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Abstract

This paper discusses about various types of constraints, regulations, difficulties and
solutions to overcome the challenges regarding university departmental course alloca-
tion problem. A CSP solver algorithm, Genetic Algorithm, Simulated Annealing and
a hybrid of Genetic Algorithm and Simulated Annealing has been used separately
to generate the best course assignment and also to compare the results generated
by these four algorithms. The Department of Computer Science and Engineering of
BRAC University has been used as a case study to discover the scope of automation
in this research. After analyzing the information gathered from the department it-
self, some constraints were formulated. These constraints manage to cover all the
aspects needed to be kept in mind while preparing a class schedule for a faculty
member without any clashes. The goal is to generate optimized solution(s) which
will fulfill those constraints. At this point, the main focus is on the perspective of
the faculty members but in the near future, there will be enough opportunities for
expansions, like focusing on the lab change procedure of the students, assignment
of student tutors and many more.

Keywords: Course Allocation; CSP Solver; Genetic Algorithm; Simulated Anneal-
ing; Hybrid Algorithm.
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Chapter 1

Introduction

University departmental tasks are the most crucial parts of a university system as
it is interconnected to institutional management, efficiency and effectiveness. It in-
cludes inventory management, generating class schedule, assigning Student Tutors,
handling the process of changing labs of students’ due to clashes in their schedule
etc. The work shown in this paper focuses on solving the Departmental Course
Allocation Problem (DCAP). This is known as an NP-hard problem [1][2] and it
involves assigning of faculties to their respective courses and timeslots, while also
satisfying a set of constraints. The task of course allocation is quite time consuming
when it is done manually. The integration of Artificial Intelligence (AI) has been
instrumental in tackling this problem. However, there is no universal solution to
this problem since different institutions have different requirements and they can
vary from one institution to another. Researchers have approached this problem
by using various optimization algorithms to meet these requirements. In this pa-
per, we attempted to solve this problem by using four different algorithms, a CSP
Solver Algorithm, Genetic Algorithm (GA), Simulated Annealing (SA) and Hybrid
Algorithm combining GA & SA. Using the above mentioned algorithms, an optimal
solution can be found in the least possible effort.

1.1 Motivation

As already mentioned, course allocation is a task that requires a lot of time and
effort. In BRAC University, this is usually handled by some faculty members in
the beginning of every semester. They have to iterate through the same process
of allocating the available timeslots before finding a solution that matches all their
requirements. While going through this process, they try to avoid clashes. However,
in the first few attempts, it is nearly impossible to find a solution that is clash-free.
Once a clash is found, they have to backtrack and search for options that can resolve
the clash. It becomes hectic for those faculty members in charge to go through the
same process again and again. Students also get frustrated when the routine keeps
changing frequently. The scope of this problem is very large and complicated, but
some parts of it can be solved using AI optimization algorithms. This will help to
find optimal solutions to the allocation problem and assist the faculty members in
their work. We hope that this will reduce the work-hour loss of the department and
the productivity in other departmental tasks will increase.
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1.2 Problem Statement

The scope of our thesis is the automation of the course allocation problem of the
Department of CSE of BRAC University. To implement our idea, we have chosen the
routine making task of the department as our case study. It includes a lot of factors
and constraints which need to be handled individually while manually preparing the
routine for each semester. Opening sections of courses, providing a time slot for
every section opened, allocating rooms to every sections, providing lab slots for the
courses that require labs and finally assigning a faculty to each section of the offered
courses along with the labs is not an easy task. Our target is to handle as much of
these constraints or conditions and propose an efficient solution that will be able to
allocate faculties to the respective sections of courses.

For the undergraduate program, in every semester, generally, there are a total of
six theory slots that starts from 8:00 am and ends at 4:50 pm where a slot lasts 1
hour 20 minutes. There are three lab slots that starts from 8:00 am and the last
slot ends at 4:50 pm where a slot lasts three hours. There is another theory slot
at 5:00pm - 6:20 pm for exceptional cases i.e. it is used when there are no other
options. In our case study, this slot is excluded. One lab slot is equivalent to two
consecutive theory slots. So in total, for six working days, there are thirty six slots.
Besides, four of the courses offered by the department have alternate labs, which
means that the labs take place by skipping a consecutive week. Courses offered
by the department are of two categories, Core and Elective. Core courses are the
courses that must be completed by the students of the department to complete their
degree. Elective courses are the courses that are to be completed by the students
according to their choice. So every section of all the courses need to be allotted to
the timeslots mentioned above.

The department has seven categories of faculty members, starting from the Head(s)
of the department, followed by the Associate Professor, Assistant Professor, Lecturer
III, Lecturer II, Lecturer I and Contractual Lecturers. The Head and the Deputy
Head of the department can take a maximum of two theory courses or six credits
per semester. The Associate Professors take a maximum of three theory courses
or nine credits each semester. Faculty members of the above mentioned categories
usually do not take labs, so they are only allotted to theory slots. The Assistant
Professors, Lecturer III, Lecturer II and Lecturer I can take at most 12 credits per
semester. The distribution of the 12 credits are generally done by assigning them
to three theory slots and two lab slots. The final category of faculty members are
the Contractual Lecturers. They are given a maximum of 10.5 credits. The number
of faculty members in each category varies every semester. In Spring 2020, there
was one Head of the department and one Deputy Head, five Associate Professors,
four Assistant Professors, sixty two Lecturer III, II and I and fifty eight Contractual
Lecturers. In Summer 2020, there was one Head of the department and one Deputy
Head, five Associate Professors, five Assistant Professors, fifty seven Lecturer III,
II and I and thirty five Contractual Lecturers. In Fall 2020, there was one Head
of the department and one Deputy Head along with one Distinguished Professor,
five Associate Professors, five Assistant Professors, forty six Lecturer III, II and I
and thirty nine Contractual Lecturers. The number of new Contractual Lecturers
intakes differ from semester to semester, so their total number is not constant.
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The distribution of credits for theory, regular lab and alternate labs are 3, 1.5 and
0.75 respectively. When a faculty is assigned to either of the above three, then
that amount of credit is updated to the amount of credits taken for that semester.
Every semester, an Expression of Interest (EOI) form is provided to all the faculty
members except for the Contractual Lecturers, which is used to collect the list of
courses they would prefer to teach. The preference of courses for the Contractual
Lecturers can be taken from their appointment form where they are asked to provide
their preferences. This works as an alternative to the EOI form, but serves the same
purpose. This helps to sort out which faculty member is to be assigned to a course
and also to know if there is any special request by any faculty member, i.e. any
time slot or day that they do not want to take classes due to valid reasons or any
sort of pre-commitments elsewhere. Keeping these in mind, the faculty members
are assigned to suitable courses.

There are some sides of this problem that are not handled in our present work.
One of them is allocation of rooms. The faculty members of the department who
are in-charge of the routine making committee, chart out an approximate number
of sections of the courses. They address the Office of the Registrar with the total
number of rooms that the department might need for a semester, then the Office
puts forward a certain number of rooms that can be given to the department. They
take the rooms given by the Office of the Registrar and start preparing the routine.
They start allocating the sections to the provided rooms and check whether all
sections have been allocated or not. If not, then the committee again asks for rooms
from the Office of the Registrar and they provide the required rooms. As the room
allocation of the courses is not directly linked to the faculty allocation problem, we
have not included this in our work. Another perspective which we have excluded is
the faculty allocation of the postgraduate program. The timeslot distribution of this
program differs from the undergraduate program and different sets of constraints are
required to handle this perspective.

1.3 Paper Outline

• Chapter 2: This chapter discusses the related works conducted by other re-
searchers.

• Chapter 3: This chapter gives the general overview of the AI optimization
algorithms used in this work.

• Chapter 4: This chapter explains how the datasets were prepared, the con-
straints taken into consideration and the implementation details of the used
algorithms.

• Chapter 5: This chapter visualizes the results with appropriate images, graphs
and tables.

• Chapter 6: This chapter compares the performance of the different algorithms

• Chapter 7: This chapter concludes the work by putting forward the limitations
in our work and proposing the scope of future research.
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Chapter 2

Related Work

The researches in course allocation have been carried out for a long time. Var-
ious algorithms have been proposed by researchers such as graph coloring meth-
ods, constraint-based methods, population-based methods, metaheuristic methods,
variable neighborhood search, hybrid and hyperheuristic approaches and so on.
Population-based methods consist of genetic algorithm, ant-colony optimization,
memetic algorithm, etc. Metaheuristic methods include tabu search, simulated an-
nealing and great deluge [1]. Graph coloring algorithm is one of the first and most
popular algorithms that have been used in this field. One of the major drawbacks
of this algorithm is that, non-academic constraints result in complex problem for-
mulation. Eventually, this creates difficulties in implementation. Researches using
linear programming were not feasible as the complexity of variables and constraints
increased. Other researchers have integrated constraint logic programming with sev-
eral algorithms to solve the same problem. But the performance was poor as the
results were very reactive to small changes [3]. In recent years, both population
based and local-area based methods are being used to solve the course allocation
problem. Among them, genetic algorithm, which is a population based method,
has gained popularity because of its high optimization efficiency. Also, simulated
annealing has been preferred by many researchers since it can avoid getting stuck
at the local minimum [4]. In the first international conference on the practice and
theory of automated timetabling, more emphasis has been laid on general problem
solving algorithm such as genetic algorithm, simulated annealing and tabu search
[5]. In our presented work, we have chosen a CSP solver algorithm, genetic algo-
rithm, simulated annealing algorithm and a hybrid algorithm combining GA & SA
to solve the course allocation problem of The Department of Computer Science and
Engineering of BRAC University. We went for four separate approaches to make
a comparative analysis on which algorithm can give the better result in terms of
optimization and constraint satisfaction.

