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Abstract

Finding patterns of the short sequences in DNA, RNA protein sequence has immense
biological significance. The characterization and recognition of motifs is therefore
an important method for a more in-depth understanding of genes or proteins in their
structure, function and relations of evolution. This is one of the classical problems in
the field of computational biology and which is an NP Hard problem. In this paper,
we have proposed an evolutionary approach to get the motifs from DNA sequence
by searching candidate motifs using heuristic way from the data. We have included
various mutation techniques in an evolutionary approach and found an efficient way
to calculate the fitness of our candidate motifs. We have evaluated the fitness of
found motifs from our approach with benchmark data sets. Our method performs
better results in terms of accuracy and specificity.
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Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ABC' Artificial Bee Colony

ACO Ant Colony Optimization
ANN Artificial Neural Networks
CS  Cuckoo Search

DN A Deoxyribonucleic acid

EC  Evolutionary Computation
EMS Edit Distance Motif Search
FS  Fuzzy Structures

GA  Genetic Algorithm

mRNA messenger RNA

PMS Plant Motif Search

PSO Particle Swarm Optimization
RN A Ribonucleic acid

SI  Swarming Intelligence
SMS Simple Motif Search

TF  Transcription Factor

YMF Yeast Motif Finder
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Chapter 1

Introduction

1.1 Background

Cells area is the littlest living units of organisms. There are common three things in
a cell. Every cell encompasses a membrane that differentiates within cell from the
surroundings. Other things are cytoplasm which is a jelly like fluid and last things
is DNA which is the genetic component of a cell. Prokaryotic and eukaryotic cells
are two broad categories of a cell. Eukaryotic cell has organelles (special parts of
a cell) and it can be found in plants and animals. On the other hand, prokaryotic
cells have enclosed organelles and have no nucleus and also one celled. Cells have
different kinds of functions like providing a shape of a body, intake nutrient from
different food and these nutrients are converted into energy. Cells are comprised
with different parts like cytoplasm, Golgi body, mitochondria, lysosome etc. Your
introduction goes here! Some examples of commonly used commands and features
are listed below, to help you get started[1].

Chramaosome

Chramasied Cheeenalis

Figure 1.1: Cell of a Human Body



Chromosome is like a chain composed of DNA belonging with the cumulation of
reposing protein. Chromosome is like fiber, thread which is extremely long where
millions of nucleotides long in addition with hundreds of genes. There are lots of
functions of chromosome like the basic genetic materials are comprised in chromo-
some. In addition, chromosome helps in cell division like mother cell is divided into
daughter cells.

Transcription and Translation

Transcription
to RNA

i mRNA

Translation &
Protein synthesis
308 ribosomal unit

mRNA

50S ribosomal unit

Figure 1.2: Chromosome of Human Body

Furthermore, it also contains histone and non-histone protein that helps wielding
gene action in a body. Chromosomes are present in every living body. Every living
body has different numbers of chromosomes. Chromosome can be of different types
like metacentric, sub-metacentric, acrocentric and telocentric chromosome[2].

DNA refers to Deoxyribonucleic acid that is like a molecule which is present inside
the cell nucleus. DNA is the primary biological function in a human body. Storing
and coding the genetic information of a body is the main function. There is a very
close connection between chromosome and DNA. DNA is allocated in nucleus of a
cell in the life cycle of a cell but when DNA starts to replicate, they form a structure
like chromosome which helps to stabilize DNA. DNA is actually a polymer with
nucleotides. In the basic structure of nucleotide there are three important things
which is phosphate, sugar and nitrogenous base. There are four types of nucleotides
present which is Adenine, Guanine, Cytosine and Thymine. These four nucleotides
are divided into two groups, pyrimidines and purines. Adenine and Guanine are in
purines and Thymine and Cytosine are in group of pyrimidines[3].

The process of central dogma can be divided into some processes. Firstly, replication
helps to make copies of DNA and then the code of DNA is broken into every cell in
post replication which is transferred into a mRNA. After that, reading this mRNA,
the code is translated into proteins. This whole process is central dogma. Replica-



tion is basically semiconservative in nature. The catalyst DNA enzyme copies one
parental molecule of double stranded DNA into two female offspring molecules of
dual stranded DNA. Transcription is rendered from DNA through RNA. The RNA
polymerase enzyme produces an RNA molecule complementing a gene encoding
portion of DNA. Transmission is produced from mRNA protein[4].

1.2 Problem Statement

DNA motif is basically a sequence pattern with sequence of nucleic acid that has
regulatory protein of DNA bonding sites that can be also called Transcription Factor
(TF). DNA motifs basically assembles with structural motifs where proteins can be
present. Though motifs occur on double stranded DNA also double stranded DNA
is bind by TF. Motif sequences can be of different like zero, one or two or many
more motifs.

Motif discovery is defined as the question of motifs being found without previous
awareness of what the motifs look like. A double helix DNA with a single strand
can be mentioned as a string over an alphabet F = A, T, G, C. Arising of motif
discovery happens while DNA contains times of binding motifs and they may be
unknown. Let us see a short example on finding motif from a DNA sequence.

AGGTACACTCATGATGCACCTGTA
CTTGATTCACATGACTCATGACAT
CCGTAACTGCTTGCACTCAAACAT
TGTTAGGACTCATCACACGACAAT
GAGTCTCACTGATCTGAGTCAGAA

In this above example, there are 5 different DNA sequences. By iterating them we
get a common string which is repeated in every sequence i.e. CTCA. Therefore,
CTCA is one of the motifs in the above DNA sequences.

Mutation is a frequently occurred phenomenon on DNA sequences. So, some ran-
dom positions of DNA for a particular species can be different from individual to
individual due to mutations over time. Keeping this obvious phenomenon in mind,
we try to find motifs by allowing a degree of mutation, i.e, we will overlook some
mismatches in the sequences. This problem is called (I, d) motif finding. Let us see
an example of finding a (I, d) motifs from given sequences of DNA:

[ = length of the motif
d = number of maximum mismatches

TTCGGACGAATGCCAGTTC — mismatch with “AAGTTC” =1
CAGGTCTTGACCGGAATGC — mismatch with “AAGTTC” = 2
AATGGCTCCATGGCAAGTTC — mismatch with “AAGTTC” =0
GTAACCTTAGCTAAGGCAAT — mismatch with “AAGTTC” =3
TAACTTGGTTAGGCCATTCG — mismatch with “AAGTTC” =2

Here, “AAGTTC” can be (6,3) motif for this above dataset in every DNA sequence
where the subsequences of length 6 and the maximum number of mismatches is 3.

3



1.3 Motivation

Motif Discovery is an NP-Hard topic as it requires infinite time to discover motifs
there is space to minimize run-time. Besides this, discovery of large-length motif
is still a strong field for study as discovering large-length motif is still a major
challenge because it requires up too many days for computation. The recent advent
of technologies such as combination of chromatin immunoprecipitation (ChIP[5])
with tiling arrays (ChIP on ChIP[6]) or next-generation sequencing (ChIP-Seq[7]),
that possesses the direct genome-wide identification of regions surrounded in vivo
with the help of a defined TF. ChIP-Seq becomes the actual norm during this space
quickly that rises new issues for the algorithm and device developers, that may be
directed within the following. The input is a series of DNA sequences and our aim
is identifying one or more motifs where one or many oligos that happens in a wide
fraction of the sequence. Oligos belonging to the same pattern should be very similar
to one another, probably recognized by the same TF as linking sites. It is generally
assumed that the size of the motif is known as a priori. The motif does not seem
with the constant frequency and indiscriminately created sequences in any model
containing the biologically possible DNA sequences so as to assess the particular
that means of the motif and to discriminate against random similarities.

1.4 Research Objective

Motif finding problem takes exponential time to solve. So, our objective is to propose
an algorithm for planted motif problem with heuristic approach. This algorithm will
help to reduce execution time. Besides, motif finding on different data samples and
mismatches from DNA sequences is also our primary concern.

(a) Finding simple motif search from DNA sequences
(b) Using nature inspired methods for optimization of calculation

(c) Use variant data sets for justification



Chapter 2

Related Work

2.1 Literature Review

The detection of these reasons is an essential challenge for molecular biology. The
motif finder consists of the class MotifFinder and findMotif method, four separate
motif finding algorithms, two heuristic PROJECTION or ePatternBranching algo-
rithms and two similar Algorithms PMS1 and PMSP, gives an in-depth knowledge
of structure, role and developmental connections of the genes or proteins.

The vast amount of data from DNA, RNA and the protein sequence has been cre-
ated by several genome projects. While computational pattern search methods like
BLAST have made significant observations such as protein modularity, even more
research is available with biological sequence details. However, because of their
length and sophistication, we are limited by the computational algorithms used to
classify motifs. The three main paradigms historically used for recognizing small,
functional patterns of peptides, transcriptional regulatory components, composite
regulatory patterns, diagrams of DNA, differences between the protein families etc.
are SMS, PMS and EMS. There are two major shortcomings in current pattern-
search algorithms for motif-search:

1. Approximate algorithms do not always recognize the correct pattern, but have
the advantage that they can be used to search for short and fairly large patterns
in large data sets such as genomes.

2. Exact algorithms, on the other hand, often recognize the appropriate pattern,
but cannot be used to classify complex data patterns in large datasets. To
derive more sophisticated patterns from genomic data we need precise algo-
rithms which can be used to analyze genomes with appropriate computational
resources for complex patterns.

We divide the motifs accessible for algorithms into three major groups based on the
typology of DNA sequence knowledge used in the template deduction algorithm:

1. those that use single genome coregulated gene sequences,

2. those that use single gene orthological sequences of many species (i.e., phylo-
genetic foot printing) and

3. those which use prom sequences.
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Figure 2.1: Classification of algorithms for motif finding as nature driven, proba-
bilistic, enumerative and combinatorial forms.

Most previous literatures however, classified algorithms of motif searching in two
key groups according to the combinatorial methodology employed in their design:

1. word-based methods (string-oriented) mostly focused on full description, i.e.
oligonucleotide frequency count and contrast, and

2. probabilistic models with estimates of the function parameters by maximum
probability.

2.1.1 Word Based Method

As we know that the word-based methods are mostly enumerative methods so that
we can say that they ensure global optimality and by using the eukaryotic genomes
they are useful for identifying motifs where motifs are typically shorter than prokary-
otes. These methods are also ideal for short motifs. When introduced with struc-
tured data structures such as suffix trees, word-based approaches may also be very
efficient and are a strong choice in identifying completely restricted motifs, implying
that all instances are similar. Nonetheless, for standard transcription factor motifs
we can say that word-based approaches may be troublesome. Sometimes they have
many weakly restricted locations and the product also needs to be post-processed
with any clustering framework. The issue of generating so many incorrect explana-
tions is often exacerbated by word-based methodologies.

Oligo-Analysis is one of the motifs finding algorithm which is based on the word-
based methods developed by van Helden[8]. Though conceptually clear, their al-
gorithms have proven successful in eliminating motifs from the majority of regu-
latory families in yeast(Saccharomyces cerevisiae). In the experimental laboratory
research, such motifs had already been discovered. In addition, in the upstream



regions of the coregulated genes, putative new regulatory sites were expected. This
oligonucleotide analysis is systematic and detailed in comparison to heuristic ap-
proaches. However, its detection spectrum is restricted to basic designs with short
motifs with a tightly preserved core.

Sinha and Tompa built an YMF algorithm utilizing the same methodology[9]. The
concept was extracted from an analysis of the identified yeast binding sites for
the transcription factor. The algorithm inputs consist of a collection of upstream
sequences, the number of non- in the motifs to be identified, and the transformation
matrix for the order m of a Markov chain formed from the completeness of upstream
yeast sequences.

2.1.2 Probabilistic Based Method

The probabilistic method includes a location weight matrix describing the config-
uration of the motif. The weight matrices of the position are also shown as the
pictogram describing increasing position by a stack of letters whose height is com-
mensurate with its knowledge quality. Probabilistic approaches have the benefit of
having little criteria for searching but focus on probabilistic approaches of the reg-
ulatory regions that are highly responsive to slight input data shifts. Some of the
probabilistic algorithms aimed at identifying more or less general explanations that
are required for binding sites of transcription. On the other hand, in prokaryotes,
motifs are normally lengthier than eukaryotes; they are more suitable for identi-
fying motifs. Such algorithms are not, however, assumed to find ideal solutions
internationally, because they use a form of local analysis[10].

One of Hertz’s[11] first attempts to find a matrix describing transcription factor con-
nections for the most info-intensive framework was a greedy probabilistic sequence
model-based algorithm. This method was used to identify a specific purpose in an
increasing series once.

Lawrence and Reilly implemented the EM[12] for motif searching and generalized
Hertz greedy algorithm for pattern searching. It was built specifically for protein
motives, but may also be used for discovering DNA motives. There is no site syn-
chronization needed, so the basic principle of the model is that at least one specific
site will occur in each series.

Gibbs sampling approach[13] has been commonly used for the detection of algo-
rithms among the probabilistic approaches. Below is a brief overview of Lawrence
first Gibbs sampler for motif finding. This method was not extended to the DNA
sequence but was extended in the original article to the protein series. Provided
that at least one case of a topic occurs in any sequence, one of the original principles
of this algorithm is the technique often called the “location sampler”.

2.1.3 Natured Inspired Method

Natural algorithms represent a collection of novel techniques and solutions to problem-
solving and draw tremendous exposure to their successful results. Nature-inspired
algorithms have been used as model models for various real-world problems, which
include ANN, FS, EC and SI[14]. While nature-inspired algorithms are so common,
there still are many challenges that need to be further investigated. The strength of
natural algorithms is the simplicity in determining solutions by the use of exercise



functions to offer solutions. Such characteristics vary from problem to problem and
determine the usage of various forms of knowledge such as biological, electronic, etc.
Moreover, the motif representation of such algorithms is versatile.

Heuristic approach is a way of prioritizing the paths from the initial state of an
algorithm to the goal state or final state over other paths in that particular algo-
rithm. This is for finding a solution of a problem and the solution of the problem is
computed in the last state or goal state.

Basically, heuristic approach is a process to discover the solution of a problem. It is
a shortcut process to produce good enough solutions. In this approach, knowledge
is secondary thought. This approach is basically a rational system that does not
necessarily need to be accurate or optimal and it is a flexible process for quick
decisions, particularly when working with data which are complicated.

Heuristic approach[15] varies quite a lot depending on the problem. So, it is impor-
tant to first understand the problem and then go for the solution. This approach
has four principles that make a structure for solving a problem.

Firstly, try to understand the problem. It really helps to create an image of the
given problem and to look at it from different point of view. Questions like “What
is the issue” or "What’s going on” or "Can the issue be clarified at the end of
the day” or "Is there enough data accessible” and many more questions like these
types can help to solve a problem. Second step is to make a plan. There can be
different ways to solve a problem. Main thing is to picking up the right process
which fits the problem given. When people assume that they have a solution of
the problem given then they use “back tracking” as a beginning stage to move
in the direction of that specific problem. It can likewise be valuable to cause a
diagram of the conceivable outcomes, to erase some of them promptly, work with
correlations, or to apply balance. Imagination becomes possibly the most important
factor here. Thirdly, carry out the plan. When a system has been picked, the plan
can rapidly be executed. Nonetheless, it is important to focus on schedule and show
patience because the solution won’t just show up. If the plan doesn’t go anyplace,
the guidance is to ignore the plan and go for another plan to solve the problem.
Lastly, evaluate and adapt. Set aside the effort to deliberately consider and ponder
the work that is now been done. The works that are going according to plan should
be maintained, those leading to a lesser solution, should be adjusted. Few things
will simply work, while others may not.

