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Abstract

Traditional IDS has been shielding against cyber threats for many years but it falls short on de-
tecting zero-day attacks. These are the attacks that are unique with unknown attack patterns and
mutating attack signatures making them difficult to detect. Machine learning approaches have
been extensively used in Intrusion Detection Systems (IDS) to detect both known and unknown
attacks. However, the widespread and rapid growth of zero-day attack forces researchers to
continuously seek to increase the performances of models to better detect these attacks. In this
paper, we used supervised machine learning approaches to detect zero-day attacks. The dataset
used for demonstration and evaluation was the latest CSE-CIC-IDS2018 dataset with 80 fea-
tures and 14 different types of attacks. All the attacks’ labels were represented as a single label
called ‘Attack’. The main aim behind this proposal was to compare between the performances of
the mainstream Machine Learning models in detecting Zero Day attacks. The proposed model
of Artificial Neural Network (ANN), Random Forest (RF) and K-Nearest Neighbor (KNN) all
achieved high accuracies with optimal parameter settings. With RF having an accuracy of 98.90
% , ANN with 98.3% and KNN with an accuracy of 98.53%.A better estimate of the perfor-
mance of the models can be seen by the false-negative rates of each model.

Keywords: IDS; Zero-Day Attacks; Supervised Machine Learning; Artificial Neural Net-
work; Random Forest; K-Nearest Neighbour; False Negative Rate
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Chapter 1

Introduction

1.1 Motivation
The use of computer networks has been accelerating and gaining importance in economic and
social life like the internet. Companies or businesses have adopted network technologies for
solving their purposes faster and in an efficient manner. With growing computer networks be-
ing prevalent throughout the world, caution arises on securing the networks from cyber threats.
A rise in the computer networks also give rise to more unwanted cyber threats. With so many
threats infiltrating the process the caution arises in increasing cyber security. Zero-day attack is
considered as an ideal obstacle in the field of cyber security.

Zero-day attacks are vulnerabilities or weaknesses in software, hardware, microcode that are
unknown to the party who are responsible for fixing the flaw. The straightforwardness of the
name ‘Zero-day’ suggests its nature of giving no time between its discovery and first attack.
Detecting such attacks are very difficult for its unknown attacking pattern or mutating attack
signatures. The inability of detecting such vulnerabilities pose a serious threat to companies or
organizations. These attacks have existed since many years and are rapidly growing in num-
ber. According to Ponemon Institute’s 2018 State of Endpoint Security Risk report, 76% of all
successful attacks on organizations were zero-day attacks [14]. In the third quarter of 2019 mal-
ware attacks significantly increased and zero day malwares accounted for 50% of all detected
malwares [15]. These reports suggest how zero day attacks keep on growing and shows how
widespread these attacks are. The unprecedented behavioral pattern of Zero-day attacks have
gained interest of many cyber security specialists.

The substantial use of Machine Learning in the Intrusion Detection System(IDS) has been
prevalent for quite some time in order to detect known, as well as, unknown attacks. Even
so, the expeditious development of zero day attacks enables researchers to devise models that
can detect zero day attacks better.
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1.2 Problem Statement
The acceleration in use of computer networks has been proved efficient to solve our problem
and other purposes. Cyber threats are equally growing with the increased dependability of com-
puter networks. Caution arises in securing our networks from the undesirable network threats.
While mitigating these constant threats we have to deal with the zero day attacks that are the
most challenging to alleviate. For this reason, we used the promising algorithms of machine
learning, namely Artificial Neural Networks; Random Forest; and K-Nearest Neighbours; that
detects the zero day attack patterns and compare the results obtained from each of these to
determine which works best. While most researchers focus on the accuracy percentage which
is somewhat very similar in such cases, we have further analysed our data based on the false
negative rates as well.

