4]. This ensures policies meet the real needs
of people affected by disasters. It helps communities respond better and become
stronger.
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1.2 Motivation

Earthquakes and other natural disasters cause more than just physical damage.
They also lead to financial struggles for those affected. [5]. After the 2023 earthquake
in Turkey, prices went up, making life harder for people already dealing with the
disaster. Studies show that after natural disasters, the cost of basic goods can
increase by up to 30%, adding more pressure on families.

To help those affected, it’s important to understand how they feel. Social media can
provide insight into people’s emotions and concerns. By using advanced computer
programs to analyze what people post online, we can learn more about their thoughts
and worries [6].

Our objective is to use these instruments to ascertain the opinions and effects of
people following the earthquake in Turkey. For example, research has found that
over 70% of people use social media to share their experiences and concerns after a
disaster like the Turkey earthquake.

Our goal is to assist decision-makers in using this data to guide their decisions. We
can assist leaders in developing strategies that truly benefit those who require as-
sistance by integrating data on people’s feelings with critical information. Ensuring
the voices of individuals impacted by natural disasters be heard is the main goal of
this study. In order for decision-makers to be truly impactful, we want to ensure
that they have a thorough understanding of ordinary people’s lives. The main goal
of this research is to help people after disasters. We want to make their lives a bit
easier during difficult times.

1.3 Objective

Our study aims to analyze social media data sentiment to examine the socio-
economic effects of the 2023 earthquake in Turkey. In order to pinpoint important
socioeconomic variables influencing the aftermath of the disaster, we hope to gather
a sizable dataset of social media remarks from those impacted by the earthquake. In
particular, our study focuses on using sentiment analysis methods to gather infor-
mation from the gathered social media comments, especially concerning the opinions
held over the earthquake-caused price increases and their wider socio-economic con-
sequences. Furthermore, our goal is to investigate the relationship between major
socioeconomic indicators and sentiment changes in order to provide information for
evidence-based policy responses that are customized to the needs and perspectives
of communities affected by disasters.

In addition, we would like to process and analyze the social media data in order
to investigate the efficacy of different machine learning (ML) models, deep learning
(DL) models and two advanced models in capturing complex sentiment expressions
in communities affected by disasters. Furthermore, to make the models easier to
understand and more transparent, especially with complex language data, we will
use explainable AI techniques to interpret and extract useful insights from the data.
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1.4 The 2023 Turkey Earthquake: Assessing the

Socio-Economic Aftermath and Recovery Ef-

forts

The earthquake that occurred in Turkey in 2023 had a significant and varied socioe-
conomic effect. The February 2023 earthquakes that rocked northern and western
Syria, as well as southern and central Turkey, left large amounts of damage and ca-
sualties in their wake. The immediate effects on the economy included buildings and
infrastructure being destroyed as well as output being disrupted. Early projections
indicated that the reconstruction efforts would likely balance out the early negative
effects, meaning that the net effect on Turkey’s economic growth could be less than
1 percentage point for the year.

According to the World Bank, Turkey’s 2021 GDP amounted to $34.2 billion in
direct physical damages, with the potential for substantially greater recovery and
reconstruction expenditures [7]. Together with leaving a huge number of people
homeless, the earthquake had a profound social impact, particularly in areas with
high rates of poverty and a high number of refugees. A thorough approach to
catastrophe management and economic resilience planning is important, given the
expected considerable overall cost to Turkey’s economy.

1.5 Socio-Economic Impact of the 2023 Turkey

Earthquake: Factors Contributing to Price

Hikes

The Turkey earthquake of 2023 had a big impact on the economy of the nation,
which included elements that led to price increases. Here are a few particulars:

1. Costs of Infrastructure Damage and Reconstruction: Buildings,
roads, and utilities all sustained significant damage as a result of the earth-
quake. Costs rose as a result of the ensuing reconstruction operations, which
demanded significant resources. Higher costs resulted from the need to rebuild
or repair damaged infrastructure, which may have an indirect effect on the cost
of goods and services [8].

2. Supply Chain Interruptions: Production and delivery of commodities were
impacted by the disruption in supply chains caused by the earthquake. Busi-
nesses that depend on inputs from the impacted areas experienced difficulties
locating supplies, which could have resulted in shortages and increased costs.

3. Increased Demand for Construction Materials: The need for construc-
tion materials including steel, cement, and wood increased as a result of the
reconstruction activities. Prices for these materials rose due to the increasing
demand, which had an impact on building expenses and, ultimately, inflation
overall.

3



4. Consumer Attitude and Purchase Patterns: The aftermath of the earth-
quake might have had an impact on consumer confidence and purchasing pat-
terns. Future uncertainty and safety worries may cause patterns of consump-
tion to shift, which would impact demand and pricing [9].

5. Impact of Multipliers on Supply Chains: The consequences of the earth-
quake on supply chains were multiplicitous, meaning that problems in one
industry could have a knock-on effect on others. For instance, damage to
industries may have an impact on the amount of items produced both domes-
tically and abroad, raising prices and costs.

6. The impact of inflation on household expenditures: The cost of the
Minimum Expenditure Basket (MEB), which contains necessities for house-
holds, increased significantly. The cost of living increased following the earth-
quake due to the rise in food prices and rental costs, which put pressure on
people to experience inflation.

In conclusion, there were a number of economic consequences of the 2023 Turkey
earthquake, some of which led to price increases. The post-disaster inflationary
pressures were impacted by a convergence of factors including reconstruction costs,
labor market fluctuations, disruptions in supply, and policy actions.

1.6 Leveraging Public Sentiment from Social Me-

dia for Post-Disaster Policy Making

By utilizing the information found in social media feedback, decision-makers can
shape policies that truly resonate with the public’s concerns and feelings, resulting
in improved strategies for disaster recovery.

1. Real-Time Feedback: Social media allows for prompt policy revisions by
giving instant insights into the public’s reactions to disaster response activities.

2. Community Engagement: Social media interaction with the community
promotes trust and guarantees that impacted individuals’ perspectives are
heard and taken into account when creating recovery strategies.

3. Identifying Urgent Needs: By identifying the most pressing needs and
concerns of disaster victims, sentiment analysis on the internet helps direct
targeted governmental initiatives.

4. Monitoring Public Mood: Using social media to monitor public sentiment
can help legislators assess the effectiveness of current initiatives and identify
areas that require further focus.

5. Enhancing Communication: Social media facilitates a two-way conversa-
tion between government and public by providing a direct avenue for policy
decisions to be communicated and comments to be received.

4



1.7 Contributions

The contributions of this research paper are discussed as follows:

1. This research investigates the socio-economic effects of the 2023 earthquake
in Turkey, focusing on the interplay between public sentiment and economic
indicators such as consumer spending, inflation, and price hikes. The analysis
provides insights into the complex dynamics of disaster impact on society.

2. A comprehensive dataset has been compiled from 5000 social media comments
post-earthquake, categorizing sentiments into negative, positive, and neutral.
This dataset, annotated with the expertise of domain specialists, serves as a
foundation for understanding public mood in response to the crisis.

3. Among the various machine learning models and state-of-the-art models eval-
uated, a modified DistilBERT emerged as the most effective after necessary
hyperparameter tuning and changing the attention layer. The model is com-
pared with state- of-the-art architecture

4. Utilized XAI model to interpret the performance of the modified model, aiding
in evidence-based policy making.

1.7.1 Usability of the Research

Analytical methods are necessary to enable evidence-based policy-making for disaster-
resilient communities, given the socio-economic effect of natural disasters. In this
work, we perform sentiment analysis on social media data after the 2023 earthquake
in Turkey, emphasizing the ensuing price increases. We examine public sentiment
in three categories: negative, positive, and neutral, using machine learning models,
deep learning models, DistilBERT, and XLNet. Through the correlation of mood
movements with socio-economic variables including consumer spending, inflation,
and price hikes, we shed light on the complex relationship between public percep-
tion and policy reactions to the crisis. DistilBERT’s potential as a useful tool for
understanding policy measures targeted at minimizing the socio-economic effects of
natural disasters is highlighted by its high precision, recall, and F1 score. Our study
advances our knowledge of the socioeconomic effects of disasters and emphasizes
the value of using cutting-edge natural language processing (NLP) techniques to
formulate evidence-based policies for disaster management.

1. Our custom-collected dataset, focusing on real-time social media comments af-
ter the 2023 Turkey earthquake, captures authentic public reactions, providing
a valuable resource for policymakers.

2. This analysis offers a clear view of public emotions (negative, neutral, positive)
toward price hikes after the earthquake, helping policymakers measures public
concerns.

3. Utilizing various machine learning models, deep learning models and trans-
former based models sentiment analysis is conducted on social media data
to discern public sentiment across three categories: negative, positive, and
neutral.

5



4. Explainable AI techniques provide insightful information by making the model’s
predictions transparent, supporting data governance by offering clarity on the
key factors.

5. These insights enhance data governance by ensuring effective data collection,
processing, and analysis. Our research delivers impactful insights that guide
informed decisions on disaster management, price regulation, and strategies
for economic recovery after crises.
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Chapter 2

Related Work

In recent years, sentiment analysis and language technologies have become increas-
ingly important in understanding public responses to natural disasters and socio-
economic issues. Twitter data, in particular, has proven to be a valuable source
for analyzing societal reactions. After the earthquake in Izmir, researchers analyzed
Twitter to examine tweet frequency, recurring themes, popular sentiments, and ge-
ographic distribution, providing critical insights into public emotions and attitudes
in the aftermath of the disaster [10]. The analysis of such data helps paint a clearer
picture of the collective consciousness of people affected by the disaster, offering both
quantitative (tweet counts, location data) and qualitative (emotional tone, thematic
elements) insights. This kind of data is essential for understanding how individu-
als react in times of crisis, how information spreads, and what issues or concerns
are most prominent among the affected population. Similarly, another analysis of
Twitter reactions following the earthquakes in Turkey and Syria revealed emotional
responses such as empathy, concern, fear, and calls for action. This study explored
how individuals and communities emotionally navigated the crisis, contributing to
disaster management efforts [11]. By identifying these emotional trends, researchers
can inform disaster relief organizations and government agencies about the public’s
emotional state, enabling more effective communication and intervention strategies
during the aftermath of disasters.