Heuristic approach provides a quick solution which is straight forward and easy to
implement. As Heuristic approach is practical so it serves as quick and feasible
short-term answers to scheduling and planning issues. It can lead ease of use testing
to additionally analyze potential issues. This approach can utilize together with
other ease of use testing philosophies. Assigning the right Heuristic approach can
help propose the best corrective measures|16].

Here is a list of some heuristic algorithms[17] from different types

1. ABC: MOABC

ACO: MFACO

CS: MACS

GA: FMGA, MOGAMOD
PSO: PMbPSO, PSO+

AR



2.1.3.1 ABC[18]

Artificial Bee Colony algorithm could be a kind of swarm-based algorithm which
Karaboga proposes. To search out a food supply, the action of honey bees simulates
by this algorithm. 2 elementary properties in honey bee colonies for getting swarm
intelligent behavior are self-organization and division of labor. The bee colony in-
cludes 2 categories that are working and the foragers that are unemployed. Employed
bees work is move to food sources which was previously visited. They are answer-
able for providing information about the standard of allotted supply to unemployed
foragers. The employed bee that develop into scout bee to seem for a brand-new
food source. New food source’s fitness is decided and also greedy choice is applied.

2.1.3.1.1 MOABC/DE[19]

[Initialize food sources for EMPLOYED bees }

oL
3

Return Pareto front

EMPLOYED food sources

[ Using DE SCHEMES to change }

Reject Order food sources by MOF to select
EMPLOYED food sources for the next generation
"‘\r‘ *

Generate VECTOR PROBABILITY in light of MOF Determine the discarded food sources and replace them
with new randomly generated solutions used by SCOUT

bees
Using the PROBABILITY VECTOR
to generate food sources for Onlooker bees

¢ >

[ Modify food sources using DE SCHEMES ]

MOFifitness) == MOF(trial)

Figure 2.2: MOABC/DE Flowchart

Gonzélez et al proposed MOABC/DE. This algorithm is meant to adapt the Arti-
ficial Bee Colony algorithm to a multi-objective context. At the similar time, the
multi-objective optimizes over one objective function to induce a collection of best
solutions referred to as the Pareto package. This algorithm describes 3 compet-
ing objectives as getting used ABC’s motif length, help, and similarity and multi-
objective adaptations together with multi-term fitness function, ranking, and sorting
methodology.



2.1.3.2 ACOI20]

Ant Colony Optimization is a heuristic based algorithm which is based on the real
behavior of ants which always try to search for the shortest path from their nest
to the source of the food. While moving, the ant always leave a path of chemical
factor which is called pheromone on the bottom and it helps the ants to induce to
nest. They move through that chemical component with one another. The quantity
and quality of the food depends on pheromone as the quantity of it is proportional
to both and also this chemical component for the food supply would be directed to
different ants. After sometimes the evaporation of pheromone occurs which decreases
its attractive strength. Within shorter direction the evaporation takes an extra time
than the longest. With high concentrations of pheromones, the ants choose their
way.

2.1.3.2.1 MFACO[21]

Set Parametres

h A

Initialize Pheromone
Trails

Construct Ant
Solution

h A

Pheromone Update

Figure 2.3: Flowchart of MFACO

Ant Colony Optimization finds beginning positions which is better than random
initialization of DNA sequences given as beginning position for the GS method.
ACO algorithm starts where each and every ant selects the trail to form motif length
(m) as sample. This sample depends on the pheromone’s probability. After that, to
induce the set that represents the most effective matching substrings, comparison
between the ants and the chosen sample (m) occurs and each substring within the
input sequences. First, it measures the fitness function for each chosen set. The
amount of pheromone is then modified and eventually iterated until no adjustment
is created.
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2.1.3.3 CS[20]

CS could be a heuristic algorithm that is a lot of efficient than GA and PSO. CS
is inspired by the breeding mutuality of some species of cuckoo together with the
behavior of Lévy flight. Cuckoo lays their eggs in alternative birds’ nests with power
to choose recent nests and destroy established eggs and also to extend the prospect
of their eggs hatching. If such eggs are found by host birds, they throw the eggs away
or build another nest to live there. This species follows a rule: One egg at a time laid
by each cuckoo and disposes of its egg in a selected nest choosing randomly. The
nests containing high-quality eggs which is denoted as solutions are the strongest
and can still the generations that follow. Each and every egg could be a solution as
it helps to simulate cuckoo reproduction and every egg denoted as new solution.

2.1.3.3.1 MACS|22]

Objective function ffx), x = (v xn)
Generate initial population of N host nests, each contains
Neeggsxi(i=1,2,..N-Np
while (FE < FEpyy) or (stop criterion) do
foreachnesti(i=1,2,-N) do
Get a cuckoo by Levy flights, start from the best
solution of the current nest, evaluate F;
Choose the worst solution of current nest (say, )
if [F,' = F;) then
while (F; > Fj) do
Replace j by the new
solution
Continue flights and
evaluate F;
end while
else
Get a cuckoo by Lévy flights, start from the
global best, evaluate F;
Choose the worst selution of current nest

(say.Jj)
while (F; > Fj) do
Replace f with the new
solution
Continue flights and
evaluate F;
end while
end if
end for

Rank the solutions, find the cumrent best

Regroup all selutions mnte N nests according to their
fitness.

Update step size using equation

Figure 2.4: Pseudocode of MACS

The MACS algorithm improves the fundamental Cuckoo Search algorithm by com-
bining parallel, incentive, information and adaptive strategies. There are multiple
subgroups consisting of the population. Subgroup environments will increase bound
lower solutions’ survival rate, as weaker solutions will thrive during a better fit-
ness subgroup. to spice up population diversity on the premise of grouping, each
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generation’s cuckoo starts from the subgroup’s best solution. When the individual
subgroup is worse than the new solution, then they will replace it with new solution.
This technique is performed on each subgroup, to make equal with the quantity of
cuckoo’s activity parallel search. An honest flight (replacement solution’s fitness is
larger than the worst within the subgroup) wins as a successive flight for each cuckoo
in a very subgroup, before the flight fails. This strategy aims at exploiting promising
space at a quicker speed. A basic technique is employed to realize high-level sharing
of information with low cost computation. Sort the whole population consistent with
fitness value at the top of every generation, continuously creating a new subgroup by
dividing them. By this, the last generation of the most effective and worst solutions
is shared between groups, making new groups with other solutions. This technique
preserves the echelon development of fine and poor solutions, such solutions at to-
tally different levels conjoin within the population. It appears a rational option to
alter the search phase size slowly with the search method at different stages of the
search. The possible access to information of the whole space is required within the
early stage of the search. a bigger step-size is needed at this stage. Within the later
stage, the search should be allotted during a small neighborhood of individual so as
to enhance precision, and a small step size is then needed.

2.1.3.4 GA[23]

In Genetic Algorithm genes, chromosomes, genotype and phenotype this terminology
is being used. Firstly, in Genetic algorithm we have initial population. Diversity
is the main part of initial population. By using initial population, we calculate the
fitness. As the compare of input, the best given output is the fitness function. The
next step is selection. By using fitness function, we improve our selection to find out
the best parent. The next part is Crossover. By using crossover, we generate a new
child and check the fitness function of it. The final part is mutation. In mutation
there are different types of parts as like swap and bit flip. We use it because we
want to create better population than the previous one. We will follow this sequence
until the stopping criteria will fulfill.

2.1.3.4.1 MOGAMOD|24]

Input: Size of Population, Maximum number of Generation, Probability of
Crossover, Rate of Mutation

Step 1: Generate initial population

Step 2: Loop until the termination criterion not satisfied
Step 3: Select pairs of parents

Step 4: Generate offspring population

Step 5: Choose good solution from merged population and construct next
population

Step 6: End while

Step 7: return population

Figure 2.5: MOGAMOD Steps

In Step 1, generate initial population. In Step 2, there is a loop and this loop will
continue until the criterion of termination is not being satisfied. In step 3, the set of
parent solution pairs is being selected. After that, step 4 comes where crossover and
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mutation are applied to provide offspring population. To choose the right solutions
from combined population, the next population is made. From step 3, to check
every answer within the current population Pareto-dominance and situation is used.
In step 5, doing the same thing for combining population and also select the most
appropriate solution as representative of subsequent cluster from the consolidated
answer to introduce Elitism.

2.1.3.4.2 FMGAJ17, 25]

Sorting by TFS
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Figure 2.6: FMGA Architecture

FMGA algorithm is used for location motive position within the areas from upstream
bp of -2000 to downstream bp of 41000 of the beginning site transcription. The mu-
tation in genetic algorithm takes place with location weight matrices to ensure that
all retained positions are not discarded. The crossover is performed to include the
desired child pattern of uncommonly designed violation penalties. In fact, to remain
far from the vicinity of a fully consistent local minimum, this genetic algorithm uses
one of the remodeling methodologies intrigued by place weight matrices that may
render the desired design quite complicated for specific administrators. The writers
have declared FMGA to be more successful in comparison to GS and MEME.
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2.1.3.5 PSO[26]

One of the popular techniques of Swarm Intelligence is Particle Swamp Optimiza-
tion. Easy computation and the sharing information among the algorithm is distin-
guished in PSO. It also simulates the behaviors of movements of organisms in bird
flocks along with schools of fish to seek out sources of food and defenses against
enemies. That particle shares its own flying experience with other particle and
vice versa to alter their "flying” therefore it incorporates self-experience and social
experiences. The particle tries to induce the most effective local particle position
in self-experiences and this is often done by the stores of the particles. The most
effective solution seen in its memory up to now is termed ‘pbest’, and because it
navigates through the search space of the answer, it’s an attraction towards this
solution.

2.1.3.5.1 PMbPSO|[27]

Initialization

Number of keration
Pop Size

Inifial Velocity

Generate

2 Random number from each
SEqUEnCEe

Range iz 1 to nd+1

Run 2 Loops

3 First loop will run from 1 to
Number of keration

Second loop will run from 1 to
Pop Size and it will be a nested
loop

Figure 2.7: PMbPSO Steps

Reddy et al developed this algorithm. For all motifs, this algorithm selects initial
positions and develops 10 children for every motif. After that, evaluation of fitness
function has to done for every parent and their children as it can generate the most
effective position; at now, the simplest position of all particles is following the rate
and site of every single particle for variety of iterations.
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2.1.3.5.2 PSO-+[28]

fitness( final_consensus) = -infinity;
for i=1 to MAX_RESET do {//loop 1}
Initialize a random solution (current) for each agent
fitness(pbest) = -infinity for all agents
fitness(ghest) = -infinity;
for j=1 to MAX_ITERATION do {//loop 2}
for k=1 to NUM_AGENTS do {//loop 3}
Scan each sequence to find a best match to currenty;
Use the matches to calculate fitness(currenty,);
if fitness(currenty) > fitness(pbesty) then
pbesty = currenty;
end if
if fitness(currenty) > gbest then
ghest = currenty;
end if
end for
Check Shift;
Update current for each agent based on the update rule;
if j > MINITERATION and no update on gbest occurred in past N
End Loop 2;
end if
end for
if fitness(gbest) > fitness( final_consensus) then
finalconsensus = gbest;
end if
end for
Post-processing;

iterations then

Figure 2.8: PSO+ Pseudocode

PSO+ differs from different motifs by directly modeling gaps to seek out algorithms,
that offers a straightforward approach to seek out gapped motifs. This algorithm
uses each consensus and representations of position-specific weight matrix with the
accuracy of PWMs.
This technique gives permission of some input sequences which can contain zero
or many binding sites, that are popular in real data set, however a number of the

help of advantage of the efficiency of consensus and also the

algorithms ignore.
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Chapter 3

Proposed Method

We are using heuristic approaches, especially genetic algorithms for finding motifs.
For finding the best motif we take initial population from the dataset, find the
fitness score of that population, access population for finding the best population
and after doing mutation we get the final output. We will update the fitness score
after getting the better fitness value. We set a limit to run the iteration to get the
best motif in the shortest possible time.

input data sequence

Generate matrix for
each sequence

randomly taking sub-sequence
from data sequence

P

[Find fitness value for a sub—sequence]

!

Find best population from initial
population according to its fitness

!

Generate consensus matrix J

Make initial population by ]

from best population
comparing with its position

Mutation

Figure 3.1: Flowchart of Our Proposed Model
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3.1 Data Representation

In our proposed method, we are trying to calculate the positions of each nucleotide
in a sequence of data. We can easily do it by building a matrix. In a matrix,
there are 4 rows which are four nucleotides and the columns are the representation
of the given sequence. We are using binary formula and if the index of row and
column matches then that [row, columns]’s value will be 1 otherwise 0. In this
way, we get the position of each nucleotide and this will help us to do our future

work like mutation. As an example, we have 10 lengths of subsequences which is
“GCTATCGGAT” the matrix representation is looking like:

G|C|TIA|T C|G|G|A

= oo o

0 0
0 0
1 1
0 0

—lolo|lo
—lolo|lo
o|lo|lol -
o|l—lolol

0
1
0
0

(oo} Ben) el s

0
1
0
0

Q1 Q>

Table 3.1: Data Representation

Also, we are trying to represent our candidate motif in the same way. We are doing
it to get more motifs easily after doing the crossover and mutation. As an example,
we take 4 subsequences of candidate motif which length is 6 then the matrix is
looking like:

Subsequences:

ATCGGA
TGCTAT
AGTTAG
CTGCTG

The representation will be:

0 1 2 3 4 )
05 1] 0 0 0 0.5 | 0.25
0251 0 | 05 1025 O 0
025]105]025] 05 |0.25|0.25

0 105]025]025|025| 0.5

Q1 Q>

Table 3.2: Subsequences Representation

3.2 Build an initial population

The working principle of this method is to generate the initial population from a
given sequence. In datasets there will be N number of DNA sequences and this
method will find the 1 length of random sub-sequences. These sub-sequences will fill
up the initial population.
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For example,

Sequence 1 — AAAATTATTTTTTTAGACTTCCTTC gﬁg‘ég
Sequence 2 - CAGCTTTGCGCCTCCACTGTCACCC GGAGG
Sequence 3 - TTGACAGACAGTGTGGAGGGATTA — GTACT
Sequence 4 — ATACACGTACTACACATTGGACTCA AGGCA
Sequence 5 - TGGGAGGCAAAGATGGTGGCAGGT TTTAA

Sequence 6 — TTACAACAATCCATGCATACTTTTAA

Here, our method randomly chooses 5 length subsequences from a given DNA se-
quence. And add them to the initial population list. As we can see the subsequences
of the initial population are already in datasets, so it will be close to an optimal
solution.

3.3 Fitness Function

In this step, our main target is to get less number of mismatches. To do this, we
have to run two fitness steps. One step is running to get the fitness in sequence and
another one is running to get fitness in the whole dataset.

