
Deepfake Detection in Videos Detecting Face Wrapping
Artifacts with Convolutional Neural Network

by

Fahim Faisal
16304061

Shifat Sarwar
16301084

Fowzia Mohona
19241024

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science

Department of Computer Science and Engineering
Brac University
January 2021

© 2021. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is my/our own original work while completing degree at
Brac University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Fahim Faisal
16304061

Shifat Sarwar
16301084

Fowzia Mohona
19241024

i

Approval

The thesis/project titled “Deepfake Detection in Videos Detecting Face Wrapping
Artifacts with Convolutional Neural Network” submitted by

1. Fahim Faisal (16304061)

2. Shifat Sarwar (16301084)

3. Fowzia Mohona (19241024)

Of Fall, 2020 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 9, 2020.

Examining Committee:

Supervisor:
(Member)

A. M. Esfar-E-Alam
Senior Lecturer

Department
Institution

Co-Supervisor:
(Member)

Dr. Mohammad Zavid Parvez
Assistant Professor

Department of Computer Science and Engineering
Brac University

Head of Department:
(Chair)

Mahbub Alam Majumdar, PhD
Professor

Department of Computer Science and Engineering
Brac University

ii

Abstract

Alteration of video files by changing the face of a person on frame is Deepfake. In
such manipulated contents a person’s face is used on a video performing or saying
something that they never actually said or did. Deepfake allows using a person’s
face without their consent in a video they never actually shot. The manipulation
is done with the help of an artificial intelligent method called deep learning. The
AI learns the facial features of an individual from their pictures and applies them
to another face in the video. As popular people have more of their images on the
internet their Deepfakes can be easily created and shared without their knowledge
or consent. Previously fake videos were made with simple copy pasting and photo
editing, which were easily detectable by simply examining them with our eyes. Now,
with artificial intelligence it is a whole new game; Deepfake videos have become very
difficult to detect and judge and a software mechanism has become a necessity to
determine the authenticity of possibly manipulated videos. Thus, our team tries
to build an artificial intelligent network that is capable of Deepfake detection and
determine the authenticity of a video file. For our solution, we will be attempting
to detect face-wrapping artifacts from a subject’s face in a particular video frame
using Convolutional Neural Networks (CNN). To detect the faces of a subject in
frame we will be using Haar-cascade classifiers. For training the network we will use
a custom model made using Xception algorithm which trains only by using the faces
extracted from video frames. Here, we will use the available dataset for Deepfake
detection on Kaggle.com. The video files from the dataset will be compressed to
a lower quality to train and validate our models as most Deepfakes being shared
online have lower qualities. There are many ways to find Deepfakes but most of
them are not efficient enough in their detection rate. We plan to increase the rate
by successfully analyzing a video in poor and good condition to determine whether
it has been manipulated or not.

Keywords: Deepfake; Face Wrapping Artifacts; Xception; Machine Learning; Con-
volutional Neural Networks(CNN)

iii

Dedication

We dedicate this to our parents who supported us all throughout our journey.

iv

Acknowledgement

First and foremost, praises and because of Allah, the Almighty, for His showers of
blessings throughout our research work to finish the thesis successfully.

We would like to express our deep and sincere gratitude to our thesis supervisor,
A. M. Esfer e Alam, lecturer, BRAC University, Bangladesh, for giving us the op-
portunity to do research and providing invaluable guidance throughout this thesis.
His dynamism, sincerity and motivation have deeply inspired us. He has taught us
the methodology to carry out the thesis and to present the thesis works as clearly
as possible. It was an excellent privilege and honor to figure and study under his
supervision. We are extremely grateful for what he has offered me. We would also
like to thank him for his friendship, empathy, and great sense of humor.

v

Table of Contents

Declaration i

Approval ii

Abstract iii

Dedication iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables x

Nomenclature xi

1 Introduction 1

2 Related Work 5

3 Machine Learning Algorithms 9
3.1 Convolutional Neural Networks . 9
3.2 Inception . 11
3.3 ResNet . 13
3.4 Xception . 14
3.5 Depthwise Separable Convolutions . 15