The timetabling problem can be formulated as a CSP and it can be implemented
by applying CSP search algorithms. Since all constraints of this problem is impos-
sible to satisfy, the violations of soft constraints need to be minimized as much as
possible [6]. In [7], Dynamic Constraint Matching (DCM) was implemented along
with Vertex Graph Coloring (VGC) in order to come up with a solution for the
timetabling problem. DCM is formed by constraints logical formulation, collision
matrix generation and validation using the collision matrix. Applying VGC alone
does not ensure the satisfaction of all constraints. Integrating DCM with VGC does
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not violate any of the hard or soft constraints. The execution time of this tech-
nique was less than 1 minute. Combining backtracking-free construction and local
search technique with look-ahead capabilities, [8] have constructed the solution of
timetabling problem. Considering the CSP as a constraint graph, a graph search al-
gorithm named A*-algorithm was implemented by [9]. Representing the timetabling
problem as a PCSP (Partial Constraint Satisfaction Problem), [6] have defined a fi-
nite domain solver based on CHR (Constraint Handling Rules). A model was built
using Constraint Logic Programming (CLP) to solve the course timetabling problem
as a CSP [10].

GA has some certain advantages over other algorithms. It does not require complex
mathematical formulation. Also, global search is performed smoothly because of
the operators’ ergodicity of evolution [11]. Although GA provides globally optimal
solutions for complex search spaces [12], it needs more time to execute [13]. Sev-
eral researchers have reduced this execution time by modifying genetic and heuristic
operators and integrating LS techniques [1]. Since GA is a parallel random search
optimization algorithm, it can achieve global optimization by improving the config-
uration of several resources [14] [15]. By using such a GA, time consumed to reach
the optimal solution has been significantly lower compared to conventional GA [16]
[17]. Another way of approaching this problem is to use Modified GA and Coop-
erative GA. Modified GA can produce results at a shorter time and Cooperative
GA can reduce the cost value [18] [17]. Guided Search has been integrated with
the classical GA to approach the University Course Timetabling Problem [1] [19].
Quality of generated timetable increases during the initial phase of GA according to
[20]. The authors proposed to use the generated output of GA as input to another
optimizing algorithm to enhance the efficiency. But it has also been found that
normal GA does not provide optimal solutions compared to other meta-heuristic
approaches [21]. More recent works on GA have proposed modifications to genetic
operators such as the crossover operator [22]. Generally, two offsprings are produced
in this operation, but the authors have suggested to produce only one offspring in
each crossover by taking the best genes from the parents. Comparing the results
of this approach with the conventional crossover techniques show that this method
provides better results in lesser time than one-point crossover, but was not faster
than the two-point crossover. Another variation of GA has been introduced by [23]
that uses multiple levels of GA computation which they called MDGA (Multi-Depth
GA). These levels were based on the depth of the objective function such as shallow,
medium and deep. Their goal was to divide the problem to smaller ones to solve
the timetabling problem while reducing its time consumption.

SA is a single-solution local search heuristic algorithm that works for both discrete
and continuous problem [24]. It uses a temperature control parameter and a cooling
schedule to escape the local minimum/maximum and attempt to reach a solution
near global optimum [25]. A disadvantage of SA is that the convergence takes exces-
sive amount of time when the search space is large [26]. To overcome this drawback,
some researchers have controlled the temperature parameter of the algorithm which
resulted in better performance. The global optimum can be found exponentially
faster by tuning the rate of cooling the temperature. The performance of the al-
gorithm is proportional to this rate. When the process of the cooling is slowed
down, the computational cost is improved [27]. A similar approach of lowering the
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temperature reduction value was proposed that also converges in lesser time, named
Modified Simulated Annealing. Instead of using the linear exponential temperature
decrease function, a parabolic exponential temperature decrease function has been
implemented, that gives better solutions [4]. SA has been applied to another re-
search [28] where the execution time was approximately 14 hours. To reduce this
time, a parallel approach of running the SA has been implemented on a shared
memory multiprocessor. This seemed to be promising at first, but the increasing
number of competing processors created complications. A comparative study was
conducted among SA, GA and a hybrid of SA-GA where SA produced the best
result. Hybrid of SA-GA came in second and GA generated the worst result. The
reason behind the under performance of GA was due to the smaller search space
[29]. A related approach was taken by [30], where they used roulette wheel selection
with a partially matched crossover (PMX) to improve the produced offsprings. To
get more refined results, SA was hybridized with GA.

Taking the good properties of local and global area based algorithms, [31] have
integrated GA with LS (Local Search) algorithms such as SA, TS (Tabu Search),
RI (Randomized Iterative) Local Search. Their target was to take advantage of
exploration ability of GA and exploitation ability of LS. The LS algorithms help
GA to get out from the local optimum. Additionally, fuzzy logic is implemented to
check soft constraint violation of the fitness function. Considering the fitness and
execution time, hybrid of GA and TS have generated the best optimal solution even
when the dataset was large. The hybrid of GA and SA have performed worse than
the hybrid of GA and TS, but better than the hybrid of GA and RI. A two-stage
approach of solving the exam scheduling problem has been taken in [32], where
Constraint Programming (CP) was used to generate an initial solution that satisfies
the hard constraints. Then SA is implemented to refine that generated solution by
satisfying the soft constraints. Kempe chain neighborhood structure was applied
with the SA to determine the starting temperature. The user can specify how long
the algorithm will run depending on this structure. This increases the efficiency
of the algorithm. Backtracking with forward checking has been used in the CP
phase. Similar approach has taken by [33], where the CP was used to solve all the
hard constraints and SA was used to improve the quality of solutions. For solving
the teacher assignment and the course scheduling problem, a hybrid between an
integer programming approach, a greedy heuristic and a modified SA has been
proposed by [34]. According to them, this hybrid algorithm can resolve the issues of
integer programming approach regarding large datasets. Another hybrid approach
was proposed by [35], where a model was constructed based on the application
of construction heuristics, TS, variable neighborhood descent and SA. The initial
feasible solution is generated by solving the hard constraints. These constraints
were satisfied using LS and TS. To improve the initially produced timetable, they
minimized the violation of soft constraints with the use of variable neighbourhood
descent and SA. Recently, [36] has presented a hybrid of Parallel Genetic Algorithm
with LS. The Parallel GA was used to increase the convergence speed and to diversify
the population. The solution provided by GA has been improved by minimizing soft
constraint violation using LS and the elitism operator. These prevent the GA from
getting stuck in the local optimum and leads to better performance.
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Chapter 3

Optimization Algorithms

3.1 CSP Solver Algorithm

CSP solver algorithms are general purpose algorithms that are used to solve CSP.
CSP is a special subset of search problems that uses factored representation for
each state. Each of those states contains a set of variables with values. When
the constraints on all those variables are satisfied by the values that they hold,
then that problem is considered to be solved. Instead of using problem-specific
heuristics, CSP solver algorithms use general-purpose heuristics to solve complex
problems. The specialty of CSP solver algorithms is that they can reduce the size
of the search space significantly by removing the variable/value pairs that do not
satisfy the constraints. CSP is used to solve various real world problems such as As-
signment Problems, Timetabling Problems, Production Scheduling, Transportation
Scheduling and so on. Optimization Problems can be represented by a sequence of
constraints. An objective constraint can be introduced by specifying a threshold
value on the objective function. This threshold value is adjusted continuously to
check if the values of the variables are satisfying the constraints or not. In this way
the optimal value of the objective function is achieved [37].

CSP can be solved using various approaches such as backtracking search, filtering,
learning and decomposition techniques, use of efficient representations and heuristics
[38]. In these techniques, the constraints and the variables are considered to be
constant. However, in real world problems, the environment does not remain static
all the time. With each execution, the constraints and the variables keep changing.
In order to deal with this sort of situation, Dynamic CSP was introduced. It is
one of the many variants of CSP, in which the set of constraints evolves with the
environment. This change of constraints can be in the form of addition or deletion.
Due to these changes, the solutions that were generated previously may not be valid
in the next problem of the sequence. This sequence is referred to static CSPs that
are placed sequentially [39] [40]. One of the methods to solve Dynamic CSP is local
repair method. The algorithm starts with previous consistent assignment (partial
or complete), then fixes the inconsistency of changed constraints. It uses a sequence
of local modifications that means modifying the assignment of only one variable [41]
[42].
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3.2 Genetic Algorithm

GA is an adaptive search based heuristic optimization technique. To produce the
offspring for the next generation, the individuals of the population go through the
process of natural selection. The offspring will inherit the characteristics of the
individuals (parents) to be passed into the next generation. The chances of the
survival of the offspring will be high if their parents have good fitness value, otherwise
they will not be added to the next generation. This conforms to the rule of survival
of the fittest. This procedure continues until it reaches the stopping criteria which
can be maximum number of generations or a certain time limit [1]. GA is generally
applied in search problems and optimization problems as it is capable of finding
optimal solutions even in the most complex search spaces. It is mostly used in
building Recurrent Neural Network, for Mutation Testing, Code Breaking, Filtering
and Signal Processing, Image Processing, Learning Fuzzy Rule Base, Genetics Based
Machine Learning and Scheduling Applications.