Firstly, to get fitness in sequence we are taking candidate motifs (subsequence) from
population and one DNA sequence from the dataset as inputs. It will give numerical
value as output. This numerical value is the minimum mismatch value. We get this
value after doing comparison between every possible position of DNA sequence and
candidate motif (subsequence). Here, from each position we will get one mismatch
value. So, the position that returns the minimum mismatch value is the best for
that particular candidate motif (subsequence). The output is represented in a matrix
form.

As example, if our given subsequence is “TGCA” and DNA sequence is “ATTG-
CATGCCTT” then the output will be 0. Now we are giving some more examples
like this: “ATTGCATGCCTT”

subsequences | ATTG | TTGC | TTGG | TTAA
output 0 0 1 2

Table 3.3: Fitness Function

Here, output is the minimum number of mismatches.

Now, to get fitness in the dataset we are taking one candidate motif (subsequence)
and all sequences from the dataset as inputs. It will give numerical value as output
that represents fitness in the whole dataset. Firstly, we initialize the fitness variable
as zero as we don’t get any output. Then, we run a for-loop from which we are
getting all the sequences. Now, we are calling fitness functions where candidate
motif and sequence from the dataset are given. It returns a numerical value for each
sequence. Now, we are adding this value with the fitness variable, basically here the
number of mismatch is stored. To get the average fitness value we are dividing the
fitness value with the number of sequences. As an example, if our fitness value is
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5 and the number of sequences is 20 then the average fitness value is 5/20 = 0.25.
But, our target is to get the lowest number of mismatched values. If we subtract the
fitness from L then we get the number of match values and to get the percentage we
are dividing it from L. Now, the fitness value will return. This is the actual work of
fitness value.

As an example, if our candidate motif is “GGTC” and the total dataset is “ATAG-
TAGCTAGCGGTCACGTATACG” then the output will return 1. As the minimum
mismatch value is zero, so it returns the highest probability.

3.4 Assess Population

In this step, our main target is to get the main population between the selected
candidate motifs (subsequences). Firstly, we take some subsequences from the pop-
ulation. Then, we calculate the fitness value of these subsequences by using the
Fitness in Dataset step. Now we have fitness values of these subsequences and we
store these values. Then, we sort these values in a descending order. Now, we know
which subsequence has the better fitness value. We take 9 subsequences which have
the better fitness values and these are our best population. We will do this step for
several times to get the best population again and again. It will help us to get the
best motif and also we will use it in our mutation step.

As an example, if our Population is “ATTCGATCGACTAGTACGAA”

Let our best 6 candidate motif is

{“TTCGCT” ,“TTCGGT”, “TTCGTT”, “TTCATT”, “TTCCGT”, “TAGCAT"}

Subsequences | Fitness Value (%)
TTCGCT 83.3
TTCGGT 83.3
TTCGTT 83.3
TTCATT 50.0
TTCCGT 66.6
TAGCAT 33.3

Table 3.4: Assess Population

We get the fitness values of our 6 subsequences. Now we sort these values in a
descending order and then we get these:

Subsequences | Fitness Value (%)
TTCGCT 83.3
TTCGGT 83.3
TTCGTT 83.3
TTCCGT 66.6
TTCATT 50.0
TAGCAG 33.3

Table 3.5: Sorted Assess Population
Finally, we take the best 4 subsequences as our best population.
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3.5 Consensus Sequence

In this step, we basically count the number of selective nucleotides in a fixed position.
We take the best population as inputs which we find from the assess population and
then get numerical numbers as outputs. We have to do the whole step for all four
nucleotides. Then we divide the output with the number of subsequences which we
take as inputs. In the output, the number of columns has to be equal to the length
of subsequences and the summation of each column has to be one.

As example, let our length of motif is 10 and we have 4 subsequences which is
“CATGAGCTAC”, “ACACGTCGAT”, “TGCACAGATG”, “GTCGTTGACA”
Then the output will look like,

02510251025 |025]025]025|00]| 0.5 | 0.5 |0.25
0251025 05 |025]025| 0.0 |05] 0.0 |0.25]0.25
0251025 00 | 05 ]025(0250.5]025| 0.0 |0.25
02510251025 | 0.0 [025] 0.5 |0.0]0.25]0.25]|0.25

Q1 Q>

Table 3.6: Consensus Sequence

This will help us to get the best motif.

3.6 Mutation

Mutation plays the crucial part to meander around the candidate motif space. In
this part, we will retrieve the best nucleotide from the highest frequent nucleotide in
each position in the best population. After comparing the best nucleotide with the
best population, we get the mismatch position and then we keep up the exchange off
in two ways; exploration and exploitation. We have used binomial distribution for
maintaining the exchange off between exploration and exploitation. We can control
the number between 0 and 1 and it will not give any number that exceeds 1. We
have used this technique so that we can easily explore a different part of solution
space and can find the existence of the best solution.

3.6.1 Exploration

In this approach, every nucleotide of the individual from the best population gets
randomly changed to a new candidate motif.

N> 048

An individual

from best pop |T|T|C|A|T|T|T|A|A|A|

YY Y Y Y YYYYY
atterMutation  [A]c|cle|c|alT|c|c|T]|

Here N = Random number from Binomial Distribution

Figure 3.2: Exploration
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3.6.2 Exploitation

In this approach, the mismatch position of the nucleotide of the individual from the
best population gets changed to a new candidate motif. We change the mismatch

position in three ways:

1. Randomly change the nucleotide in mismatch position

2. The change of nucleotide in the same base like purine with purine bases and

pyrimidine with pyrimidine bases.

3. The change of nucleotide in the different bases like purine with pyrimidine

bases and vice versa.

N==048

Bestinawidual |G|T[c|T[T]T[T[1]Aa]A]

touronll KA1 i RARA L ENEY
[l [clalr[r[r[a]ala]| |[Elt]c[Alv[r[T[ATA[A]| |[ElT[c[alT[T][T[A]A]A]
v v A A Y v Y Y hd
[Elr[clelr[r[r[E]al~]| |[elr]clelr[r[r[e]ala]| |[AlT[c[E]r[T][T[E]A]4]

Here N = Random Number from Binomial Distribution

Figure 3.3: Exploitation

21




Chapter 4

Datasets & Experimentation

4.1 Dataset

We have picked the dataset[29] from where there are 52 datasets. The dataset
contains 6 from fly, 26 from human, 12 from mouse, and 8 from yeast. The number
of sequences vary from 3 to 35 and the length of each sequence varies from 1000 to
2500. All the sequences in the dataset are in .fasta format.

Total Sequence | Each Sequence

Dataset Length Length
‘dmO1r’ 4 1500
‘hmO1r’ 18 2000
‘mus01r’ 3 500
‘ystOlr’ 9 1000
‘dmO02r’ 1 2000
‘hmO02r’ 9 1000
‘mus02r’ 9 1000
‘yst02r’ 4 500
‘dmO03r’ 3 2000
‘hmO03r’ 10 1500
‘mus03r’ ) 500
‘yst03r’ 8 500
‘dmO04r’ 4 2000
‘hmO04r’ 13 2000
‘mus04r’ 7 1000
‘yst04r’ 7 1000
‘dmO05r’ 3 2500
‘hmO05r’ 3 1000
‘mus05r’ 4 500
‘yst05r’ 3 500

Table 4.1: Datasets

22



4.2 Experimentation

As an example, we have simulated the ‘hm05r’ dataset which contains 3 sequences
with 3000 nucleotides to find the initial population, fitness score and consensus
matrix using our proposed method.

Initial Population

The ‘hmO5r’ dataset contains 3 sequences.

From the sequences, we have got 36
subsequences from the random position of each sequence and we consider the length
of each subsequence is 10.

‘TTCATTTAAA’ | ‘CTAATTTCCC’ | ‘AAATTAGGAG’ | ‘AATTTATCCG’
‘TCCTCCTCCT’ | ‘CTCGAGTTAG’ | ‘'TCCGCGCTTT’ | ‘TGACTCCGCG’
‘GTTTTTCTGC | ‘ATGTTATTTA’ | ‘TTTAGGATCT’ | ‘TTTTCATTCT’
‘AGAATTTTAT” | ‘CTAAATACTA’ | ‘TTTCATTTAA” | ‘ACGTTTCATT’
‘GCCCCGCGGGE" | ‘AATCTAGGTA’ | ‘GCAGCCAGGG’ | ‘CTCCTAATTT”
‘AGGCGCCGTC | ‘GGCGACCGCG’ | ‘ACTCCTCCAA’ | ‘'TGGGAGCTGG’
‘GAAGCGGACT’ | ‘'TATTCTGAGT’ | ‘GAGTGGAGAA’ | ‘ACTTCGCCCC’
‘CTCGGGCTCT’ | ‘TGACGGCTGA’ | ‘CTCACTGCGG’ | ‘AGTGGAGAAG’
‘ACTGGGCGCG’ | ‘CGGGGCGCGE" | ‘'GGGGGCCCAG’ | ‘CCGCTAATTC

Fitness Score

Table 4.2: Initial Population

We have got the fitness score of each subsequence from the initial population in

percentage form.

Subsequences | Fitness (%)
‘TTCATTTAAA’ 0.83
‘CTAATTTCCC? 0.83
‘AAATTAGGAG’ 0.80
‘AATTTATCCG’ 0.86
‘TCCTCCTCCT” 0.90
‘CTCGAGTTAG’ 0.80
‘TCCGCGCTTT” 0.83
‘TGACTCCGCG’ 0.76
‘GTTTTTCTGC’ 0.83
‘ATGTTATTTA’ 0.83
‘TTTAGGATCT’ 0.80
‘TTTTCATTCT’ 0.80
‘AGAATTTTAT’ 0.80
‘CTAAATACTA’ 0.76
‘TTTCATTTAA’ 0.86
‘ACGTTTCATT’ 0.86
‘GCCCCGCGGE 0.86
‘AATCTAGGTA’ 0.76
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‘GCAGCCAGGG’ 0.83
‘CTCCTAATTT’ 0.83
‘AGGCGCCGTC 0.83
‘GGCGACCGCE’ 0.83
‘ACTCCTCCAA’ 0.80
‘TGGGAGCTGG’ 0.80
‘GAAGCGGACT” 0.83
‘TATTCTGAGT’ 0.80
‘GAGTGGAGAA’ 0.86
‘ACTTCGCCCC 0.83
‘CTCGGGCTCT” 0.83
‘TGACGGCTGA’ 0.83
‘CTCACTGCGG’ 0.83
‘AGTGGAGAAG’ 0.83
‘ACTGGGCGCGE? 0.80
‘CGGGGCGCGE 0.80
‘GGGGGCCCAG’ 0.80
‘CCGCTAATTC” 0.80

Table 4.3: Fitness Score

Assess Population

From fitness score, we have sorted each subsequence in the population in a descend-
ing order according to fitness score. We have selected the top four subsequences
and stored them in bestpopulation. From the table, ‘CCCTTTCCCC’ is a best
subsequence for the highest fitness score.

Subsequences | Fitness (%)
‘TCCTCCTCCT” 0.90
‘TTTCATTTAA’ 0.86
‘ACGTTTCATT” 0.86
‘GCCCCGCGGE’ 0.86
‘AATTTATCCG’ 0.86
‘GAGTGGAGAA’ 0.86
‘TTCATTTAAA’ 0.83
‘GTTTTTCTGC’ 0.83
‘ATGTTATTTA’ 0.83

Table 4.4: Assess Population
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Consensus Matrix

Consensus matrix of our proposed method calculates the frequency of each nucleotide
in each position. It returns a matrix that contains the probability of each nucleotide
in each position. Our list of best population contains the candidate solutions -
{{TCCTCCTCCT’TTTCATTTAA’ *ACGTTTCATT’GCCCCGCGGG’,
‘AATTTATCCG ) GAGTGGAGAA’ ‘'TTCATTTAAA ‘GTTTTTCTGC’,
‘ATGTTATTTA’} then this method will return -

1 2 3 4 5 6 7 8 9 10
0.33 | 0.22 | 0.00 | 0.11 | 0.11 | 0.22 | 0.11 | 0.22 | 0.33 | 0.44
0.00 1 0.33 | 0.33 | 0.22 | 0.22 | 0.11 | 0.33 | 0.22 | 0.22 | 0.11
0.33 1 0.00 | 0.33 | 0.00 | 0.11 | 0.22 | 0.00 | 0.22 | 0.22 | 0.22
0.33 1044 | 0.33 | 0.67 | 0.56 | 0.44 | 0.56 | 0.33 | 0.22 | 0.22

H QA »

Table 4.5: Consensus Matrix

We have run our algorithm on a data set of “hum05r” for finding motifs of different
length. Figure 4.1 shows the found motif of length 10 from the human sequences in
the data set.

Figure 4.1: Motif Logo of Length 10 for Dataset "hm05r”

Mutation

Mutation method of our proposed method mutated the nucleotides of mismatch
positions. It returns a list of 27 mutated subsequences. We can see that some of
the fitness of mutated subsequences are higher than best population subsequences.
Table 4.6 contains the top 9 mutated subsequences.

Mutated Subsequences | Fitness (%)
‘TTTCATTTAA’ 0.92
‘TTTTATTTAA’ 0.92
‘TTCATTTAAA’ 0.90
‘TTTTATTTAA’ 0.89
‘TTCATTTAAA’ 0.87
‘TTCTTTTTTT’ 0.86
‘ATAAATTTAA’ 0.85
‘GACAAAAAAN 0.83
‘AATTTATTTA’ 0.80

Table 4.6: Mutation
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Chapter 5

Experimental Result & Analysis

5.1 Experimental Result

We apply our proposed method to different datasets from [29]. Here is the list of
datasets with its sequence length and length of each sequence. In this chapter, we
have showed the results for each dataset.

