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Abstract

Chronic kidney disease (CKD) is a significant global health concern, impacting more
than 800 million people globally. Prompt identification and precise categorization
are crucial for optimal therapy. The primary objective of this study is to create a
sophisticated machine learning algorithm that can effectively identify and categorise
Chronic Kidney Disease (CKD). We use a convolutional neural network (CNN) to
examine medical imaging data, namely CT scan pictures. The full dataset was
partitioned into training, validation, and testing subsets, and the performance of
several pre-trained models, including VGG16, ResNet50, and EfficientNetB0, was
assessed. The CNN model suggested obtained exceptional outcomes, showcasing
substantial promise in differentiating between normal and diseased kidney states
and precisely categorising CKD phases. The model attained a training accuracy of
97.05% and a validation accuracy of 91.79%. The findings emphasise the capability
of our technology to aid healthcare practitioners in making prompt and precise
choices about the diagnosis and treatment of CKD.
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Chapter 1

Introduction

Machine learning is an exclusive field within the science of artificial intelligence
(AI) which is focused on creating algorithms and statistical models. These mod-
els allow computer systems to enhance their performance on a particular job by
acquiring knowledge from data. The fundamental principles of machine learning,
including neural networks and decision trees, were established in the early 1950s.In
further time period it evolves and expands with the development of algorithms like
ID3, concepts like reinforcement learning. Furthermore, Support Vector Machines
(SVMs) and ensemble methods such as Random Forests gained prominence during
this period, and there were significant advancements of deep learning which helped
in kidney segmentation [1].

This thesis embarks on a journey to address this critical healthcare challenge through
the development and application of cutting-edge algorithms. The main objective is
to develop a reliable system that can identify and categorize CKD with accuracy.
Achieving high diagnostic accuracy is essential since it has a direct impact on when
treatment can be started, potentially reducing the effects of this degenerative disor-
der [2].

The methodology is based on the collection of a wide range of medical imaging data,
including modalities like ultrasound, computed tomography, and magnetic resonance
imaging.These multi-model datasets serve as a core resource for developing and test-
ing the suggested algorithms, laying the groundwork for sophisticated image-based
CKD diagnosis.

This research increases its attention to strengthen preprocessing methods and im-
prove the caliber of medical imaging data in the goal of increased precision. CNNs
are used to rigorously separate between healthy kidney states and pathological ab-
normalities using deep learning, ensuring a high level of accuracy in CKD identifi-
cation [3].

Furthermore, the research endeavors to transcend binary outcomes by training the
model to classify CKD stages, affording invaluable insights into the progression of
the disease [4]. This precise understanding gives medical professionals the tools they
need to assess the severity of a patient’s ailment precisely, which informs the devel-
opment of personalized treatment regimens.
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The results of this research unveil a promising system ready to revolutionize CKD
diagnosis and monitoring. This method has the ability to enhance the quality of
patient care and reduce the medical expenses associated with treating CKD by
providing healthcare practitioners with prompt and accurate information on the
state of CKD [5]. A software programme designed for people with chronic kidney
disease may provide them with wellness guidelines for their daily lives, which can be
quite beneficial. The proposed methodology is further refined as this work draws to
a close, opening the door for even more successful CKD detection and classification
strategies in the future [3].

1.1 Problem Statement

The prognosis for individual CKD patients is currently lacking in sufficient informa-
tion. Furthermore, there is an urgent need for expedited prediction of the severity
of chronic kidney disease (CKD) utilising easily accessible age group and blood
biochemical characteristics throughout the follow-up period [6]. Early detection of
CKD is a major challenge. There are four explored techniques, even though the
SVM classifier gives the highest accuracy and sensitivity, it is very tough to predict
CKD [4].

As CKD is dependable on many factors such as glomerular filtration rate(GFR) and
patient’s previous medical report must be considered before data collection. These
changeable factors can be an issue for predicting the condition of the [7]. By using
more and more dataset instances the critical importance of early intervention in
improving outcomes can be done.

In addition, diverse medical imaging data sources, including MRI, CT scans, and ul-
trasound, need to be integrated, processed, and effectively utilized for robust CKD
diagnosis, considering the inherent variability in image characteristics. For that
particular reason, handling diverse medical imaging data was a huge challenge for
collecting dataset information [8]. The lack of information on the dataset used for
developing and evaluating the predictive algorithm delays the comprehension of the
research’s applicability and dependability. It is crucial to know specifics about the
dataset’s size, origin, and representativeness.