GA has gained popularity because of its various advantages over other optimization
algorithms. One of them is that it can be easily parallelised. It means that multiple
GAs can be used simultaneously to perform a single task [43]. Since each of them is
independent from each other, the mutation and crossover are calculated separately.
As a result, their individuals vary from one another. Among those individuals, the
best one is selected as the solution to that task. Since GA is a population based
algorithm, it searches from a population of points rather than a single point. That is
why it works well with larger dataset compared to other algorithms. GA always gives
a solution and it is improved over the time. It can be called an upgraded version
of random local search since the optimal solutions are stored in every iteration. It
can be used to optimize both continuous and discrete functions. Although GA is
widely used for researches, it has some drawbacks. As previously mentioned, GA is
capable of providing good results even when the search space is very large. However,
it becomes computationally expensive with the increasing size of the search space -
if population size is very large, algorithm performing speed will decrease intensely.
On the other hand, if the population size is small, the problem will converge on the
answer which is not necessarily optimal [17]. In GA, the fitness value is calculated
over and over again, which can be time consuming in some cases.

The algorithm comprises of 5 phases.

• Initial Population
The initial population is defined by a set of individuals or chromosomes, that
are considered to be the solution of the given problem. Chromosomes are
formed by a set of variables known as Genes.

• Fitness Function
Fitness function is a function which measures how fit or good an individual is
to advance to the next generation. Each individual of the population is given
a fitness score. Higher the score is, better is the probability of being selected.
Fitness function is computed repeatedly, and it can affect the computation
speed of GA.
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• Selection
Using the fitness function, the fittest individuals are selected from the ini-
tial population. Genes of these individuals are forwarded to the succeeding
generation. Some methods of selecting these individuals are Roulette Wheel
Selection, Stochastic Universal Sampling, Tournament Selection, Rank Selec-
tion and Random Selection.

• Crossover
The selected individuals acts as the parents that will produce offsprings by
exchanging their genes. A crossover point is randomly selected within the
genes of these parent chromosomes. The exchange of genes will be continued
until this crossover point is reached. In this way the offsprings are created
with the genes of their parents. The produced offsprings are included to the
population. Crossover operators can be one-point, multi-point, uniform and
so on.

• Mutation
The newly formed chromosomes are randomly modified in order to get a new
solution that creates diversity in population. Mutation is operated on a low
random probability. If this probability is set to high, the GA turns into a
random search. Another crucial factor of this phase is that it prevents prema-
ture convergence. Mutation can be performed by randomly flipping, swapping,
shuffling, resetting and inverting the genes.

These phases keep running until a termination condition is reached. These condi-
tions can vary depending on the type of problems. One of the termination conditions
can be stopping the algorithm when there is no improvement in the generated solu-
tion for a certain number of iterations. Moreover, if the possibility of getting better
individuals in the next generations becomes low, then the execution of the algorithm
can be stopped. Another way of termination is reaching a fixed number of genera-
tions. Also, when the fitness function reaches the predefined value, the GA can be
terminated [44].

3.3 Simulated Annealing

SA is a probabilistic local search algorithm that is based on the process of physical
annealing [45]. In this process a material is heated until it reaches an annealing
temperature and then slowly cooled down to a stable structure. When the tem-
perature is very high, the molecular structure of the material is weaker and can
be changed more easily. When the temperature is low, the molecular structure be-
comes stronger and the structure is less likely to change. This idea of lowering the
temperature to achieve stabilization is applied to solve the problem of Hill Climbing
Algorithm, where the algorithm got stuck in local maxima. The reason is that, in
Hill Climbing Algorithm, downward moves are not allowed. However, by using the
concept of annealing, at high temperature, the probability of accepting a downward
move is also high. This allows the algorithm to jump out of the local maxima. The
probability becomes low as the temperature cools down with time [46].
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SA is useful for generating optimal solutions to a large variety of problems such as
Travelling Salesman Problem, Scheduling Problem, Task Allocation, Graph Coloring
and Partitioning, Non-linear Function Optimization and so on. It can also deal with
arbitrary systems and cost function. Like any other optimization algorithm, at first
SA generates a random initial solution, and then explores the neighbor states. If the
solution of these neighbor states are better than the current solution, then it shifts to
the new solution. However, if the starting temperature is not high enough to move
to neighbor states, the algorithm will behave like a Hill Climbing Algorithm and the
final solution will be similar to the starting solution. One of the few drawbacks of
SA is not being able to find the appropriate starting temperature for a whole range
of problems. Another disadvantage of SA is its slow convergence as it is inherently
sequential [26]. So, SA might take large amount of time when it comes to huge
search spaces [4]. When there are few local minima in some problems, SA will not
be able to take advantage of its core functioning principle i.e escaping from the local
minima. In that case, simpler and faster methods like gradient descent will function
better than SA.

The process of implementing SA algorithm is:

1. Generating a random initial solution s = s0 that checks all the boxes of an
acceptable solution. The initial temperature will be t = t0.

2. Temperature reduction function alpha (α) is defined. This function will be
used in the temperature reduction rules such as t = t*α. The initial temper-
ature is slowly cooled down using this function.

3. Select one of the neighbor solutions to check whether it is better than the
current solution. This checking is done by calculating the difference between
the new solution’s cost cnew and current solution’s cost cold.

∆c = cnew − cold (3.1)

where ∆c is the difference between new cost and old cost.

4. If the value of ∆c is less than 0, it means the new solution is better than the
old one and the algorithm is closer to an optimum. So, it will accept the new
solution. If the value of ∆c is greater than 0, it means the old solution is
better and the algorithm is moving towards a worse solution. To avoid getting
stuck in local maxima, acceptance probability is calculated to compare with a
random number generated between 0 and 1. The acceptance probability is a
function that tells whether we should accept the new solution or not.

P =

{
1 if ∆c ≤ 0

e
−∆c

t if ∆c > 0
(3.2)

Here, P represents the acceptance probability. P = 1 denotes that the new
solution will be accepted as the new cost is less than the old cost. Otherwise,
the algorithm will move to the new solution based on the value given by e

−∆c
t
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5. The above two steps will be iterated until it reaches the termination conditions
such as giving an acceptable solution for a certain set of parameters, reaching
a specified end temperature or a fixed number of iterations. The algorithm can
also be terminated if the cost becomes zero or does not change for a certain
amount of iterations [28]. After every iteration, the initial temperature will be
reduced according to α.

The acceptance probability changes with respect to the temperature. When the
temperature is higher, the algorithm has greater probability of accepting a worse
solution. Accepting a worse solution allows exploration of the search space to look for
the global maximum. As mentioned before, the concept of annealing is that, higher
the temperature, higher the possibility of changing the structure of the material.
When the temperature decreases, the probability of accepting a worse solution be-
comes very low. This allows exploitation, which means that the algorithm will not
look through other parts of the search spaces except the one it is in. Here, it will
rather try to converge and reach the global maximum. SA can take a long time to
converge if it has to go through many iterations, but it has the capability to get out
of the local maxima by jumping to bad solutions and eventually give an optimal
solution.

3.4 Hybrid Algorithm

When an algorithm is used to solve a problem, it might not be able to generate
the expected results, or be inefficient in terms of cost and complexity. Every algo-
rithm has advantages as well as drawbacks. To overcome the limitations, multiple
algorithms are integrated with each other. The shortcomings of one algorithm is
covered up by the other algorithm. By merging these algorithms, the features that
are required to solve the specific problems can be combined together. HA utilizes
the strengths of these features to solve the same problem more efficiently [34]. This
enhances the overall performance and the generated results are improved compared
to the results generated by the algorithms individually.

There are various combinations of algorithms when it comes to hybridization. The
algorithms are chosen depending on the problem requirements. For example, to
solve optimization problems like university course timetabling, hybrid of GA with
LS is popular. LS techniques include SA, Tabu Search, Randomized Iterative local
search and so on. GA has high probability of getting stuck at the local optimum.
On the other hand, RI local search is likely to achieve the optimal solution although
it converges very slowly. To account for these downsides, GA and RI are integrated
to take advantage of the high convergence speed of GA and the exploitation ability
of RI. SA can be used in place of RI since RI has the possibility of getting trapped
at the local optimum [31]. Another hybridization can be done between CP and SA.
To satisfy the hard constraints, CP algorithm named backtracking with forward
checking (BC-FC) is used. An initial feasible solution is generated by using this
algorithm. In the second stage, SA is applied to improve the generated timetable
from the first stage by satisfying the soft constraints. The main focus of the second
stage is to optimize an objective function [32]. Many more approaches are taken by
researchers to generate robust hybrid algorithms.
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Chapter 4

Methodology

4.1 Dataset

To implement the algorithms mentioned in the previous chapter, dataset of a par-
ticular size or proportion is necessary. The dataset works as the input to provide an
initial solution, and the optimization algorithms work on that solution to improve
it further. This increases the accuracy and a final optimal result is generated.