Dataset | Length | Accuracy (%) Motif
8 91.00 AGAAAAAA
‘hmO1r’ 13 83.33 AAAAATAAAAAAA
15 80.00 AAAAAAATAAAAAAA
23 72.00 AAAAAAAAAAAATAAAAAAAAAA
8 96.88 AAATAAAA
denote |13 90.38 AAAAAAAAATAAA
15 85.00 AAAATAAAAATAAAA
23 78.26 ATAAATAAAAAAAAACAAAATAC
8 94.44 ATTTTTTT
ystO1r’ 13 82.91 AAATAAAAAAAAA
15 81.48 AAAAAAAAAAAAAAA
23 72.95 ATATAAAAAAAAAAAAAAAAACT
8 91.67 GGGCCACT
‘us01r’ 13 84.62 GGGGCCACTGTCT
15 82.22 GAGCTAAGAATAGCC
23 73.91 TGTGGACCCTGCGTCGTGTAATA
8 93.06 CCCGCCCC
‘hm02r" 13 81.20 ACCCACCCCCCTC
15 81.48 CCCCCGCCTCCCCCT
23 71.50 CCCCCCCCTCCCCCTCCCAAAGA
8 100.00 CATGTTCT
a0y |13 31.62 CAGACGATCCATA
15 86.67 CTCGCGGGCGGGCGA
23 82.61 CAACCTGCGGCATGCTATTAAGA
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8 90.63 ATAATAAA
(yst02e? 13 90.38 ATAATAAAAAAAA

15 85.00 CATAATAAAAAAAAA

23 TTAT ACATAATAAAAAAAACCAGTTAA

8 88.89 TAAAAAAA
cusoze 13 80.34 AAAAAAAAAAAAA

15 80.00 AAGAGAAAAAAAAAA

23 71.01 ATCAAAAAACATAAAAAAAAAAA

8 01.25 AAAAAAAA
hmo3e |13 83.85 AAAAAAAATAAAA

15 81.33 AGAAAAAAAAATAAA

23 71.30 AGAGCAAACAAAATAAAAAAATG

8 100.00 TAAATGAA
dmo3e |13 87.18 GTATTTTTCTTIGA

15 84.44 TTTAACTTTGAATTT

23 76.81 GAAAATTTTTTTTATTATTAATA

8 90.63 ATTTTTTT
(yst03r" 13 82.60 AAAGAAAAAAAAA

15 80.83 AAAAGAAAAAAAAAA

23 70.65 AAAAAAAAAAAAAAAAAATAAAA

8 92.50 GGCTTCAG
cmus03e |13 78.46 CTGCCCTACCCTC

15 76.00 GGGGGCGGGAGGAGC

23 69.57 CTTGGAAAACGCAGGAGCAGGCG

8 93.75 AAAATAAA
o4 |13 83.85 AAAAAAAATAAAA

15 80.00 AAAAAACAAAATAAA

23 73.48 AAAAAAAAACAGTGAAAAAAAAA

8 06.88 AAACAAAA
dmoar |13 88.46 AAAAACAAAAAAA

15 86.67 AAAAACAAAAAATAA

23 82.61 AAAAAAAAAAAAAAAAAAAATAA

8 08.21 ATTTTTTT
(yst04r” 13 86.81 AAAAAAAAAAAAA

15 84.76 TTATTTTTTTTTTIT

23 76.40 AATTTTTTATTTTTTTTTTATTT

8 92.86 AATGAAAT
usodrt 13 80.22 GGAGAACAAGAGA

15 75.24 TTTAAAAAAATGAAA

23 68.94 AATGAAATGGGAGGAAAGTATGG

8 05.83 GAAAAAAA
hmose |13 82.05 GCCAGGAAGGAGG

15 80.00 CAGAGGGCACAGTGG

23

73.91

GATGTTATTTAGTTAAGAAGAAG
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8 100.00 TTTATTAT
dmose |1 92.31 AATAAATAAAAAA
15 88.89 AAATAAATAAAAAAT
23 76.81 TTAATAAAATAAAAAGCATAAAA
8 95.83 TTTCTTTT
(yst05t” 13 87.18 TTTGAAATTTTAT
15 88.89 AATAGTTTCTTATTT
23 79.71 TTGAAATTTTTTCAACCATGTAA
8 87.50 AAAAAAAA
cmus0se |13 84.62 GGAAAAAAAAGGG
15 80.00 GAGGTAGAAAAAAAG
23 72.83 AGAAGAGGAAAAAAAAAGGGAGG

Table 5.1: Mutated Motifs with Accuracy

5.2 Analysis of Experimental Results

5.2.1 Time Analysis

In figure 5.1, it takes more time to find the motif for the longer length of sequence.
To illustrate “Human” dataset has more length of sequences and it takes more time
to find motif. If we compare “Human” dataset with other species it shows that
“Fly”, “Mouse” and “Yeast” takes less time to find the motif.

12 -
11 ’;,Af’

10 b i

Time in Hour
{11
\

8 13 15 23
Length

—e=dm01lr =s=hmO1lr mus0lr ystOlr =—e=dmO02r =s=hm02r =—g=mus02r=—s=yst02r =—g=dm03r =s=hmO03r

=11 US03 r =—g=yst 031 dm04r hmO4r mus04r ystOAr == dmO05r hmOS5r === us05 r ==yst05r

Figure 5.1: Motif Length vs Time graph
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5.2.2 Accuracy of Mutated Motifs

From figure 5.2 to figure 5.6, it is clearly shown that we get higher accuracy for
short sequences of motifs. The “dm02r”, “dm03r” and “dm05r” datasets get 100%
accuracy for finding 8 lengths of motifs. On the other hand, for 13 and 15 lengths
of motifs we get a very close range of accuracy. For 13 lengths of motifs, we get the
best accuracy from the “dmO05r” dataset. Also, we get good accuracy from “dm01r”,
“ysO1r” datasets. For 15 length of motifs, we get the best accuracy from the “dm051r”
dataset. Also, we get good accuracy from “dm02r” and “dm0O4r” datasets. As it is
shown in the bar graph, for long lengths of motifs we get lower accuracy compared
with the short length of motifs. As we understand from our work that whenever
the length of motif increases, the chance of finding subsequence of length which has
the least number of mismatches increase and for this reason, we get lower accuracy
for the long length of motifs. For 23 motif length, we get the best accuracy from
“mus05r” and “yst05r” datasets which is less than the best accuracy of 8 length
motifs. This whole scenario works for all the datasets that we used to get the
accuracy.

100.00

96.00

92.00

88.00

80.00

76.00

72.00

68.00

Motif Length 8
Hdm01r 96.88 90.38 85 78.26
B hmO01r 91 83.33 80 72
B mus01r 91.67 82.91 81.48 72.95
yst01r 94.44 84.62 80 82.83

Motif Length 13 Motif Length 15 Motif Length 23

Figure 5.2: Accuracy of the motifs with different lengths
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Motif Length 8 Motif Length 13 Motif Length 15 Motif Length 23
Hdm02r 100 84.62 86.67 82.61
B hm02r 93.06 81.2 81.48 71.5
mmus02r 88.89 80.34 80 71.01
Wyst02r 90.63 90.38 85 7717
Figure 5.3: Accuracy of the motifs with different lengths
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Motif Length 8 Motif Length 13 Motif Length 15 Motif Length 23
Wdm03r 100 87.18 84.44 76.81
W hm03r 91.25 83.85 81.33 71.3
B mus03r 92.5 78.46 76 69.57
myst03r 90.63 82.69 80.83 70.65

Figure 5.4: Accuracy of the motifs with different lengths
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Motif Length 8 Motif Length 13 Motif Length 15 Motif Length 23
Hdm04r 96.88 88.46 86.67 82.61
WhmO4r 93.75 83.85 80 73.48
mmus0dr 92.86 80.22 75.24 68.94
W yst0dr 98.21 86.81 84.76 76.4
Figure 5.5: Accuracy of the motifs with different lengths
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W dmO5r 100 92.31 88.89 76.81
B hmO05r 95.83 82.05 80 73.91
B mus05r 87.5 84.62 80 82.83
W yst05r 95.83 87.18 88.89 79.711

Figure 5.6: Accuracy of the motifs with different lengths




5.2.3 Accuracy of Motifs from Different Species

From figure 5.7 to figure 5.10 we have measured the accuracy of different lengths of
the motifs such as “Fly”, “Human”, “Mouse” and “Yeast”. We showed 4 different
motif lengths (8,13,15 & 23) of the dataset for each of the species.

In figure 5.7, we have shown the different motif lengths of “Fly” where the dataset of
“dm02r”, “dm03r” and “dmO05r” gets 100% accuracy for finding 8 lengths of motifs.
For the other motifs such as “dm01r” and “dm04r” the accuracy is around 96%. As
the motif length increases the accuracy for each dataset’s accuracy gets lesser. For
motif length 13, each of the datasets gets accuracy around 85% to above 90%. For
motif length 15, each of the datasets gets accuracy around 85% to above 88% and
for 23 the data sets gets accuracy around 77% to above 83%.

Furthermore, in figure 5.8, we have shown the 4 motif lengths of “Human” where for
each of the datasets(“hm01r”, “hm02r”, “hm03r”, “hm04r”, “hm05r”) the accuracy
for the 8 length motif is above 90%, for the 13 length motif, the accuracy is around
83%, for the 15 length motif, the accuracy is around 80% to 82% and for the 23
length motif the accuracy is around 72% to 75%.

Moreover, in figure 5.9, we have shown the 4 motif lengths of “Mouse” where for each
of the datasets(“mus01r”, “mus02r”, “mus03r”, “mus04r”, “mus05r”) the accuracy
for the 8 length motif is around 88% to 93%, for the 13 length motif, the accuracy
is around 82% to 85%, for the 15 length motif the accuracy is around 76% to 82%
and for the 23 length motif, the accuracy is around 69% to 83%.

Lastly, in figure 5.7, we have shown the 4 motif lengths of “Yeast” where for each of
the datasets(“ystO1r”, “yst02r”, “yst03r”, “yst04r”, “yst05r”) the accuracy for the
8 length motif is above 90%, for the 13 length motif, the accuracy is around 83%
to 91%, for the 15 length motif, the accuracy is around 80% to 89% and for the 23
length motif, the accuracy is around 71% to 83%.

—e—Motif Length 8 Motif Length 13 Motif Length 15 Motif Length 23

96.00

92.00

88.00

84.00

Accuracy (%)

80.00

76.00
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Datasets

Figure 5.7: Accuracy of different lengths off the motifs of ‘Fly’ dataset
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Figure 5.8: Accuracy of different lengths off the motifs of ‘Human’ dataset
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Figure 5.9: Accuracy of different lengths off the motifs of ‘Mouse’ dataset
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Figure 5.10: Accuracy of different lengths off the motifs of ‘Yeast’ dataset

We have compared our proposed algorithm in various dataset with other established
motif finding algorithms by calculating specificity. Some established methods are
available at and we have compared our method with it. The result of AlignACE[30],
ANN-spec[31], Consensus|[32], GLAM[33], Improbizer[34], MEME[35], MEME3[35],
MITRA([36], MotifSampler[37], Oligo/Dyad-Analysis [38], QuickScore[39], SeSIMCMC|40],
Weeder[41] and YMF[9] are contained by it.

Before comparing the results we have to define some definitions.

e True Positives (TP): Number of positions in familiar sites and anticipated
sites.

e True Negatives (TN): Number of positions which are neither in familiar sites
nor in anticipated sites.

e False Positives (FP): Number of positions in anticipated sites that are not
present in familiar sites.

e False Negatives (FN): Number of positions in familiar sites that are not present
in familiar sites.

The following equation shows the specificity that calculates found motifs. It denotes
how accurately the algorithm performed to get the actual motifs.

nT'N

p— N
nSP = N T FP
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Data set | Specificity
‘dmO1r’ 0.988766
‘dm0O02r’ 0.9958995
‘dm0O03r’ 0.9959294
‘dmO04r’ 0.9936427
‘dmO05r’ 0.9949591
‘hmO1r’ 0.9984342
‘hmO02r’ 0.9963399
‘hmO03r’ 0.9958882
‘hmO04r’ 0.9984515
‘hmO05r’ 0.9943157
‘musO01r’ | 0.9780919
‘mus02r’ | 0.9922445
‘mus03r’ | 0.9898219
‘mus04r’ | 0.9964371
‘mus05r’ | 0.9952929
‘ystOlr’ 0.9918901
‘yst02r’ 0.993129
‘yst03r’ 0.9878017
‘yst04r’ 0.9932123
‘yst051’ 0.9691877

Table 5.2: Specificity of Each Dataset

Table 5.3 and table 5.4 shows the presentation of our proposed method with other
other established motif finding models with respect to the specificity. We have
proposed an evolutionary method. The tables shows that our proposed method
performs better than most of the existing methods. To illustrate, the datasets
‘musO1r’, ‘hmO02r’, ‘mus02r’, ‘hm03r’, ‘yst03r’, ‘yst04r’, ‘mus05r’ etc. gives
a better result than other methods. Besides this, our proposed model also works
better for a longer number of sequences as well as a short number of sequences.
Furthermore, our method also performs better for longer sequences and also for
short sequences.
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The figure 5.11 shows the specificity comparison between our proposed method
with other existence methods on the basis of species like fly, human, mouse and
yeast. In this graph, our algorithm gives best results on fly, human and mouse than
other existing algorithms and for the yeast our method performs very close to the
established algorithms.
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Figure 5.11: Scatter Graph from Specificity of Species of Different Algorithm.

Figure 5.12 shows the comparison of overall specificity of our proposed method with
other existing methods. Our algorithm can find longer motifs from the dataset.
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Figure 5.12: Comparison With Other Algorithms Based on Specificity
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Chapter 6
Conclusion & Future Works

6.1 Conclusion

To conclude, we have suggested an evolutionary process to find motifs in DNA
sequence. We have generated a set of initial candidate motifs and sorted out the
best candidates from all of these. Doing mutation in the best candidates appears
to produce the dataset’s optimum motif. In numerous datasets, our method has
performed well and fits the precision with accepted procedures that confirm our
method’s usefulness. In addition, this approach means that a very large size of
motifs can be detected, which is not easy to locate using any other exhaustive
process since it requires even days to measure. As in every step of evolution we are
using heuristic and picking the best candidates, our approach faces no difficulty in
discovering broad length motifs.

6.2 Future Works

Nevertheless, there are some places where modification can be possible in our pro-
posed method. As the accuracy percentage decreases for higher length motifs there-
fore, we can introduce some new steps to get better accuracy for higher length motifs.
We can improve our mutation method to get more accurate motifs. Furthermore,
we can work on time duration. Also, we can reduce memory consumption. If we
can do this modification, then this approach can be really efficient for finding best
fitted motifs of different length with higher accuracy in the near future.
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Consensus Matrices from Our Method of Different
Dataset

dmO1r

Length 1 2 3 4 5 6 7 8
0.56 | 0.78 | 0.33 | 0.33 | 0.33 | 0.33 | 0.56 | 0.44
0.22 | 0.00 | 0.11 | 0.33 | 0.22 | 0.11 | 0.33 | 0.00
0.11 | 0.11 | 0.11 | 0.00 | 0.11 | 0.56 | 0.11 | 0.33
0.11 | 0.11 | 0.44 | 0.33 | 0.33 | 0.00 | 0.00 | 0.22
1 2 3 4 5 6 7 8
0.44 1 0.22 | 0.33 | 0.56 | 0.33 | 0.33 | 0.22 | 0.44
0.00 | 0.33 | 0.33 | 0.11 | 0.22 | 0.33 | 0.11 | 0.33
0.22 | 0.00 | 0.00 | 0.22 | 0.11 | 0.00 | 0.22 | 0.00
0.33 1044 | 0.33|0.11 | 0.33 | 0.33 | 0.44 | 0.22
9 10 | 11 | 12 | 13
0.33 1 0.22 | 0.33 | 0.33 | 0.44
0.33 | 0.00 | 0.44 | 0.33 | 0.00
0.00 | 0.67 | 0.00 | 0.00 | 0.22
0.33 | 0.11 | 0.22 | 0.33 | 0.33
1 2 3 4 5 6 7 8
0.56 | 0.56 | 0.33 | 0.44 | 0.33 | 0.44 | 0.33 | 0.22
0.22 1033 |0.11 | 0.11 | 0.11 | 0.22 | 0.11 | 0.11
0.22 | 0.00 | 0.22 | 0.00 | 0.00 | 0.11 | 0.11 | 0.22
0.00 | 0.11 | 0.33 | 0.44 | 0.56 | 0.22 | 0.44 | 0.44
9 10 11 12 13 14 15
0.22 1 0.56 | 0.33 | 0.33 | 0.33 | 0.33 | 0.22
0.22 | 0.00 | 0.00 | 0.33 | 0.22 | 0.22 | 0.22
0.11 | 0.11 | 0.22 | 0.11 | 0.11 | 0.22 | 0.44
0.44 1 0.33 | 0.44 | 0.22 | 0.33 | 0.22 | 0.11
1 2 3 4 5 6 7 8
0.11 | 0.33 | 0.44 | 0.56 | 0.44 | 0.56 | 0.33 | 0.78
0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.44 | 0.11
0.11 | 0.00 | 0.22 | 0.00 | 0.11 | 0.11 | 0.11 | 0.11
0.67 | 0.56 | 0.22 | 0.33 | 0.33 | 0.22 | 0.11 | 0.00
9 10 | 11 | 12 | 13 | 14 | 15 | 16
0.22 1044 | 0.67 | 0.22 | 0.33 | 0.89 | 0.22 | 0.44
0.00 | 0.11 | 0.11 | 0.22 | 0.00 | 0.00 | 0.00 | 0.11
0.11 | 0.00 | 0.00 | 0.11 | 0.11 | 0.00 | 0.00 | 0.00
0.67 | 0.44 | 0.22 | 0.44 | 0.56 | 0.11 | 0.78 | 0.44
17 | 18 | 19 | 20 | 21 | 22 | 23
0.67 | 0.33 | 0.78 | 0.56 | 0.33 | 0.44 | 0.78
0.00 | 0.22 | 0.11 | 0.11 | 0.11 | 0.11 | 0.00
0.11 | 0.00 | 0.00 | 0.22 | 0.11 | 0.00 | 0.00
0.22 1044 | 0.11 | 0.11 | 0.44 | 0.44 | 0.22