1.3 Objective and Contribution
The prime objectives of our research is as follows:

• Collect the dataset

• Comprehend the features and how they relate to the overall dataset

• Eliminate useless features to reduce dimensionality

• Clean the data by removing all NaN, infinity and nonnumerical values

• Run various machine learning algorithms on the dataset

• Finetune the algorithms for better accuracy

• Gain accuracy scores and confusion matrices

• Compare and use the best algorithm

We found the correlation between the attacks on which our model was trained and use it to help
us detect any future attacks which are similar to the given attacks. We used Artificial Neural
Network (ANN), Random Forest (RF) and K-Nearest Neighbour (KNN) algorithm to classify
whether the connection is benign or an attack. Our models were under continuous scrutiny and
evaluation to prevent over-fitting or under-fitting issues. Furthermore, the aforementioned al-
gorithms were fine-tuned using appropriate parameters to achieve better accuracy. Our model
keeps learning from different interactions it has made and is able to detect any attacks that it has
never experienced before. Finally we compare the results obtained from each of the different
algorithms we have implemented and see which gives the best outcome overall.
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1.4 Thesis Structure
The main aim of this report is to compare and contrast the performance of ML based mod-
els on Zero Day attack detection. It uses different supervised machine learning algorithms to
accomplish this goal and finally determine which algorithm is the most suitable and provides
the finest accuracy. All in all, this report describes the procedure carried out by the authors to
achieve their results.

Chapter 1, Introduction, enunciates what motivated the authors to research on the given problem
statement. The objective of our research and the methodology is explored in brief. A summary
of the paper is given in this chapter.

In Chapter 2, Background, the Literature Review gives an overview of the papers that have
experimented on similar works regarding this area of concern. This chapter also includes the
algorithms that have been used in our system.

The Proposed Model, Chapter 3, describes in detail how we chose the dataset, pre-processed it,
selected the appropriate features. Furthermore, this chapter elaborately portrays the models or
algorithms that have been used by the authors. In addition, Chapter 4, Experimentation, demon-
strates and explains the meticulous procedures that have been executed for our models.

Finally, Results and Analysis is shown in Chapter 5. It includes the outcomes from the dif-
ferent models that have been applied and their comparison is given. The results are analysed
critically and the confusion matrix, accuracy and false negative percentages are also attached.
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Chapter 2

Background

2.1 Literature Review

With the intention of developing an effective and efficient Network Intrusion Detection system
Niyaz,Q et al.(2016) have designed self-taught learning, a deep learning based approach on the
NSL-KDD dataset. The authors in [1] have evaluated the performance of STL on 2-class and 5-
class test data and have successfully shown the performance of their model is better compared
to the softmax regression.The comparison metrics that they included are accuracy, precision,
recall, and f-measure values. They achieved an accuracy rate of 88.39% for 2-class and 79.10%
for 5-class classification. The authors are also intended to implement a real-time NIDS using
deep learning techniques in future.

Hindy,H et al.(2020) have implemented an auto-encoder based implementation to detect zero-
day attack. They planned to create an intelligent Intrusion Detection System with high recall
value and acceptable minimum false-negatives rate. One class support vector machine was used
to compare the performance of the model and the proposed model demonstrated outperformed
accuracy. The encoding-decoding capability of the autoencoder was a plus point for the authors
to build the system. They used two different datasets NSL-KDD and CICIDS2017 and got
89-99% accuracy for NSL-KDD and 75-98% for CICIDS2017 dataset. Their future purpose
is to evaluate the model with datasets that cover specialized network IDS like IoT and Critical
Infrastructure networks as discussed in [2].

To protect the ICS network an Intrusion detection system using deep learning is proposed by
Hijazi, A et al.(2018). They have used multi-layer perceptrons with binary classification to
build the model. The authors in [3] have trained high-dimensional Modbus packet data and la-
beled them as normal and attack to train the NN to detect anomaly and normal behaviour of the
network. Their proposed model showed higher performance when compared with Self-taught
learning and Soft-max regression. The proposed system got an accuracy of 99.9%. The authors
mentioned that the proposed system can be enhanced by using time stamps and adding ability
to identify Denial of Service attacks.

Malware identification and detection being the priority of the authors (Makandar et al.,2015),they
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have proposed a model to detect the malwares based on texture features. They tried to deter-
mine malicious behavior of data using Gabor wavelet transform and GIST. The authors in [4]
have utilized the feed forward Artificial Neural Network (ANN) method to classify attack bina-
ries. The binary strings were reshaped as matrix and represented as grayscale images and the
texture features were extracted by Gabor wavelet with 8 orientations and 4 scales. They were
able to get 96.35% accuracy using the feed forward artificial neural network. In future, they are
intended to get more accuracy in identifying the malware variants. Similarly, Liu et al. [5] has
used K-Nearest Neighbor (KNN) to process grayscale images generated from malware. 98.2%
accuracy was reached by the malware classification approaches.