4.1.1 Data Pre-processing

The dataset was collected from The Department of CSE of BRAC University. These
were routines of all courses along with the faculty members assigned to each of those
courses. The routines were from Spring 2013 to Fall 2020, a total of 24 semesters.
After studying the pattern of course allocation to the faculty members over all
the semesters, we decided to use the routines of most recent semesters. So the
routines of Spring, Summer and Fall 2020 were selected as the final datasets for
the implementation of the proposed algorithms. The routines collected from the
department had information related to the class timings of every offered course, the
rooms they were allocated to and the faculty members assigned to these courses. As
mentioned before, our work does not include the allocation of rooms, since it has no
relation to the faculty allocation problem and mostly handled by the Office of the
Registrar. So the room numbers mentioned in the routines were not necessary for
our work. The theory and lab of the courses in the original routine were placed into
two columns because they had different faculty member allocations and timeslots.
For the ease of our implementation, these two columns were merged into one, and
they were separated from each other by adding ‘T’ or ‘L’ at the end of their course
codes. However, for some courses, the labs are held on alternate weeks. This means
that if the lab of one section is held in a week, then the lab of another section will
take place in the following week at the same timeslot. Generally, these two sections
are formed in pairs with a credit limit of 0.75 each. We considered this pair as a
single lab section with 1.5 credits in total, making it similar to the regular labs.
Furthermore, the theory and lab timings were distributed in three different columns
in the collected routines. The theory timings were provided in two columns; Day
and Time. The lab timings were given in one column where the day and time were
listed together and separated by a slash (/). For our purposes, we decided to assign
values from 0-35 to these Day/Time pairs and brought them under two columns in
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our final dataset. The table 4.1 shows how these values were assigned.

Time
Day 08:00 -

09:20
09:30 -
10:50

11:00 -
12:20

12:30 -
1:50

02:00 -
03:20

03:30 -
04:50

Sunday 0 1 2 3 4 5
Monday 6 7 8 9 10 11
Tuesday 12 13 14 15 16 17

Wednesday 18 19 20 21 22 23
Thursday 24 25 26 27 28 29
Saturday 30 31 32 33 34 35

Table 4.1: Index Values of Timeslots

This table represents a total of 36 values equivalent to each of the Day/Time pairs
of the collected routine. In most of the cases, the theory classes are allocated to the
same time every two days of the week. Such as, a theory course on Sunday 08:00
am-09:20 am and Tuesday 08:00 am-09:20 am is denoted by 0 and 12 according to
this table. The lab classes are held in two consecutive timeslots on the same day.
For example, a lab class starting on Monday 11:00 am will end at 1:50 pm. In this
case, the values to be assigned will be 8 and 9. In this way, the Day/Time pairs for
each section of the original routines were kept unchanged, but brought under two
columns in the final dataset. This concludes the necessary adjustments to create
the course information dataset of the three individual semesters.

The preferred courses of the faculty members were prepared separately. This was
not mentioned directly in the collected routines. From the analysis of the previous
routines ranging from Spring 2013 to Fall 2019, the pattern of courses allocated to
each of the faculty members were considered. In this way, the list of courses that
can be given to the faculty members were brought under one column, and separated
by a hyphen (-). In the cases of new faculty members, where there was no previous
record of course allocation, their EOI forms were used. These forms are comprised
of several courses in different columns that the faculty members want to take. For
taking inputs easily, the course codes were added to the column of preferred courses
using the hyphen separator in the final dataset. In this way, a total of six datasets
were prepared and used for our implementation.

4.1.2 Dataset Description

As mentioned in the previous section, there are a total of six datasets, of which three
are composed of course information and the rest have information of the faculty
members. The first type of dataset (Course dataset) has five columns. They are:

• Name - This column includes all the course codes of that particular semester
along with two special characters T or L where T denotes theory and L denotes
lab respectively.

• Section - The Section column contains the section number of a particular
course.
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Figure 4.1: Snapshot of the Course Dataset

• Credit - This column holds the number of credits of a course. For the De-
partment of CSE, the theory part of the course has 3.0 credits, and the lab
part has 1.5 credits.

• Slot 1 - The slot 1 column denotes the first slot of a week for theory or the
first part of the lab slot.

• Slot 2 - The slot 2 column denotes the second slot of a week for theory or the
second part of the lab slot.

The second type of dataset (Faculty Dataset) has four columns. They are:

• Name - This column contains the names of all faculty members.

• Initial - The Initial column holds the unique initials of those faculty members
which is provided by the university.

• Maximum Credit Limit - This column has the maximum amount of credits
a faculty member can take in a particular semester. This value varies from
one faculty member to another. Generally, the Professors get 6 credits, the
Associate Professors get 9, the Assistant Professors and the Lecturers get 12
credits. The Contractual Lecturers are given 10.5 credits.

• Preferred Courses - The Preferred Courses column shows a list of courses
that might be assigned to the faculty members. This list was formed based on
the courses they have taken before and the EOI forms.
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Figure 4.2: Snapshot of the Faculty Dataset

4.2 Constraints

Constraints play a vital role while designing and implementing a system. All of the
constraints of a system can be classified into various sub-categories based on the type
of the problem. In our system, we classified all the constraints into two categories,
hard and soft constraints. While developing the system, all the hard constraints must
be satisfied. On the other hand, the soft constraints may be violated, but it will be
penalized with each violation based on the significance of that soft constraint. Each
faculty member is initially given a score of 1.0. With each violation of soft constraints
for a particular faculty member, the score decreases by a certain percentage. This
percentage differs from one soft constraint to another. For our work, we have defined
five hard constraints and six soft constraints. These are mentioned below:

Hard Constraints

• For each theory section, one faculty member must be assigned to that partic-
ular section. No theory section can exist without having a faculty member.

• For each lab section, one to three faculty members must be assigned to that
section based on the number of students. As we did not deal with student
information data, we have assigned two faculty members to each lab section
to make things simpler. No lab section can exist without having at least two
faculty members.

• No faculty member should have more than one class in each slot. In other
words, there cannot be any slot clash for a faculty member.
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• A particular faculty member can not take courses exceeding his or her maxi-
mum credit limit.

• Each faculty member has a preferred list of courses of his or her choice. No
faculty member should be given courses outside of their own preferred list.

Soft Constraints

• A faculty member should work a maximum of 5 out of 6 working days in a
week. If this is violated, then a 40% deduction will happen from the total
score of that faculty member.

• If a faculty member is given more than 4 slots in a day, then there will be a
35% deduction from the score of that faculty member.

• If a faculty member is given 4 consecutive slots in a day, then the score will
be penalized by 40% for that particular faculty member.

• This constraint deals with idle time minimization for each faculty member. A
detailed overview of how the penalization works is given below:

1. For 4 slots assigned in a day:

i) If a faculty member has a gap of 2 consecutive slots (3 hours) in a
day, there will be a penalty of 15% from the score of that faculty
member.

ii) If a faculty member has a gap of 1 slot (1.5 hours) twice in a day,
there will be a penalty of 10% from the score of that faculty member.

2. For 3 slots assigned in a day:

i) If a faculty member has a gap of 3 consecutive slots (4.5 hours) in
a day, there will be a penalty of 15% from the score of that faculty
member.

ii) If a faculty member has a gap of 1 slot (1.5 hours) along with a gap
of 2 consecutive slots (3 hours) in a day, there will be penalty of 10%
from the score of that faculty member.

iii) If a faculty member has a gap of 1 slot (1.5 hours) twice in a day,
there will be a penalty of 5% from the score of that faculty member.

3. For 2 slots assigned in a day:

i) If a faculty member has a gap of 4 consecutive slots (6 hours) in a
day, there will be a penalty of 25% from the score of that faculty
member.

ii) If a faculty member has a gap of 3 consecutive slots (4.5 hours) in
a day, there will be a penalty of 20% from the score of that faculty
member.

• Faculty members with a maximum credit limit of 6 or 9 credits, should not
be given any lab classes. If this constraint is violated, then a 30% deduction
from the total score will happen for that faculty member.

16



• Faculty members with a maximum credit limit of 6 or 9 credits, should not be
given any slot before 11:00 am in a day. The penalty in this case will be 30%
if an 08:00 am class is given and for a 09:30 am class, it will be 20% from the
score of that faculty member.

4.3 Implementation Details

We proposed an idea regarding university course allocation, prepared our dataset
which was used in implementing the idea and identified the constraints that need to
be satisfied during the implementation. In this part we are going to discuss how the
idea was implemented. Three classes were designed for our work, ‘Slot’, ‘Course’
and ‘Faculty’. In Slot class, there are three attributes named day, start time and
end time. Day denotes the day of the week for a particular slot. Start time denotes
the starting time of the slot and end time denotes the ending time of that slot. The
Course class has three class variables - theory faculty, lab faculty1, lab faculty2.
The theory faculty holds the faculty member initial for a particular theory class,
lab faculty1 and lab faculty2 holds the two faculty member initials for a particular
lab section. This class also has five attributes - name, section, credit, slot1, slot2.
The name attribute denotes the course code of a particular course, section denotes
the section number of that course, credit denotes the credit hours for the course, slot1
and slot2 denotes the two slots in a week for that particular course. The Faculty class
has eight attributes named name, initial, preferred courses, maximum credit limit,
initial credit, initial slots, current credit given and current routine. The name at-
tribute denotes the name of a particular faculty member, initial denotes the initial
of that faculty member, preferred courses denotes the preferred course list for every
faculty member, maximum credit limit denotes the maximum credits that a faculty
member can take, initial credit and initial slot were used as temporary variables
to check hard constraints while generating the initial solution, current credit given
denotes the total number of credits that has been given to a faculty member and
current routine denotes the routine of a faculty member after being assigned to
courses.