H Q Q>

13

HQ Q> [(HQaQ»

15

HQ QP> |HQaQ»

H Q Q&>

23

H Q Q&

Hl Q Q&

Table 6.1: Consensus Matrix of ‘dm0O1r” for various length
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hmOlr

Length

1

2

3

4

5

0.11

0.22

0.11

0.22

0.22

0.11

0.33

0.33

0.33

0.22

0.22

0.22

0.44

0.56

0.22

0.22

0.44

0.22

0.44

0.33

0.22

0.00

0.11

0.33

H Q Q&

0.11

0.33

0.22

0.22

0.11

0.33

0.33

0.11

1

2

3

4

5

13

0.33

0.33

0.44

0.56

0.11

0.22

0.11

0.11

0.11

0.33

0.00

0.22

0.33

0.11

0.11

0.33

0.33

0.22

0.22

0.11

0.33

0.33

0.44

0.22

0.22

0.11

0.33

0.11

0.22

0.33

0.33

0.33

9

10

11

12

13

0.33

0.22

0.56

0.33

0.44

0.22

0.33

0.00

0.22

0.22

0.22

0.22

0.22

0.33

0.11

HQ QP [(HQa»

0.22

0.22

0.22

0.11

0.22

1

2

3

4

5

6

7

15

0.22

0.33

0.56

0.33

0.44

0.56

0.56

0.33

0.33

0.11

0.22

0.33

0.33

0.44

0.22

0.33

0.22

0.22

0.11

0.11

0.00

0.00

0.11

0.22

0.22

0.33

0.11

0.22

0.22

0.00

0.11

0.11

9

10

11

12

13

14

15

0.11

0.22

0.33

0.33

0.22

0.22

0.22

0.33

0.22

0.56

0.33

0.11

0.33

0.56

0.22

0.44

0.00

0.00

0.33

0.11

0.22

HQ Q> (HQa»

0.33

0.11

0.11

0.33

0.33

0.33

0.00

1

2

3

4

5

6

7

23

0.00

0.00

0.00

0.22

0.33

0.33

0.56

0.11

0.33

0.44

0.33

0.56

0.11

0.22

0.33

0.44

0.44

0.22

0.22

0.22

0.44

0.33

0.11

0.22

0.22

0.33

0.44

0.00

0.11

0.11

0.00

0.22

9

10

11

12

13

14

15

16

0.11

0.11

0.11

0.11

0.22

0.33

0.56

0.33

0.44

0.22

0.44

0.33

0.22

0.22

0.22

0.56

0.11

0.56

0.22

0.33

0.33

0.33

0.11

0.00

0.33

0.11

0.22

0.22

0.22

0.11

0.11

0.11

17

18

19

20

21

22

23

0.00

0.11

0.22

0.33

0.33

0.11

0.22

0.22

0.44

0.56

0.33

0.11

0.11

0.33

0.33

0.44

0.22

0.11

0.44

0.33

0.33

HQQ» [HQa» |HBaa»

0.44

0.00

0.00

0.22

0.11

0.44

0.11

Table 6.2: Consensus Matrix of “hm01r” for various length
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musO1lr

Length

1

2

3

4

5

0.11

0.22

0.33

0.33

0.33

0.22

0.33

0.22

0.44

0.22

0.33

0.22

0.22

0.33

0.22

0.22

0.22

0.11

0.22

0.22

0.44

0.11

0.33

0.00

H Q Q>

0.22

0.44

0.11

0.22

0.00

0.33

0.11

0.56

1

2

3

4

5

13

0.22

0.00

0.11

0.11

0.22

0.33

0.33

0.44

0.00

0.22

0.44

0.33

0.44

0.11

0.22

0.22

0.11

0.11

0.22

0.56

0.22

0.22

0.33

0.00

0.67

0.67

0.22

0.00

0.11

0.33

0.11

0.33

9

10

11

12

13

0.33

0.22

0.33

0.22

0.44

0.11

0.00

0.22

0.11

0.33

0.33

0.56

0.11

0.11

0.22

HQ QP> |HQaQ >

0.22

0.22

0.33

0.56

0.00

1

2

3

4

5

6

7

15

0.33

0.33

0.33

0.44

0.11

0.22

0.44

0.44

0.22

0.33

0.11

0.33

0.33

0.44

0.44

0.00

0.11

0.11

0.22

0.22

0.22

0.11

0.00

0.44

0.33

0.22

0.33

0.00

0.33

0.22

0.11

0.11

9

10

11

12

13

14

15

0.22

0.33

0.44

0.33

0.22

0.22

0.44

0.22

0.11

0.22

0.22

0.44

0.11

0.22

0.33

0.11

0.33

0.22

0.22

0.11

0.22

HQ QP> |HQaQ»

0.22

0.44

0.00

0.22

0.11

0.56

0.11

1

2

3

4

5

6

7

23

0.22

0.22

0.00

0.22

0.22

0.11

0.11

0.33

0.22

0.44

0.33

0.22

0.44

0.44

0.33

0.00

0.44

0.11

0.44

0.33

0.00

0.22

0.22

0.56

0.11

0.22

0.22

0.22

0.33

0.22

0.33

0.11

9

10

11

12

13

14

15

16

0.11

0.11

0.11

0.22

0.22

0.11

0.22

0.22

0.11

0.22

0.33

0.22

0.33

0.22

0.22

0.22

0.33

0.67

0.44

0.33

0.22

0.22

0.22

0.11

HQ QP> HQaQ»

0.44

0.00

0.11

0.22

0.22

0.44

0.33

0.44

17

18

19

20

21

22

23

0.11

0.22

0.33

0.22

0.44

0.22

0.00

0.11

0.33

0.22

0.33

0.00

0.33

0.67

0.22

0.22

0.33

0.33

0.33

0.33

0.22

H Q Q&

0.56

0.22

0.11

0.11

0.22

0.11

0.11

Table 6.3: Consensus Matrix of “musO1r” for various length
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ystOlr

Length

1

2

3

4

5

0.56

0.44

0.33

0.56

0.56

0.56

0.44

0.44

0.11

0.33

0.22

0.11

0.11

0.11

0.11

0.00

0.11

0.11

0.11

0.00

0.11

0.11

0.11

0.00

H Q Q&>

0.22

0.11

0.33

0.33

0.22

0.22

0.33

0.56

1

2

3

4

5

13

0.33

0.22

0.22

0.44

0.11

0.22

0.56

0.22

0.11

0.22

0.11

0.22

0.00

0.33

0.00

0.11

0.11

0.11

0.00

0.00

0.22

0.11

0.11

0.22

0.44

0.44

0.67

0.33

0.67

0.33

0.33

0.44

9

10

11

12

13

0.11

0.11

0.33

0.44

0.11

0.11

0.11

0.11

0.00

0.22

0.11

0.22

0.11

0.11

0.22

HQ QP> |HQaQ»

0.67

0.56

0.44

0.44

0.44

1

2

3

4

5

6

7

15

0.22

0.22

0.11

0.11

0.22

0.33

0.00

0.00

0.22

0.00

0.33

0.22

0.22

0.00

0.44

0.22

0.00

0.22

0.22

0.11

0.22

0.22

0.11

0.44

H Q Q&

0.56

0.56

0.33

0.56

0.33

0.44

0.44

0.33

9

10

11

12

13

14

15

0.33

0.33

0.00

0.22

0.11

0.22

0.44

0.22

0.00

0.11

0.00

0.00

0.11

0.00

0.00

0.11

0.33

0.11

0.11

0.22

0.00

H Q Q&

0.44

0.56

0.56

0.67

0.78

0.44

0.56

1

2

3

4

5

6

7

23

0.33

0.22

0.00

0.33

0.33

0.33

0.44

0.56

0.11

0.33

0.00

0.22

0.11

0.11

0.00

0.11

0.22

0.11

0.11

0.00

0.00

0.11

0.22

0.11

0.33

0.33

0.89

0.44

0.56

0.44

0.33

0.22

9

10

11

12

13

14

15

16

0.22

0.44

0.56

0.56

0.11

0.22

0.44

0.33

0.11

0.00

0.11

0.22

0.22

0.22

0.00

0.00

0.11

0.11

0.11

0.00

0.11

0.22

0.11

0.00

0.56

0.44

0.22

0.22

0.56

0.33

0.44

0.67

17

18

19

20

21

22

23

0.22

0.22

0.56

0.33

0.33

0.56

0.56

0.33

0.44

0.33

0.00

0.33

0.11

0.11

0.11

0.11

0.11

0.11

0.00

0.00

0.11

HQ QP (HQqQE [Baa»>

0.33

0.22

0.00

0.56

0.33

0.33

0.22

Table 6.4: Consensus Matrix of “ystO1r” for different length

46




dmO2r

Length

1

2

3

4

5

0.56

0.00

0.22

0.33

0.44

0.44

0.56

0.11

0.11

0.44

0.22

0.44

0.22

0.22

0.22

0.33

0.22

0.22

0.56

0.22

0.22

0.22

0.22

0.11

H Q Q>

0.11

0.33

0.00

0.00

0.11

0.11

0.00

0.44

1

2

3

4

5

13

0.00

0.22

0.56

0.11

0.11

0.11

0.22

0.22

0.33

0.11

0.11

0.11

0.33

0.44

0.22

0.33

0.22

0.33

0.22

0.56

0.00

0.11

0.22

0.11

0.44

0.33

0.11

0.22

0.56

0.33

0.33

0.33

9

10

11

12

13

0.11

0.11

0.33

0.33

0.33

0.33

0.56

0.33

0.33

0.22

0.33

0.22

0.33

0.11

0.22

HQ QP> |HQaQ >

0.22

0.11

0.00

0.22

0.22

1

2

3

4

5

6

7

15

0.22

0.11

0.33

0.11

0.22

0.11

0.44

0.44

0.33

0.11

0.22

0.22

0.33

0.11

0.11

0.22

0.33

0.33

0.00

0.11

0.11

0.44

0.22

0.22

0.11

0.44

0.44

0.56

0.33

0.33

0.22

0.11

9

10

11

12

13

14

15

0.11

0.00

0.22

0.33

0.22

0.22

0.33

0.44

0.11

0.22

0.22

0.22

0.56

0.22

0.22

0.11

0.44

0.44

0.33

0.11

0.22

HQ QP> |HQaQ»

0.22

0.78

0.11

0.00

0.22

0.11

0.22

1

2

3

4

5

6

7

23

0.11

0.22

0.11

0.33

0.33

0.33

0.33

0.56

0.33

0.33

0.33

0.11

0.22

0.33

0.33

0.11

0.11

0.00

0.33

0.33

0.22

0.11

0.11

0.11

0.44

0.44

0.22

0.22

0.22

0.22

0.22

0.22

9

10

11

12

13

14

15

16

0.11

0.11

0.11

0.22

0.22

0.33

0.22

0.22

0.44

0.11

0.44

0.33

0.44

0.22

0.67

0.11

0.11

0.33

0.11

0.22

0.22

0.22

0.00

0.44

HQ QP> HQaQ»

0.33

0.44

0.33

0.22

0.11

0.22

0.11

0.22

17

18

19

20

21

22

23

0.11

0.33

0.33

0.22

0.33

0.33

0.11

0.22

0.22

0.33

0.22

0.56

0.11

0.33

0.22

0.00

0.11

0.33

0.11

0.22

0.22

H Q Q&

0.44

0.44

0.22

0.22

0.00

0.33

0.33

Table 6.5: Consensus Matrix of ‘dm02r” for various length
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hmO2r

Length

1

2

3

4

5

0.11

0.11

0.11

0.33

0.22

0.22

0.11

0.11

0.33

0.22

0.56

0.44

0.67

0.11

0.22

0.56

0.22

0.44

0.22

0.00

0.11

0.11

0.44

0.33

H Q Q&

0.33

0.22

0.11

0.22

0.00

0.56

0.22

0.00

1

2

3

4

5

13

0.22

0.33

0.11

0.00

0.22

0.00

0.00

0.00

0.22

0.22

0.56

0.44

0.33

0.67

0.33

0.33

0.33

0.33

0.11

0.22

0.11

0.22

0.44

0.56

0.22

0.11

0.22

0.33

0.33

0.11

0.22

0.11

9

10

11

12

13

0.11

0.22

0.44

0.11

0.11

0.33

0.67

0.11

0.33

0.44

0.44

0.11

0.22

0.44

0.44

HQ QP [(HQa»

0.11

0.00

0.22

0.11

0.00

1

2

3

4

5

6

7

15

0.33

0.22

0.22

0.22

0.11

0.22

0.00

0.11

0.22

0.33

0.22

0.33

0.56

0.22

0.11

0.44

0.22

0.22

0.44

0.33

0.22

0.33

0.67

0.33

0.22

0.22

0.11

0.11

0.11

0.22

0.22

0.11

9

10

11

12

13

14

15

0.11

0.11

0.22

0.00

0.00

0.33

0.11

0.44

0.56

0.33

0.22

0.33

0.33

0.22

0.33

0.11

0.22

0.44

0.33

0.11

0.44

HQ Q> (HQa»

0.11

0.22

0.22

0.33

0.33

0.22

0.22

1

2

3

4

5

6

7

23

0.11

0.00

0.00

0.22

0.11

0.00

0.11

0.11

0.22

0.44

0.56

0.33

0.33

0.44

0.33

0.44

0.22

0.44

0.44

0.33

0.22

0.44

0.33

0.33

0.44

0.11

0.00

0.11

0.33

0.11

0.22

0.11

9

10

11

12

13

14

15

16

0.00

0.11

0.11

0.22

0.11

0.22

0.33

0.11

0.44

0.44

0.33

0.67

0.33

0.44

0.33

0.33

0.22

0.22

0.44

0.11

0.22

0.22

0.33

0.44

0.33

0.22

0.11

0.00

0.33

0.11

0.00

0.11

17

18

19

20

21

22

23

0.44

0.11

0.22

0.00

0.11

0.00

0.00

0.00

0.22

0.33

0.33

0.22

0.33

0.22

0.22

0.44

0.33

0.22

0.11

0.56

0.44

HQQ» [HQa» |HBaa»