Alazab et al., 2011 have proposed a model that uses numerous data mining techniques to detect
and classify zero day attacks based on the window API call. Authors have analyzed the perfor-
mance of kNearest Neighbor, Sequential Minimal Optimization, Naive Bayes, Backpropagation
Neural Networks Algorithm and J4 8 decision tree on the dataset. After evaluating all the algo-
rithms their implemented SVM Normalized PolyKernel has outperformed all other algorithms
and NN backpropagation has performed the worst. The system in [6] could achieve 98.5% of
true positive rate and 0.025% of false positive rate.

Abri et al., 2019 [4] has evaluated machine learning algorithms and deep learning classifiers
to detect which one can detect zero day attack patterns more accurately. Based on four clus-
tering techniques 1. Conventional machine learning 2.Simple Neural Network Learner 3.Deep
learning using multiple layers and 4. Deep(er) learning with multiple hidden layers the au-
thors have executed several experiments. Random Forest Classifier offered the best accuracy to
identify Zero day attacks based on the experiments by the authors.They achieved an accuracy
of 99.51% and validated it by applying 10-fold cross validation. National Science Foundation
(NSF) supported their work in [7] under grants 1821560 and 1723765.

With the motivation to detect different malware along with unknown or zero day attacks To-
biyama et al. were the first to extract features from a trained recurrent neural network (RNN)
and generate feature images. Then, feature images with labels were assembled to form the in-
put to the conventional neural network (CNN) for classification. The system in [8] classifies 26
types of malware from 11 families and this method can reach a classification accuracy of 96%.

Zhou and Pezaros (2019), realised how the dataset chosen plays an important role in deter-
mining the performance of an IDS model. So, in their paper [9], they trained their model on
the CICAWS2018 dataset which consists of statistical data. Furthermore, they show how sim-
ple decision tree classifiers can also detect ZeroDay attacks well, among other five commonly
used machine learning models which include Random Forest, Naive Bayes, Neural Network,
Quadratic Discriminant and KNearest Neighbours classifier.

The authors, Gupta and Rani (2018), make use of scalable MLlib to detect zero-day malwares
by building a big data framework on top of Apache Spark. The proposed architecture in [10]
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is able to classify different types of attacks. They implemented Random Forest, Naive Bayes
and SVM algorithms for this purpose. Among these, Random Forest proved to give the most
accurate result which is scored at 98.88%.

Jionza in the paper Random-Forest-Based Network Intrusion Detection System proposed a Ran-
dom Forest model in anomaly, misuse and hybrid network IDSs. The model automatically
builds the pattern of intrusion for misuse detection by training on the provided data and matches
the unseen data to the learnt patterns. The authors in [11] used sampling techniques and feature
selection to improve the performance of the misuse detection. For the anomaly detection, the
Random Forest model detects new attacks by an unsupervised outlier detection of the Random
Forest. The hybrid approach for detection basically combines the advantages of both the mis-
use and anomaly detection systems to increase predictive performance. The model achieved an
accuracy of 92.93%.

2.2 Algorithms/Models

2.2.1 Artificial Neural Networks

We have used the Artificial Neural Networks (ANN) algorithm which was designed to simulate
the way human brains function. Here, the basic building block is a neuron which takes input,
processes the input and finally generates an output. The inputs are weighted and the weights are
initialized to small randomized values. The sum of the weighted inputs are later passed directly
through an activation function which is present in every neuron. These activation functions map
the input to output. They are called activation functions because they decide if a neuron is going
to be ignited or not based on a threshold. For training, the Stochastic Gradient Descent is still
the favored algorithm in Neural Networks. Here, each row in the training dataset is exposed to
the network one at a time. The network processes the upward input of activating neurons as it
is eventually going to create an output value which is known as Forward Pass. This pass will
eventually generate an output. Based on the difference between the real output and the esti-
mated output, the error is calculated. This error is then propagated back across the network and
the weights are updated accordingly to minimize the error. This algorithm is called the Back
Propagation.

We have decided to use an optimized version of the Gradient Descent known as Adaptive Mo-
ment Estimation (Adam) that computes adaptive learning rates for each parameter. The decay-
ing averages of past and previous squared gradients mt and vt are calculated as follows:

mt = β1mt−1 + (1− β1)gt (2.1)

vt = β2vt−1 + (1− β2)g2t (2.2)
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The first moment (mean) and the second moment (uncentered variance) of the gradients are
estimates of mt and vt respectively, hence the method name. By calculating bias-corrected first
and second moment figures, they combat these biases:

m̂t =
mt

(1− βt
1)

(2.3)

v̂t =
vt

(1− βt
2)

(2.4)

They then use these to change the parameters that the Adam update rule produces:

θt+1 = θt − m̂t
η

(
√
v̂t + ε)

(2.5)

As soon as the model has been trained, it can be used to make predictions. The ability of the
model’s power can also be tested by making predictions on test or validation data. The network
can also be operationally deployed and used repeatedly to make predictions.