In addition to natural disasters, sentiment analysis has been used to investigate
socio-economic issues, such as rising energy prices. From January 2021 to June 2022,
Twitter data was analyzed using transformer-based models to classify sentiments
and topic modeling techniques, such as BERTopic and LDA, to identify themes
related to energy pricing [12]. The use of advanced transformer-based methods such
as BERT allows researchers to capture the nuanced emotions behind these public
reactions, while topic modeling helps to group related conversations into clusters,
providing insights into the key issues discussed by the public, such as inflation,
government policies, and potential solutions. This type of analysis is critical because
socio-economic issues, especially those that affect day-to-day living, often spark
strong reactions, and understanding these can help policymakers gauge the level of
public concern and respond accordingly. Furthermore, a comparative analysis of
text-based emotion recognition models found that BERT, RoBERTa, DistilBERT,
and XLNet vary in their ability to accurately identify emotions in textual data,
with the study helping to determine the most effective model for such tasks [13].
Comparative studies like these are essential for ensuring that sentiment analysis
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techniques are not only accurate but also efficient, particularly when applied to
large-scale datasets such as social media posts. Choosing the right model can lead
to better sentiment interpretation, which is critical for informing decision-making
processes.

The application of sentiment analysis has also been extended to price hikes in dif-
ferent linguistic contexts. One study leveraged an LSTM-ANN approach to analyze
Bangla social media comments related to price hikes, showing the effectiveness of
combining sequence modeling with neural networks for sentiment classification [14].
Price hikes are a common point of public discourse, and social media provides an
outlet for the public to express their frustration or support regarding such changes.
The use of sequence models like LSTM allows researchers to take into account the
order and context of the words in these comments, making the analysis more pre-
cise. Neural networks like ANN can then be used to classify the overall sentiment
expressed, giving a clearer picture of public opinion. Another study compared the
performance of various machine learning algorithms, including neural networks, deci-
sion trees, and support vector machines, in analyzing public sentiments around fuel
price increases, offering valuable insights for stakeholders and policymakers [15].
This comparison of machine learning algorithms is important for determining which
model is best suited for sentiment analysis in various contexts. By finding the most
effective method, analysts can provide more accurate data to policymakers, helping
them understand public opinion more clearly and respond to price hikes in ways
that may mitigate negative public reactions. Table 2.1 refers to the challenges of
related work.

Table 2.1: Challenges Addressed from the Recent Literature

Reference of the pa-
per

Challenges

Ağralı et al., 2022 Accurately interpreting data is challenging due to the
the limited contextual understanding of tweets.

Hossain et al., 2023 Focusing solely on initial Twitter responses post-
earthquake, without tracking sentiment changes over
time.

Kastrati et al., 2023 Examining the complexity of energy price discussions
necessitates a comprehensive and robust analysis.

Adoma et al., 2020 Fine-tuning language models for emotion recognition
demands meticulous experimentation and validation to
optimize performance

Saputra et al., 2023 Choosing the right machine learning algorithms for
sentiment analysis is tricky due to their diverse
strengths and weaknesses, shaped by data and task
specifics.

Sentiment analysis has also proven beneficial in shaping public policy by aiding
policymakers in understanding public opinion, identifying emerging issues, and as-
sessing the impact of policies. Researchers have highlighted how these methods can
enhance evidence-based policymaking by providing insights from social media data

8



throughout the policy cycle [16]. By analyzing the sentiment of social media users,
policymakers can gain a real-time understanding of how the public perceives specific
policies or issues. Sentiment analysis offers an ongoing mechanism to evaluate pub-
lic response and adjust strategies accordingly. As policies are implemented, these
methods can be used to track the success of the measures taken and provide feedback
that may lead to policy refinement. This integration of data-driven insights allows
for a more transparent and responsive policymaking process, enabling governments
to address public needs and concerns more effectively.

Together, these studies demonstrate the power of advanced computational methods
for sentiment analysis and their potential to support policymaking by addressing
public concerns. Our research builds on this foundation by employing a combination
of machine learning (ML) and deep learning (DL) models, including state-of-the-art
transformer-based approaches like DistilBERT and XLNet, to analyze sentiment
in social media comments. By integrating exploratory data analysis (EDA) with
explainable artificial intelligence (XAI) techniques, our work provides interpretable
insights that can be used to guide more informed decision-making.

9



Chapter 3

Background Study

3.1 Experimental Models

To validate the dataset, a good number of machine learning (ML), deep learning
(DL) and transformer based architectures were utilized. This section provides a
brief summary of these models.

3.1.1 Machine Learning Models:

1. k-Nearest Classifier: KNN, denoted as k-Nearest Neighbors, is a way of
making predictions on new data by looking at similar examples. KNN predicts
without complex models. It stores all training data. It finds the k closest data
points based on distance for new data. In classification, the majority class of
those k neighbors becomes the prediction. For regression, the average value
of those neighbors is predicted. KNN finds the k closest points on the map.
The new point is assigned the most common label from those neighbors in
classification. The new point’s value is predicted in regression as the average
of its neighbors’ values. It excels at making predictions based on similar past
experiences. It stores all the training data like a reference map, allowing it
to quickly find the k closest data points, which means the neighbors to a new
arrival. Still, when it avoids complex models, KNN can become heavy with
massive datasets, as searching the entire map gets time-consuming. Natural
Language Processing (NLP) is utilized to preprocess raw texts and K-Nearest
Neighbors (KNN) classification algorithm to classify the processed data [17].

ŷi = mode {yj | j ∈ kNN(xi)} (3.1)

In k-Nearest Neighbors (k-NN) for classification, the predicted class ŷi for an
input xi is determined by finding the most frequent class ( mode) among the
k nearest neighbors in the training data, where ŷi represents the class label of
the j-th nearest neighbor to xi.

2. Decision Tree Classifier: A Decision Tree Classifier helps decide what cate-
gory something belongs to based on its characteristics. It works by repeatedly
splitting the data into smaller groups based on certain features, aiming to have
each group as pure as possible. It decides these splits by calculating which
moves will reduce uncertainty about the data’s classification at each step. Ben-
efits It’s easy to understand and explain to others. But it complicates if it gets
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too fixated on the details in the training data, making wrong guesses when it
sees new data. To solve the problem, sometimes it’s best to limit how many
questions it can ask or to use a bunch of decision trees together to make a
better guess.

ŷ(x) =
M∑

m=1

I(x ∈ Rm)cm (3.2)

This equation illustrates how a decision tree classifier predicts an output for
an input vector x. It checks each leaf node Rm to see if x falls within that
region using the indicator function I(x ∈ Rm). If true, it assigns the predicted
class cm of that leaf node to x. The final prediction ŷ(x) is the sum of the
classes of all relevant leaf nodes, thereby determining the class based on the
tree’s structure.

Decision trees in Natural Language Processing (NLP) are employed to model
relationships between textual features and outcomes [18].

3. XGBoost: XGBoost (Extreme Gradient Boosting) is a highly efficient and
flexible machine learning algorithm used primarily for classification tasks. It
builds an ensemble of decision trees in a sequential manner, where each tree
attempts to correct the errors of its predecessor. XGBoost uses a gradient
boosting framework, optimizing a given loss function by adding new trees that
predict the residuals of previous trees. This iterative process continues until
the model’s performance no longer improves significantly. XGBoost incorpo-
rates regularization techniques to prevent overfitting, enhancing the model’s
generalization capabilities. It also supports parallel processing, which acceler-
ates training and makes it suitable for large datasets. Additionally, XGBoost
handles missing data well and can automatically learn which features are im-
portant during the training process. However, the complexity of the model
requires careful tuning of hyperparameters, such as the learning rate, maxi-
mum tree depth, and the number of trees, to achieve optimal performance.
Despite its complexity, XGBoost’s robustness and high accuracy make it a
popular choice in competitive machine learning tasks.

ŷi =
K∑
k=1

fk(xi) (3.3)

In XGBoost, the predicted value ŷi for an input xi is the sum of the predic-
tions from all K trees in the ensemble, where fk(xi) represents the prediction
from the k-th tree. In Natural Language Processing (NLP), XGBoost (Ex-
treme Gradient Boosting) is often preferred for tasks requiring high predictive
accuracy, such as text classification and sentiment analysis, due to its ability
to handle sparse data efficiently, optimize feature selection through gradient
boosting [19].

4. Support Vector Machine: Support Vector Machines (SVM) are a funda-
mental machine learning tool for classification tasks. SVM aims to identify the
optimal hyperplane that best separates different classes in the feature space.
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This hyperplane is selected to maximize the margin, which is the distance
between the hyperplane and the nearest data points from each class, called
support vectors. By maximizing this margin, SVM ensures a robust separa-
tion between classes. SVMs are versatile, capable of handling both linear and
non-linear classification through the use of kernel functions, such as linear,
polynomial, and radial basis function (RBF) kernels. Despite their power, se-
lecting the appropriate kernel and tuning parameters like the regularization
term and kernel coefficients can be complex and requires a deep understanding
of the data and the model to achieve optimal performance. Support Vector Ma-
chines (SVM) are employed in Natural Language Processing (NLP) for tasks
like text classification, sentiment analysis, and spam detection by converting
text data into high-dimensional feature spaces [20].

f(x) = wTx+ b (3.4)

The equation represents the decision function of a Support Vector Machine
(SVM), where w is the weight vector, x is the input feature vector, and b is
the bias term, collectively determining the classification boundary.

5. Random Forest: Random Forests are utilized in Natural Language Process-
ing (NLP) for various tasks such as sentiment analysis [21]. Random Forest
is a powerful ensemble learning method used for classification tasks. It con-
structs a multitude of decision trees during training and outputs the mode of
the classes predicted by the individual trees. Each tree in a Random Forest
is built from a random subset of the training data, and at each split in the
tree, a random subset of features is considered, ensuring diversity among the
trees. This randomness helps to reduce overfitting and improve generalization.
Random Forests are robust and handle a large number of input features well,
offering high accuracy and the ability to handle missing data effectively. How-
ever, they can be computationally intensive, especially with a large number of
trees, and interpreting the model can be more complex compared to a single
decision tree. Hyperparameter tuning, such as the number of trees and the
depth of each tree, is crucial for optimal performance.

ŷ = mode {ŷ1, ŷ2, . . . , ŷT} (3.5)

In a Random Forest model, the predicted class ŷ for a given input is determined
by the most commonly predicted class among all individual decision trees
mode {ŷ1, ŷ2, . . . , ŷT}.

3.1.2 Deep Learning Architectures

In this study, our attention is directed towards utilizing RNN-based architectures
due to their impressive ability to capture semantics [22]. The sections are dedicated
to briefly introducing several cutting-edge deep learning architectures within the
relevant field.