0.33

0.22

0.11

0.44

0.56

0.11

0.33

Table 6.6: Consensus Matrix of “hm02r” for different length
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mus02r

Length

1

2

3

4

5

0.44

0.11

0.33

0.33

0.56

0.11

0.22

0.33

0.00

0.22

0.22

0.11

0.22

0.56

0.33

0.33

0.22

0.11

0.00

0.22

0.00

0.00

0.11

0.00

H Q Q>

0.33

0.56

0.44

0.33

0.22

0.33

0.33

0.33

1

2

3

4

5

13

0.67

0.33

0.44

0.44

0.22

0.56

0.33

0.67

0.00

0.33

0.11

0.11

0.33

0.00

0.22

0.00

0.22

0.11

0.11

0.11

0.22

0.11

0.11

0.11

0.11

0.22

0.33

0.33

0.22

0.33

0.33

0.22

9

10

11

12

13

0.33

0.33

0.11

0.22

0.22

0.22

0.33

0.33

0.11

0.11

0.44

0.00

0.22

0.11

0.11

HQ QP> |HQaQ >

0.00

0.33

0.33

0.56

0.56

1

2

3

4

5

6

7

15

0.11

0.22

0.33

0.44

0.67

0.44

0.33

0.33

0.22

0.11

0.33

0.22

0.00

0.11

0.11

0.22

0.11

0.11

0.00

0.11

0.11

0.11

0.22

0.11

0.56

0.56

0.33

0.22

0.22

0.33

0.33

0.33

9

10

11

12

13

14

15

0.33

0.33

0.44

0.11

0.22

0.33

0.33

0.33

0.22

0.11

0.44

0.44

0.22

0.11

0.22

0.00

0.22

0.22

0.11

0.00

0.00

HQ QP> |HQaQ»

0.11

0.44

0.22

0.22

0.22

0.44

0.56

1

2

3

4

5

6

7

23

0.11

0.44

0.33

0.67

0.44

0.56

0.33

0.44

0.22

0.22

0.22

0.33

0.11

0.00

0.22

0.11

0.33

0.00

0.33

0.00

0.22

0.11

0.22

0.33

0.33

0.33

0.11

0.00

0.22

0.33

0.22

0.11

9

10

11

12

13

14

15

16

0.33

0.67

0.11

0.56

0.22

0.44

0.33

0.56

0.33

0.11

0.44

0.11

0.11

0.33

0.44

0.22

0.33

0.11

0.11

0.11

0.22

0.11

0.11

0.00

HQ QP> HQaQ»

0.00

0.11

0.33

0.22

0.44

0.11

0.11

0.22

17

18

19

20

21

22

23

0.44

0.33

0.44

0.22

0.33

0.33

0.22

0.33

0.00

0.11

0.22

0.00

0.00

0.44

0.00

0.11

0.22

0.33

0.11

0.11

0.11

H Q Q&

0.22

0.56

0.22

0.22

0.56

0.56

0.22

Table 6.7: Consensus Matrix of “mus02r” for various length
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yst02r

Length

1

2

3

4

5

0.78

0.78

0.44

0.44

0.44

0.56

0.44

0.67

0.00

0.11

0.11

0.33

0.22

0.11

0.33

0.11

0.00

0.00

0.11

0.11

0.00

0.22

0.00

0.11

H Q Q&>

0.22

0.11

0.33

0.11

0.33

0.11

0.22

0.11

1

2

3

4

5

13

0.22

0.33

0.22

0.22

0.33

0.33

0.22

0.67

0.22

0.11

0.22

0.33

0.11

0.11

0.11

0.11

0.11

0.22

0.11

0.11

0.11

0.22

0.56

0.11

0.44

0.33

0.44

0.33

0.44

0.33

0.11

0.11

9

10

11

12

13

0.11

0.44

0.33

0.33

0.11

0.11

0.11

0.00

0.11

0.11

0.22

0.22

0.33

0.00

0.00

HQ QP> |HQaQ»

0.56

0.22

0.33

0.56

0.78

1

2

3

4

5

6

7

15

0.22

0.33

0.33

0.33

0.33

0.33

0.22

0.33

0.22

0.33

0.22

0.33

0.11

0.11

0.44

0.22

0.11

0.11

0.11

0.22

0.00

0.11

0.11

0.11

H Q Q&

0.44

0.22

0.33

0.11

0.56

0.44

0.22

0.33

9

10

11

12

13

14

15

0.11

0.33

0.33

0.33

0.44

0.56

0.67

0.11

0.11

0.11

0.22

0.22

0.00

0.00

0.33

0.22

0.33

0.11

0.22

0.22

0.22

H Q Q&

0.44

0.33

0.22

0.33

0.11

0.22

0.11

1

2

3

4

5

6

7

23

0.22

0.56

0.44

0.44

0.22

0.22

0.56

0.33

0.33

0.22

0.00

0.00

0.33

0.00

0.11

0.11

0.22

0.00

0.11

0.22

0.11

0.22

0.11

0.11

0.22

0.22

0.44

0.33

0.33

0.56

0.22

0.44

9

10

11

12

13

14

15

16

0.56

0.11

0.22

0.56

0.33

0.11

0.33

0.33

0.11

0.00

0.44

0.00

0.22

0.00

0.22

0.11

0.11

0.44

0.00

0.11

0.22

0.00

0.33

0.22

0.22

0.44

0.33

0.33

0.22

0.89

0.11

0.33

17

18

19

20

21

22

23

0.56

0.44

0.33

0.11

0.22

0.56

0.33

0.22

0.00

0.11

0.33

0.22

0.00

0.00

0.00

0.22

0.22

0.11

0.00

0.33

0.11

HQ QP (HQqQE [Baa»>

0.22

0.33

0.33

0.44

0.56

0.11

0.56

Table 6.8: Consensus Matrix of “yst02r” for different length
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dmO3r

Length

1

2

3

4

5

0.56

0.33

0.33

0.33

0.22

0.22

0.22

0.22

0.00

0.22

0.00

0.00

0.00

0.22

0.11

0.00

0.22

0.11

0.22

0.00

0.22

0.11

0.11

0.33

H Q Q>

0.22

0.33

0.44

0.67

0.56

0.44

0.56

0.44

1

2

3

4

5

13

0.22

0.22

0.33

0.33

0.33

0.22

0.22

0.22

0.00

0.22

0.22

0.11

0.11

0.11

0.22

0.11

0.22

0.00

0.00

0.11

0.00

0.11

0.11

0.11

0.56

0.56

0.44

0.44

0.56

0.56

0.44

0.56

9

10

11

12

13

0.56

0.22

0.33

0.33

0.11

0.00

0.00

0.00

0.11

0.22

0.11

0.00

0.11

0.00

0.44

HQ QP> |HQaQ >

0.33

0.78

0.56

0.56

0.22

1

2

3

4

5

6

7

15

0.11

0.33

0.44

0.33

0.56

0.33

0.33

0.22

0.22

0.11

0.33

0.11

0.00

0.11

0.56

0.11

0.11

0.11

0.00

0.11

0.11

0.11

0.11

0.11

0.56

0.44

0.22

0.44

0.33

0.44

0.00

0.56

9

10

11

12

13

14

15

0.22

0.44

0.33

0.22

0.11

0.11

0.22

0.00

0.11

0.22

0.22

0.11

0.11

0.11

0.33

0.00

0.11

0.00

0.11

0.00

0.00

HQ QP> |HQaQ»

0.44

0.44

0.33

0.56

0.67

0.78

0.67

1

2

3

4

5

6

7

23

0.33

0.33

0.11

0.56

0.56

0.11

0.44

0.44

0.11

0.44

0.33

0.22

0.11

0.11

0.22

0.22

0.00

0.00

0.11

0.00

0.00

0.22

0.11

0.11

0.56

0.22

0.44

0.22

0.33

0.56

0.22

0.22

9

10

11

12

13

14

15

16

0.22

0.44

0.22

0.33

0.67

0.22

0.44

0.56

0.11

0.11

0.11

0.00

0.00

0.11

0.11

0.00

0.22

0.11

0.22

0.22

0.00

0.22

0.00

0.11

HQ QP> HQaQ»

0.44

0.33

0.44

0.44

0.33

0.44

0.44

0.33

17

18

19

20

21

22

23

0.56

0.22

0.33

0.44

0.33

0.44

0.44

0.22

0.33

0.11

0.11

0.00

0.00

0.11

0.00

0.00

0.22

0.22

0.11

0.11

0.11

H Q Q&

0.22

0.44

0.33

0.22

0.56

0.44

0.33

Table 6.9: Consensus Matrix of ‘dm03r” for various length
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hmO3r

Length

1

2

3

4

5

0.33

0.56

0.33

0.33

0.33

0.33

0.22

0.22

0.22

0.22

0.22

0.44

0.22

0.22

0.22

0.00

0.00

0.00

0.22

0.11

0.33

0.00

0.33

0.22

H Q Q&

0.44

0.22

0.22

0.11

0.11

0.44

0.22

0.56

1

2

3

4

5

13

0.44

0.44

0.22

0.33

0.56

0.33

0.44

0.33

0.22

0.22

0.11

0.11

0.22

0.33

0.22

0.33

0.22

0.22

0.33

0.11

0.11

0.11

0.00

0.11

0.11

0.11

0.33

0.44

0.11

0.22

0.33

0.22

9

10

11

12

13

0.11

0.11

0.22

0.33

0.00

0.00

0.11

0.11

0.33

0.33

0.44

0.67

0.22

0.33

0.33

HQ QP [(HQa»

0.44

0.11

0.44

0.00

0.33

1

2

3

4

5

6

7

15

0.44

0.33

0.56

0.22

0.22

0.22

0.33

0.11

0.22

0.22

0.22

0.11

0.33

0.22

0.11

0.22

0.11

0.22

0.22

0.22

0.11

0.11

0.11

0.44

0.22

0.22

0.00

0.44

0.33

0.44

0.44

0.22

9

10

11

12

13

14

15

0.44

0.22

0.67

0.56

0.22

0.11

0.22

0.22

0.11

0.22

0.33

0.22

0.22

0.22

0.11

0.33

0.00

0.00

0.33

0.22

0.33

HQ Q> (HQa»

0.22

0.33

0.11

0.11

0.22

0.44

0.22

1

2

3

4

5

6

7

23

0.56

0.44

0.56

0.56

0.56

0.33

0.56

0.56

0.00

0.00

0.00

0.11

0.11

0.11

0.22

0.11

0.00

0.44

0.11

0.11

0.11

0.22

0.22

0.00

0.44

0.11

0.33

0.22

0.22

0.33

0.00

0.33

9

10

11

12

13

14

15

16

0.22

0.44

0.22

0.33

0.67

0.22

0.44

0.56

0.11

0.11

0.11

0.00

0.00

0.11

0.11

0.00

0.22

0.11

0.22

0.22

0.00

0.22

0.00

0.11

0.44

0.33

0.44

0.44

0.33

0.44

0.44

0.33

17

18

19

20

21

22

23

0.44

0.11

0.22

0.22

0.33

0.33

0.11

0.11

0.11

0.11

0.22

0.11

0.33

0.11

0.11

0.11

0.11

0.11

0.44

0.11

0.33

HQQ» [HQa» |HBaa»

0.33

0.67

0.56

0.44

0.11

0.22

0.44

Table 6.10: Consensus Matrix of “hm03r” for different length
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mus03r

Length

1

2

3

4

5

0.22

0.33

0.11

0.11

0.33

0.00

0.11

0.00

0.44

0.22

0.44

0.22

0.56

0.11

0.44

0.44

0.22

0.22

0.11

0.44

0.11

0.56

0.44

0.33

H Q Q>

0.11

0.22

0.33

0.22

0.00

0.33

0.00

0.22

1

2

3

4

5

13

0.44

0.00

0.22

0.22

0.11

0.22

0.22

0.11

0.22

0.33

0.11

0.22

0.11

0.22

0.22

0.22

0.33

0.44

0.33

0.22

0.44

0.56

0.44

0.44

0.00

0.22

0.33

0.33

0.33

0.00

0.11

0.22

9

10

11

12

13

0.22

0.11

0.11

0.22

0.22

0.11

0.44

0.11

0.00

0.11

0.44

0.33

0.56

0.78

0.44

HQ QP> |HQaQ >

0.22

0.11

0.22

0.00

0.22

1

2

3

4

5

6

7

15

0.11

0.33

0.33

0.11

0.22

0.11

0.11

0.22

0.22

0.33

0.33

0.33

0.44

0.11

0.33

0.56

0.67

0.11

0.22

0.22

0.22

0.56

0.33

0.11

0.00

0.22

0.11

0.33

0.11

0.22

0.22

0.11

9

10

11

12

13

14

15

0.33

0.22

0.44

0.11

0.22

0.11

0.00

0.67

0.22

0.33

0.00

0.33

0.44

0.44

0.00

0.11

0.22

0.11

0.33

0.22

0.22

HQ QP> |HQaQ»

0.00

0.44

0.00

0.78

0.11

0.22

0.33

1

2

3

4

5

6

7

23

0.22

0.11

0.33

0.00

0.11

0.11

0.22

0.22

0.33

0.22

0.33

0.33

0.33

0.22

0.00

0.22

0.11

0.33

0.11

0.33

0.33

0.44

0.44

0.44

0.33

0.33

0.22

0.33

0.22

0.22

0.33

0.11

9

10

11

12

13

14

15

16

0.11

0.22

0.11

0.00

0.11

0.11

0.33

0.22

0.44

0.44

0.22

0.11

0.11

0.33

0.22

0.33

0.33

0.22

0.56

0.67

0.44

0.44

0.33

0.22

HQ QP> HQaQ»

0.11

0.11

0.11

0.22

0.33

0.11

0.11

0.22

17

18

19

20

21

22

23

0.22

0.00

0.11

0.56

0.22

0.00

0.00

0.11

0.22

0.33

0.00

0.11

0.33

0.33

0.44

0.56

0.33

0.22

0.44

0.33

0.56

H Q Q&

0.22

0.22

0.22

0.22

0.22

0.33

0.11

Table 6.11: Consensus Matrix of “mus03r” for various length
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yst03r

Length

1

2

3

4

5

0.33

0.11

0.22

0.33

0.33

0.33

0.56

0.56

0.22

0.33

0.11

0.00

0.22

0.11

0.00

0.11

0.00

0.11

0.00

0.22

0.11

0.22

0.00

0.11

H Q Q&>

0.44

0.44

0.67

0.44

0.33

0.33

0.44

0.22

1

2

3

4

5

13

0.44

0.33

0.00

0.33

0.33

0.56

0.44

0.44

0.22

0.11

0.00

0.22

0.33

0.22

0.00

0.11

0.00

0.11

0.11

0.00

0.00

0.00

0.44

0.00

0.33

0.44

0.89

0.44

0.33

0.22

0.11

0.44

9

10

11

12

13

0.22

0.56

0.44

0.56

0.11

0.00

0.11

0.22

0.11

0.33

0.00

0.11

0.00

0.00

0.11

HQ QP> |HQaQ»