4 Data Analysis 17

5 Data Processing 23
5.1 Tools Used . 23

5.1.1 Tensorflow . 23
5.1.2 Torch . 24
5.1.3 OpenCV . 24

5.2 Face Detection . 26
5.3 Seperation and Training . 28

6 Result 35

vi

7 Comparison 39
7.1 Raw video vs. Encoded Video . 39
7.2 Compare with Deepfake Detection from Inconsistent Head Poses . . . 40
7.3 Compare with Detection by Optical Flow based CNN 40
7.4 Compare with another Detection by Face Wrapping Artifacts 40
7.5 Limitations . 41

8 Conclusion 42
8.1 Future Plan . 42

Bibliography 46

vii

List of Figures

1.1 Deepfake featuring US president Donald Trump 3
1.2 Comparison between Deepfake and Original 4

3.1 Structure of an artificial neuron . 9
3.2 Layers of CNN of a single image file 10
3.3 The CNN process . 10
3.4 Example of max pooling on a 2x2 filter where S=2 11
3.5 A linear convolution layer with a linear filter 12
3.6 A linear convolution layer with a linear filter 12
3.7 Inception Module with dimension reductions 12
3.8 Mini-network replacing 5 x 5 convolution 13
3.9 A look inside Xception model . 14
3.10 Implementation of Xception . 15
3.11 Implementation of Xception . 16
3.12 Xception versus Inception v3 on large dataset without fully connected

layers . 16
3.13 Xception versus Inception v3 on large dataset with fully connected

layers . 16

4.1 Portion of the dataset json file . 17
4.2 Number of REAL videos in dataset 18
4.3 Percentage of REAL and FAKE video files in dataset 18
4.4 Sample frame A from Fake videos . 19
4.5 Sample frame B from Fake videos . 19
4.6 Sample frame C from Fake videos . 19
4.7 Sample frame A from Real videos . 20
4.8 Sample frame B from Real videos . 20
4.9 Sample frame C from Real videos . 20
4.10 Video frame containing two subjects, only one of their faces is ma-

nipulated . 21
4.11 Video taken in low lighting condition 21
4.12 Video frame without any faces in it 22
4.13 Very low light video . 22

5.1 Cascade Classifiers Working Mechanism 26
5.2 Haar-cascade classifiers . 27
5.3 Face Detection Results . 27
5.4 Final Images for the model (REAL) 28
5.5 Final Images for the model (FAKE) 28

viii

5.6 Accuracy Graph for first model . 31
5.7 Loss Graph for first model . 32
5.8 Accuracy Graph for second model . 33
5.9 Loss Graph for second model . 34

6.1 Detection in high light environment 35
6.2 Detection with multiple subjects in frame 36
6.3 Detection with subject in low light setting 36
6.4 Detection in normal conditions . 37
6.5 No artifact detection in strong lighting 37
6.6 No detection with multiple subjects in frame 38
6.7 No detection in normal condition . 38

7.1 Raw video vs C40 video Score (Real Videos) 39
7.2 Raw video vs C40 video Score (Fake Videos) 40

ix

List of Tables

x

Nomenclature

The next list describes several symbols & abbreviation that will be later used within
the body of the document

ADAM Adaptive Moment Estimation

AI Artificial Intelligence

CNN Convolutional Neural Network

GAN Generative Adverserial Network

LRCN Long-term Recurrent Convolutional Networks

ML Machine Learning

ReLU Rectified Linear Unit

ResNet Residual Network

RMS Root Mean Square

xi

Chapter 1

Introduction

Deepfake videos are synthetic videos made by teaching the computer to create one
individual face on top of another in a video file. A Deepfake video works by us-
ing hundreds or thousands of pictures to train the computer into learning facial
structures to recreate them. Davis in his article “How Deepfake technology ac-
tually Works” describes the process involved in the creation of Deepfakes. The
process works by allowing the machine to learn details in a person’s face, changes
in the shapes during different expressions to recreate similar expressions in the fal-
sified face which corresponds to the expressions of the real person in the video. It
uses Generative Adversarial Networks(GANs) to learn and recreate the details of
a person’s face from thousands or hundreds of high quality images of a particular
person. Here, two machine learning models work simultaneously to produce the
output video. While one model creates the fake replacing the original the other
detects discrepancies to give feedback. This process is continued until the detector
can no longer detect the changes or the detection is the minimum.[22] More simple
forms of Deepfake contents can be created using a single picture from which the AI
learns the facial features to swap them on a different face or short length videos and
gifs. Reface is an available application on Apple and Android application stores. It
uses a single picture allowing its users to have their faces pasted on celebrity figures
in short video clips. Deepfake creation is being developed in large companies like
Reface these days so their level of improvement has significantly increased. While
some frames in a Deepfake video feel like fakes, there are those where the body
and face does not feel manipulated. In this day and age of rising computing power
and advancements in artificial intelligence, it has become easier to create Deepfake
videos, which are more and more harder to identify. Upon very strict observation
people could find some flaws in the decoded videos with their eyes, but it would
get past as an original to a large number of viewers. If it were to become the case,
we would have to clearly see all videos as a detective trying to find a flaw. These
measly flaws can also disappear upon better training and alteration of the videos.