As per data [3], the information provided does not specify the algorithms used for
medical image processing in CKD evaluation. Details on the image analysis tech-
niques are essential for understanding the methodology. The current method for
assessing CKD severity involves 24-hour urinary protein assessment, which is incon-
venient during follow-up and often inconvenient in outpatient clinics [6].

How CNN architectures can be optimized and tailored specifically for CKD diag-
nosis, ensuring that they accurately differentiate between normal and pathological
kidney conditions. As stated in [9], Artificial Neural Networks (ANN) can per-
form well for the practical challenges and considerations for integrating machine
learning-based CKD diagnosis into clinical settings. These challenges can be ad-
dressed effectively by real world clinical implementation.
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Furthermore, for any diverse patient populations and clinical environments few al-
gorithms and models struggle for maintaining high accuracy and robustness.As per
data[10], between all six machine learning algorithms, the random forest model
achieved an accuracy rate of 99.75% which is one of the highest. If we can ensure a
more multivariate dataset, we can gain more accuracy in the near future.

The ongoing research to refine and improve the proposed methodology, ensuring
that CKD detection and classification techniques remain at the forefront of medical
advancement[11].

Therefore, the problem remains until getting more individual data without any noise
into the images, modeling the scattering properties of CKD patients and developing
user-friendly tools for primary care or community-level screening.

1.2 Research Objectives

These research objectives reflect the overarching goals of detecting the stage of
CKD, which involve the development of machine learning-enhanced CKD diagnosis
and classification techniques to address the pressing need for accurate and early
detection of this widespread medical condition. The objectives are given below:

1. To create and apply use a deep learning model that can recognize and catego-
rize various phases of CKD in medical photos.

2. To create image processing techniques that improve the clarity of medical
images and the precision of CKD detection.

3. Comparing the system’s effectiveness to more established diagnostic methods
in terms of sensitivity, specificity, and accuracy.

4. Employ these algorithms to assist in the prompt detection of CKD, recognising
the pivotal significance of early intervention in enhancing patient outcomes.

5. Encourage further research to explore and refine the proposed methodology,
ensuring continuous advancements in CKD detection and categorization meth-
ods for the benefit of patients and healthcare professionals.

1.3 Thesis Organization

This thesis is organized into several chapters, each focusing on a different aspect of
the research on detecting Chronic Kidney Disease (CKD) using neural networks:

• Chapter 1: Introduction
This chapter presents a comprehensive summary of the study, including the
problem statement, research objectives, and the general arrangement of the
thesis.
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• Chapter 2: Literature Review
This chapter reviews relevant literature on machine learning and its applica-
tion in medical diagnostics, specifically focusing on CKD. It discusses various
machine learning models and related works that have contributed to this field.

• Chapter 3: Dataset
This chapter describes the dataset used for the research, including data col-
lection methods, data description, and how the data was split and formatted
for analysis.

• Chapter 4: Methodology
This chapter outlines the research methodology, detailing the working plan, the
proposed model architecture, input data, processing methods, and validation
techniques used in developing the CKD detection model.

• Chapter 5: Results and Discussion
This chapter presents the results of the research, including hardware speci-
fications, performance of pre-trained models, results of the proposed model,
and a comparison of different models. It also discusses the implications of the
findings.

• Chapter 6: Conclusion
The concluding chapter provides a concise overview of the principal discov-
eries made throughout the research, discusses the limitations, and provides
suggestions for future work.

By structuring the thesis in this manner, it ensures a logical flow of infor-
mation, making it easier to understand the research process and the results
achieved.
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Chapter 2

Literature Review

The potential for detecting and categorizing Chronic Kidney Disease (CKD) using
machine learning is enormous. Large volumes of medical imaging data, like those
from MRI and CT scans, may be processed by machine learning algorithms with
amazing precision, enabling early and accurate CKD diagnosis. They enable differ-
entiation between various CKD stages, leading to individualized treatment regimens
and actions. Additionally, as machine learning models learn from more data, such
as convolutional neural networks (CNNs), their diagnostic accuracy can constantly
increase [12]. This has the potential to revolutionize the identification and catego-
rization of CKD, lower healthcare costs, and enhance patient outcomes.