2.2.2 K-Nearest Neighbour
The KNN or nearest neighbours is a simple, supervised machine learning algorithm that is used
in regression and classification problems. KNN is known as a non-parametric and lazy learn-
ing algorithm. It is termed non-parametric as it doesn’t surmise anything about the data. Lazy
learning as it doesn’t have a specialised training phase. Testing phase is where all the training
data is used. Resulting in the training phase being faster and testing much slower and expensive.

KNN in classification relies on a voting process from the object’s ‘k’ nearest neighbours, the
number ‘k’ being the key deciding factor. The object is classed based on the majority votes
received from specified k nearest neighbours.
We then calculate the distance between each test data to each train data using the Euclidean
distance formula.

dis(x, xji ) =

√√√√ d∑
i=1

x(i)− xji (i)2 (2.6)

We find the weighted distance of the test point from each neighbour.

w = 1− dis(x, xji )∑k
i=0 dis(x, x

j
i )

(2.7)

Using the weighted distance value, neighbours are sorted in ascending order. The first K near-
est neighbours are then chosen. The test point is designated a class based on the most recurrent
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class of k neighbours.

2.2.3 Random Forest
Random Forest is a supervised ensemble algorithm widely used for classification and regres-
sion problems for its high effectiveness. The forest is an ensemble of many individual decision
trees and the ability to control the number of trees to be present in the forest generally gives the
model high robustness. The Random Forest firstly chooses a random subset of the dataset with
replacement (bootstrapping) and then randomly selects ‘k’ features from the ‘m’ features of the
dataset. This adds randomness to the model and makes each decision tree uncorrelated to each
other. The ‘k’ features are used to locate the root node depending on the criterion used. In our
paper the criterion used was ‘gini’ for the gini impurity

Gini = 1−
C∑
i=1

(Pi)
2 (2.8)

The nodes are then split using the criterion to form daughter nodes, using different random sets
of k features each time, until the tree reaches its maximum depth with only a single sample at
the leaf node or is stopped prior to this. This process is continued until ‘n’ trees are built. Each
tree provides a classification for the test samples. Votes are taken for all the classifications of the
target label of each tree and the majority vote (The maximum count of classified labels) gives
the final prediction of the Random Forest model.

Random Forests usually provide high accuracy, seldom suffering from over fitting. This is
due to the fact that random forest creates a number of decision trees working in ensemble. Here
each individual decision tree may over fit and have high variance (if the tree is too deep) or
under fit and become inflexible with high bias (if the model is too simple) but because of the
aggregation of the results of a large number of decision trees by majority voting we get a model
with low bias and low variance allowing Random Forest to have larger trees. Thus, increasing
the number of trees in a Random Forest not only results in more accurate predictions but also
avoids overfitting. Random Forest classifiers are also adept in handling missing data and can
also be used to select features based on feature importance.
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Chapter 3

Proposed Model

3.1 Dataset Description

For the dataset we have used the CSE-CIC-IDS2018 dataset[12], which was developed jointly
by Communications Security Establishment(CSE) and the Canadian Institute for Cybersecurity
(CIC) which was collected over a period of 10 days. It was prepared by implementing an at-
tack infrastructure of 50 machines and a target organization consisting of 420 machines and 30
servers over 5 departments. It involves the capture of machine network traffic and device logs,
along with 80 features extracted using CICFlowMeter-V3[13] from the collected traffic. This
dataset includes a wide range of attack scenarios such as Brute-force, Heartbleed, Botnet, DoS,
DDoS, Web attacks and internal infiltration of the network. All in all, with the implementation
of the attack scenarios and the infrastructure, the final dataset consists of 80 features and 14
different types of attacks. The dataset contains more than 16 million connections. The connec-
tions are either labelled ‘Benign’ (non-attacks) or the name of the attack type they represent.

Although this dataset is the newest dataset currently available for IDS and is designed to ad-
dress the deficiencies of static and one-time datasets that do not provide adequate data for ever-
changing activities and trends of network and intrusion evolution, it is highly biased. Almost
70% of its records are benign, making any model of Machine Learning vulnerable to errors.