Deepfake can especially harm celebrities or political figures as everyone has ac-
cess to an abundance of pictures and videos associated with them. These can be
used to blackmail political figures and cause embarrassment for celebrity figures.
They can also depict false news in order to change public opinion. As mentioned by
Greengard(2020) in his article “Will Deepfake do Deep Damage” such videos to be
used for revenge porn where a person’s ex-partners face is placed in place of a porn

1

star.[24] These acts committed by a certain person can truly hamper someone’s life
degrading them and harming their social status. In addition, it would be pretty
hard to find the culprit, creating the videos as distribution of media files is so much
easier. It would be really difficult to detect the source.

We learn more about the current state of Deepfake content in the world from
an article in Tech Times. In his article Samson(2019) shares the research of an
Amsterdam-based cybersecurity company Deeptrace. They determined an 84 per-
cent rise of Deepfake content in the seven months. From the Deepfake contents found
96 percent consists of pornographic content featuring women and half of them are
American and British celebrity figures. In addition they also shared details of porn
sites dedicated specifically to Deepfake contents having about 13000 Deepfake videos
in 9 different sites. They are also available in 8 of the top 10 porn sites. There are
also new businesses which make Deepfake videos for a price. One such business asks
for about 250 pictures of a person to create a Deepfake and some of them charge as
low as 3 USD.[18]

Lets us look at some of the damages Deepfake video is doing in our technologically
advanced society. Hollywood celebrities like Kristen Bell and Scarlett Johanson ad-
dressed their distress for not having a say on how their faces were being pasted in
porn. Willen C. from Insider informs their readers about how this actress and many
others from the entertainment industry has to go through such horror. These ma-
nipulated videos are very convincing and even if they are labeled as fake it degrades
the subject of this manipulation. The article also sheds light on Scarlett Johan-
sons failed attempt to copyright her pictures from being used in manipulation as
the same laws are irrelevant overseas. [27] Other than popular actors and actresses
Deepfake pornography can harm any public figure whose pictures are available in
the internet. These lesser known figures will have a more difficult time in convincing
the authenticity of the video in question. Scott D. form Elle shreds light on the story
of Noelle Martin where she describes her harassment from Deepfake pornography.
She explains she was convinced it was her but she has never done such acts. She
knew it was just her face but she was helpless to stop such contents.[26]

Brown(2019) reports in her article “Half of Americans do not believe Deepfake could
target them online” about 47% Americans not believing they could become victim
of Deepfake contents.[12] This static shows how easily the public would believe in
Deepfake content and help it spread fake news or harm others.

It has become so easy to make Deepfakes that any individual with a computer and
an internet access can create them. Recently, more and more mobile applications are
being made that allow Deepfake generation in the hands of any ordinary person with
a mobile device. Some of these applications are Zao, Doublicat and FaceApp which
offer different services using variations of the Deepfake technology. Currently the
only use of creating Deepfakes is for entertainment purposes. Deepfake application
users share contents of them being a superhero or performing an action scene from a
famous movie with their own face pasted over the actors. Other than that Deepfake
does is mostly associated to cause harm then to be used for something more relevant.

2

Hence, we can see the severity and dangers of Deepfake and how it is rapidly in-
creasing. Detection technology can not help from people making the videos, but it
can very well hamper the sharing of such content in the world wide web.