1. Long Short-Term Memory The Long Short-Term Memory (LSTM) net-
work is a widely used RNN architecture designed to capture long-term de-
pendencies in sequential data. It features three gates: the Input gate, the
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Forget gate, and the Output gate, which together regulate the flow of infor-
mation through the network. The Input gate controls the addition of new
information to the cell state, the Forget gate manages the removal of out-
dated information, and the Output gate determines the output of the LSTM
cell. This architecture allows LSTMs to effectively learn and retain informa-
tion over long sequences, making them well-suited for tasks involving complex
dependencies and sequential patterns.

2. Gated Recurrent Unit: The Gated Recurrent Unit (GRU) is a well-known
RNN architecture that serves as an alternative to the LSTM network. It fea-
tures two gates: the Reset gate and the Update gate, which together facilitate
effective semantic capturing. The Reset gate typically manages previously ac-
cumulated information, while the Update gate incorporates new information.
A significant advantage of the GRU is its computational efficiency.

3. Bidirectional Long Short-Term Memory: The Bidirectional Long Short-
Term Memory (BiLSTM) network is a powerful architecture for sentiment
analysis classification tasks. BiLSTM enhances the standard LSTM by pro-
cessing input data in both forward and backward directions, capturing context
from both past and future states. This bidirectional approach allows the model
to better understand the sentiment of a text by considering the full context of
each word.

4. Bidirectional Gated Recurrent Unit: The Bidirectional Gated Recurrent
Unit (BiGRU) network is an advanced architecture used for sentiment analysis
classification tasks. BiGRU extends the standard GRU by processing input
data in both forward and backward directions, allowing the model to capture
context from both past and future words in the text. This bidirectional pro-
cessing enhances the model’s ability to understand sentiment by considering
the entire context surrounding each word.

3.1.3 Transformer Based Model: XLNet

XLNet, introduced by Zhilin Yang et al. in 2019, is a transformer-based model
designed to improve upon previous models like BERT by combining autoregressive
modeling with bidirectional context learning. XLNet uses a unique Permuted Lan-
guage Modeling (PLM) technique, enabling it to capture dependencies from multiple
directions without corrupting input sequences.

Additionally, XLNet integrates the memory mechanism from Transformer-XL, al-
lowing it to effectively model long-term dependencies in sequences. This combination
of features makes XLNet more efficient for tasks that require understanding long-
range context, and it has demonstrated superior performance over BERT in various
NLP benchmarks.

3.1.4 Transformer Based Model: DistilBERT

DistilBERT is a streamlined, faster, and more efficient variant of BERT tailored for
natural language processing tasks. It maintains around 97% of BERT’s language
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understanding capabilities while being 60% faster and utilizing 40% fewer parame-
ters. This efficiency is achieved through knowledge distillation, enabling DistilBERT
to emulate the performance of the larger BERT model. Despite its compact size,
DistilBERT excels in various NLP applications, including text classification, sen-
timent analysis, named entity recognition, and question answering. Its speed and
efficiency make it ideal for scenarios that require rapid inference and have limited
computational resources. The details of the modified DistilBERT are discussed in
subsection 4.7.

3.1.5 Differences Between DistilBERT and XLNet Models

Although both DistilBERT and XLNet are transformer-based models, each brings
unique strengths to our research, offering valuable insights when applied to sentiment
analysis of social media data.

1. Model Architecture:

• DistilBERT is a distilled version of the BERT (Bidirectional Encoder
Representations from Transformers) model. It reduces the size and com-
putational cost while retaining about 97% of BERT’s performance. It
processes text bidirectionally, meaning it takes context from both the left
and right sides of a word, making it highly efficient for tasks requiring a
deep understanding of sentence structure.

• XLNet, on the other hand, is based on a different paradigm called per-
mutation language modeling. It improves upon BERT by capturing de-
pendencies in a more generalized way, leveraging all possible permutations
of word sequences. This enables XLNet to consider the order of words
more effectively and model longer-range dependencies.

2. Training Objectives:

• DistilBERT uses a masked language modeling (MLM) approach, where
some words in a sentence are masked and the model is trained to predict
them based on the context. This works well for understanding the general
meaning of a sentence.

• XLNet, however, employs autoregressive modeling, which predicts words
based on all permutations of the input sequence. This allows the model
to better understand the relationships between words in more complex
and variable structures.

3. Speed and Efficiency:

• DistilBERT is designed to be a lighter and faster alternative to BERT,
making it highly suitable for applications where computational efficiency
is critical without sacrificing much performance. This was beneficial in
our research for handling large-scale social media data quickly and effi-
ciently.

• XLNet, while more resource-intensive than DistilBERT, offers improved
performance on a variety of natural language processing tasks due to its
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more sophisticated modeling of word order. However, this comes at the
cost of slower training and inference times.

4. Contextual Understanding:

• DistilBERT is more focused on capturing sentence-level understanding,
making it well-suited for general sentiment analysis tasks.

• XLNet, due to its ability to consider permutations of word sequences,
offers a more granular approach, potentially capturing subtle nuances
and long-range dependencies in the text. This may improve performance
when dealing with complex sentence structures or nuanced sentiments.

In our research, we applied both models to explore their different strengths. While
DistilBERT’s efficiency made it ideal for quick and accurate sentiment classification,
XLNet’s advanced contextual understanding allowed us to capture deeper relation-
ships in the data, providing a comprehensive sentiment analysis of social media
comments following the 2023 Turkey earthquake.

3.2 Explainable AI Techniques

In our research, we utilize Explainable AI (XAI) techniques to enhance transparency
and interpretability in the decision-making processes of our machine learning models.
These techniques allow us to comprehend how models arrive at specific predictions,
providing insights into the influence of input features—such as sentiment, price hike
relatability, and region—on the output. By making AI systems more interpretable,
XAI fosters trust in the models’ outcomes, which is crucial for deriving reliable
insights from complex datasets. This transparency enhances the credibility of our
findings and supports evidence-based analyses of socio-economic impacts.

3.2.1 Local Interpretable Model-agnostic Explanations (LIME)

Local Interpretable Model-agnostic Explanations (LIME) is a methodology designed
to clarify the decision-making processes of advanced predictive models by offering
explanations for individual predictions. It does this by generating a simplified, inter-
pretable model that approximates the reasoning of the complex model for a specific
instance, thereby illuminating the factors influencing that particular outcome. LIME
achieves this by introducing slight variations to the data point and observing the
resulting changes in predictions. By iteratively modifying the data points and ap-
plying an interpretable model, LIME captures the decision-making process near the
instance of interest. Its strength lies in producing models that are understandable
and reveal the rationale behind the predictions.

θnext step = θcurrent − η · ∇θJ(θ;x
(i), y(i)) (3.6)

• ξ(x) represents the explanation model for instance x.

• f denotes the complex model being explained.

• g symbolizes the simple, interpretable model chosen to approximate f locally,
where g belongs to a family of models G.
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• L is the loss function quantifying the discrepancy between f and g in the
vicinity of x, which defines this locality.

• Ω(g) measures the model g’s complexity, promoting simplicity in the explana-
tion.

Despite its effectiveness in enhancing the transparency of model predictions, LIME
faces challenges. Its explanations are localized, focusing solely on specific instances
rather than the overall logic of the model. Additionally, the choice of the local
interpretive model and its neighborhood can significantly impact the accuracy and
relevance of these explanations. Nevertheless, LIME serves as a valuable tool for
illuminating the predictive mechanisms of complex models, fostering greater under-
standing and trust in their outputs by translating them into more accessible and
interpretable forms.

3.2.2 SHapley Additive exPlanations (SHAP)

SHapley Additive exPlanations (SHAP) is a method grounded in cooperative game
theory that aims to provide insights into the contributions of individual features
toward a model’s prediction. SHAP computes the Shapley values, which quantify
how much each feature contributes to the difference between the actual prediction
and the average prediction of a model. By assigning these contributions in a fair and
consistent manner, SHAP offers a robust framework for interpreting the behavior of
complex machine learning models.

The core strength of SHAP lies in its theoretical foundation, ensuring consistency
and accuracy in attributing the prediction to features. Unlike local methods that
focus only on specific instances, SHAP provides both local and global interpretabil-
ity by aggregating the feature contributions across multiple predictions. SHAP’s
methodology involves calculating the marginal contribution of each feature by con-
sidering all possible combinations of features in the prediction process, making it a
powerful tool for feature attribution. This comprehensive approach allows for deeper
insights into model behavior, fostering transparency and trust in predictive models.

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)] (3.7)

In this equation, ϕi denotes the Shapley value for feature i, representing its contri-
bution to the prediction, f(S) is the prediction for a subset of features S excluding
feature i, N refers to the set of all features, and S is any possible subset of N ex-
cluding i. The term |S|!(|N |−|S|−1)!

|N |! assigns a weight to each subset S, ensuring fair
attribution of contributions across all features.

Explainable AI techniques such as LIME and SHAP are highly effective for ensuring
data quality and deriving insightful analyses. By utilizing machine learning models
like DistilBERT alongside these XAI techniques, we achieve accurate analysis of
large datasets, providing reliable insights into complex issues. These techniques
explain how models arrive at their decisions, enhancing transparency and trust in
the outputs. This framework not only improves interpretability and accountability
but also facilitates the continuous enhancement of analyses.
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Chapter 4

Research Methodology

Figure 4.1 represents the overall workflow of this research. Initially, data were col-
lected from diverse sources, including social media platforms like Facebook, YouTube,
Twitter, and online news portals. Annotated by multiple individuals, the collected
data underwent scrutiny to ensure accurate sentiment assignments. Subsequently,
exploratory data analysis (EDA) was conducted to unveil meaningful patterns within
the dataset. Preprocessing techniques were then applied. After processing the
data were utilized across various machine learning models such as Support Vec-
tor Machines (SVM) and Random Forest, as well as deep learning architectures like
Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM). Addition-
ally, state-of-the-art models such as distilBERT and XLNet were employed in the
analysis. The models’ performance was evaluated using various metrics such as Pre-
cision, Recall, and F1 score. Finally, the modified model was interpreted through the
lens of explainable artificial intelligence (XAI), Local Interpretable Model-agnostic
Explanations (LIME) and SHapley Additive exPlanations (SHAP).

4.1 Data Collection Procedure

The data collection process began with the selection of topics, focusing on events
such as the ”Turkey Earthquake 2023” and its economic repercussions, specifically
the ”Price Hike due to Turkey Earthquake 2023”. Data were sourced from various
social media platforms, including Facebook, YouTube, Twitter, and online news
portals, chosen for their extensive user base and diverse discussions. Relevant con-
tent was identified through tailored search queries, utilizing filters to refine results.
Posts and discussions were pinpointed based on keywords, hashtags, and mentions,
prioritizing those with high engagement and diverse viewpoints. A systematic sam-
pling strategy was implemented to capture diverse geographic locations. Collected
data were securely stored and organized for analysis, with proper documentation to
track the source and context of each data point.