2.1 Machine Learning (ML)

Machine learning is a specialised area within the subject of artificial intelligence that
concentrates on creating algorithms as well as statistical models that allow comput-
ing devices to gain information and generate assumptions or judgements without
the need for programming expertise. It has seen substantial evolution throughout
the years, originating from the mid-20th century. Early innovations relied on simple
algorithms and rule-based systems. However, the development of digital processing
and the accessibility of enormous datasets gave the subject a boost. Machine learn-
ing has advanced significantly over the past few decades thanks to developments in
deep learning, neural networks, and high-performance computing. Machine learn-
ing is currently at the cutting edge of technology, having an impact on a variety of
industries like healthcare, finance, natural language processing, and picture recog-
nition, among others. With ongoing research and invention, it is also continuing to
evolve quickly [3].

2.1.1 Machine Learning Models

This article [4] used clinical data to investigate four distinct machine learning ap-
proaches for the purpose of predicting CKD. The four strategies that have been
examined are KNN, SVM, LR, and decision tree classifiers. The results of the study
demonstrated that the SVM classifier exhibited the best levels of both precision
and sensitivity. The study focuses on the automated identification of kidney cysts,
stones, and tumours using CT-radiography [6]. This is achieved via the utilisation
of vision transformers and explainable transfer learning models. The authors sug-
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gest using sophisticated machine learning approaches to tackle this medical imaging
difficulty. [11].

2.2 Related Works

The research article [10] used KNN imputation to replace the missing data. The
data collection contains a total of 400 samples. Out of the total 400 samples, 250
belong to the ckd group and 150 belong to the notckd category. It is crucial to ac-
knowledge that the data set includes a substantial amount of missing values. When
dealing with incomplete data sets, six machine learning methods, including logis-
tic regression, random forest, support vector machine, k-nearest neighbour, naive
Bayes classifier, and feed forward neural network, are used to generate models af-
ter successfully completing the missing data. Random forest demonstrated superior
performance compared to other machine learning models, with a diagnostic accu-
racy rate of 99.75%.

The objective of the Project, as stated in the research article [5], is to develop a
digital tool for CKD patients that may provide them with self-care guidelines for
their daily lives. The flash solution for CKD healthcare instruction was developed
with Adobe Flash CS5.5.An Adobe Dreamweaver website has been established to
promote this multimedia application, providing clear directions for self-care for pa-
tients with CKD. A novel user-friendly interface to guide CKD individual care has
been created as part of the project, resulting in the creation of a more effective
information channel for patients.

The research paper [13] explores various systems, molecules, and reactions that
contribute to the development of pathological fibrosis in chronic kidney disease.
Specifically, it examines the role of pain, the renin-angiotensin system, parathyroid
hormone, fibroblast growth factor 23, Klotho, microRNAs, and the vitamin D hor-
monal system in this process. All of them are crucial constituents of the regulatory
and fundamental pathways that facilitate fibrosis, a condition that has a significant
detrimental impact on the kidney and heart in chronic kidney disease.

Over time, Chronic Kidney Disease has undergone development and the diagnos-
tic criteria and categories of CKD have been modified. Chronic kidney disease is
influenced by several variables such as age, gender, dietary habits, geographical loca-
tion, and past medical history. Currently, the globally accepted approach to detect
chronic kidney disease relies on the measurement of glomerular filtration rate. A
glomerular filtration rate below 60 mL/min per 1.73m2 indicates reduced kidney
function, whereas a GFR below 15 mL/min per 1.73 m2 signifies renal failure or end
stage kidney disease [7].

A comparative research was conducted to evaluate nine prediction models for fore-
casting the course and severity of chronic kidney disease based on non-urinary clin-
ical and demographic characteristics. Linear models, such as logistic regression,
had the greatest predictive capability. Common blood tests, including as albumin,
serum creatinine, triglycerides, low-density lipoprotein, and estimated glomerular
filtration rate values, were shown to be valuable indicators. The citation for the
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source is ”Islam et al., 2022”. A unique method using ultrasonic imaging was devel-
oped to evaluate proteinuria in different phases of chronic kidney disease, specifically
targeting the speckle effect seen in the pictures. The system utilises the Nakagami
distribution and Local Binary Pattern to represent the scattering characteristics,
with a particular focus on the age distribution as a significant aspect. The system
has a high level of sensitivity and specificity [14].

A research study applied artificial intelligence and deep learning algorithms to iden-
tify chronic kidney disease by analysing retinal pictures in persons residing in com-
munity settings. The programme, which used retinal pictures as input data, was
verified on several datasets. The hybrid deep learning algorithm exhibited the most
superior performance in accurately assessing chronic kidney disease, so indicating
the viability of using retinal imaging as a non-invasive method for screening [15].