Figure 1.1: Deepfake featuring US president Donald Trump

We are using a method to detect face wrapping artifacts that are generated while
creating Deepfakes. These artifacts can be found in the area surrounding the face
that has replaced the original face. Our program will take the Deepfake video file as
input and run our detection algorithm. This algorithm will use Convolutional Neu-
ral Networks(CNNs) to detect the facial artifacts and expose them. The differences
our algorithm will detect are the condition of lighting and shape differences on the
original and the fake part. We attempt to improve the effectiveness of the algorithm
used through our research.

Li Lyu (2019), in their paper ”Exposing DeepFake Videos By Detecting Face Warp-
ing Artifacts”, has taken the path of using Artificial Intelligence (AI) to detect
Deepfake contents. Their method is basically an AI algorithm that detects another
Deepfake Algorithm. Their method focuses on training convolutional neural net-
works (CNN) with manipulated and real content. They tested their method using
four different CNN models and had varying success rates from 84% to 99%. Al-
though their results may look very promising, the authors have stated various issues
that are not solved yet. They think that the presence of glitches are one of the main
reasons that CNN can detect with such a success rate. So if the Deepfake technology
is of better AI and of high resolution and quality, their model could fail to detect
such videos. [19]

We will use the paper above for a guide and attempt to build a detection algo-
rithm that could detect using more details than glitches alone. We will use CNN
to detect more details like lighting condition differences on the face wrap and the
surroundings and build a more advanced algorithm that can detect Deepfakes which
could avoid simple glitches during their build up.

3

Figure 1.2: Comparison between Deepfake and Original

4

Chapter 2

Related Work

In their paper Amerini, Galteri, Caldelli, Bimbo (2019), ”Deepfake Video Detection
through Optical Flow Based CNN”, attempts to differentiate between real and fake
videos using a new forensic technique. Unlike other technologies, they are not using
the single frame technique from taken videos, rather try to utilize optical flow fields
to detect dissimilarities exploiting possible inter-frames. For that purpose they are
using CNN Classifiers. Here, they obtain very promising results validation upon
the FaceForensic++ dataset. To describe their method in detail, They are taking
Optical Flow of the video, that is in this case a vector field, which is computed
on two consecutive frames f(t) and f(t+1) to extract motion between the observer
and the scene itself. They believe that it’ll be able to discern between a Deepfake
video and a regular video made by a video camera using the motion that is gener-
ated in these two types of videos. In their research the optical flow matrices take
fake and unusual movements from the features of a person’s face on a video frame
to get an optical flow named PWC-Net from the data. Afterwards, Flow-CNN, a
semi-trainable CNN, is created based on a pre-trained network. Following that, they
perform test operations with VGG16 and ResNet50 networks. Finally one output
unit followed by a sigmoid activation is placed at the end of the net for binary clas-
sification. From their obtained preliminary results it shows this kind of feature is
able to point out some existing dis-homogeneous between the two analyzed cases
and is very promising in detecting video manipulations.[17]

The authors Hasan and Salah (2019), from ”Combating Deepfake Videos Using
Blockchain and Smart Contracts,” proposed a method to combat Deepfakes with
the help of “Blockchain and Smart Contracts”. Here, they try out an Ethereum
Blockchain based solution which is capable of determining the legitimacy of a video
file by providing credible and secure traceability to a trusted artist or publishing
source where the content makers are individuals working as a filmmaker, photogra-
pher, paparazzi, reporters etc. all of whom working with video and image files. Their
proposed system consists of entity relations, sequence diagrams, and algorithms used
for Ethereum Smart Contracts to control and govern interactions and transactions
among participants. They are storing the video EXIF data in a decentralized IPFS
storage which is used to locate the correct owner of the content. It also has off-chain
resources which is the Ethereum address of the owner linked to. It also contains
a decentralized reputation system to maintain proper reputation which helps track
down the video to its original owner. Their code is properly tested and can also be

5

applied to other contents like audios, photos and manuscripts.[15]

Similar ideas like which Haya R. Hasan and Khaled Salah (2019) had been done
before by a US Based start-up called Truepic. Hao (2018), ”Deepfake-busting apps
can spot even a single pixel out of place”, writes about Truepic system which in-
volves their user uploading pictures and videos to their own server to protect their
integrity. So that any attempt at forgery can be easily discovered by comparing
it with the content from the company’s server. Here, the developers hope their
proposed technology can be used to collaborate with social media companies in the
future. The technology in Trupic also uses Blockchain to ensure credibility of stored
content even though it means the success of their system depends on them gaining
trust with all the images and video contents uploaded. [6]