4.2 Dataset Description

Subsequently, the dataset was created and several columns were combined based on
the results to comprehend the social and economic effects of the Turkey Earthquake
2023, especially with reference to the subsequent price increases. An additional
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Figure 4.1: Methodology of Research Work

column was set aside to compile remarks in English that users posted on different
social networking sites. After that, three participants helped assign the necessary
polarity. Table 4.1 provides a detailed description of each attribute in the dataset.
Here, the term ”Comment” refers to user-provided language that expresses their
thoughts about the Turkey Earthquake of 2023 and its effects on the economy.
These comments have one of three sentiments: 0, 1, or 2. A score of 0 indicates
negativity, a score of 1 indicates positivity, and a score of 2 indicates neutrality.
Whether the statement was made before or after the earthquake is indicated by the
second property, Time. In this case, 0 indicates remarks made prior to the earth-
quake, 1 indicates remarks made during the earthquake, and 2 indicates remarks
made following the earthquake. The Region feature helps to explain regional differ-
ences in public opinion by indicating the comment’s geographic origin. In this case,
1 represents comments from Turkey and 0 represents comments from other coun-
tries. Price Hike Relatability, the last characteristic, establishes whether or not the
comment is related to the price increases brought on by the earthquake. Here, a 1
indicates that the criticism is about the price increase, while a 0 indicates it is not.

4.3 Exploratory Data Analysis

The main goal when we start Exploratory Data Analysis (EDA) is to get a clear
picture of how the data is structured. At this early stage, we dive deep to fully
understand what’s in our dataset. A thorough EDA helps us spot any odd data
points, known as outliers. In our research, the EDA gave us a detailed look at
things like whether the data is good quality and if everything’s there that should
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Table 4.1: Attribute Description from the Dataset

Attribute Name Attribute Description
Comments Contains textual comments from social media

users and news portal readers in English.
Sentiment Represents the polarity of the comments such as

Positive, Negative and Neutral.
Time (Before, After) Indicates the period when the comment was made

in relation to the earthquake.
Region Specifies the geographic origin of the comment
Price Hike Relatability Indicates whether the comment is related to the

price hike following the earthquake.

be. We have also used a bunch of different ways to show the data, which helps us
see patterns more clearly. On top of that, we have carefully picked out the steps
to get the data ready for analysis. Preprocessing steps are also carefully identified
with the aid of available programming libraries. We have summarized all the key
points we found from our data exploration in the next few sections.

4.3.1 Statistical Analysis of the Dataset

The dataset’s statistical overview starts by outlining key attributes such as mean,
standard deviation, minimum, and maximum values. Table 4.2 provides a detailed
summary using these statistical measures. During this process, the ”Comment”
attribute was excluded, as it holds no relevance to the statistical analysis. Under-
standing the dataset through these descriptive statistics offers several advantages.
Primarily, it provides a clear and comprehensive insight into the data.

Table 4.2: Dataset Description

Statistic Sentiment Time (Before,
During, After)

Region Price Hike Re-
latability

Count 5,052 5,052 5,052 5,052
Mean 1.00 1.55 0.76 0.65
Std 0.81 0.65 0.43 0.48
Min 0.00 0.00 0.00 0.00
25% 0.00 1.00 0.00 0.00
50% 1.00 2.00 1.00 1.00
75% 1.00 2.00 1.00 1.00
Max 2.00 2.00 1.00 1.00

The correlation matrix presented in Table 4.3 provides insights into the relationships
between key attributes in the dataset. Notably, The primary correlation observed
is between sentiment and time, suggesting that the earthquake had a significant
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impact on public sentiment. Additionally, The moderate negative correlation be-
tween sentiment and price hike relatability indicates that price hikes were a concern
and were more likely to obtain negative sentiments. The strong correlation between
region and price hike relatability suggests that Turkey might be more affected by
price increases or have more public discussion about them.

Table 4.3: Correlation Among Data Points

Attributes Sentiment Time (Before,
After)

Region Price Hike Re-
latability

Sentiment 1.000 -0.500 -0.400 -0.600
Time (Before,
After)

-0.500 1.000 0.300 0.600

Region -0.400 0.300 1.000 0.700
Price Hike Re-
latability

-0.600 0.600 0.700 1.000

4.3.2 Data Quality Checking using Kappa Score

In our study, we have applied the Fleiss’ Kappa score as a way to quantify the
agreement among multiple raters. This score is highly effective for monitoring and
assessing how well raters are in sync. It serves as an effective method to ensure
the consistency and reliability of the data we are analyzing. Moreover, it aids in
decision-making by illustrating the degree of agreement present. In fields like socio-
economics, Fleiss’ Kappa is particularly useful for identifying areas of inconsistency.
In our analysis, we used Fleiss’ Kappa to measure the level of agreement among
different reviewers, calculated using the following mathematical formula.

Table 4.4: Interpretation of Fleiss Kappa Score

Kappa Score Range Interpretation
0.01-0.09 Poor Agreement
0.10 - 0.20 Slight Agreement
0.21 - 0.40 Fair Agreement
0.41 - 0.60 Moderate Agreement
0.61 - 0.80 Substantial Agreement
0.81 - 1.00 Almost Perfect Agreement

The formula for Kappa score for three persons is:

κ =
P − Pe

1− Pe

Where:

• P is the average observed agreement across all raters.
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• Pe is the expected agreement, calculated as the probability of random agree-
ment.

Table 4.4 represents the values associated with the data quality. In our case, the
Fleiss’ Kappa score is 83%, which resides in the category of almost perfect agreement.
This reflects that the inter-annotator agreement is strong enough to process the
dataset. Consequently, the comments in the dataset can be reliably fed into various
models.

4.3.3 Data Annotation and Assistance

For the purpose of our research, particularly in annotating the data, we received
valuable assistance from Sumaiya Hoque, who completed her Master’s degree in
English Literature from International Islamic University of Chittagong (IIUC). Her
expertise in understanding language proved instrumental in the annotation process.

Sumaiya Hoque helped us formulate the guidelines for annotation, ensuring that
sentences were accurately categorized based on sentiment—negative, positive, or
neutral. These guidelines, which formed the foundation for consistent and reliable
data labeling, were used by the team to assess social media comments related to the
Turkey Earthquake 2023 and its economic consequences. Her contribution greatly
enhanced the quality of our dataset.

Rules for Sentiment Annotation

The following rules were applied during the annotation process to classify sentences
into different sentiment categories:

Negative Sentiment (0):

• Criticism of price hikes: Sentences that express frustration or complaints
about rising prices due to the earthquake.

• Expression of loss or damage: Sentences describing personal or collective
loss (economic or physical) caused by the earthquake.

• Negative emotions: Sentences containing words or phrases indicating sad-
ness, anger, or frustration related to the earthquake or its consequences.

• Blame or dissatisfaction: Sentences blaming authorities, governments, or
businesses for inadequate response or failure to manage post-earthquake eco-
nomic challenges.

Positive Sentiment (1):

• Supportive or hopeful statements: Sentences expressing hope for recovery
or acknowledging positive actions taken to mitigate the earthquake’s effects.

• Praise for resilience or aid efforts: Sentences that praise individuals,
communities, or organizations for their efforts in helping others or managing
the crisis.
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• Gratitude: Sentences showing appreciation for aid, international help, or any
form of assistance during or after the earthquake.

Neutral Sentiment (2):

• Informational or factual: Sentences that simply provide information or
state facts about the earthquake without expressing any emotional tone or
opinion.

• Balanced viewpoint: Sentences that mention both negative and positive
aspects of the earthquake’s impact without leaning toward a strong emotional
response.

• Discussion without judgment: Sentences that discuss the situation objec-
tively, focusing on the event itself or consequences without displaying clear
sentiment.

We would also like to thank a few more individuals who helped in the annota-
tion process voluntarily. They are: Tanvir Rahman, Lecturer, Stamford University
Bangladesh; Nahid Hasan, Lecturer, Southeast University; Nazrul Islam, Lecturer,
Southeast University; Mashiwat Tabassum Waishy, Lecturer, Stamford University
Bangladesh; Sovon Chakraborty, Lecturer, ULAB; and Shanta Maria Shithil, Lec-
turer (On Leave), Stamford University Bangladesh. Their contributions were es-
sential in ensuring the quality and consistency of the data annotations used in this
research.

4.3.4 Data Exploration and Analysis

First, we examined the timing of the social media comments related to the 2023
Turkey earthquake. Three periods were considered: before, during, and after the
event. The primary focus was on the volume of comments made during each period.
As shown in the data, the majority of comments were made after the earthquake,
with a total of 3174 comments. During the earthquake, there were 1453 comments,
and before the event, only 425 comments were recorded. This distribution highlights
a significant increase in social media activity following the earthquake, reflecting a
common trend where public engagement spikes in response to major events. The
data suggests that the earthquake had a considerable impact on people, leading to
a notable increase in comments in the aftermath of the disaster.
Figure 4.2 illustrates the number of comments made before, during, and after the
earthquake, emphasizing the increased activity in the post-event period. Addition-
ally, this analysis provides insight into how public attention and social media dis-
cussions are heavily influenced by significant events such as natural disasters, with
the aftermath period showing the highest levels of engagement.

Then we considered the relatability of social media comments to the price hike,
focusing on two categories: comments related to the price hike and comments made
in general. Figure 4.3 illustrates an interesting trend observed in the dataset. It
is evident from the data that a significant portion of the comments, 3277 to be
precise, are related to the price hike. This indicates that the price hike has been a
prominent topic of discussion among the commenters. In comparison, there are 1775
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Figure 4.2: Distribution of Social Media Comments by Time Period

comments made in general, not specifically addressing the price hike. This disparity
highlights the considerable impact and concern that the price hike has generated
among the public. The large number of comments related to the price hike suggests
that economic issues are a major concern for the population, prompting more people
to express their opinions and experiences. This could also indicate sensitivity to
economic changes and a greater awareness of financial matters among the general
public. Understanding this distribution can help stakeholders measure the public
sentiment and address the underlying issues more effectively.