There is a research that provides a clinical update sourced from Kidney Disease:
Improving Global Outcomes [9]. It specifically examines the correlation between
cardiovascular disease and chronic kidney disease. The article offers a comprehen-
sive examination of the present knowledge on cardiovascular problems in patients
with CKD. This includes an analysis of risk factors, techniques for prevention, and
recommendations for therapeutic care [2].

The study [1] focuses on identifying and diagnosing chronic kidney disease via the
utilisation of a deep learning-derived heterogeneous refined artificial neural network.
The paper introduces a method that utilises advanced deep learning methods and
an enhanced artificial neural network to enhance the precision of detecting and di-
agnosing Chronic Kidney Disease.

The study suggests using fuzzy classifiers for diagnosing individuals with chronic
kidney disease. The research use two fuzzy classifiers to construct a diagnosis model
for Chronic Kidney Disease[13]. Fuzzy classifiers are a machine learning method
specifically designed to handle situations when there is ambiguity and imprecise
input. A total of 386 dataset samples were utilised for the investigation. Among
the 400 samples, 251 were classified as belonging to the chronic kidney disease
group, while the remaining 149 samples were classified as belonging to the non-
chronic kidney illness category. The research examines the use of these classifiers
to enhance the precision of CKD diagnosis. The diagnostic model produced in the
PLS-DA classifier obtains an accuracy of 95.5 ± 0.6% and a specificity of 89.5 ±
1.3%, which are the lowest among the tested models. However, it achieves the
highest sensitivity of 100%.
The above discussion indicates that this issue is multifaceted and has a substantial
body of literature associated with it. The evaluated research together emphasise
the considerable potential of machine learning in the identification of Kidney dis-
ease.Furthermore, the enhanced availability of vast datasets and the rise in compu-
tational capabilities might facilitate the creation of a system that aids healthcare
practitioners in making clinical choices by providing them with prompt and precise
details regarding patients’ CKD condition.
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Chapter 3

Dataset

The initial dataset consists of 12,446 distinct data points, with 3,709 represent-
ing cysts, 5,077 representing normal cases, 1,377 representing stones, and 2,283
representing tumours.The dataset used in this study is sourced from the CT KID-
NEY DATASET: Normal-Cyst-Tumor and Stone dataset [6]. To address the issue
of dataset inequalities, we use class trimming to ensure an equal amount of pho-
tographs in each class.We augmented several classes by expanding them, resulting
in an overall of 12000 photos utilised. Out of the total of 12,000 photos, 8,400 were
allocated for training, 2,400 were designated for validation, and 1,200 were set out
specifically for testing. All the images were in black and white, with dimensions of
224 X 224 pixels. Below are examples from several classes:

Figure 3.1: Normal

Figure 3.2: Tumor
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Figure 3.3: Cyst

Figure 3.4: Stone

3.1 Data Description

• Resizing Images: The images were resized to a pixel resolution of 224 × 224
as CNN models often need inputs of a set size.

• Dataset Rescaling: The study emphasizes the importance of preprocessing a
dataset before training a neural network model. This involves rescaling pixel
values, which is done by dividing each pixel value by 255. This standardizes the
input data and facilitates faster convergence during training. The normalized
dataset is then used for further augmentation and training of the CNN model.
This normalization process scales the pixel values from the original range of
[0, 255] to the normalized range of [0, 1].
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Figure 3.5: Items of Classes

• Data Augmentation: Typically, CNN models exhibit improved performance
when provided with a larger number of pictures. Therefore, we used several
data augmentation techniques to increase the size of our training data. Var-
ious techniques, like shearing, rotating, shifting, flipping, etc., were used to
introduce diversity into the dataset and enhance the model’s resilience.