We found more similar efforts are being made at websites like Gfycat to prevent
Deepfake uploading. [8] They attempted this via Artificial Intelligence and Face
Detection to spot inconsistency in the frames, especially in the facial area. When
someone flags the video as a Deepfake, a second program is being run where the
program checks if a video with similar facial features have been uploaded in the
website before. If such video is found, then the program checks the facial feature
between the new and the old video and if any dissimilarity has been found, then
the video is flagged as a Deepfake, and removed. But for this method to work, reg-
ular companies can not possibly do it because they lack the data to check, wherein
Gfycat has millions of videos. Also this method won’t be very useful when a totally
unique video such as CCTV footage is being tested.

Another method of Deepfake detection is through detection of blinking on the gen-
erated face. This has not been done well on fake videos. Li, Chang, Lyu (2018), in
their paper ”Exposing AI Generated Fake Face Videos by Detecting Eye Blinking”,
describes their method which starts by detecting faces in each frame of a video clip.
Secondly, the faces are aligned into the same coordinate system to disregard head
movements and changes in orientations which are based on detection of facial land-
mark points that have been set up. Afterwards, regions corresponding to each eye
are extracted out to form a stable sequence of frames. Upon completion of these
pre-processing steps, eye blinking detection is done quantifying the degree of open-
ness of an eye in each frame of a video using the Long-term Recurrent Convolutional
Networks (LRCN) model where it is trained based on image datasets of eye open
states of a person. Finally, the algorithm is tested to detect eye blinking on authentic
and fake videos generated with the DeepFake algorithms from their dataset. From
their results they determined the LRCN method to show the best results compared
to CNN. LRCN takes advantage of long term dynamics to effectively predict eye
state, such that it is more smooth and accurate, with temporal domain, LRCN can
memorize the previous state and it knows if blinking has occurred before, the eye
state in the next couple frames is very likely to be open . Thus, it knows if there
is no trend of eye closing before, the eye state of the next frame is very likely to be
open.[11]

The authors Hsu, Zhuang, Lee (2020), of ”Deep Fake Image Detection Based on
Pairwise Learning”, proposed a deep learning based approach for detecting fake

6

images by using the contrastive loss between pairs. Firstly, several state-of-the-art
GANs are employed to generate the fake-real image pairs from the dataset. Next,
the reduced DenseNet is developed to a two-streamed network structure to allow
pairwise information as the input. After that procedure is done, the proposed fea-
ture network is trained using the pairwise learning to differentiate between real and
fake images.Their fake face detector is based on the novel CFFN, with a backbone
of DenseNet and Siamese network. Cross-layers features are investigated by the
proposed CFFN and finally the pairwise learning is used to improve the property of
proposed DeepFD. They used a dataset called CelebA which was trained on various
GANs like DCGAN, WGAP, LSGAN, WGAP-GP and PGGAN. Their experimental
results showed that the method that they proposed outperformed the other Deep-
fake image detector.[20]

Yang, Li, Lyu (2018), in their research ”Exposing Deep Fakes Using Inconsis-
tent Head Poses”, proposed a new method to expose AI-generated fake face images
or videos to a set of standard landmark locations, a process known as face align-
ment. They have followed the method based on observations that such deep fakes
are created by splicing synthesized face regions into the original image and doing so,
introducing errors that can be revealed when 3D head poses are estimated from the
already extracted face images from videos. Here, they have used frames from 35 real
and 35 fake videos in the UADFV dataset with a total number of 21,694 images to
train their SVM classifier. Secondly, they further trained SVM classifiers based on
the differences between head poses estimated using the full set of facial landmarks
and those in the central face regions to differentiate Deepfakes from real images or
videos as the central face region is from the synthesized face, the errors due to the
mismatch of landmark locations from original and duplicate gives larger difference
between two head poses.[10]