0.78

0.22

0.33

0.33

0.44

1

2

3

4

5

6

7

15

0.44

0.11

0.33

0.22

0.44

0.56

0.44

0.33

0.11

0.44

0.00

0.33

0.22

0.22

0.11

0.00

0.00

0.00

0.00

0.00

0.22

0.00

0.00

0.11

H Q Q&

0.44

0.44

0.67

0.44

0.11

0.22

0.44

0.56

9

10

11

12

13

14

15

0.22

0.11

0.44

0.33

0.33

0.22

0.56

0.22

0.22

0.00

0.11

0.11

0.22

0.11

0.00

0.11

0.22

0.11

0.33

0.11

0.11

H Q Q&

0.56

0.56

0.33

0.44

0.22

0.44

0.22

1

2

3

4

5

6

7

23

0.44

0.22

0.11

0.33

0.33

0.00

0.00

0.11

0.00

0.11

0.00

0.22

0.22

0.33

0.11

0.33

0.11

0.00

0.22

0.11

0.11

0.33

0.11

0.11

0.44

0.67

0.67

0.33

0.33

0.33

0.78

0.44

9

10

11

12

13

14

15

16

0.44

0.33

0.22

0.56

0.44

0.22

0.33

0.33

0.00

0.22

0.33

0.11

0.00

0.11

0.22

0.11

0.11

0.00

0.22

0.00

0.11

0.33

0.00

0.11

0.44

0.44

0.22

0.33

0.44

0.33

0.44

0.44

17

18

19

20

21

22

23

0.33

0.56

0.22

0.44

0.33

0.56

0.56

0.11

0.22

0.33

0.22

0.00

0.11

0.11

0.11

0.00

0.00

0.11

0.11

0.00

0.22

HQ QP (HQqQE [Baa»>

0.44

0.22

0.44

0.22

0.56

0.33

0.11

Table 6.12: Consensus Matrix of “yst03r” for different length
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dmO4r

Length

1

2

3

4

5

0.67

0.44

0.44

0.44

0.44

0.44

0.78

0.22

0.22

0.11

0.11

0.22

0.33

0.33

0.11

0.33

0.00

0.22

0.22

0.11

0.11

0.11

0.11

0.33

H Q Q>

0.11

0.22

0.22

0.22

0.11

0.11

0.00

0.11

1

2

3

4

5

13

0.56

0.33

0.44

0.33

0.56

0.67

0.56

0.44

0.11

0.22

0.11

0.33

0.00

0.00

0.22

0.11

0.00

0.00

0.22

0.11

0.11

0.11

0.11

0.11

0.33

0.44

0.22

0.22

0.33

0.22

0.11

0.33

9

10

11

12

13

0.56

0.33

0.56

0.33

0.22

0.22

0.11

0.00

0.11

0.00

0.00

0.11

0.11

0.22

0.22

HQ QP> |HQaQ >

0.22

0.44

0.33

0.33

0.56

1

2

3

4

5

6

7

15

0.67

0.44

0.56

0.56

0.56

0.33

0.67

0.56

0.00

0.00

0.00

0.11

0.11

0.11

0.00

0.00

0.22

0.11

0.00

0.00

0.11

0.11

0.11

0.00

0.11

0.44

0.44

0.33

0.22

0.44

0.22

0.44

9

10

11

12

13

14

15

0.67

0.44

0.44

0.22

0.44

0.33

0.22

0.11

0.11

0.00

0.00

0.11

0.33

0.44

0.00

0.11

0.22

0.44

0.11

0.22

0.11

HQ QP> |HQaQ»

0.22

0.33

0.33

0.33

0.33

0.11

0.22

1

2

3

4

5

6

7

23

0.33

0.67

0.22

0.44

0.33

0.33

0.56

0.56

0.22

0.11

0.33

0.22

0.56

0.11

0.11

0.11

0.33

0.22

0.11

0.11

0.00

0.44

0.33

0.22

0.11

0.00

0.33

0.22

0.11

0.11

0.00

0.11

9

10

11

12

13

14

15

16

0.44

0.33

0.11

0.00

0.33

0.33

0.33

0.33

0.00

0.00

0.22

0.44

0.22

0.00

0.00

0.00

0.22

0.44

0.33

0.00

0.22

0.33

0.44

0.33

HQ QP> HQaQ»

0.33

0.22

0.33

0.56

0.22

0.33

0.22

0.33

17

18

19

20

21

22

23

0.33

0.44

0.22

0.22

0.33

0.44

0.22

0.22

0.11

0.22

0.33

0.22

0.11

0.00

0.33

0.22

0.44

0.22

0.22

0.22

0.44

H Q Q&

0.11

0.22

0.11

0.22

0.22

0.22

0.33

Table 6.13: Consensus Matrix of ‘dm04r” for various length
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hmO4r

Length

1

2

3

4

5

0.33

0.22

0.11

0.11

0.11

0.33

0.33

0.44

0.11

0.33

0.00

0.56

0.33

0.00

0.11

0.22

0.22

0.44

0.44

0.22

0.33

0.33

0.22

0.22

H Q Q&

0.33

0.00

0.44

0.11

0.22

0.33

0.33

0.11

1

2

3

4

5

13

0.33

0.44

0.33

0.33

0.11

0.22

0.22

0.44

0.33

0.33

0.33

0.11

0.44

0.44

0.44

0.33

0.11

0.11

0.00

0.22

0.22

0.11

0.11

0.11

0.22

0.11

0.33

0.33

0.22

0.22

0.22

0.11

9

10

11

12

13

0.11

0.22

0.11

0.33

0.33

0.33

0.11

0.33

0.33

0.00

0.44

0.22

0.44

0.33

0.33

HQ QP [(HQa»

0.11

0.44

0.11

0.00

0.33

1

2

3

4

5

6

7

15

0.22

0.22

0.11

0.11

0.56

0.22

0.44

0.22

0.22

0.00

0.56

0.22

0.00

0.22

0.33

0.56

0.22

0.22

0.22

0.00

0.44

0.33

0.11

0.11

0.33

0.56

0.11

0.67

0.00

0.22

0.11

0.11

9

10

11

12

13

14

15

0.11

0.44

0.22

0.33

0.44

0.22

0.22

0.22

0.22

0.33

0.44

0.00

0.11

0.33

0.11

0.11

0.33

0.22

0.33

0.22

0.00

HQ Q> (HQa»

0.56

0.22

0.11

0.00

0.22

0.44

0.44

1

2

3

4

5

6

7

23

0.22

0.33

0.22

0.22

0.44

0.33

0.22

0.56

0.22

0.22

0.33

0.22

0.22

0.00

0.44

0.22

0.33

0.33

0.44

0.11

0.22

0.44

0.22

0.11

0.22

0.11

0.00

0.44

0.11

0.22

0.11

0.11

9

10

11

12

13

14

15

16

0.33

0.11

0.44

0.33

0.33

0.33

0.22

0.22

0.33

0.44

0.11

0.11

0.44

0.33

0.33

0.44

0.00

0.22

0.22

0.22

0.11

0.11

0.33

0.00

0.33

0.22

0.22

0.33

0.11

0.22

0.11

0.33

17

18

19

20

21

22

23

0.33

0.11

0.22

0.33

0.22

0.22

0.22

0.44

0.11

0.22

0.33

0.33

0.33

0.44

0.22

0.56

0.56

0.33

0.22

0.33

0.11

HQQ» [HQa» |HBaa»

0.00

0.22

0.00

0.00

0.22

0.11

0.22

Table 6.14: Consensus Matrix of “hm04r” for different length
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musQ04r

Length

1

2

3

4

5

0.33

0.33

0.22

0.33

0.56

0.22

0.33

0.22

0.11

0.22

0.22

0.22

0.00

0.22

0.22

0.22

0.33

0.22

0.00

0.33

0.00

0.22

0.22

0.11

00
H Q Q>

0.22

0.22

0.56

0.11

0.44

0.33

0.22

0.44

1

2

3

4

5

0.00

0.33

0.33

0.22

0.44

0.56

0.33

0.33

0.33

0.00

0.22

0.22

0.00

0.11

0.00

0.22

0.22

0.11

0.00

0.11

0.11

0.11

0.11

0.11

0.44

0.56

0.44

0.44

0.44

0.22

0.56

0.33

13

9

10

11

12

13

0.56

0.44

0.33

0.56

0.44

0.22

0.11

0.11

0.00

0.00

0.00

0.22

0.33

0.11

0.22

HQ QP> |HQaQ >

0.22

0.22

0.22

0.33

0.33

1

2

3

4

5

6

7

0.33

0.22

0.67

0.56

0.67

0.11

0.56

0.56

0.11

0.22

0.00

0.11

0.22

0.22

0.00

0.11

0.33

0.56

0.00

0.11

0.11

0.11

0.33

0.22

0.22

0.00

0.33

0.22

0.00

0.56

0.11

0.11

15

9

10

11

12

13

14

15

0.67

0.44

0.33

0.56

0.22

0.22

0.33

0.11

0.22

0.22

0.22

0.11

0.11

0.00

0.11

0.22

0.22

0.00

0.22

0.11

0.11

HQ QP> |HQaQ»

0.11

0.11

0.22

0.22

0.44

0.56

0.56

1

2

3

4

5

6

7

0.56

0.44

0.33

0.44

0.44

0.44

0.44

0.33

0.00

0.11

0.22

0.00

0.11

0.11

0.00

0.00

0.22

0.11

0.11

0.33

0.22

0.22

0.11

0.22

0.22

0.33

0.33

0.22

0.22

0.22

0.44

0.44

9

10

11

12

13

14

15

16

0.22

0.56

0.11

0.22

0.44

0.22

0.44

0.11

23

0.11

0.11

0.22

0.00

0.22

0.22

0.00

0.33

0.33

0.11

0.22

0.33

0.22

0.22

0.44

0.22

HQ QP> HQaQ»

0.33

0.22

0.44

0.44

0.11

0.33

0.11

0.33

17

18

19

20

21

22

23

0.44

0.44

0.11

0.56

0.33

0.44

0.00

0.11

0.00

0.33

0.11

0.11

0.11

0.22

0.22

0.22

0.22

0.00

0.33

0.33

0.22

H Q Q&

0.22

0.33

0.33

0.33

0.22

0.11

0.56

Table 6.15:

Consensus Matrix of “mus04r” for various length
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yst04r

Length

1

2

3

4

5

0.44

0.44

0.44

0.33

0.11

0.33

0.11

0.33

0.22

0.22

0.00

0.22

0.22

0.11

0.22

0.33

0.11

0.22

0.22

0.11

0.11

0.11

0.22

0.00

H Q Q&>

0.22

0.11

0.33

0.33

0.56

0.44

0.44

0.33

1

2

3

4

5

13

0.22

0.44

0.22

0.56

0.33

0.56

0.33

0.33

0.22

0.00

0.33

0.11

0.22

0.00

0.11

0.33

0.11

0.11

0.00

0.00

0.22

0.00

0.22

0.00

0.44

0.44

0.44

0.33

0.22

0.44

0.33

0.33

9

10

11

12

13

0.44

0.33

0.56

0.33

0.22

0.11

0.33

0.11

0.11

0.22

0.11

0.11

0.00

0.22

0.11

HQ QP> |HQaQ»

0.33

0.22

0.33

0.33

0.44

1

2

3

4

5

6

7

15

0.33

0.11

0.44

0.00

0.22

0.11

0.33

0.22

0.11

0.56

0.11

0.00

0.11

0.22

0.56

0.11

0.11

0.00

0.00

0.22

0.11

0.11

0.00

0.11

H Q Q&

0.44

0.33

0.44

0.78

0.56

0.56

0.11

0.56

9

10

11

12

13

14

15

0.44

0.22

0.33

0.22

0.56

0.22

0.44

0.11

0.11

0.22

0.22

0.00

0.11

0.00

0.00

0.22

0.00

0.00

0.11

0.00

0.11

H Q Q&

0.44

0.44

0.44

0.56

0.33

0.67

0.44

1

2

3

4

5

6

7

23

0.33

0.00

0.22

0.22

0.33

0.33

0.00

0.33

0.00

0.11

0.11

0.56

0.11

0.11

0.11

0.22

0.33

0.22

0.00

0.11

0.00

0.11

0.11

0.00

0.33

0.67

0.67

0.11

0.56

0.44

0.78

0.44

9

10

11

12

13

14

15

16

0.22

0.33

0.44

0.33

0.44

0.11

0.44

0.44

0.22

0.22

0.33

0.11

0.00

0.11

0.00

0.22

0.11

0.22

0.00

0.00

0.22

0.11

0.22

0.22

0.44

0.22

0.22

0.56

0.33

0.67

0.33

0.11

17

18

19

20

21

22

23

0.56

0.33

0.33

0.33

0.56

0.22

0.11

0.00

0.33

0.33

0.22

0.11

0.44

0.22

0.11

0.00

0.00

0.22

0.00

0.00

0.11

HQ QP (HQqQE [Baa»>

0.33

0.33

0.33

0.22

0.33

0.33

0.56

Table 6.16: Consensus Matrix of “yst04r” for different length
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dmO5r

Length

1

2

3

4

5

0.33

0.22

0.22

0.11

0.33

0.22

0.11

0.33

0.22

0.11

0.11

0.22

0.33

0.33

0.11

0.11

0.00

0.22

0.22

0.22

0.11

0.00

0.33

0.11

H Q Q>

0.44

0.44

0.44

0.44

0.22

0.44

0.44

0.44

1

2

3

4

5

13

0.33

0.11

0.56

0.56

0.56

0.11

0.44

0.11

0.11

0.22

0.11

0.11

0.11

0.22

0.11

0.11

0.22

0.22

0.00

0.22

0.22

0.33

0.11

0.22

0.33

0.44

0.33

0.11

0.11

0.33

0.33

0.56

9

10

11

12

13

0.44

0.33

0.33

0.22

0.44

0.11

0.22

0.00

0.11

0.00

0.11

0.22

0.11

0.33

0.22

HQ QP> |HQaQ >

0.33

0.22

0.56

0.33

0.33

1

2

3

4

5

6

7

15

0.22

0.22

0.11

0.22

0.11

0.11

0.33

0.00

0.22

0.22

0.44

0.33

0.33

0.33

0.22

0.44

0.11

0.33

0.22

0.33

0.33

0.11

0.11

0.22

0.44

0.22

0.22

0.11

0.22

0.44

0.33

0.33

9

10

11

12

13

14

15

0.11

0.11

0.22

0.11

0.44

0.11

0.22

0.11

0.33

0.00

0.11

0.11

0.22

0.22

0.33

0.22

0.56

0.33

0.11

0.44

0.33

HQ QP> |HQaQ»

0.44

0.33

0.22

0.44

0.33

0.22

0.22

1

2

3

4

5

6

7

23

0.67

0.44

0.56

0.67

0.78

0.56

0.44

0.56

0.00

0.44

0.22

0.22

0.11

0.33

0.22

0.00

0.22

0.11

0.00

0.11

0.11

0.00

0.00

0.11

0.11

0.00

0.22

0.00

0.00

0.11

0.33

0.33

9

10

11

12

13

14

15

16

0.22

0.11

0.22

0.33

0.67

0.44

0.33

0.56

0.11

0.11

0.11

0.00

0.00

0.22

0.11

0.22

0.33

0.11

0.22

0.11

0.11

0.22

0.22

0.22

HQ QP> HQaQ»