3.2 Data Splitting and Formation

Firstly we manually divide our working dataset into 70%, 20%, 10% for training,
validation and testing respectively. In addition, we try to distribute the data for
every class evenly. Secondly, we trained our custom CNN model using training data
and validated our custom model using validation Data.
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Figure 3.6: Data Splitting

We trimmed or enhanced the number of photos in each class to achieve equal rep-
resentation in order to solve the imbalance in the dataset. We reduced the number
of photographs in the ”Cyst” class from 3,709 to 3,000. The 1,377 and 2,283 pho-
tographs in the ”Stone” and ”Tumor” classes, respectively, were increased to 3,000
images each. Comparably, we lowered the 5,077 photographs in the ”Normal” class
to 3,000 images in order to make it consistent with the other classes.Solving image
dataset imbalance by trim and expand between classes. For the dataset split, Each
class contributed 2,100 images to the training set. 600 images from each class were
allocated to the validation set. The remaining 300 images from each class were
reserved for the testing set.
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Figure 3.7: Training Set

Figure 3.8: Validation Set
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Figure 3.9: Testing Set
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Chapter 4

Methodology

4.1 Working Plan

Figure 4.1: Data Pre-processing
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After augmenting the dataset, with the train set we will train our model with that.
For our model, we developed a custom architecture tailored specifically to our needs.
For effective training, we created the dataset format to work with our custom model.
We used our testing set to verify the model’s performance and make sure it correctly
predicts the disease class after training.

4.2 Proposed Model Explanation

A Multi-layered CNN architecture is intended to learn from input images auto-
matically and adaptably. By using deep learning, our algorithm is very good at
identifying kidney illness from CT scans. Convolutional, pooling, and fully linked
layers were employed. Convolutional layers create feature maps that capture dif-
ferent elements like edges, textures, and forms by applying a collection of filters
to the input image. The spatial dimensions of the feature maps are decreased by
pooling layers, usually by max-pooling, which aids in lowering the computational
effort and managing overfitting. To determine the final classification, these features
are interpreted by the fully linked layers at the end of the network. By introducing
non-linearity, activation functions such as ReLU allow the network to learn intricate
patterns [16]. Our suggested mode can be trained on labeled CT scan images to
detect and categorize abnormalities in the context of kidney disease detection with
high accuracy, helping with early diagnosis and therapy planning.

Y = max(0,X)

4.2.1 Proposed Model Architecture

In this research, we propose a CNN model to detect stone, tumor, cyst, and cancer
in the kidney using CT scan images.

• Input Layer: The input dataset consists of images with (227,227) pixels.

• Convolutional Layers: There are 7 convolutional layers with filters 96,256,256,384,384,384,256
respectively. Filter size added in decreasing order. Relu is used as activation.
After each convolution layer, the batch normalization method is used to speed
up the learning process of the model.

• Pooling Layers: After the first convolutional layer a max-pooling operation
with strides (2x2) is added. Another max-pooling layer with (2x2) strides at
the end.

• Fully Connected Layers: 2 consecutive dense layers added with 4096, 4096
units respectively.

• Output Layer: The output layer consists of 4 nodes for 4 types of kidney
disease and softmax classifier was used as an activation function to produce a
prediction table. [17]
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Figure 4.2: Proposed Model Architecture

We proposed a multi-layered CNN model where a total of 7 convolutional layers were
added and each conv layer had batch normalization. The model begins with a con-
volutional layer (conv2d-0), then reduces spatial dimensions and improves feature
representation by batch normalization and max-pooling. More complex features
are extracted by subsequent convolutional layers (conv2d-1 to conv2d-6) with batch
normalization. To more effectively capture important patterns, the feature maps are
further downsampled using max-pooling2d-1. Dense layers (dense-0 to dense-2) with
dropout regularization allow the model to learn complex patterns and generate pre-
dictions after the feature maps have been flattened. The classification probabilities
for the dataset’s classes are produced by the last dense layer.
Firstly, we prepare the dataset with an appropriate optimizer and loss function
specific to our classification objective before building and training this model on it.
After that, by giving the training data and their matching labels, we fit the model
to the dataset. Under the optimizer’s direction, the model iteratively modifies its
parameters throughout training in order to minimize the specified loss function.
The model’s capacity to generalize is further improved by data augmentation. After
training, performance parameters including accuracy, precision, recall, and F1 score
measured on a different validation set. To maximize performance even more, model
architecture and hyperparameter adjustments were made.
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Layers Shape of Output

conv2d-0 (None, 55, 55, 96)
batch-normalization-0 (None, 27, 27, 96)
max-pooling2d (None, 27, 27, 96)
conv2d-1 (None, 27, 27, 256)
batch-normalization-1 (None, 27, 27, 256)
conv2d-2 (None, 27, 27, 256)
batch-normalization-2 (None, 27, 27, 256)
conv2d-3 (None, 27, 27, 384)
batch-normalization-3 (None, 27, 27, 384)
conv2d-4 (None, 27, 27, 384)
batch-normalization-4 (None, 27, 27, 384)
conv2d-5 (None, 27, 27, 384)
batch-normalization-5 (None, 27, 27, 384)
conv2d-6 (None, 27, 27, 256)
batch-normalization-6 (None, 27, 27, 256)
max-pooling2d-1 (None, 13, 13, 256)
flatten-0 (None, 43264)
dense-0 (None, 4096)
dropout-0 (None, 4096)
dense-1 (None, 4096)
dense-2 (None, 4)