In this paper Koopman, Rodriguez, Geradts (2018), ”Detection of Deepfake Video
Manipulation”, tried to use PRUN (Photo response non uniformity) analysis to de-
tect the Deepfake video manipulation. Firstly, PRNU is a noise pattern found in
digital images which are created by small factory defects in the light sensitive sen-
sors of a digital camera [Lukas et al., 2006]. [2] For their dataset they have used
20-40 seconds video clips that are taken using a Canon camera and in .mov format.
Then they have used open source Deepfake GUI OpenFaceSwap [Anonymous, 2018]
to apply Deepfake to said videos. Then every frame of the videos were exracted and
cropped in the face area in PNG format using ffmpeg. Then the PRUN analysis is
done and the mean normalised cross correlation scores per video and the variance in
normalised cross correlation scores per video are calculated. From the results they
could not find any correlation between video authenticity and the variance in cor-
relation scores. They also found a correlation between mean correlation scores and
authenticity. The difference they determined to identify Deepfakes from originals is
that the originals have higher mean normalized cross correlation scores. [7]

Nguyen, Fang, Yamagishi, Echizen (2019), in their research paper ”Multi-task
Learning For Detecting and Segmenting Manipulated Facial Images and Videos”,
have designed a convolutional neural network which detects Deepfake images and
videos using a multi-task learning methodology where the manipulated regions from

7

the facial regions are located for each query in their training model. Here, the infor-
mation it gains by performing a single task is shared with the other task and thus
it achieves better performance in multiple tasks. For their model they chose a semi-
supervised learning approach for the betterment of the generality of the network.
Their network has both an encoder and decoder which is Y-shaped. From their
decoder output of a single branch segmentation of manipulated regions is performed
while the output from another branch performs reconstruction of the input, improv-
ing the overall performance of the network. The results from their experiments using
the datasets from FaceForensics and FaceForensics++ provides a good demonstra-
tion of the networks capability in detecting any face swaps or manipulation in videos
and images.[16]

8

Chapter 3

Machine Learning Algorithms

3.1 Convolutional Neural Networks

Dickson (2020) shares that CNNs were first discovered in the 1980s and the sys-
tem was capable of detecting handwritten digits. In recent times CNNs are used
regularly to perform computer vision tasks which were previously impossible with-
out this algorithm. Convolutional Neural Networks function by having a number of
artificial neurons containing mathematical functions to calculate the weighted sum
from multiple inputs. The algorithm works out a single activation value from all
the inputs taken. Here, the weights of each neuron means a different feature found
from the video or image file taken as input. When CNNs take in an image file as
input the several layers of this algorithm generates multiple highlights containing
relevant features extracted from the image known as activation maps. From its
multiple layers the first layer detects all the edges in an image. This output is used
as an input for the next layer to identify more detailed features and it keeps going
on deeper with each layer leading to detect things like objects and faces. Thus in
the final convolution layer the output value determines the possibility of detecting
an object in question. If it was supposed to detect a car the result will contain a
confidence score which is a value between 0 and 1 to determine the likeliness of the
object detected to be a member of a “class” representing cars.[23]

Figure 3.1: Structure of an artificial neuron

9

A typical CNN layers of an image file look like this

Figure 3.2: Layers of CNN of a single image file

Figure 3.3: The CNN process

From the image above we can get an idea of how a CNN process is done. From the
Input, a number of convolution layers are generated, which has an array of kernels
that are learn-able. Then through sub-sampling, especially for images, it forces a
sparse local connectivity pattern between neurons of adjacent layers, where each
one is related to a small pool of the input. After the process Spatial arrangement is
done. There are four properties for calculating the spatial size of the output volume:

W = The input volume size, which is the spatial size of output volume
K = The kernel field size of the layer
P = Amount of zero padding
S = Stride, which is important because it determines how the pixels are moved
around. A stride size of 2 indicates we move two pixels at a time, because of this
the value of stride must be a positive number.
The formula is given below:

W −K + 2P

S
+ 1 (3.1)

The output is an integer, if it does not return an integer then the value of S is
incorrect. One of the most important parts is pooling, which is a form of non-linear
down-sampling. The most common form of pooling is with a size 2x2 filter with 2
strides.[21] The function is:

fX,Y (S) =
1

max
a,b=0

S2X+a,2Y+b (3.2)

10

If we visualize this it looks like this:

Figure 3.4: Example of max pooling on a 2x2 filter where S=2

Pooling is usually used for object detection. After pooling is done, we have ReLU
layer, which is rectified linear unit layer that basically removes the negative values
of an activation map, the function is

f(x) = max(0, x) (3.3)

ReLU is preferred because it reduces training time but does not affect the accuracy
to an extent which would compromise the model. Finally, after multiple convolutions
and max pooling layers, the models are generated using fully connected layers. Fully
connected layers have connections to the previous layers in the process.