In constraint based problems, researchers generally use some conventional fitness
functions for evaluating the generated result of a particular iteration. This is used
to identify whether the result is improving from previous iterations or not. These
fitness functions are used for cost calculation in these constraint based problems.
Unlike other researches, we did not use any of the conventional fitness functions to
evaluate our solutions. After analysing the case study, we decided it would be much
more feasible to use a score-based evaluation approach. We designed a function
where we checked each and every hard and soft constraints. Initially we set the
score to 1.0 for each faculty member and after assigning course to them we checked
for any hard constraint violation at first. We have a total of five hard constraints as
we mentioned in the previous section, if any of the hard constraints were violated
for a faculty member, the score 0.0 was returned for the whole function. If none of
the hard constraints were violated, the six soft constraints were checked for violation
in case of each faculty member. We penalized a certain percentage of score from
the total score of that faculty member which was set to 1.0 initially. If the score
became less than 0.0, it was assigned as 0.0. Otherwise the function calculated the
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score for an iteration which was remaining for a faculty member after checking the
soft constraints. After generating individual scores of all the faculty members, the
average of all these scores was calculated and the final rounded score was returned,
which worked as the evaluating factor. Thus, all the constraints were checked using
this evaluation function replacing the conventional approaches. This function has
been represented in equation (4.1).

SE =


0 if ∃(Phc) : Phc = 0, where 1 ≤ hc ≤ a∑nf

i=1 si
nf

otherwise
(4.1)

Here, SE denotes the calculated score for the evaluation function. Phc denotes
penalty for hcth hard constraint violation. The range of hc is from 1 to maximum
number of hard constraints (a). si denotes the individual assignment score for ith

faculty member. Finally, nf denotes the total number of faculty members for a
particular semester. The individual assignment score for the ith faculty member can
be calculated using equation (4.2).

si =


1−

b∑
sc=1

Psc if 0 ≤
b∑

sc=1

Psc ≤ 1

0 if
b∑

sc=1

Psc < 0

(4.2)

Here Psc denotes penalty for scth soft constraint violation. The range of sc is from
1 to total number of soft constraints (b).

In our work, four optimization algorithms were used to solve the DCAP and one
additional algorithm to determine the initial solution that was used for further op-
timization in each algorithm. The optimization algorithms are CSP Solver Algo-
rithm, Genetic Algorithm, Simulated Annealing and Hybrid Algorithm. All these
algorithms were written in Python 3, using Google Colab environment. Several iter-
ations were tested for each algorithm to check when the score was not significantly
updating. The values for maximum iterations were fixed near to that point. The
value for maximum iterations varied from algorithm to algorithm.

4.3.1 Generate Initial Solution

As it was mentioned before, an additional algorithm was used for determining the
initial solution for each optimization algorithm. It was designed based on the re-
quirements of our problem. Initially, the score corresponding to the solution was set
to 0. A loop was used for determining a solution until the score was greater than
0. Then a dictionary was generated where all the course codes were set as the keys
and the initials of all the faculty members taking those courses were arranged into
a list. Each list was set as the values corresponding to the particular keys. Then
in each iteration of the loop, the solution was set empty and it was gradually filled
with course-faculty elements while looping through the course list. A single course-
faculty element includes 3 elements separated by dash ( ). The first element is the
index of a course from the course list. The second element is denoted by 0, 1 or 2,
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where 0 means theory faculty, 1 means the first lab faculty and 2 means the second
lab faculty. The third element denotes the faculty index from the faculty list. This
list was then assigned to the initial solution once finished populating. While assign-
ing the elements all the hard constraints were checked for the faculty member with
respect to the current course. The maximum credit limit for that faculty member
was checked at first, whether it exceeded the limit or not. Also, the slot clash in
that faculty member’s routine was checked. The same process was executed until a
faculty member was assigned for the current course-faculty element. After obtaining
a successful element, it was added to the initial solution list. When the loop ended,
the initial solution list was populated with every possible course-faculty elements.
The score of this list was found using the evaluation function that was mentioned
in equation (4.1). Then the initial solution list was returned, which was used as the
initial solution for the four optimization algorithms of each dataset. Algorithm 1
gives an overview of what has been described above.

Algorithm 1 Generate Initial Solution

function Generate Initial Solution( )
score← 0
while score == 0 do

initial solution← {}
for c in course list do

elem← allocate a randomized faculty in c satisfying hard constraints
initial solution← initial solution ∪ elem

end for
score← evaluate(initial solution)

end while
return initial solution

end function

4.3.2 CSP Solver Algorithm

The initial solution obtained from Algorithm 1 was assigned to the solution variable
at the beginning of this algorithm. Then, the faculties were allocated in the courses
based on the initial solution elements. The evaluation score of the assignment was
initialized in the max score variable. The dictionary mentioned in the previous
section was used in this algorithm as well. This was used to find out the suitable
faculties for a particular course. In the while loop, the optimization process starts
where a course-faculty element is generated randomly. A suitable faculty member
would later replace the current assigned faculty for that element. The assignment
was done based on the second portion of the element, which decided whether the
faculty member was going to be the theory faculty or the first or second lab faculty
for that course. This process was done in another loop inside the current loop where
the random element that was selected, was removed from the current solution. Then
a new course-faculty element was created using the currently split course from the
removed element and the current faculty in the loop. This new element was then
added to the current solution list. The current solution list including all course-
faculty elements was assigned similarly as mentioned before. The evaluation function
(4.1) was used to generate the score for current assignment.
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Algorithm 2 CSP Solver Algorithm

function CSP solver(initial solution)
solution← initial solution
assign(solution)
max score← evaluate(solution)
while iteration < max iteration do

selected← pick a random course faculty element from solution
unselected← solution− selected
for f in all possible faculties of course name of selected do

selected← replace faculty of selected with f
if evaluate(solution) < evaluate(unselected ∪ selected) then

solution← unselected ∪ selected
max score← evaluate(unselected ∪ selected)

end if
end for
iteration← iteration + 1

end while
return solution

end function

Then a comparison of the current score and the previous score was done to check if
the current score was better or not. If it was better, then the current score was con-
sidered as the maximum score and the current solution was considered as the best
solution. Otherwise, the previous score and solution were kept unchanged. After
the inner loop ended, the maximum score and the best solution were generated. The
iteration variable was incremented by 1 after each iteration was completed. This
was done for all the course-faculty elements, until all the courses were assigned to
the suitable faculty members. Each time this assignment process took place, all the
previous assignments were reset before a new assignment occurred. Using the eval-
uation function, a score was generated for the current assignment of courses. The
outer loop was terminated when the maximum number of iterations was reached.
Thus, the maximum score and the best solution for this algorithm was found. Al-
gorithm 2 gives an overview of what has been described so far.

4.3.3 Genetic Algorithm

The initial solution obtained from Algorithm 1 was assigned to a variable at the be-
ginning of this algorithm as well. After the initial assignment process, the evaluation
function was used to generate the score for current assignment. A loop was then
started with the condition of stopping the algorithm when the maximum number
of generations was reached. The selection function returned two variables named
selected and unselected where selected refers to some of the elements that were se-
lected from the population and the rest was stored in the unselected variable. The
course-faculty elements in the unselected variable were then assigned as mentioned
previously. The crossover operation was then performed on the selected course-
faculty elements. In this operation, a few course-faculty elements were taken and
the faculty index was then interchanged between them. After this operation ended,
a new list was found which replaced the previous selected list.
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Algorithm 3 Genetic Algorithm

function Genetic(initial solution)
solution← initial solution
assign(solution)
max score ← evaluate(solution)
while generation < max iteration do

selected, unselected← selection(solution)
assign(unselected)
selected← crossover(selected)
selected← mutation(selected)
assign(selected)
score← evaluate(selected ∪ unselected)
if score > max score then

max score← score
solution← selected ∪ unselected

end if
generation← generation+ 1

end while
return solution

end function

The mutation operation was then performed on this new selected list. A random
course-faculty element was selected from the list at the beginning of this operation.
Then another index from the faculty list was chosen randomly and this index was
used to replace the faculty index of the course-faculty element. This changed list was
returned at the end of this operation, and it later functioned as the new selected list.
This selected list was then assigned as mentioned before. The score was generated
using the evaluation function afterwards. The new score and the maximum score
were compared to check if the new score was better or not. If it was better, the
maximum score was replaced with the new score and the best solution was replaced
with the current solution. The current solution was then updated as the combination
of both the selected and unselected course-faculty elements. The generation was
incremented by 1 after each iteration was completed. Once the maximum iteration
was reached, the best solution for this algorithm was returned. Algorithm 3 gives
an overview of what has been described so far.

4.3.4 Simulated Annealing

The temperature reduction function alpha and the initial temperature T were ini-
tialized at the beginning of this algorithm. For the DCAP, alpha was chosen to be
0.9 and T was chosen to be 1.0. The value of alpha can range from 0.8-0.99. After
testing with different values of alpha such as 0.825, 0.85, 0.9, 0.95 and 0.98, the
scores generated by 0.9 were comparatively better than the others. For this reason,
the value of alpha was chosen as 0.9. The initial solution obtained from Algorithm
1 was assigned to a variable at the beginning of this algorithm too. The evaluation
function (4.1) was called to calculate the score of the initial solution. This was
stored as the old cost. This old cost was assigned to the max score variable initially.
A loop was started with the termination condition of ending the algorithm when
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the number of iterations exceeded the maximum number of iterations. A random
course-faculty element was selected from the initial solution, which was stored in the
selected variable. The rest of the elements were put in a list named unselected. The
change neighbor operation was then performed on this chosen element. The course-
faculty element was selected from the variable at the beginning of this operation.
Then another index from the faculty list was chosen randomly and this index was
used to replace the faculty index of the course-faculty element. The assign operation
was executed as before by combining both the selected and unselected parts. The
score of this assignment was calculated using the evaluation function again. This
score was considered as the new cost. If this new cost was found to be better than
the old cost, then the new cost was set as the maximum score and the current solu-
tion was updated with the combination of both the selected and unselected parts.
A function named acceptance probability was called with the parameters old cost,
new cost and T . In this function, we checked whether the new cost was less than
the old cost. If so, then the value of probability variable was set as 1.0. If not,
then the value of the probability was calculated using e

−∆c
T . Here ∆c denotes the

difference between new cost and old cost and T denotes the temperature. This value
was stored in the probability variable.