3.1.1 Data Pre-processing

First of all, we merged all of the datasets into one. Secondly, since our primary objective is to
identify ”Zero Day Attacks” that we believe have parallels with the attacks we already know,
we are not interested in categorizing any attack as one of the known attacks. Hence, all the
labels fall into one of two categories: either it’s an attack or it isn’t. Then we transformed the
labels into numerical values consisting of only 1s and 0s, where 0 means benign and 1 means an
attack. After that, all NaN, infinite, and non-numerical values were removed from the dataset in
order for our ML algorithms to operate on it. Next, we split the dataset into 75% for training and
25% for testing/validation. In addition, based on their similarity with other features, we dropped
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some features to reduce dimensionality. In this respect, a threshold of 0.9 is used. Correlation
features greater than this threshold were dropped and were not used in training. Finally, We
scaled both the training and testing datasets using Standard Scalar.

3.2 Model Description

3.2.1 Preparing ANN Model

As of the sequence of layers, we will construct a sequential model and add layers until our
network topology is satisfied. The first and foremost thing is the number of inputs. In our case,
after feature selection, the input layer consists of 47 neurons each referring to a specific feature
in our dataset. Our model will have one neuron in the output layer that will have the desired
result.

For the number of hidden layers, we experimented with different combinations through trial
and error and finally found 3 hidden layers each consisting of 24 neurons to be producing the
best accuracy.

Since, Multi Layer Perceptron which is entirely connected performs well in Binary Classifi-
cation, our Neural Network will also be fully connected, that is each node in every layer is
connected to all the nodes in the layer next to it.

Now that our Network is constructed, we need activation functions. For the activation functions,
we have used ReLU for all the layers except the output layer which uses the Sigmoid activation
function.

For hyper-parameter optimization, we have used RandomSearch. Another alternative option
that could be used is Grid Search but RandomSearch converges much faster comparatively. The
optimal value for batch size, epochs , k-fold cross validation and optimizer are found to be 1024,
500, 10 and Adam respectively.

Moreover, to prevent overfitting, we have used the Dropout technique. It is a technique where,
during preparation, randomly selected neurons are ignored. They are ”dropped out” which
means that their contributions in the forward pass are temporarily terminated and any weight
change in the backward pass are not added. The Dropout rate of 0.1 generates the best accuracy
which is also with the help of the RandomSearch algorithm.
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3.2.2 Preparing KNN Model
Since the value of k greatly affects the performance of KNN we have to choose a value that best
satisfies our model both in terms of performance and speed. Higher values of ‘k’ will make the
algorithm computationally expensive to the point where the model becomes unusable in real
life applications and smaller values of ‘k’ tend to overfit the model by picking up noise.

So we made a parameter grid and set different values of ‘k’ (5 - 25) to see which value makes
the KNN perform the best.

After setting the range of ‘k’ for the model to be evaluated upon, we also have to set the other
parameter values in our parameter grid. This parameter grid was fed to the RandomSearch
algorithm to optimize the model parameters. This method of hyper-parameter tuning is very
effective as it provides the best parameter settings for the model faster than the grid search al-
gorithm. The results were validated by using 10-fold cross validation of the RandomSearch
algorithm.

To avoid overfitting and underfitting of the model we have evaluated the test accuracy and train
accuracy for different values of k. The resulting ‘k’ value thus does not overfit or underfit the
model.

3.2.3 Preparing Random Forest Model
As we have seen that having a large number of trees in the forest avoids the model from being
over fitted but may in turn be computationally expensive to train. So first we have to find a
suitable value for the n estimators parameter (number of decision trees) of the Random Forest.
We make parameter grid containing a range of values for n estimators that are neither too less
to cause underfitting nor too high to become computationally expensive.

Random Forest with deep trees may result in the model having high variance and becoming
too flexible causing it to memorize the training data and become less generalized. So to avoid
overfitting, a shallow depth of trees can be set. We make a range of values for the max depth
parameter that are not too deep and add it to our parameter grid.

Once the parameter grid is set up we run the RandomSearch algorithm for hyper-parameter
turning of our model. This gives us a parameter setting that makes our model perform the best.
The number of trees is large enough to avoid overfitting and give higher accuracy. The depth of
the individual trees are shallow enough to avoid overfitting. These can be further optimized to
increase performance in terms of speed and computational expense.