0.33

0.67

0.44

0.56

0.22

0.11

0.33

0.00

17

18

19

20

21

22

23

0.44

0.44

0.44

0.44

0.33

0.11

0.67

0.11

0.11

0.11

0.22

0.11

0.67

0.00

0.00

0.22

0.00

0.11

0.11

0.00

0.00

H Q Q&

0.44

0.22

0.44

0.22

0.44

0.22

0.33

Table 6.17: Consensus Matrix of ‘dm05r” for various length
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hmO5r

Length

1

2

3

4

5

0.11

0.33

0.33

0.33

0.11

0.11

0.11

0.22

0.11

0.00

0.44

0.33

0.33

0.33

0.22

0.33

0.56

0.33

0.11

0.00

0.56

0.33

0.44

0.33

H Q Q&

0.22

0.33

0.11

0.33

0.00

0.22

0.22

0.11

1

2

3

4

5

13

0.33

0.22

0.11

0.22

0.33

0.33

0.22

0.22

0.22

0.22

0.33

0.33

0.11

0.11

0.00

0.22

0.22

0.44

0.22

0.33

0.44

0.44

0.44

0.33

0.22

0.11

0.33

0.11

0.11

0.11

0.33

0.22

9

10

11

12

13

0.22

0.33

0.44

0.44

0.22

0.22

0.22

0.11

0.11

0.33

0.44

0.44

0.33

0.44

0.44

HQ QP [(HQa»

0.11

0.00

0.11

0.00

0.00

1

2

3

4

5

6

7

15

0.11

0.11

0.22

0.33

0.56

0.22

0.33

0.22

0.11

0.22

0.22

0.33

0.22

0.33

0.11

0.11

0.44

0.56

0.56

0.33

0.22

0.44

0.44

0.44

0.33

0.11

0.00

0.00

0.00

0.00

0.11

0.22

9

10

11

12

13

14

15

0.11

0.00

0.33

0.11

0.11

0.11

0.22

0.11

0.44

0.11

0.33

0.33

0.33

0.44

0.67

0.33

0.22

0.33

0.44

0.33

0.11

HQ Q> (HQa»

0.11

0.22

0.33

0.22

0.11

0.22

0.22

1

2

3

4

5

6

7

23

0.33

0.33

0.22

0.33

0.33

0.22

0.11

0.22

0.11

0.22

0.11

0.11

0.11

0.33

0.00

0.22

0.44

0.33

0.44

0.44

0.11

0.33

0.56

0.56

0.11

0.11

0.22

0.11

0.44

0.11

0.33

0.00

9

10

11

12

13

14

15

16

0.00

0.00

0.22

0.44

0.33

0.44

0.22

0.22

0.22

0.22

0.33

0.11

0.22

0.22

0.00

0.44

0.56

0.56

0.44

0.33

0.33

0.22

0.56

0.33

0.22

0.22

0.00

0.11

0.11

0.11

0.22

0.00

17

18

19

20

21

22

23

0.33

0.22

0.22

0.11

0.22

0.11

0.22

0.00

0.22

0.22

0.56

0.22

0.22

0.22

0.44

0.33

0.22

0.11

0.33

0.67

0.44

HQQ» [HQa» |HBaa»

0.22

0.22

0.33

0.22

0.22

0.00

0.11

Table 6.18: Consensus Matrix of “hm05r” for different length
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mus05r

Length

1

2

3

4

5

0.67

0.22

0.44

0.22

0.33

0.22

0.44

0.33

0.11

0.11

0.22

0.33

0.33

0.33

0.33

0.33

0.22

0.44

0.11

0.22

0.33

0.22

0.11

0.22

00
H Q Q>

0.00

0.22

0.22

0.22

0.00

0.22

0.11

0.11

1

2

3

4

5

0.22

0.22

0.44

0.67

0.33

0.44

0.44

0.33

0.11

0.33

0.22

0.11

0.22

0.11

0.11

0.22

0.22

0.11

0.22

0.00

0.22

0.22

0.22

0.33

0.44

0.33

0.11

0.22

0.22

0.22

0.22

0.11

13

9

10

11

12

13

1.00

0.33

0.22

0.33

0.78

0.00

0.00

0.11

0.22

0.11

0.00

0.56

0.22

0.33

0.00

HQ QP> |HQaQ >

0.00

0.11

0.44

0.11

0.11

1

2

3

4

5

6

7

0.33

0.11

0.22

0.33

0.22

0.33

0.33

0.33

0.11

0.56

0.22

0.44

0.56

0.22

0.22

0.33

0.11

0.22

0.11

0.11

0.11

0.11

0.44

0.11

0.44

0.11

0.44

0.11

0.11

0.33

0.00

0.22

15

9

10

11

12

13

14

15

0.44

0.33

0.44

0.44

0.22

0.44

0.22

0.00

0.00

0.11

0.11

0.33

0.11

0.33

0.22

0.56

0.33

0.33

0.00

0.33

0.00

HQ QP> |HQaQ»

0.33

0.11

0.11

0.11

0.44

0.11

0.44

1

2

3

4

5

6

7

0.44

0.22

0.44

0.33

0.11

0.22

0.22

0.22

0.00

0.22

0.11

0.11

0.00

0.33

0.22

0.33

0.22

0.22

0.00

0.33

0.56

0.11

0.44

0.11

0.33

0.33

0.44

0.22

0.33

0.33

0.11

0.33

9

10

11

12

13

14

15

16

0.56

0.22

0.11

0.56

0.44

0.44

0.56

0.67

23

0.11

0.44

0.44

0.11

0.11

0.22

0.22

0.11

0.22

0.33

0.11

0.11

0.22

0.22

0.22

0.00

HQ QP> HQaQ»

0.11

0.00

0.33

0.22

0.22

0.11

0.00

0.22

17

18

19

20

21

22

23

0.56

0.33

0.33

0.11

0.33

0.22

0.67

0.22

0.22

0.00

0.22

0.22

0.22

0.11

0.11

0.33

0.44

0.56

0.33

0.33

0.11

H Q Q&

0.11

0.11

0.22

0.11

0.11

0.22

0.11

Table 6.19:

Consensus Matrix of “mus05r” for various length
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yst0oSr

Length

1

2

3

4

5

0.33

0.22

0.33

0.22

0.33

0.22

0.44

0.33

0.22

0.33

0.11

0.00

0.11

0.33

0.22

0.22

0.00

0.22

0.22

0.22

0.22

0.00

0.00

0.00

H Q Q&>

0.44

0.22

0.33

0.56

0.33

0.44

0.33

0.44

1

2

3

4

5

13

0.33

0.67

0.33

0.56

0.44

0.33

0.44

0.33

0.22

0.11

0.22

0.11

0.11

0.00

0.11

0.11

0.22

0.00

0.22

0.22

0.00

0.33

0.11

0.00

0.22

0.22

0.22

0.11

0.44

0.33

0.33

0.56

9

10

11

12

13

0.44

0.33

0.22

0.22

0.33

0.11

0.00

0.11

0.22

0.00

0.11

0.11

0.11

0.00

0.22

HQ QP> |HQaQ»

0.33

0.56

0.56

0.56

0.44

1

2

3

4

5

6

7

15

0.11

0.22

0.00

0.33

0.33

0.56

0.33

0.44

0.22

0.00

0.44

0.00

0.33

0.11

0.22

0.11

0.00

0.22

0.11

0.22

0.22

0.22

0.11

0.11

H Q Q&

0.67

0.56

0.44

0.44

0.11

0.11

0.33

0.33

9

10

11

12

13

14

15

0.44

0.67

0.33

0.44

0.33

0.22

0.67

0.33

0.11

0.11

0.00

0.11

0.11

0.11

0.00

0.00

0.11

0.33

0.11

0.00

0.00

H Q Q&

0.22

0.22

0.44

0.22

0.44

0.67

0.22

1

2

3

4

5

6

7

23

0.56

0.33

0.22

0.22

0.22

0.33

0.33

0.33

0.11

0.11

0.11

0.22

0.11

0.22

0.00

0.11

0.11

0.00

0.11

0.11

0.22

0.00

0.11

0.00

0.22

0.56

0.56

0.44

0.44

0.44

0.56

0.56

9

10

11

12

13

14

15

16

0.33

0.00

0.11

0.22

0.11

0.00

0.11

0.22

0.11

0.11

0.22

0.00

0.11

0.33

0.22

0.22

0.00

0.33

0.00

0.00

0.00

0.00

0.00

0.11

0.56

0.56

0.67

0.78

0.78

0.67

0.67

0.44

17

18

19

20

21

22

23

0.44

0.22

0.11

0.00

0.22

0.11

0.11

0.22

0.11

0.22

0.00

0.22

0.22

0.33

0.00

0.11

0.00

0.33

0.33

0.22

0.00

HQ QP (HQqQE [Baa»>

0.33

0.56

0.67

0.67

0.22

0.44

0.56

Table 6.20: Consensus Matrix of “yst05r” for different length
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Motif Logo from Our Method of Different Dataset

dmO1lr

Length = 8 Length = 13

100
0.75
050
0.25

0.00
1 2 i 4 5 & T 8

Length = 15

1234567 89%10112131415161 7181920212225

Table 6.21: Motif Logo of “dm01r” for different length

hmO1r
Length = 8 Length = 13
10 + 10 -
0.8 4 D.S-I I IIIIIII I
0.6 4 0.6
0.4 044
02 - 02 -
0.0 - 0.0 -
1 2 3I 4 5 & T 8 1 2 3 45 6 7 8 9101112 13
Length = 15 Length = 23

12345678 510111231415161 7181920212223

Table 6.22: Motif Logo of “hm01r” for different length
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musO1lr

ystOlr

Length = 8 Length = 13
10 4
0.8 4
0.6
0.4 4
0.2 4
0.0 -
1 2 i 4 5 & 7 ]
Length = 15
10
0.8
0.6
04
02
00 12345678 9101112131415 - 12345678 91001112131415161 1151920212223
Table 6.23: Motif Logo of “mus01r” for different length
Length = 8 Length = 13
10 4
0.8 4
06 4 €< <
0.4 4
0.2 4
0.0 -
1 2 3 4 5 & 7 ]
Length = 15
10
0.8
0.6
0.4
02
00 1 2345678 9101112131415 1234567 891M112131415161 7181520212223

Table 6.24: Motif Logo of “ystO1r” for different length
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dmO2r

Length = 8 Length = 13
10 4 T T 10
0.8 4 I 0.8
061 € C 06
04 04
0.2 4 02
0.0 - 0.0

1 2 3 4 5 & 7 8

123 45 678 910111213

Length = 15

Length = 23

AAA A A
12345678 9101112131415161 7181920212223

Table 6.25: Motif Logo of “dm02r” for different length

hmO02r
Length = 8 Length = 13
10 10 4
0.8 0.8 4 I I I I I I
0.6 0.6
C
0.4 0.4
02 0.2 A
0.0 0.0 -
1 2 3 4 5 & T B 1 23 45 6 7 8 910111213
Length = 15 Length = 23
10 4 10
0.8 4 0.8
0.6 06
04 04
0.2 A 0z
0.0 -4
12345678 5101112131415 12345678 91001112131415161 F181 920212223

Table 6.26: Motif Logo of “hm02r” for different length

65




mus02r

Length = 8

12345678 91011121531415

1234567 89%10112131415161 7181920212225

yst02r

Table 6.27: Motif Logo of “mus02r” for different length

Length = 8 Length = 13
100 100
0.75 C 0.75
050 0.50
0.25 0.25
0.00 0.00

1 2 3 4 5 6 T 8

Length = 15
10 100
0.8 0.75
06

0.50

0.4
02 0.25
0.0

123456 789101112131415

1234567 8951011213]1415161 7181520212703

Table 6.28: Motif Logo of “yst02r” for different length




dmO3r

Length = 8 Length = 13

10 4
0.8
0.6 4
0.4 4
0.2 4
0.0 -

1 2 3 4 5 & 7 8

Length = 15

A
12345678 91011121531415 - 12345678 9101112131415161 7181920212223

hmO3r

Table 6.29: Motif Logo of “dm03r” for different length

Length = 8 Length = 13

123456768 95101112151415 - 12345678 510111231415161 7181920212223

Table 6.30: Motif Logo of “hm03r” for different length
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mus03r

yst03r

Length = 8 Length = 13
10 10 -
0.8 A 0a - I I I I I I I I
06 0.6 -
0.4 4 04 4
0.2 4 0.2 4
0.0 0.0

1 2 3 4 5 & 7 8 123 45678 910111213

Length = 15 Length = 23
10
0.8 4
0.6 A
0.4 4
0.2 A
0.0 -

12345678 9101112131415
Table 6.31: Motif Logo of “mus03r” for different length

Length = 8 Length = 13
10 100
08 075
06
04 0.50
032 0.25
0.0 0.00

1 2 3 4 5 & 7 ]
Length = 15

Table 6.32: Motif Logo of “yst03r” for different length
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dmO4r

Length = 8

100

0.75

050

0.25

0.00

12345678 91011121531415

12345678 9101112131415161 7181920212223

hmO4r

Table 6.33: Motif Logo of “dm04r” for different length

Length = 8

Length = 13

10
0.8
0.6
0.4
02

0.0
1 2 i 4 5 & T B

Length = 15

10
0.8
06
0.4
0.2

0.0
123456768 95101112151415

0
12345678 9101]12314]51&.?18]320212223

Table 6.34: Motif Logo of “hm04r” for different length
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musQ04r

Length = 8 Length = 13

10 4
0.8
0.6 4
0.4 4
0.2 4
0.0 -

1 2 3 4 5 & 7 8

Length = 15

100

0.75

050

0.25

A
0.00
12345678 9101112131415161 7181920212223

yst04r

Table 6.35: Motif Logo of “mus04r” for different length

Length = 8 Length = 13

1 2 i 4 5 & 7 8

Length = 15

12345678 910111231415161 7181920212303

Table 6.36: Motif Logo of “ystO4r” for different length
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dmO5r

hmO5r

Length = 8 Length = 13
10
0.8
0.6
04
02
0.0

1 2 i 4 5 & 7 ]

Length = 15
10
0.8
0.6
04
02
00 12345678 9101112131415 0_123456?391[]].]12314]515.]‘1813202123

Table 6.37: Motif Logo of “dm051r” for different length

Length = 8 Length = 13
10 10 4
0.8 4 0.8 4 I I I I
0.6 A 0.6
0.4 - 0.4
02 - 02 -
0.0 0o

1 2 3 4 5 & T B 1 23 45 6 7 8 910111213

Length = 15 Length = 23
10 10 4
0.8 0.8 4
06 0.6
04 04
0z 0.2 A
0.0

123456768 95101112151415

0
12345678 510111231415161 7181920212223

Table 6.38: Motif Logo of “hm051r” for different length
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mus05r

Length = 8
10 - 100
081 0.75
056 -
050
0.4
02 ] 0.25
0.0 - 0.00
1 2 3 4 5 & 71 8
Length = 15
10 100
08 0.75
06
0.50
04
02 0.25
0.0

12345678 91011121531415

123456?3Mﬂuﬂﬂﬂ5ﬂﬂﬁﬂmuﬂ3

yst0or

Table 6.39: Motif Logo of “mus05r” for different length

Length = 8

Length = 13

A AAAAA

Balalala'n'n'sln =¥
lz345&7BBHﬂuﬂﬂﬂﬂmﬂmﬂmH23

Table 6.40: Motif Logo of “yst05r” for different length
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