Algorithm 4 Simulated Annealing

function Simulated(initial solution)
Initialize alpha & T
solution← initial solution
assign(solution)
old cost ← evaluate(solution)
max score← old cost
while iteration < max iteration do

s← pick a random element from solution
selected← change neighbor(solution, s)
unselected← solution− selected
assign(selected ∪ unselected)
new cost← evaluate(selected ∪ unselected)
if new cost > old cost then

max score← new cost
solution← selected ∪ unselected

end if
probability ← acceptance probability(old cost, new cost, T )
if probability < random value between 0 to 1 then

old cost← new cost
end if
T ← decrease T by the rate of alpha
iteration← iteration+ 1

end while
return solution

end function

A random value between 0 to 1 was chosen which was used to check whether it was
greater than the value of the probability variable. If this was true, then the old
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cost was replaced by the new cost that was calculated before. The value of T was
reduced by multiplying alpha with T . The iteration variable was also incremented
by 1 once an iteration was completed. Finally, the solution of this algorithm was
returned after the loop ended. Algorithm 4 gives an overview of what has been
described so far.

4.3.5 Hybrid Algorithm

The hybrid algorithm implemented in this work is a combination of GA and SA. The
temperature reduction function alpha and the initial temperature T were initialized
at the beginning of this algorithm, similar to SA. Alpha was chosen to be 0.9 and T
was chosen to be 1.0. The initial solution obtained from Algorithm 1 was assigned
to a variable at the beginning of this algorithm.

Algorithm 5 Hybrid Algorithm

function Hybrid(initial solution)
Initialize alpha & T
solution← initial solution
assign(solution)
max score ← evaluate(solution)
old cost← max score
while iteration < max iteration do

selected, unselected← selection(solution)
assign(unselected)
selected← crossover(selected)
selected← mutation(selected)
assign(selected)
new cost← evaluate(selected ∪ unselected)
if new cost > old cost then

max score← new cost
solution← selected ∪ unselected
reset switching factor to 0

else
increment switching factor by 1

end if
if switching factor > maximum tolerance value then

probability ← acceptance probability(old cost, new cost, T )
if probability < random value between 0 to 1 then

old cost← new cost
end if
T ← decrease T by the rate of alpha

end if
iteration← iteration+ 1

end while
return solution

end function
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The evaluation function (4.1) was called to calculate the score of the initial solution.
This was stored as the maximum score. This maximum score was assigned to the
old cost variable initially. Similar to the GA & SA, a loop was started with the
condition of ending the algorithm when the number of iterations exceeded the max-
imum number of iterations. The same selection function from GA was called with
the current solution where the current solution was divided into two parts, selected
and unselected. The partial assignment was done using the unselected part of the
current solution. The crossover and mutation operations of GA were also used here
on the selected part. The assign function was again called with the selected part
of the current solution. The score, which was considered to be the new cost of this
assignment was then calculated using the evaluation function. If this new cost was
better than the maximum score, then the new cost was set as the maximum score
and the current solution was updated with the combination of both the selected
and unselected parts. The main difference of this algorithm with the GA is that an
additional operation was performed, which was to reset the switching factor to zero.
Switching factor was introduced in this algorithm to shift from GA to SA when the
algorithm was stuck in the local maxima for a long time. This switching factor was
incremented by 1 when the value of new cost was not updated. When the value
of switching factor reached a maximum tolerance value (in our case it was 20), the
algorithm was considered to be stuck at the local maxima for a certain amount of
time. Then the algorithm was shifted from GA to SA and the value of acceptance
probability was calculated as mentioned in SA. The rest of the operations such as
checking the probability to be smaller than a random value between 0 to 1 was car-
ried out like SA. If the condition was satisfied then the old cost was replaced by the
new cost. Then T was decreased using alpha. The value of iterating variable was
increased by 1 once an iteration was complete. After the loop ended, the solution
of this algorithm was returned which was the combination of both the selected and
unselected lists. Algorithm 5 gives an overview of what has been described so far.
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Chapter 5

Results

In this chapter, the outputs of the implemented algorithms will be analyzed and
discussed. After generating the solutions for each algorithms, courses will be as-
signed to the particular faculty members based on the solutions. We can visualize
the output in four different ways. Besides, the quality of the results of different
algorithms on different datasets can be further analyzed via tables and graphs.

5.1 Visualization of Output

5.1.1 Generating Current Semester Routine

The class routines for every sections with the assigned theory and lab faculty mem-
bers can be generated after the completion of each algorithm. Figure 5.1 shows a
snapshot of the routine of Spring 2020 after the successful execution of an optimiza-
tion algorithm.

Figure 5.1: Snapshot of Semester Routine for All Departmental Courses
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5.1.2 Extracting Individual Course Section Information

To get the information of a particular section of a course, the inputs are course
name and section. The output of the theory and lab information (if exists) will be
displayed like Figure 5.2.

Figure 5.2: Snapshot of Individual Course Information

5.1.3 Finding All Faculty Members Information

The algorithm results provide the updated information of existing departmental
faculty members of a particular semester. Figure 5.3 refers to the snapshot of all
faculty members information on Spring 2020 dataset after successful assignments.

Figure 5.3: Snapshot of All CSE Faculty Members Information

5.1.4 Extracting Individual Faculty Information

One can also get the individual faculty information of a particular semester by giving
the faculty initial as the input (Figure 5.4). The individual faculty assignment score
can also be obtained from the output. This score denotes how efficiently the courses
have been allotted to that particular faculty member.

Figure 5.4: Snapshot of Individual Faculty Member Information
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5.2 Results on Different Datasets

5.2.1 Spring 2020 Dataset

i) CSP Solver :
The CSP solver algorithm was run five times with 5000 iterations each. The output
for those five tests are organized in Table 5.1. The table includes the final score,
iteration taken to reach that score and total time consumed to produce the final
score.

Test No. Final Score Last Iteration Total Time (Seconds)
1 0.8383 2021 273.23
2 0.8341 4750 646.58
3 0.8466 3317 511.99
4 0.8182 2306 760.06
5 0.8167 2006 303.21

Table 5.1: Different Test Results of CSP Solver on Spring 2020 Dataset

From the table, it is seen that Test 3 produced the maximum score with 3317
iterations and in 511.99 seconds. Test 5 generated the final score with the least
number of iterations and Test 1 finished execution earlier than the other tests. A
score vs iteration graph can be generated with the help of the test results like Figure
5.5 below.

Figure 5.5: Results of CSP Solver on Spring 2020 Dataset
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ii) Genetic Algorithm :
The genetic algorithm was run five times with 2000000 iterations each. The output
for those five tests are organized in Table 5.2. The table includes the final score,
iteration taken to reach that score and total time consumed to produce the final
score.

Test No. Final Score Last Iteration Total Time (Seconds)
1 0.8989 1976297 6226.66
2 0.8886 1799938 5671.76
3 0.8780 1944908 6171.18
4 0.8856 1943705 6248.45
5 0.8920 1851671 5973.85

Table 5.2: Different Test Results of Genetic Algorithm on Spring 2020 Dataset

From the table, it is seen that Test 1 produced the maximum score with 1976297
iterations and in 6226.66 seconds. Test 2 generated the final score with the least
number of iterations and finished execution earlier than the other tests. A score vs
iteration graph can be generated with the help of the test results like Figure 5.6
below.

Figure 5.6: Results of Genetic Algorithm on Spring 2020 Dataset
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iii) Simulated Annealing :
The simulated annealing algorithm was run five times with 500000 iterations each.
The output for those five tests are organized in Table 5.3. The table includes the
final score, iteration taken to reach that score and total time consumed to produce
the final score.

Test No. Final Score Last Iteration Total Time (Seconds)
1 0.8424 309742 1230.69
2 0.8386 355115 1367.47
3 0.8443 465861 1801.88
4 0.8288 425074 1640.98
5 0.8405 432003 1669.25

Table 5.3: Different Test Results of Simulated Annealing on Spring 2020 Dataset

From the table, it is seen that Test 3 produced the maximum score with 465861
iterations and in 1801.88 seconds. Test 1 generated the final score with the least
number of iterations and finished execution earlier than the other tests. A score vs
iteration graph can be generated with the help of the test results like Figure 5.7
below.

Figure 5.7: Results of Simulated Annealing Algorithm on Spring 2020 Dataset
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iv) Hybrid Algorithm (GA + SA) :
The hybrid algorithm combining genetic algorithm and simulated annealing was run
five times with 2000000 iterations each. The output for those five tests are organized
in Table 5.4. The table includes the final score, iteration taken to reach that score
and total time consumed to produce the final score.

Test No. Final Score Last Iteration Total Time (Seconds)
1 0.9114 1966504 6197.17
2 0.8966 1922478 6029.10
3 0.8848 1995777 5963.78
4 0.8879 1963305 5736.98
5 0.8822 1927330 5686.91

Table 5.4: Different Test Results of Hybrid Algorithm on Spring 2020 Dataset

From the table, it is seen that Test 1 produced the maximum score with 1966504
iterations and in 6197.17 seconds. Test 2 generated the final score with the least
number of iterations and Test 5 finished execution earlier than the other tests. A
score vs iteration graph can be generated with the help of the test results like Figure
5.8 below.