The max features parameter of the random forest which is the number of features to be ran-
domly chosen to split a node is set to log2 ‘m’ (the number of features in the dataset). The
default value for the max features parameter is sqrt ‘m’ but the difference in accuracy attained
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for both is quite insignificant but setting max features as log2 ‘m’ makes training faster.

Bootstrap value is set to true (bootstrap=True), this enables bootstrapping of samples which
adds randomness to the model. A sample of the dataset is to be randomly selected with replace-
ment ensuring that the model does not have high variance and does not overfit.

The oob score value is set to true to use out-of-bag samples for evaluating the models per-
formance.

After all the parameters have been set, we evaluate the model using stratifiedKfold cross val-
idation where value of k is 10. This gives us an estimate of how well our model should be
performing.
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Chapter 4

Experimentation

This chapter describes our computations and outcomes and the visual representation of our out-
put is also given.

RandomSearch algorithm was run to find the best parameters for the ANN model. Among
all the combinations, the best 4 of them are shown below in Table 4.1. The best result for ANN
was achieved in Model 1 of Table 4.1, where the parameters are batch size= 1024, epochs= 500
and optimizer= Adam.

Table 4.1: Best four parameters found for ANN from RandomSearch Algorithm

Model Parameters Precision Recall F-Measure Accuracy

1

Batch size= 1024

98.71% 95.11% 96.88% 98.30%Epochs = 500
Optimizer = Adam
(Best)

2
Batch size= 2048

97.36% 94.18% 95.74% 97.63%Epochs = 250
Optimizer = Adam

3
Batch size= 1024

97.93% 93.56% 95.69% 97.61%Epochs = 500
Optimizer = Adam

4
Batch size= 2048

98.03% 93.63% 95.78% 97.66%Epochs = 500
Optimizer = Adam
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The Random Forest model was run on Google colab cloud platform. Upon running the Random-
Search algorithm the best parameter setting found for the model was where n estimator=110
max depth=20 and max features= log2 (Model 1 of Table 4.2). This provided high accuracy
with a satisfactory training time. On increasing the number of trees and depth of the trees
(Model 3 and 4 of Table 4.2) we can see that scores only differ very slightly but take longer to
train. If we decrease the number of trees and depth (Model 2 and 5 of Table 4.2), we see that
the training time does decrease a bit but the scores also drop slightly.

Table 4.2: 5 Best selected models and the effect of n estimator and max depth on RF

Model Parameters Precision Recall F-Measure Accuracy Oob Train
Score Time

1

n estimator =110

99.90% 96.60% 98.22% 98.90% 98.90%

13.4
max depth=20 min
max features=
log2 m (BEST)

2

n estimator =110

99.86% 96.56% 97.71% 98.56% 98.59%

10.3
max depth=10 min
max features=
log2m

3

n estimator =110

99.81% 96.60% 98.20% 98.89% 98.87%

12.7
max depth=50 min
max features=
log2m

4

n estimator =150

99.90% 96.59% 98.21% 98.90% 98.88%

17.2
max depth=20 min
max features=
log2m

5

n estimator =100

99.88% 96.60% 98.21% 98.90% 98.88%

12.6
max depth=20 min
max features=
log2
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On the best model found so far we then change the max features to half the total features
(max features=m/2). We can see that not only did the models’ predictive performance increase
slightly but the time needed for training increased significantly as well. The bump in accuracy
is not too much thus trading the training time for such a little increase in accuracy will not be
wise. Now we again increase the max feature to be m (max features=m). Now all the features
are used to split the nodes. We can see that the training time has considerably increased however
the predictive performance roughly remained the same.

Table 4.3: Effect of max feature on the best tuned model of RF

Model Parameters Precision Recall F-Measure Accuracy Oob Train
Score Time

1

n estimator =110

99.90% 96.60% 98.22% 98.90% 98.90% 13.4 minmax depth =20
max feature =
log2m
(BEST)

2
n estimator =110

99.86% 96.76% 98.29% 98.94% 98.92% 51 minmax depth =10
max feature =
m/2

3
n estimator =110

99.70% 96.79% 98.23% 98.90% 98.90% 82 minmax depth =50
max feature =
m
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In the case of KNN, from the RandomSearch algorithm we got the best 3 models with different
k values as shown in Table 4.4. We can see that the scores are almost similar but model 1 with
k=5 gives the best accuracy as well as makes the model less complex.