Figure 4.3: Comments Repeatability to Price Hike
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Figure 4.4: Region of Commenters

We are now examining the geographic distribution of social media comments, focus-
ing on two categories: comments from Turkish people and comments from individ-
uals outside Turkey. Figure 4.4 presents an insightful analysis based on the data.
From our dataset, it is clear that a majority of the comments, specifically 3813, are
from Turkish people. This suggests that the events and issues being discussed have
a strong local impact, prompting a significant response from those directly affected.
In comparison, there are 1239 comments from individuals outside Turkey, indicat-
ing considerable international interest and concern as well. The higher number of
comments from Turkish people highlights the direct connection and relevance of the
issues to the local population. This can be attributed to the immediate impact and
personal experiences that prompt more extensive commentary from those within
the country. On the other hand, the significant number of comments from outside
Turkey represents the global awareness and solidarity regarding the situation.

Data are collected from different social media platfroms as We mentioned earlier
that. 4.5 shows the details break down number of sources in the dataset.

Lastly, in our analysis, we initially had a dataset of approximately 5500 comments,
predominantly labeled with a higher number of negative sentiment values. To ad-
dress the issue of class imbalance, we chose to remove some of the negative comments,
ensuring an equal representation of negative, positive, and neutral sentiments. As
a result, the final counts are 1685 negative, 1684 positive, and 1683 neutral com-
ments. This decision was made to avoid the use of resampling techniques, as we
aimed to retain all unique data points. Maintaining unique data is beneficial be-
cause it preserves the diversity of opinions and experiences, which can lead to more
generalizable insights. By keeping a balanced dataset without losing the richness of
the original comments, we enhance the model’s ability to understand and interpret
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Figure 4.5: Ratio of number of sources in the dataset

sentiment accurately across different contexts.

Understanding this distribution of comments helps to measure both local and inter-
national sentiments, providing valuable insights into how the events are perceived
by different groups. This information can be crucial for policymakers, organizations,
and other stakeholders in addressing the concerns and responses effectively.

Thus, the above explorations conclude some important facts that are

1. The majority of social media comments regarding the 2023 Turkey earthquake
were made after the event, indicating a significant surge in public engagement
following the disaster.

2. Comments related to the price hike outnumbered general comments, highlight-
ing substantial public concern and discussion surrounding economic issues in
the dataset.

3. Turkish people contributed a higher number of comments compared to individ-
uals outside Turkey, indicating strong local impact and international interest
in the events discussed.

In the next phase, researchers have focused on preprocessing the comments.

4.4 Preprocessing of the dataset

Preprocessing data is essential for supplying data to several architectures so they
can accurately interpret semantics. It has a sizable amount of operations that are
possible on the dataset’s pattern and language. Making sure the abnormality in the
dataset does not lead the model to become overfit is another crucial step. There are
several different preprocessing methods available for English. Because of this, we
have only included the essential processes needed to offer the applied models.
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The adopted preprocessing techniques are stated below:

1. Dropping Null Values: The primary task is to remove any null values from
the dataset. We have used the Python NLTK library for various operations.
This step is essential for ensuring data integrity before feeding it into machine
learning (ML), deep learning (DL) models and transformer based models.

2. Lowercasing: To ensure uniformity and avoid case sensitivity issues, all text
is converted to lowercase. This preprocessing step is applied explicitly in both
ML and DL models, helping to standardize the input data and making it easier
for the models to recognize and analyze words without distinguishing between
different cases (e.g., ”Apple” and ”apple” are treated as the same word). This
simplification contributes to more accurate sentiment analysis and reduces the
dimensionality of the feature set.

3. Removing Stopwords and Tags: In the English language, stopwords are
common words that do not add significant meaning to the text and can create
ambiguity in analysis. Therefore, all stopwords have been removed to enhance
the clarity of the data. This step is explicitly applied in both ML and DL
models. Additionally, HTML tags have been eliminated from the text for all
the models, as they do not provide meaningful information for the analysis
and can interfere with understanding the content.

4. Special Character and Punctuation Removal: All special characters
from the comments have been removed. Moreover, punctuation marks have
been eradicated from the sentences since they also do not contribute meaning-
ful information in this context. This preprocessing step is explicitly applied in
both ML and DL models, ensuring cleaner input data for analysis.

5. Emoji Conversion: In our sentiment analysis, while emojis visually express
emotions, they do not significantly enhance the understanding of the text’s
sentiment. By converting emojis into their corresponding text descriptions, we
simplify the analysis while retaining their expressive value. This approach is
applied explicitly in every ML and DL and transformer based models, allowing
them to consider both words and visual emotions, potentially improving the
sentiment analysis’s accuracy and efficiency.

6. Creating Dictionary: A dictionary has been created to identify unique
words. The word definitions are also created using this dictionary. There
are 29,172 words available in the dataset, with 3,854 unique words. After
closely understanding the words, it can be observed that most of them are
related to earthquakes and their aftereffects.

7. Lemmatizing: In our data preprocessing workflow, lemmatization is an es-
sential step for normalizing the text data. By converting words to their base or
dictionary forms, lemmatization provides consistency and lowers the dataset’s
dimensionality. We apply lemmatization explicitly in both ML and DL models
to treat various inflected forms of a word as a single entity, thereby improving
the coherence of our feature set. This preprocessing step facilitates subsequent
text analysis tasks and enhances model performance by minimizing noise and
improving data representativeness.
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8. Word Embedding: The cardinal purpose of using word embedding is to
represent data in a dense vector in a vector space. Learning distributed repre-
sentations of words based on their context in a sizable corpus of text data is the
fundamental target behind word embedding. In this research, we have utilized
word embedding techniques such as Word2Vec for both ML and DL models.
Additionally, we explored GloVe and TF-IDF embeddings in these models;
however, the results indicated that Word2Vec outperformed both GloVe and
TF-IDF in terms of accuracy and relevance. For the DistilBERT and XLNet
models, no additional embedding technique has been adopted as these models
incorporate their own contextual embeddings into their architecture.

4.5 Hyperparameter Details of Deep Learning Mod-

els

In our research, The LSTM model utilizes 64 and 32 LSTM units, an embedding
vector length of 64, and three dense layers. Dropout is set to 0.4, with recurrent
dropout at 0.25, and a batch size of 16. The model trains over 50 epochs with
a validation split of 0.2. Lastly, Early stopping is utilized to avoid overfitting by
terminating the training process once the validation loss ceases to show improve-
ment. The parametric details of the LSTM architecture that we impelemented are
presented in Table 4.5.

Hyperparameter Name Value
Number of epoch 50

Activation function Softmax

LSTM Units 64, 32

Embedding vector length 64

Dropout 0.4

Recurrent Dropout 0.25

Dense Layers 3

Batch Size 16

Validation Split 0.2

Table 4.5: Hyperparameter details of LSTM

The Gated Recurrent Unit (GRU) model shares a similar configuration, using 64
and 32 units in its GRU and three dense layers. The embedding vector length is also
64, with a dropout rate of 0.4 and a recurrent dropout rate of 0.15. The GRU model
employs a smaller batch size of 8 while training for 50 epochs with a 0.2 validation
split.
Table 4.6 provides the GRU’s parametric details that we have implemented.
For both the BiLSTM and BiGRU models, we employ Word2Vec for word embed-
ding, which converts text data into continuous vector representations that capture
semantic meanings. The models are trained using Stratified K-Fold cross-validation
to ensure robust performance and generalizability. Early stopping is also imple-
mented to prevent overfitting by halting training when the validation loss stops
improving.
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Hyperparameter Name Value
Number of epoch 50

Activation function Softmax

GRU Units 64,32

Embedding vector length 64

Dropout 0.4

Recurrent Dropout 0.15

Dense Layers 3

Batch Size 8

Validation Split 0.2

Table 4.6: Hyperparameter details of GRU

Hyperparameter Name Value
Number of epoch 50

Activation function Softmax
LSTM Units 128, 64, 32

Dense Layers 3

Dropout 0.4
Batch Size 16

Validation Split 0.2
Number of Folds 5

Table 4.7: Parametric details of BiGRU and BiLSTM

Table 4.7 reflects the parametric details of the BiGRU and BiLSTM architecture.
i want whole of this in a more precise and standard structure. keep the table same.
just upgrade the write up

4.6 Modified XLNet Model

We opted for the XLNet architecture to tackle sentiment analysis classification tasks,
harnessing the model’s robustness and adaptability to sequence-based tasks. XLNet,
an extension of the transformer architecture, introduces permutation-based training,
enhancing its ability to capture bidirectional context and dependencies within the
text data. This model was trained and evaluated on a dataset of textual comments,
with preprocessing steps including tokenization using the XLNet tokenizer. The
data was then divided into training and testing sets to prepare for model training.

The XLNet model architecture consists of a pre-trained XLNet model for sequence
classification, augmented by additional layers for classification. After tokenization,
the data is fed into the XLNet model, and the resulting representations are passed
through a classifier layer to predict sentiment labels. During training, we utilized
an AdamW optimizer with a fixed learning rate, along with a cross-entropy loss
function to optimize the model’s parameters.

To handle the data efficiently, we employed DataLoader instances to manage batch
processing during both training and evaluation phases. The model was trained over

28



130 epochs, with the training loss monitored and recorded for each epoch to assess
convergence. After training, the model’s performance was evaluated on the test
set, and classification metrics such as precision, recall, and F1-score were computed
using a classification report.
Table 4.8 shows the necessary changes made to the original XLNet architecture.

Parameter Name Value
Maximum sequence length Tokenizer-specific, adjusted dynamically

Number of epochs 30

Batch Size 16

Learning rate 2e-5

Number of classes 3 (negative, positive, neutral)
Dropout rate 0.2

Table 4.8: Parametric details of the modified XLNet model

By adopting XLNet for sentiment analysis and implementing these changes, we
aimed to leverage the model’s sophisticated architecture and training mechanisms,
enhancing its capability to capture and classify sentiments effectively from textual
data.

4.7 Modified DistilBERT Model

We employed a DistilBERT-based architecture for sentiment analysis classification
tasks, taking advantage of the efficiency and performance of transformer-based mod-
els. DistilBERT, a compact and faster variant of BERT, retains effective language
understanding capabilities while being computationally efficient. The model was
trained and evaluated on a dataset of text data, which was pre-processed by split-
ting into training and testing sets, followed by tokenization using the DistilBERT
tokenizer.

The text data was tokenized with the DistilBERT tokenizer, converting the text into
input IDs and attention masks suitable for the model. The tokenized text was then
used to create datasets for input to the model, with a maximum sequence length of
128. A custom dataset class, TurkeyEarthquakeDataset, was defined to handle the
encodings and labels.

The model architecture includes an initial DistilBERT layer followed by a pre-
classifier and classifier layer, with dropout applied for regularization. The Distil-
BERT model was fine-tuned for sentiment analysis, with three classes: negative,
positive, and neutral. The model was trained using the AdamW optimizer with
a learning rate scheduler to adjust the learning rate dynamically throughout the
training process.