Total params: 206237572
Trainable params: 206233540
Non-trainable params: 4032

Table 4.1: Proposed CNN Model Structure

For efficient and faster training, Adam was used as the optimizer, in combination
with the categorical crossentropy loss function. Besides that, an L2 regularizer was
used to reduce overfitting with a weight decay of 0.0001. For machine learning
library, we used TensorFlow and for neural network library, we used Keras.

Name of Parameter Value

Used Optimizer Adam
Regularizer l2(0.0001)
Activation relu
Epochs 30
Steps per Epoch 263

Loss Function
Categorical Crossen-
tropy

Metrics Accuracy

Table 4.2: Training Parameters
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4.2.2 Input Data

Our working dataset consists of CT scan images of kidneys each are 227x227 pixels.
The whole dataset is split into three categories, which are training, testing, and
validation comprising 70%, 20%, and 10% of the whole dataset respectively.

Figure 4.3: Tumor Figure 4.4: Stone

Figure 4.5: Cyst Figure 4.6: Normal

4.2.3 Processing

Our proposed model trained with 30 epochs and training process is done in multiple
batches. Model validation accuracy picked with accuracy value of 91%. The model
ultimately obtained a training accuracy of 97% and a validation accuracy of 89%.

4.2.4 Validation

Every iteration or epoch following training on the provided dataset, it predicts from
validation set frames and compares with ground truth to provide prediction accu-
racy. The analysis of validation curvature and slope is important in this process. By
monitoring the validation loss curve, smoothing out fluctuations was needed. Regu-
larization methods like dropout or early stopping into practice to reduce overfitting
and improve the model’s generalization performance.
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Chapter 5

Results and Discussion

5.1 Hardware Specification

Python 3.x

Hardware GPU RAM System RAM

T4 GPU 16 GB 12.7 GB
L4 GPU 22.5 GB 62.8 GB
A100 GPU 40 GB 90 GB

Table 5.1: Hardware Specification

A100 and L4 gpu used for pre-trained model since pre-trained models needs more
resource than proposed model. T4 GPU used for proposed model instead of A100
GPU.

5.2 Pre-trained Models Performance

5.2.1 VGG16 Model Result

With a last training accuracy of 99.92%, the VGG16 model demonstrated remarkable
performance on the training set. But the validation accuracy was much lower at
53.84% and the validation loss was rather high at 2.3587, indicating that the model
had difficulty generalizing to new validation data. In spite of this, the test accuracy,
which gauges performance on an entirely different dataset, was 89.42%, suggesting
that the model still has some reasonable generalization capacity but still needs
work. The last epoch’s learning rate of 1.0000e-06 indicated that the model was in
the training phase of fine-tuning.
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Figure 5.1: VGG16 Accuracy Figure 5.2: VGG16 Loss

5.2.2 VGG19 Model Result

We trained our dataset on the very popular architecture, VGG19 which achieved
a high training accuracy of 99.47%, indicating strong performance on the training
data. However, with a validation loss of 0.8780 and a validation accuracy of 78.82%,
it shows better generalization compared to VGG16 model. The test accuracy was
79.50%, aligning closely with the validation performance, which suggests that the
model generalizes well.

Figure 5.3: VGG19 Accuracy Figure 5.4: VGG19 Loss

5.2.3 ResNet50 Model Result

With a training accuracy of 99.06%, the ResNet50 model proved to be adept at
learning on the training set. It does, however, show moderate generalization to the
validation data. Despite being less than the training accuracy, the test accuracy
of 76.42% nevertheless demonstrates respectable performance. The model appeared
to be at the fine-tuning stage based on the learning rate of 1.0000e-06 in the final
epoch.
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Figure 5.5: ResNet50 Accuracy Figure 5.6: ResNet50 Loss

5.2.4 MobileNetV2 Model Result

The perfect training accuracy of 100% shows how successfully the MobileNetV2
model learnt the training data. With a high validation accuracy of 94.92% and a
validation loss of 0.3281 on the validation set, the model also demonstrated remark-
able performance. Though, the test accuracy dropped to 75.33%, suggesting that
there is an overfitting issue preventing the model from properly generalizing to new,
unseen data in testing set. The learning rate for the last epoch which represents the
fine-tuning stage was 4.0000e-06.