Figure 5.8: Results of Hybrid Algorithm on Spring 2020 Dataset
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5.2.2 Summer 2020 Dataset

i) CSP Solver :
The CSP solver algorithm was run five times with 5000 iterations each. The output
for those five tests are organized in Table 5.5. The table includes the final score,
iteration taken to reach that score and total time consumed to produce the final
score.

Test No. Final Score Last Iteration Total Time (Seconds)
1 0.8481 2165 171.01
2 0.8398 2435 193.68
3 0.8437 2744 218.98
4 0.8442 2249 176.30
5 0.8689 2394 192.24

Table 5.5: Different Test Results of CSP Solver on Summer 2020 Dataset

From the table, it is seen that Test 5 produced the maximum score with 2394
iterations and in 192.24 seconds. Test 1 generated the final score with the least
number of iterations and finished execution earlier than the other tests. A score vs
iteration graph can be generated with the help of the test results like Figure 5.9
below.

Figure 5.9: Results of CSP Solver on Summer 2020 Dataset
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ii) Genetic Algorithm :
The genetic algorithm was run five times with 2000000 iterations each. The output
for those five tests are organized in Table 5.6. The table includes the final score,
iteration taken to reach that score and total time consumed to produce the final
score.

Test No. Final Score Last Iteration Total Time (Seconds)
1 0.8961 1813553 5007.55
2 0.9175 1772387 4171.75
3 0.9015 1972441 4645.52
4 0.8947 1789801 4231.74
5 0.8932 1935510 4592.8

Table 5.6: Different Test Results of Genetic Algorithm on Summer 2020 Dataset

From the table, it is seen that Test 2 produced the maximum score with 1772387
iterations and in 4171.75 seconds. Test 2 also generated the final score with the least
number of iterations and finished execution earlier than the other tests. A score vs
iteration graph can be generated with the help of the test results like Figure 5.10
below.

Figure 5.10: Results of Genetic Algorithm on Summer 2020 Dataset
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iii) Simulated Annealing :
The simulated annealing algorithm was run five times with 500000 iterations each.
The output for those five tests are organized in Table 5.7. The table includes the
final score, iteration taken to reach that score and total time consumed to produce
the final score.

Test No. Final Score Last Iteration Total Time (Seconds)
1 0.8461 283470 847.24
2 0.8291 207708 615.39
3 0.8388 172610 519.57
4 0.8524 440758 1309.18
5 0.8369 123680 365.8

Table 5.7: Different Test Results of Simulated Annealing on Summer 2020 Dataset

From the table, it is seen that Test 4 produced the maximum score with 440758
iterations and in 1309.18 seconds. Test 5 generated the final score with the least
number of iterations and finished execution earlier than the other tests. A score vs
iteration graph can be generated with the help of the test results like Figure 5.11
below.

Figure 5.11: Results of Simulated Annealing Algorithm on Summer 2020 Dataset
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iv) Hybrid Algorithm (GA + SA) :
The hybrid algorithm combining genetic algorithm and simulated annealing was run
five times with 2000000 iterations each. The output for those five tests are organized
in Table 5.8. The table includes the final score, iteration taken to reach that score
and total time consumed to produce the final score.

Test No. Final Score Last Iteration Total Time (Seconds)
1 0.9068 1893114 4633.96
2 0.9199 1926830 4270.59
3 0.9238 1975527 4378.62
4 0.9112 1789973 3996.59
5 0.9146 1958317 4406.36

Table 5.8: Different Test Results of Hybrid Algorithm on Summer 2020 Dataset

From the table, it is seen that Test 3 produced the maximum score with 1975527
iterations and in 4378.62 seconds. Test 4 generated the final score with the least
number of iterations and finished execution earlier than the other tests. A score vs
iteration graph can be generated with the help of the test results like Figure 5.12
below.

Figure 5.12: Results of Hybrid Algorithm on Summer 2020 Dataset
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5.2.3 Fall 2020 Dataset

i) CSP Solver :
The CSP solver algorithm was run five times with 5000 iterations each. The output
for those five tests are organized in Table 5.9. The table includes the final score,
iteration taken to reach that score and total time consumed to produce the final
score.

Test No. Final Score Last Iteration Total Time (Seconds)
1 0.9436 1642 124.68
2 0.9465 1691 132.84
3 0.9411 1823 145.41
4 0.9475 2666 206.88
5 0.9480 1786 141.24

Table 5.9: Different Test Results of CSP Solver on Fall 2020 Dataset

From the table, it is seen that Test 5 produced the maximum score with 1786
iterations and in 141.24 seconds. Test 1 generated the final score with the least
number of iterations and finished execution earlier than the other tests. A score vs
iteration graph can be generated with the help of the test results like Figure 5.13
below.

Figure 5.13: Results of CSP Solver on Fall 2020 Dataset
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ii) Genetic Algorithm :
The genetic algorithm was run five times with 2000000 iterations each. The output
for those five tests are organized in Table 5.10. The table includes the final score,
iteration taken to reach that score and total time consumed to produce the final
score.

Test No. Final Score Last Iteration Total Time (Seconds)
1 0.9584 1971371 4455.78
2 0.9579 1779945 3851.80
3 0.9634 1955789 4220.41
4 0.9693 1848219 3925.83
5 0.9639 1903073 4547.18

Table 5.10: Different Test Results of Genetic Algorithm on Fall 2020 Dataset

From the table, it is seen that Test 4 produced the maximum score with 1848219
iterations and in 3925.83 seconds. Test 2 generated the final score with the least
number of iterations and finished execution earlier than the other tests. A score vs
iteration graph can be generated with the help of the test results like Figure 5.14
below.

Figure 5.14: Results of Genetic Algorithm on Fall 2020 Dataset
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iii) Simulated Annealing :
The simulated annealing algorithm was run five times with 500000 iterations each.
The output for those five tests are organized in Table 5.11. The table includes the
final score, iteration taken to reach that score and total time consumed to produce
the final score.

Test No. Final Score Last Iteration Total Time (Seconds)
1 0.9193 106837 286.37
2 0.9490 245312 686.06
3 0.9307 72506 200.01
4 0.9277 163086 452.14
5 0.9228 69155 206.42

Table 5.11: Different Test Results of Simulated Annealing on Fall 2020 Dataset

From the table, it is seen that Test 2 produced the maximum score with 245312
iterations and in 686.06 seconds. Test 5 generated the final score with the least
number of iterations and Test 3 finished execution earlier than the other tests. A
score vs iteration graph can be generated with the help of the test results like Figure
5.15 below.

Figure 5.15: Results of Simulated Annealing Algorithm on Fall 2020 Dataset
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iv) Hybrid Algorithm (GA + SA) :
The hybrid algorithm combining genetic algorithm and simulated annealing was run
five times with 2000000 iterations each. The output for those five tests are organized
in Table 5.12. The table includes the final score, iteration taken to reach that score
and total time consumed to produce the final score.

Test No. Final Score Last Iteration Total Time (Seconds)
1 0.9599 1489865 3310.09
2 0.9574 1705342 3792.93
3 0.9530 1047164 2078.64
4 0.9738 1261267 2601.99
5 0.9594 1919098 3819.14

Table 5.12: Different Test Results of Hybrid Algorithm on Fall 2020 Dataset

From the table, it is seen that Test 4 produced the maximum score with 1261267
iterations and in 2601.99 seconds. Test 3 generated the final score with the least
number of iterations and finished execution earlier than the other tests. A score vs
iteration graph can be generated with the help of the test results like Figure 5.16
below.

Figure 5.16: Results of Hybrid Algorithm on Fall 2020 Dataset
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Chapter 6

Analysis

This chapter shows different algorithm performances on each dataset and discusses
a comparative description in the later part.

6.1 Overall Analysis

In this section, the best score from each algorithm is analyzed and visualized using
graphs and column charts. This score shows the efficiency of the algorithms in terms
of all the available faculty member assignments.

6.1.1 Spring 2020 Dataset

After running the four different algorithms on Spring 2020 Dataset, the best results
from each algorithm are referred in Table 6.1 below.

Algorithm Best Score Total Time (Seconds)
CSP Solver 0.8466 511.99

GA 0.8989 6226.66
SA 0.8443 1801.88
HA 0.9114 6197.17

Table 6.1: Different Implementation Results on Spring 2020 Dataset

From the table, it is clearly seen that HA produced the best output among all
four. GA also performed pretty well but both these algorithms were very much
time consuming. It took more than 1.5 hours to complete the 2000000 iterations.
SA finished execution in around 30 minutes and produced the lowest score. The
least time consuming algorithm in this dataset was CSP Solver but it generated the
second lowest score among all the algorithms.

Figure 6.1 shows the score vs time graph of these four algorithms. It is seen that
the iterations of CSP Solver and SA finished much earlier than the other two and
produced the final score. But in GA and HA the score gradually increased over time
and outperformed the other two algorithms in terms of the final score.
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Figure 6.1: Time vs Score Comparison Between Different Algorithm Results on
Spring 2020 Dataset

As it was previously mentioned, the evaluation function calculates the average score
of all the individual faculty member assignment scores. For each algorithm, these
assignment scores should be different. From Figure 6.2 we can clearly visualize the
variations of the assignment score frequencies for all four algorithms.

Figure 6.2: Score Frequency Variations Between Different Algorithms on Spring
2020 Dataset
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6.1.2 Summer 2020 Dataset

The best results produced from each algorithm for Summer 2020 Dataset are referred
in Table 6.2 below.