Table 4.9 represents the hyperparameter details of modified DistilBERT model.
The working procedure of the modified DistilBERT model is explained in 4.6.

Training was conducted over 30 epochs with a batch size of 16. The training process
included calculating the loss using the CrossEntropyLoss function, backpropagation,
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Parameter Name Value
Maximum sequence length 128

Number of epochs 30
Batch Size 16

Learning rate 5e-5
Number of classes 3 (negative, positive, neutral)

Dropout rate 0.2 (sequence classification)

Table 4.9: Parametric details of the modified DistilBERT model for sentiment
analysis

Figure 4.6: Workflow of Modified DistilBERT Model

and updating model parameters using the optimizer. A linear learning rate scheduler
was employed to manage the learning rate.

Figure 4.7 shows the methodology of the modified model.
Evaluation of the model was performed on the test set, with predictions compared to
true labels to measure classification performance. The results were evaluated using
accuracy and classification reports. The training and evaluation process demon-
strated the model’s ability to effectively capture and classify sentiments from text
data, leveraging the power of transformer-based models while optimizing for com-
putational efficiency.

The implementation and training of the DistilBERT model for sentiment analy-
sis showcased its capability to efficiently capture and classify sentiments from text
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Figure 4.7: Methodology of Modified DistilBERT Model

data, demonstrating the utility of transformer-based models in natural language
processing tasks.
Table 4.10 refers to the modification that we made in the DistilBERT model.

4.8 Performance Metrics

Although various performance metrics have been used in the field of sentiment anal-
ysis, our primary focus has been on metrics that directly reflect the model’s clas-
sification abilities—namely, precision, recall, accuracy, F1-score, data loss, and the
number of trainable parameters. In the case of deep learning and transformer-based
architectures, particularly for multiclass classification tasks like ours, relying solely
on precision, recall, and accuracy can be insufficient for a comprehensive evaluation.
Therefore, we have also employed the macro F1-score to provide a more holistic view
of our model’s performance across different sentiment classes.

The formulas for precision, recall, accuracy, F1-score, and macro F1-score for mul-
ticlass classification are provided below.

Precision =
True Positives

True Positives + False Positives
(4.1)

Recall =
True Positives

True Positives + False Negatives
(4.2)

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(4.3)

F1 score = 2× Precision× Recall

Precision + Recall
(4.4)
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Aspect Traditional DistilBERT Modified DistilBERT
Dataset Splitting Not specified Explicitly splits the dataset

into train and test sets using
train test split

Tokenizer Initialization Uses DistilBertTokenizer Same as traditional
Tokenization Tokenizes input data using

DistilBertTokenizer

Same as traditional

Dataset Class Uses standard data loading and to-
kenization methods

Custom
TurkeyEarthquakeDataset class
to handle encodings and labels

DataLoader Batch Size Typically varies, often larger Uses a batch size of 16
Model Definition DistilBertForSequenceClassification

from Hugging Face
Custom
DistilBERTForSentimentAnalysis

class with additional pre-
classifier layer and ReLU
activation

Pre-Classifier Layer Not present Added pre-classifier layer with
ReLU activation

Dropout Rate Defined within DistilBertConfig Custom dropout defined within
the model class

Optimizer Uses AdamW Same as traditional
Learning Rate Scheduler Uses learning rate scheduler Same as traditional
Training Loop Standard training loop Custom training loop with ex-

plicit loss calculation and back-
ward pass

Loss Function Cross-Entropy Loss (implicit within
Hugging Face model)

Cross-Entropy Loss (ex-
plicitly calculated using
nn.CrossEntropyLoss())

Evaluation Method Standard evaluation loop Custom evaluation loop with accu-
racy and classification report

Training Epochs Typically varies Set to 30 epochs

Table 4.10: Differences between Traditional DistilBERT and Modified DistilBERT
Code

Macro F1 score =
1

n

n∑
i=1

F1 score for class i (4.5)

Evaluation Metrics for Multiclass Classification

Given that our task involves three-class classification (negative, positive, and neutral
sentiments), we have opted to use macro F1 scores for evaluation. The macro F1-
score treats all classes equally, providing insight into how the model performs across
all sentiment classes without considering their frequency. Since our dataset has been
balanced (with 1685 negative, 1684 positive, and 1683 neutral sentences), utilizing
this metric allows us to monitor overall performance while ensuring fair treatment
across all classes.

4.9 Training Set Up

For the training of DistilBERT and XLNet models, we utilized cloud-based platforms
to ensure efficient and uninterrupted execution of our experiments. Specifically, we
used Google Colab and Kaggle, which provide access to high-performance GPUs and

32



other necessary resources without the need for local high-configuration hardware
components.

Google Colab

Google Colab, a free Jupyter notebook environment provided by Google, was one of
the primary platforms used. It offers:

1. GPU and TPU: Support Access to high-performance NVIDIA GPUs and
TPUs, allowing for faster training and inference.

2. Ease of Use: A user-friendly interface that facilitates quick setup and exe-
cution of machine learning experiments.

3. Integrated Libraries: Pre-installed libraries and tools essential for training
models, such as TensorFlow, PyTorch, and the Hugging Face Transformers
library.

Kaggle

Kaggle, a platform known for its vast data science community and resources, was
also employed in our research. Key features include:

1. GPU Acceleration: Availability of high-performance NVIDIA GPUs similar
to Google Colab, ensuring efficient model training.

2. Datasets and Kernels: Access to numerous datasets and pre-built kernels,
which significantly accelerated the experimentation process.

3. Community Support: A supportive community where we could share in-
sights and troubleshoot issues with fellow researchers.

Rationale for Using Cloud Platforms:

Initially, we attempted to train our models on a local setup using Jupyter Notebook
without GPU support. However, this approach led to frequent kernel disconnections
and significantly slower performance, making it impractical for our needs.
By leveraging these cloud platforms, we ensured that our models were trained effec-
tively, monitored performance metrics, and optimized the architecture without the
limitations posed by local hardware.
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Chapter 5

Experimental Result Analysis

5.1 Result Analysis

In this section, we will present and analyze the results obtained from various ma-
chine learning (ML) models, deep learning (DL) models, and Transformer-based
models. We applied several traditional machine learning algorithms, including K-
Nearest Neighbors (KNN), Decision Tree Classifier, XGBoost, Support Vector Ma-
chines (SVM) and Random Forest to our dataset. Each model’s performance was
evaluated using metrics such as accuracy, precision, recall, and F1-score. A compar-
ative analysis of these models will be discussed to identify the most effective model
for our classification tasks.

In addition to traditional machine learning models, we implemented deep learn-
ing architectures to leverage their ability to capture complex patterns in the data.
This section will cover the performance evaluation of various deep learning models,
highlighting their strengths and weaknesses in handling our specific dataset.

Transformer-based models, such as DistilBERT and XLNet, were employed due
to their state-of-the-art performance in natural language processing tasks. These
models were fine-tuned on our dataset, and their results were compared to those of
the machine learning and deep learning models. We will discuss the effectiveness
of these models in capturing the insights of our data and their overall performance
metrics.

5.1.1 Result Analysis of Machine Learning Models

In our study, we applied several machine learning models to a given dataset to
observe and compare their performance. The models tested included Support Vector
Machine (SVM), Random Forest, Decision Tree Classifier, XGBoost, and K-Nearest
Neighbour (KNN). Below is a detailed summary of our findings based on the average
precision, recall, F1-score, and accuracy of each model.

As shown in Table 5.1, we first trained and tested the K-Nearest Neighbour (KNN)
model. The KNN model achieved an average accuracy of 60.24%, with an average
precision of 65.60%, recall of 64.60%, and an F1-score of 65.10%. KNN performed
well in terms of recall for neutral sentiments but was slightly behind the Random
Forest and SVM models in overall accuracy. Next, we evaluated the Decision Tree
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Classifier, which showed an average accuracy of 67.40%. It achieved an average
precision of 70.90%, recall of 70.3%, and an F1-score of 70.60%. The Decision Tree
model exhibited the highest recall for positive sentiments among the models, though
its overall accuracy was lower than both the SVM and Random Forest models. We
then tested the XGBoost model, which resulted in an average accuracy of 67.30%.
The model’s average precision was 70.52%, recall was 70.20%, and F1-score was
70.36%. XGBoost demonstrated balanced performance across all categories but did
not surpass the Random Forest in terms of overall accuracy. After that, we trained
and tested the SVM model. The SVM demonstrated a reasonable performance with
an average accuracy of 71.32%, and it achieved an average precision, recall, and
F1-score of 72.60%, 72.9%, and 72.20%, respectively. While the SVM exhibited
high precision for positive sentiments, its recall for the same category was relatively
lower. Lastly, we evaluated the Random Forest model, which delivered an average
accuracy of 71.60%. It showed balanced performance across all sentiment categories,
with average precision and recall both at 74.12%, and an average F1-score of 73.76%.
The Random Forest model had higher recall for positive sentiments compared to the
SVM.

Our comprehensive analysis revealed that the Random Forest model exhibited the
highest and balanced performance across all sentiment categories. The SVM also
demonstrated strong performance, particularly in terms of precision and recall for
positive and neutral sentiments. The Decision Tree and XGBoost models, while
effective, did not outperform the Random Forest model in overall accuracy. These
findings suggest that Random Forest is a good choice for sentiment classification
tasks in this context.

Table 5.1: Performance Metrics for Different Machine Learning Models

Model Accuracy Precision Recall F1 Score
KNN 60.24% 65.60% 64.60% 65.10%
Decision Tree 67.40% 70.90% 70.3% 70.60%
XGBoost 67.30% 70.52% 70.20% 70.36%
SVM 71.32% 72.60% 72.9% 72.20%
Random Forest 71.60% 74.12% 73.4% 73.76%

Now we present the confusion matrices for the various machine learning models
applied to our sentiment analysis task in Figure 5.1. These confusion matrices
provide a visual representation of the model’s performance by showing the dis-
tribution of predicted and actual sentiment classes. The models included in this
analysis are K-Nearest Neighbors (KNN), Decision Tree, XGBoost, Support Vector
Machine (SVM), and Random Forest. By comparing these matrices, we can assess
the strengths and weaknesses of each model in terms of accurately classifying the
sentiment categories: Negative, Positive, and Neutral.