Table 4.4: 3 Best selected models found for KNN from RandomSearch algorithm

Model Parameters Precision Recall F-Measure Accuracy
1 K=5 (BEST) 98.65% 93.39% 95.95% 98.53%
2 K=10 99.04% 92.94% 95.89% 98.51%
3 K=15 98.78% 93.09% 95.85% 98.50%

16



Chapter 5

Result Analysis

The performance of our model was determined by how accurately it can detect attacks, known
and unknown alike. The four parameters of the confusion matrix which are: TP (True Positive),
FP (False Positive), TN (True Negative) and FN (False Negative) were used to evaluate the
performance. The Accuracy verifies the ratio of the samples that were predicted accurately to
the samples that were provided in total.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (5.1)

Additionally, Precision specifies the ratio of positive observations that were predicted correctly
to the total positive observations of the test set.

Precision = TP/(TP + FP ) (5.2)

Recall indicates the ratio of positive observations that were predicted correctly to the sum of
true positives and false negatives in the test set.

Recall = TP/(TP + FN) (5.3)

F-measure determines the weighted average of the precision and recall.

F −measure = (2 ∗ Precision ∗Recall)/(Precision+Recall) (5.4)

The OOB scores are used to validate the Random Forest algorithm. It gives a better predictive
model whose variance is low and also prevents leakage of data.
(Equation)

The proposed Random Forest model has high accuracy along with a similar cross validation
score. Our model performs better than the model used in paper[10]. Where the Random For-
est had an accuracy of 98.88%, slightly lower than our 98.90%. Our model also outperformed
the Random Forest model of the paper[11] where it had an accuracy of 92.93% on the IDS. In
the paper [9] the proposed model was run for individual attacks. For this, the Random Forest
did poorly in some cases with low accuracies and high false positive rates. Our model on the
other hand was trained on a dataset where all attacks were combined and represented as 1. For
this our model had better accuracy and low false positive rate. Similarly, our KNN model, as

17



well as, ANN model outshined the corresponding models described in paper [6]. The precision
and F-measure of our KNN model is 98.65% and 95.95% whereas these scores in paper [6] is
94.80% and 94.80%, respectively. Moreover, their worst model is NN which scores 88.1% in
precision, 86.4% in Recall and 85.9% in F-measure. Comparing these values with our ANN
model, we obtain 98.71%, 95.11% and 96.88% in these criteria, which is better.

The results obtained from the RF model are the best among the models that we implemented. It
has the highest scores in precision, recall, F-measure and accuracy. ANN comes a close second
with the aforementioned scores being slightly lower than that of RF model but higher than the
KNN model.

Figure 5.1: Performance analysis of different ML models

However, almost all the models show high accuracy in their results. This is due to the dataset
being biased. Hence, we are focusing on False Negatives. It is defined as the outcome that
estimates the negative class inaccurately. A user/ company may endure a huge loss if even a
single attack does not get detected.
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In table 5.1 the different values of false negative that were obtained from different machine
learning models are shown. The best value was procured from the Random Forest model.

Table 5.1: False Negative Rate of different ML Models

Model False Negative Rates
RF 3.39%(BEST)
ANN 4.88%
KNN 6.60%

19



Figure 5.2: Comparison among the false negative rates of different ML models

From Fig 5.2, we can see that the Random Forest model has the lowest percentage of False
Negatives. Thus, it is more likely to detect Zero Day attacks efficiently and precisely.
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Conclusion

The real challenge we face every day is to keep our information secure. With IoT taking over
our lives, slowly but surely, our data and well-being is compromised due to lack of secure net-
works. Our proposed system is to address this problem which is long overdue and needs to be
attended to with utmost priority.
Among the 3 machine learning based algorithms that we implemented in our research, we ob-
tained the best result from Random Forest. It gave us an accuracy of 98.9% which outperforms
Artificial Neural Networks (98.3%) and K-Nearest Neighbour (98.53%). However, while work-
ing on our system, we have realized that the dataset we have used is quite biased even though
it is the most recent dataset that is available.. Hence, for further research we plan to reduce the
biasness of the available dataset to ensure more accurate results. Since we achieved the best
outcome from our Random Forest model, we would like to research more on it so as to achieve
even better results. We would also try to reduce the rate of false negatives in this case. Further-
more, we would delve more into Neural Networks and try to obtain a more promising output
as Deep learning is gaining increasing popularity in recent times and extensive research on this
area can take it to greater heights.
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