Figure 5.7: MobileNetV2 Accuracy Figure 5.8: MobileNetV2 Loss

5.2.5 DenseNet121 Model Result

With an astounding training accuracy of 99.93%, the DenseNet121 model demon-
strated exceptional learning on the training set. The model showed good general-
ization to the validation data, with a validation accuracy of 85.50% and a validation
loss of 0.8616. The test accuracy acquired 88.75% which is roughly matches the
validation accuracy. The model was in the fine-tuning stage, as shown by the final
epoch’s learning rate of 2.0000e-05
From the above output and accuracy and loss graph of DenseNet121 model we can
say that the model training accuracy is 99% with 80% validation accuracy.
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Figure 5.9: DenseNet121 Accuracy Figure 5.10: DenseNet121 Loss

5.2.6 EfficientNetB0 Model Result

The EfficientNetB0 model demonstrated reasonable learning on the training set.
Nevertheless, the model demonstrated challenges in generalizing to the validation
data, with a high validation loss of 4.3232 and a validation accuracy of 68.32%.
The model’s difficulty with generalization is still evident in the test accuracy of
75.67%, which is just marginally better than the validation accuracy. The last
epoch’s learning rate was 1.0000e-04, suggesting that the fine-tuning process was
still in progress.

Figure 5.11: EfficientNetB0 Accuracy Figure 5.12: EfficientNetB0 Loss

5.2.7 InceptionV3 Model Result

Another very popular model was chosen, InceptionV3 gained exceptional training
accuracy of 99.96%. Strong generalization of the model to the validation set was
demonstrated, with a validation accuracy of 84.55%. With a test accuracy of 83.17%,
which was nearly in line with the validation results. The model was in its fine-tuning
stage, as evidenced by the learning rate of 1.0000e-06 in the final epoch. From the
above output and accuracy and loss graph of InceptionV3 model, it was exceptionally
effective on our dataset.
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Figure 5.13: InceptionV3 Accuracy Figure 5.14: InceptionV3 Loss

5.2.8 ResNeXt Model Result

With an astounding accuracy of 99.93% and a very low training loss of 0.0824, the
ResNeXt model learning curve was better on the training set. The model showed
high generalization to the validation set with a validation accuracy of 85.50% and
a validation loss of 0.8616. With a test accuracy of 88.75%, it appears that the
generalization to untested data was successful. The model was in the fine-tuning
stage, as shown by the final epoch’s learning rate of 2.0000e-05.

Figure 5.15: ResNeXt Accuracy Figure 5.16: ResNeXt Loss

5.2.9 Xception Model Result

The Xception model demonstrated exceptionally successful learning on the train-
ing set. However, the model displayed a discernible decline in performance on the
validation set, indicating some overfitting. The test accuracy of 75.83% showed a
moderate degree of generalization in prediction. The final epoch’s learning rate was
1.0000e-04, indicating continued fine-tuning attempts.
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Figure 5.17: Xception Accuracy Figure 5.18: Xception Loss

5.3 Proposed Model Result

From below 5.19 and 5.20 graph, we can say that there was a huge rise in training
accuracy and the significant drop in training loss indicates that our proposed CNN
model’s training procedure across 30 epochs displays excellent learning and con-
vergence. Along with a significant improvement in validation loss from 18.5614 to
0.4114, the accuracy of validation increased from 25.25% to 89.58% and maximum
validation accuracy gained 91.79%. The validation loss and accuracy show periodic
spikes and fluctuate that may indicate overfitting, but generally the trend suggests
that the model generalizes well.

Figure 5.19: Proposed Model Accuracy Figure 5.20: Proposed Model Loss
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Confusion Matrix

Figure 5.21: Confusion Matrix

From the 5.21, the confusion matrix shows that Cyst provides 100% accuracy to
detect actual Cyst. But Normal class is having some error around 40 images as
detecting Tumor. Stone class predicted 289 images as actual stone but 10 images
as Tumor and 9 images as Cyst. Tumor predicted 250 images as actual Tumor and
11 images as Stone, 8 images as Normal.