5.1.2 Result Analysis of the Deep Learning Models

Several deep learning models were implemented on a given dataset to analyze and
compare their performance. These models included Long Short-Term Memory
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(a) Confusion Matrix of K-Nearest
Neighbour

(b) Confusion Matrix of Decision
Tree

(c) Confusion Matrix of XGBoost (d) Confusion Matrix of SVM

(e) Confusion Matrix of Random
Forest

Figure 5.1: Comparison of Confusion Matrices of Applied ML Models

(LSTM), Gated Recurrent Units (GRU), Bidirectional Long Short-Term Memory
(BiLSTM), and Bidirectional Gated Recurrent Units (BiGRU). The detailed find-
ings based on the average precision, recall, F1-score, and accuracy for each model
are summarized below.

As shown in Table 5.2, the LSTM model was first trained and tested. The results
indicated that LSTM performed well, achieving an average accuracy of 72.60%. The
model had an average precision of 73.93%, recall of 74.67%, and F1-score of 74.30%.
Although the LSTM showed high precision for positive sentiments, its recall for
the same category was comparatively lower. Next, the GRU model was assessed,
yielding an average accuracy of 72.29%. It demonstrated balanced performance
across all sentiment categories, with an average precision of 73.50%, recall of 72.76%,
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and an F1-score of 73.13%. The GRU model exhibited higher recall for positive
sentiments than the LSTM. The BiLSTM model was also tested and achieved an
average accuracy of 74.26%. It recorded an average precision of 77.36%, recall
of 76.02%, and F1-score of 76.69%. The BiLSTM model had the highest recall for
positive sentiments among the models and the highest overall accuracy. The BiGRU
model was then evaluated, attaining an average accuracy of 73.30%. The average
precision was 74.98%, recall was 74.60%, and F1-score was 74.79%. The BiGRU
model demonstrated balanced performance across all categories and closely followed
the BiLSTM in overall accuracy.

The analysis showed that the BiLSTM model had the highest overall accuracy and
balanced performance across all sentiment categories. The BiGRU and GRU models
also exhibited strong performance, especially in terms of precision and recall for
positive and neutral sentiments. While the LSTM model was effective, it did not
outperform the BiLSTM and BiGRU models in overall accuracy. These results
suggest that BiLSTM and BiGRU are robust choices for sentiment classification
tasks in this context.

Table 5.2: Performance Metrics of Deep Learning Models

Model Accuracy Precision Recall F1 Score
LSTM 72.60% 73.93% 74.67% 74.30%
GRU 72.29% 73.50% 72.76% 73.13%
BiLSTM 74.26% 77.36% 76.02% 76.69%
BiGRU 73.30% 74.98% 74.60% 74.79%

In Figure 5.2, we present the confusion matrices for the deep learning models applied
to our sentiment analysis task. These matrices showcase the classification perfor-
mance of Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), Bidi-
rectional LSTM (BiLSTM), and Bidirectional GRU (BiGRU) models. By analyzing
the confusion matrices, we can observe how each model predicts sentiment classes
such as Negative, Positive, and Neutral. These matrices provide insights into the
distribution of true and false predictions, helping us assess each model’s strengths
and weaknesses. Ultimately, this comparison helps identify the most suitable deep
learning architecture for sentiment classification in this context.

5.1.3 Result Analysis of the XLNet Architecture

We evaluated various models on a given dataset to compare their performance.
These models included traditional machine learning (ML) models, deep learning
(DL) models, and a transformer-based model, XLNet. Below is a detailed summary
of our findings based on the average precision, recall, F1-score, and accuracy of
XLNet, along with a comparison to the ML and DL models.

The results indicated that XLNet outperformed all other models, achieving an av-
erage accuracy of 81.20%. The model also demonstrated an average precision of
82.36%, recall of 82.24%, and F1-score of 82.30%. XLNet showed high precision and
recall for all sentiment categories, significantly surpassing the performance of both
the ML and DL models.
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(a) Confusion Matrix of LSTM (b) Confusion Matrix of GRU

(c) Confusion Matrix of BiLSTM (d) Confusion Matrix of BiGRU

Figure 5.2: Comparison of Confusion Matrices of Applied DL Models

Table 5.3 shows the result analysis of the XLNet model.

Table 5.3: Performance Metrics of XLNet Model

Model Accuracy Precision Recall F1 Score
XLNet 81.20% 82.36% 82.24% 82.30%

vspace1em In this section, we present the confusion matrices for the deep learning
models applied to our sentiment analysis task. These matrices showcase the classi-
fication performance of Long Short-Term Memory (LSTM), Gated Recurrent Units
(GRU), Bidirectional LSTM (BiLSTM), and Bidirectional GRU (BiGRU) models.
By analyzing the confusion matrices, we can observe how effectively each model
predicts sentiment classes such as Negative, Positive, and Neutral. These matri-
ces provide insights into the distribution of true and false predictions, helping us
assess each model’s strengths and weaknesses. Ultimately, this comparison helps
identify the most suitable deep learning architecture for sentiment classification in
this context.

5.1.4 Result Analysis of the Modified DistilBERT Architec-
ture

We evaluated multiple models on a given dataset to assess their performance. These
models encompassed traditional machine learning models, deep learning models,
and a transformer-based model, DistilBERT. Here’s a comprehensive summary of
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our findings based on the average precision, recall, F1-score, and accuracy of Dis-
tilBERT, along with a comparison to the machine learning (ML) and deep learning
(DL) models.

Our analysis revealed DistilBERT as the top performer among all models, demon-
strating an average accuracy of 82.20%. With an average precision of 84.81%, recall
of 83.79%, and F1-score of 84.30%, DistilBERT exhibited remarkable precision and
recall across all sentiment categories, surpassing both the machine learning and deep
learning models. The performance metrics of DistilBERT are outlined in Table 5.4.

Table 5.4: Performance Metrics of DistilBERT Model

Model Accuracy Precision Recall F1 Score
DistilBERT 82.20% 84.81% 83.79% 84.30%

Table 5.5: Comparison of Performance Metrics Across ML, DL, DistilBERT, and
XLNet Models

Model Accuracy Precision Recall F1 Score
KNN 60.24% 65.60% 64.60% 65.10%
Decision Tree 67.40% 70.90% 70.3% 70.60%
XGBoost 67.30% 70.52% 70.20% 70.36%
SVM 71.32% 72.60% 72.9% 72.20%
Random Forest 71.60% 74.12% 73.4% 73.76%
LSTM 72.60% 73.93% 74.67% 74.30%
GRU 72.29% 73.50% 72.76% 73.13%
BiLSTM 74.26% 77.36% 76.02% 76.69%
BiGRU 73.30% 74.98% 74.60% 74.79%
XLNet 81.20% 82.36% 82.24% 82.30%
DistilBERT 82.20% 84.81% 83.79% 84.30%

Table 5.5 presents a comparison of the results of all applied models. The comparison
highlights the superior performance of transformer-based models, particularly Dis-
tilBERT and XLNet, over both traditional machine learning (ML) and deep learning
(DL) models across all evaluated metrics. DistilBERT achieved the highest accu-
racy at 82.20%, followed closely by XLNet with an accuracy of 81.20%. DistilBERT
excelled with balanced and superior precision 84.81%, recall 83.79%, and F1-score
84.30%.

Here, we present the confusion matrices for the transformer-based models utilized
in 5.3. These matrices provide a clear depiction of each model’s performance by
displaying how they classify the sentiment categories of Negative, Positive, and Neu-
tral. Through the confusion matrices, we can evaluate how well these transformer
architectures manage the complexity of our dataset.

Among the traditional ML models, Random Forest performed the best with an
accuracy of 71.60% and F1-Score 73.76%.

The performance of DL models, including LSTM, GRU, BiLSTM, and BiGRU, was
also examined. BiLSTM and BiGRU outperformed other DL models with accuracies
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(a) Confusion Matrix of DistilBERT (b) Confusion Matrix of XLNet

Figure 5.3: Comparison of Confusion Matrices of Applied Transformer Based Models

of 74.26% and 73.30%, respectively. Despite their strong precision and recall for
positive and neutral sentiments, these models did not surpass the transformer models
in overall accuracy.

In conclusion, DistilBERT notably outperformed both ML and DL models, achieving
an accuracy of 82.20% and also DistilBERT excelled with balanced and superior pre-
cision 84.81%, recall 83.79%, and F1-score 84.30% While XLNet also showed strong
performance with an accuracy of 81.20%. Therefore, transformer-based models, es-
pecially DistilBERT, emerged as the most robust choices for sentiment classification
tasks in this context.Figure 5.4 show the details of the F1-Score Comparison for all
the applied Models.

Figure 5.4: F1-Score Comparison of all the models

5.2 Performance Comparison: DistilBERT vs. XL-

Net Using McNemar’s Test

In our sentiment analysis task, we compared the performance of two transformer-
based models: DistilBERT and XLNet. Both models have demonstrated strong
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capabilities in various natural language processing tasks, particularly in sentiment
classification. However, our evaluation using McNemar’s test reveals that Distil-
BERT significantly outperforms XLNet on our dataset.

5.2.1 McNemar’s Test Results

McNemar’s test is a statistical test used to compare the performance of two models
based on the differences in their predictions. Specifically, it evaluates the disagree-
ment between the two models on the same data points, making it a suitable choice
for comparing classifier performance.
The results of the test were as follows:

• Test Statistic: 85.8

• p-value: 0.03918

Since the p-value is less than the commonly accepted threshold of 0.05, we conclude
that the difference in performance between DistilBERT and XLNet is statistically
significant. This indicates that the performance improvement observed with Distil-
BERT is unlikely to be due to random chance, confirming its superiority over XLNet
in this task.

5.2.2 Interpretation of Results

The statistically significant p-value of 0.03918 suggests that DistilBERT’s predic-
tions are more accurate than those of XLNet on the same dataset. In the context of
this study—sentiment analysis of social media comments following the 2023 Turkey
earthquake—this result is particularly noteworthy.

• DistilBERT correctly classified a larger proportion of data points than XL-
Net, as indicated by the higher number of cases where XLNet made incorrect
predictions while DistilBERT made correct ones.

• The McNemar’s test statistic (85.8) reflects this imbalance in performance,
where DistilBERT consistently outperforms XLNet in terms of predictive ac-
curacy.

In summary, DistilBERT significantly outperforms XLNet in this sentiment analysis
task, as confirmed by McNemar’s test. This finding highlights the importance of
model selection and suggests that DistilBERT is better suited for tasks involving
informal, high-volume textual data.