Algorithm Best Score Total Time (Seconds)
CSP Solver 0.8689 192.24

GA 0.9175 4171.75
SA 0.8524 1309.18
HA 0.9238 4378.62

Table 6.2: Different Implementation Results on Summer 2020 Dataset

It is clearly seen that HA produced the best output among all four algorithms.
GA also performed pretty well but both these algorithms were very much time
consuming like the previous dataset. It took almost 1.25 hours to complete the
2000000 iterations. SA finished execution in around 20 minutes but produced the
lowest score. The least time consuming algorithm in this dataset was CSP Solver
but it generated the second lowest score among all the algorithms.

Figure 6.3 shows the score vs time graph of these four algorithms. It is seen that
the iterations of CSP Solver and SA finished much earlier than the other two and
produced the final score. But in GA and HA the score gradually increased over time
and outperformed the other two algorithms in terms of the final score.

Figure 6.3: Time vs Score Comparison Between Different Algorithm Results on
Summer 2020 Dataset
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Like the previous score frequency graph, from Figure 6.4 we can also visualize the
variations of the different assignment score frequencies for all four algorithms.

Figure 6.4: Score Frequency Variations Between Different Algorithms on Summer
2020 Dataset

6.1.3 Fall 2020 Dataset

The best results produced from each algorithm for Fall 2020 Dataset are referred in
Table 6.3 below.

Algorithm Best Score Total Time (Seconds)
CSP Solver 0.9475 206.88

GA 0.9693 3925.83
SA 0.9490 686.06
HA 0.9738 2601.99

Table 6.3: Different Implementation Results on Fall 2020 Dataset

It is visible that HA produced the best output among all four algorithms here as
well. GA performed pretty well too but both these algorithms were very much time
consuming like the previous two datasets. It took more than 1 hour to complete
the 2000000 iterations for GA and for HA it took around 45 minutes to produce
the best output. SA and CSP Solver finished execution earlier than the other two
algorithms but generated lower scores than the others.

Figure 6.5 shows the score vs time graph of these four algorithms. The characteristics
of the graph are pretty much similar to the other two score vs time graphs.
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Figure 6.5: Time vs Score Comparison Between Different Algorithm Results on
Fall 2020 Dataset

Figure 6.6 shows the variations of the different assignment score frequencies for
all algorithms. A major noticeable thing here is that in all four algorithms, the
frequency of score 1 is much superior compared to the other score frequencies.

Figure 6.6: Score Frequency Variations Between Different Algorithms on Fall 2020
Dataset
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6.2 Comparison Between Different Algorithms

To compare between the characteristics of different algorithms, it is necessary to
study the patterns of each dataset first. Table 6.4 shows the properties of the three
datasets used in this research.

Dataset Name Type Number of Sections Number of Faculty Members
Spring 2020 Large 458 132

Summer 2020 Medium 355 103
Fall 2020 Small 318 101

Table 6.4: Datasets Comparison

In Spring 2020 dataset pair, both the number of sections and the number of faculty
members were higher than the other two. We labeled these as the largest dataset
pair in this research. Due to the Covid-19 pandemic, Summer 2020 and Fall 2020
were held online. That is why the number of sections and faculty members decreased
significantly. As in Summer 2020, there were more sections compared to Fall 2020,
we considered these dataset as medium and thus Fall 2020 dataset pair was labeled
as the small dataset in this research. The implementation results for each algorithm
differed based on these type of datasets.

The less time consuming algorithm in our research was CSP Solver algorithm. In
all the three dataset pairs, this algorithm gave the final score faster than the others.
But the scores were not the best compared to others. As previously mentioned, at
each iteration the algorithm assigns only one faculty to each course keeping rest
of the elements fixed. As this algorithm did not have any evolutionary steps like
crossover and mutation in GA, there was lesser chance to assign the fittest element
to the solution at each iteration. It only assigned the faculty in the element which
was considered best according to the previous updated solution.

The Genetic Algorithm gave the second best result in our research. It gave higher
score than CSP Solver and SA. But it took a lot of time to produce the high score
compared to others. If we look at the previous section, we will see in the implemen-
tation result tables, the total time consumed for GA was between 1 to 1.5 hours
based on the size of the dataset pair. The main reason behind this was that the
score updates were not frequent. The score updated gradually after each successful
crossover and mutation, thus it took a lot of iterations to reach the final score. An-
other major drawback of this algorithm was it got stuck in the local maxima for a
long time. This means that after a certain period of time the iteration difference be-
tween the previous score and updated score was lot higher. This problem was solved
in the Hybrid Algorithm where a tolerance value was fixed so that the algorithm
can switch to another approach.

Simulated Annealing is one of the most effective AI optimization algorithms which is
a type of local search technique. In our research, this algorithm completed execution
within 20 to 40 minutes depending on the size of the dataset pair. But the final score
was not efficient enough compared to GA and HA. In Spring and Summer dataset
pair, this algorithm produced lesser score than CSP Solver. But in the Fall 2020
dataset which was considered as small dataset, it performed slightly better than
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CSP Solver. One notable thing for this algorithm is it does not get stuck in the
local maxima because it chooses a slightly bad move in each iteration. This process
is done mathematically while calculating the acceptance probability function. This
technique is used in Hybrid Algorithm where it helped the GA to update the score
more frequently.

The last and the most effective optimization algorithm was Hybrid Algorithm which
combined the basic approaches of GA and SA. As previously mentioned, after a
certain time period GA used to get stuck in local maxima for a long time. To
reduce this time, the acceptance probability calculation of SA was added in this
algorithm. This little addition helped the algorithm significantly. If the normal
genetic functionalities failed to update the score after a certain amount of iterations
(tolerance value), the algorithm switches to the acceptance probability part so that
it can get out of the local maxima soon. Since this algorithm works almost similar to
the normal GA, it takes a lot of time too. But as this algorithm takes lesser iteration
difference to update the value of current score, the final result after completing
20000000 iterations was higher than GA. This is the main reason Hybrid Algorithm
proved to be the most efficient approach to solve DCAP in our research.
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Chapter 7

Conclusion

In this report, a comparative study was conducted between four AI optimization
algorithms to solve the course allocation problem of The Department of CSE, BRAC
University. The integration of HA in this problem has surpassed the performance
of other algorithms (CSP Solver, GA and SA) in terms of the score. Considering
the execution time, GA and HA took more time to complete execution compared to
CSP Solver and SA. These algorithms were implemented on three scales of datasets
(Small, Medium and Large), and it has been seen that they perform the best on
small datasets. With the increasing size of the datasets, the scores decreased, but,
HA still outperformed the other three algorithms. So the hybridization of algorithms
should be explored more frequently as it can enhance the effectiveness of the problem
solving techniques compared to when the algorithms are used individually.

7.1 Limitations

The work done in this paper does not include all the aspects of the course allocation
problem of the department. This is due to the fact that the inclusion of some of
these aspects increases the complexity of the problem, and the idea becomes harder
to implement. Again, there are some aspects that are not directly related to the
problem at hand. All these aspects can be defined as the limitations of our work.
Firstly, our work only handles the Undergraduate Program of the department. The
datasets created using the course information and the faculty members belong to
this Program only. Our department offers Postgraduate degrees as well, but it was
not within the scope of our research. As mentioned in the previous chapters, our
work also does not include the allocation of rooms to the courses, primarily because
they are not related directly to the course allocation problem. The allocation of
rooms is mostly dependant on the Office of the Registrar, and it is hard to bring
something under an automated process that is outside the scope of the department.
The implemented idea in this work does not handle classes of courses taken at the
05:00 pm slot. This slot is usually assigned to courses if no other slot is available
throughout the day. Since this is an exceptional case, it was not included in our work.
Sometimes there are cases when some faculty members are assigned credits beyond
their actual credit limit. Overload in terms of working hours, other departmental
tasks such as the course allocation problem itself can be some of these cases. These
cases are usually rare and they are handled by the department according to necessity.
For this reason, it was not included in our work. Finally, in previous semesters, some
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of the lab sections were allocated to only one faculty member. But in our case, we
have fixed two faculty members to each lab for reducing complexity. CSE419 and
CSE474 are two such courses whose lab classes are taken by only one faculty member.
Our work does not handle the allocation of labs like these two courses. These are
some of the notable shortcomings of the work presented in this paper.

7.2 Future Works

Every research work has room for more improvement. Our work can also be im-
proved further and more areas of the problem can be covered as well. Analysis of
related works and our own work has shown that the results generated by the im-
plementation of the base algorithms are not always satisfactory. These algorithms
can be improved a lot with small modifications in their parameters. The base algo-
rithms thus become more advanced and eventually give better results. So the slight
modifications of the algorithms like GA and SA should be done more and more by
the researchers. Some other optimization algorithms like PSO, Tabu Search, Ant-
Colony Optimization and Memetic algorithm can also be used for works similar to
ours. A comparative analysis of these algorithms and the algorithms used in our
work will give a better understanding of the nature of these algorithms and the
results that these produce. The prepared preferred course list of our dataset does
not include any type of priority. A priority for which course is preferred over the
other can be introduced in further modifications of our work. Another solution to
this problem can be in terms of setting a maximum course limit for each faculty
member for a particular course. This limit will determine how many sections of a
particular course can one faculty member take in a semester. Strategies similar to
our implemented idea can also be used to solve other departmental tasks such as
Student Tutor appointment and Lab change procedure of the students. We hope
that our work will open new doors of opportunities for the researchers who are
working with similar topics and through further research and innovations they will
be able to take this idea to a more advanced level where the management will be
simpler and easier.
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