Classification Report

Precision Recall F1-score Support
Cyst 1.0000 0.9633 0.9813 300

Normal 0.8743 0.9733 0.9211 300
Stone 0.9383 0.9633 0.9507 300
Tumor 0.9294 0.8333 0.8787 300

Accuracy 0.9333 1200
Macro Avg 0.9355 0.9333 0.9330 1200

Weighted Avg 0.9355 0.9333 0.9330 1200

Table 5.2: Classification Report

From 5.2, the classification report shows that 1200 tests were performed, and 80
errors were found in the confusion matrix, yielding an accuracy of 93.33%.
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5.4 Comparison of Models

Figure 5.22: Training Accuracy
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Figure 5.23: Validation Accuracy

With a validation accuracy of 91% and a training accuracy of 97%, our suggested
model showed excellent performance and generalization. In contrast, pre-trained
models with high training accuracies (99.9% and 86.2%, respectively) and signifi-
cantly lower validation accuracies (53.8% and 68.3%, respectively) showed consid-
erable overfitting. Other models like ResNet50, DenseNet121, InceptionV3, and
ResNeXt also performed well but their training accuracy is very low compared to
our proposed model. Moreover, these pre-trained models use more computes and
more resources. Our model is more lightweight compared to all of these pretrained
models. We developed our own model and trained it from scratch and gained equiv-
alent result or better than those models.

Model Training Accuracy Validation Accuracy

Proposed Model 97.05% 91.79%
VGG16 99.9% 53.8%
VGG19 99.4% 78.8%
Resnet50 99% 87.2%
Mobilenetv2 100% 94.9%
DenseNet12 99.9% 85.5%
EfficientNetB0 86.2% 68.3%
InceptionV3 99.9% 84.5%
ResNeXt 99.9% 85.5%
Xception 99.8% 76.2%

Table 5.3: Training and Validation Accuracy Comparison
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The proposed model performs better in this model comparison than pre-trained
models, with testing accuracy of 93.33%. At 89.41% and 88.74%, respectively,
VGG16 and DenseNet12 attain comparable accuracies, but other well-known de-
signs like VGG19, ResNet50 and EfficientNetB0 fall short. Notably, Mobilenetv2
performs noticeably worse in testing and 296 errors were found in the confusion
matrix. In the meanwhile, the accuracies of InceptionV3, ResNeXt, and Xception
range from 75.66% to 83.16%. This shows that the suggested model performs better
at discriminating than a number of popular architectures in a range of tasks, sug-
gesting that it might be used more extensively in real-world scenarios.

Model Testing Accuracy

Proposed Model 93.33%
VGG16 89.41%
VGG19 79.50%
Resnet50 76.41%
Mobilenetv2 75.33%
DenseNet12 88.74%
EfficientNetB0 75.66%
InceptionV3 83.16%
ResNeXt 88.74%
Xception 75.83%

Table 5.4: Testing Accuracy of Various Models
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Chapter 6

Conclusion

6.1 Conclusion

Machine learning is currently at the cutting edge of technology, having an impact
on a variety of industries like healthcare, finance, natural language processing, and
picture recognition, among others. With ongoing research and invention, it is also
continuing to evolve quickly. This work has succeeded in creating algorithms that
can diagnose chronic kidney diseases with exceptional accuracy by utilizing ma-
chine learning, deep learning, and advanced image processing designed specifically
for CKD. The use of convolutional neural networks has made it possible to distin-
guish precisely between healthy and unhealthy kidney states as well as to categorize
CKD stages to inform targeted therapies. The findings provided here have a great
deal of potential for helping healthcare professionals by providing fast and precise
insights regarding CKD status. Future study and improvement of this methodology
are crucial in order to create the way for even more accurate CKD detection and
classification methods, ultimately leading to better patient care and results for the
management of kidney disease.

6.2 Future Work

For further improvements of our model, we will consider to increase dataset size
with real data collected from hospitals. In future we will adjust CNN architecture
parameters more to minimize the error and maximize the accuracy of our model.
We extend our model to work with humans to detect kidney disease. Our approach
will be implemented in an online application. User-friendliness is a top concern for
an application so that patients may obtain initial CT scan report data. In order
to aid with scanning through the complexity of diverse CT scan images, we will
concentrate on image processing in order to acquire additional information from the
built-in high resolution camera. It will thus provide real-time analysis to the user
and increase demand for our products. We will also invest more time to improve
the model’s design, data quality, and computing resource use.
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