5.3 Model Interpretation Using Explainable AI

In modern machine learning applications, models like DistilBERT provide powerful
predictions, but their complexity can make it difficult to understand how decisions
are being made. Explainable AI (XAI) techniques are designed to bridge this gap by
offering insights into the model’s inner workings. This is crucial for gaining trust in
the predictions, ensuring fairness, and enabling informed decision-making, especially
in sensitive areas such as policy making.
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XAI allows us to interpret the reasoning behind individual predictions, which is
particularly useful for identifying patterns, biases, and key drivers behind the results
in large datasets. By implementing different XAI methods, we can uncover deeper
insights into the data, helping us refine models and gain more nuanced understanding
of the underlying phenomena.

In this report, we implemented two XAI techniques—LIME and SHAP—to achieve
a more granular interpretation of our DistilBERT model. These methods help us
analyze model behavior, providing transparency in how the model arrives at its pre-
dictions, and offering a clearer view of the factors driving sentiment classifications.

5.3.1 Local Interpretable Model-agnostic Explanations (LIME)

Figure 5.5: Model Interpretation Using Explainable AI - LIME

LIME (Local Interpretable Model-agnostic Explanations) is designed to explain the
predictions of any model by approximating its behavior locally around a specific
instance. It achieves this by perturbing the input data and observing how the
model’s predictions change, thereby creating a simpler, interpretable model for that
specific instance.

Figure 5.5 illustrates the application of LIME to one of our test sentences. The mod-
ified DistilBERT model successfully captured the semantic meaning of the sentence
and classified it as negative. LIME highlights the contributions of individual words,
helping us understand why the model made this particular prediction. For example,
the words ”heartbreaking” and ”devastating” heavily influenced the model to lean
towards a negative sentiment. LIME’s ability to make these localized explanations
brings transparency to the decision-making process.
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5.3.2 SHapley Additive Explanations (SHAP)

Figure 5.6: Model Interpretation Using Explainable AI - SHAP

SHAP (SHapley Additive exPlanations) provides a unified framework for interpret-
ing model predictions by computing the contribution of each feature to the pre-
diction. It is based on Shapley values from cooperative game theory and provides
a global understanding of how features influence the output, while also explaining
individual predictions.

In Figure 5.6, considering the sentence ”The devastating earthquakes in Turkey are
surely very heartbreaking news”. SHAP calculated the contribution of each word
to the sentiment classification. The words ”heartbreaking” and ”devastating” have
the highest SHAP values, indicating that they played the most significant role in
driving the model’s prediction toward a negative sentiment. Other words, such as
”earthquakes” and ”are”, had smaller but still notable contributions. These SHAP
values help us quantify the importance of each feature in the final classification.

By applying both LIME and SHAP, we gained a more comprehensive understanding
of the model’s behavior. While LIME provides local interpretability, SHAP offers
both local and global insights into feature contributions. Together, these techniques
enhance transparency and help us derive more informed and actionable insights from
the model’s predictions.
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Chapter 6

Explainable AI and Transparency
in Policy Formulation

Today, public policymakers have the opportunity to make data-driven, evidence-
based decisions by analyzing the vast amounts of policy-related data generated from
various sources such as e-services, mobile apps, and social media. Machine learning
and artificial intelligence technologies facilitate and automate the analysis of these
large datasets, enabling a shift toward data-driven decision-making. However, the
implementation and use of AI tools in public policy development come with signif-
icant technical, political, and operational challenges. For instance, AI-based policy
solutions must be transparent and explainable to policymakers [23].

6.1 Explainable AI in Policy Making

The decision-making process has been completely transformed in recent years by
the incorporation of machine learning and artificial intelligence into the formulation
of public policy. These tools enable decision-makers to examine massive datasets
produced by multiple sources, including social media, mobile applications, and e-
services. In order to guarantee that the insights obtained from these technologies
are comprehensible and practical, explainable artificial intelligence (XAI) must be
employed. We used the DistilBERT model, a condensed form of the BERT model,
to examine textual data from several sources in relation to the Turkey Earthquake
2023. DistilBERT, which is renowned for its effectiveness and performance in situa-
tions involving natural language processing, offered insightful information about the
disaster’s effects. We applied the Local Interpretable Model-agnostic Explanations
(LIME) technique to improve the model’s outputs’ interpretability. LIME makes
the AI process transparent by producing explanations for the model’s predictions
that are understandable to humans. Policymakers may make key evidence-based
decisions for disaster-prone areas by utilizing DistilBERT and LIME.
The benefits of this approach include:

1. Improved Decision-Making: AI models can identify patterns and trends
that may not be immediately apparent, enabling more informed and accurate
policy decisions.

2. Increased Public Trust: The transparency provided by explainable AI fos-
ters public trust, as policymakers can clearly communicate the rationale behind
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their decisions.

Overall, the application of explainable AI in analyzing the Turkey Earthquake 2023
dataset demonstrates its potential in enhancing policy formulation for disaster man-
agement and response.

6.2 Why Transparency is Important in Policy Mak-

ing?

There are various reasons why policy making must be transparent. Transparency
guarantees that procedures and choices are transparent, comprehensible, and justi-
fied to all parties involved, including the general public, in the era of data-driven
decision-making.

Key Reasons for Transparency in Policy Making:

1. Accountability: Transparent processes hold policymakers accountable for
their decisions. When the decision-making process is open and clear, it is
easier to identify and address any mistakes or biases.

2. Public Trust: Transparency fosters trust between the government and the
public. When people understand how decisions are made and have access to
the underlying data and rationale, they are more likely to support and comply
with policies.

3. Informed Participation: Transparency allows for informed participation
from various stakeholders, including citizens, experts, and advocacy groups.
This collaborative approach can lead to more robust and well-rounded policies.

Incorporating transparency into AI-based policy making involves several strategies,
including:

• Use of Explainable AI Techniques: Methods like LIME help in making
AI models more interpretable.

• Clear Communication: Policymakers should clearly communicate the data,
methods, and reasoning behind their decisions.

In summary, transparency is fundamental to effective and democratic policy making.
It promotes accountability, builds public trust, and encourages informed participa-
tion, ultimately resulting in more successful policy outcomes.

6.3 Steps Towards Effective Data-Driven Policy

Making

Data governance is essential for managing and regulating data assets to ensure
accuracy, accessibility, and security, serving as the foundation of informed decision-
making processes. It establishes the protocols for handling data effectively, ensuring
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that the information policymakers rely on is both high-quality and trustworthy. This
is especially important in the context of data-driven policy making, where decisions
must be supported by transparent, reliable evidence. Proper data governance en-
ables organizations to increase transparency and accountability in policymaking by
ensuring that all decisions are based on solid, defensible data.

In our research, we ensured the collection and analysis of high-quality, reliable
custom-collected data from social media responses after the 2023 Turkey earthquake.
By focusing on sentiment analysis and socio-economic impacts, we provide valuable
insights into public sentiment regarding price hikes, demonstrating how data gover-
nance improves policy relevance. The use of advanced analytics and explainable AI
in our study further reinforces this by making model predictions transparent and
accountable. This transparency is crucial in helping stakeholders understand the
key factors driving the data-driven insights, a core goal of data governance.

While data-driven policy making is a large and complex task, requiring extensive
analysis and comprehensive data integration, our research demonstrates a small yet
significant contribution. By ensuring the proper management data, we provide a
strong basis for future policy decisions that can be more accurate, equitable, and
responsive to real-time public needs. Our study represents an important step in the
broader effort to achieve effective data governance and impactful, evidence-based
policy making.
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Chapter 7

Conclusion and Future Work

We underscore the critical role of sentiment analysis in facilitating evidence-based
policy-making for disaster-resilient communities, particularly in the aftermath of
natural disasters. By analyzing social media data following the 2023 earthquake
in Turkey, we categorized public sentiment into negative, positive, and neutral re-
sponses, leveraging advanced machine learning models such as Support Vector Ma-
chines (SVM), Random Forest, DistilBERT, and XLNet. Our findings reveal a
significant correlation between public sentiment and socio-economic variables such
as consumer spending, inflation, and unemployment rates. DistilBERT, in particu-
lar, demonstrated exceptional precision, recall, and F1 score, proving its efficacy as
a powerful tool for understanding and guiding policy measures aimed at mitigating
the socio-economic impacts of natural disasters. Explainable AI models have been
used to interpret the model, and the we observed the attempted result. This research
highlights the importance of incorporating state-of-the-art natural language process-
ing (NLP) techniques in disaster management policies, ultimately contributing to
more resilient and adaptive communities.

7.1 Limitations of this Research

Despite the significance of this research, several limitations remain unaddressed.
Some of these limitations are outlined below:

1. Data Quality and Representativeness:

(a) The sentiment analysis relies on social media data, which may not be rep-
resentative of the entire affected population. Individuals without access
to social media or those who choose not to express their views online are
excluded, potentially leading to a bias in the sentiment captured.

(b) The accuracy of sentiment analysis is dependent on the quality and au-
thenticity of the social media posts. The presence of bots, fake accounts,
or coordinated disinformation campaigns can distort the sentiment anal-
ysis results.

2. Model Limitations:

(a) While models like DistilBERT and XLNet show high performance in sen-
timent classification, they may still struggle with understanding the con-
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text of certain posts, especially those involving sarcasm, idioms, or local
dialects.

(b) The models used were pre-trained on general corpora and might not
be fully optimized for the specific context of disaster-related sentiment,
which may require domain-specific training data.

3. Temporal Dynamics:

(a) The timing of data collection relative to the earthquake and subsequent
events may affect the sentiment captured. For instance, immediate reac-
tions might differ significantly from sentiments expressed weeks or months
later.

4. Interpretation of Sentiment:

(a) Sentiment analysis tools can sometimes misinterpret the context, leading
to incorrect classifications that might affect the overall findings.

By acknowledging these limitations, the research can provide a more balanced and
nuanced understanding of the findings and their implications, while also highlighting
areas for future improvement and investigation.

Future Work

Future research should address the limitations identified in this study to enhance
the applicability of sentiment analysis in disaster management. Firstly, expanding
data sources beyond social media to include traditional media, surveys, and offi-
cial reports could provide a more comprehensive and representative understanding
of public sentiment. Improving model accuracy by incorporating domain-specific
training data and fine-tuning models to handle local dialects and idiomatic expres-
sions is crucial. Additionally, employing advanced techniques to detect and filter
out bots and fake accounts will enhance data quality. To better understand the
temporal dynamics of sentiment, future studies should consider data collection and
analysis to capture long-term sentiment shifts. Establishing causal relationships
between sentiment and socio-economic variables using sophisticated econometric
models will provide deeper insights into the impact of disasters on public perception
and economic behavior. Finally, exploring more sentiment categories and additional
dimensions such as fear, anger, and hope can offer a richer understanding of the
emotional landscape of affected communities. These enhancements will contribute
to more effective and evidence-based policy-making for disaster resilience.
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