3.2 Inception

Valigi, 2016 explains the concept of Inception in his article Short history of the In-
ception deep learning architecture from the paper Network in Network. In his article
he talks about all versions of the Inception model from various research papers. He
informs about conventional convolutional filters to only possess the ability to learn
only linear functions of their inputs. To make CNNs learn non-linear functions the
convolutional layers can be connected through multi-layered perceptrons which are
mathematically equivalent to 1x1 convolutions. These increased abstraction abil-
ity disregards the need for fully connected layers at the top of the network. This
way the number of parameters required becomes less reducing risks of overfitting
and computational loads. However, they perform an operation called global average
pooling that improves robustness and spatial translations. They do this by using
spatially average feature maps at the final layer and immediately input the vectors
to the software classifier.[4]

11

Figure 3.5: A linear convolution layer with a linear filter

Figure 3.6: A linear convolution layer with a linear filter

Valigi then explains the next version through the paper “Going deeper with convo-
lutions”. The authors proposed a more improved version of the original Inception
model in their paper This particular model improves the convergence of deep net-
works by introducing additional losses tied to classification error of intermediate
layers. These layers are only used for training and their outputs are not taken into
consideration during inference. [4]

Figure 3.7: Inception Module with dimension reductions

12

Valigi, 2016 further shares about the authors Szegedy et al. (2015) behind the
Inception v1 model from their work ”Rethinking the Inception Architecture for
Computer Vision”. Here, they propose expressing any convolution with the kernel
being larger than 3x3 by using a series of smaller convolutions like replacing 7x7
filters with a pair of 1x7 and 7x1 convolutional layers.

Figure 3.8: Mini-network replacing 5 x 5 convolution

The next model Inception v3 applies all the tricks of Inception v1 and Inception v2
on the same net. Finally, comes the Inception v4 model. Valigi shares a summary
from the paper by Szegedy et al. (2016), “Inception-v4, Inception-ResNet and the
Impact of Residual Connections on Learning” which talks about the Inception v4
architecture. It is a more efficient version of Inception v3 containing more uniform
architecture and has better recognition performance.[4]

3.3 ResNet

Before diving into details about Xception let’s take a look at ResNet architecture.
We will use a pretrained ResNet model to compare against the results of Xception
in the later chapters. ResNet or Residual Net is also a CNN architecture that has
hundreds or thousands of convolutional layers. It was introduced as the first neural
network capable of training hundreds or thousands of layers without having the
“vanishing gradient” problem. In neural networks the training process is done by
back propagation that relies on gradient descent moving down the loss function to
find the weights that minimize it. Thus, if it stumbles upon hundreds of layers the
multiplication operation makes the gradient smaller and smaller until it vanishes. To
overcome this problem ResNet stacks up on identity mappings, and skips over layers
that have no initial purposes, while using the activation from previous layers again.
As it skips the network is compressed into lesser layers allowing faster learning.
On the next training, the layers are expanded and the feature space is explored
thoroughly by the residual parts of the network.[28]

13

3.4 Xception

Chollet, 2017 in his research paper ”Xception: Deep Learning with Depthwise Sepa-
rable Convolutions”, talks about Xception. It has emerged from conventional CNNs
to Inception models whose architecture is based entirely on depth-separable convo-
lution layers. This particular model derived from Google’s Inception models. The
name Xception means “Extreme Inception”.[5] Here, the mapping of cross-channel
correlations and spatial correlations within the feature maps of CNN will be com-
pletely decoupled. It consists of thirty-six convolution layers which forms the base
of the network for feature extraction. To further simplify Xception architecture is a
linear stack of depthwise separable convolution layers with residual connections.

Fabien, 2019 explains the Xception model and Depthwise Separable Convolutions.
The Xception model has been developed by Google researchers that is entirely based
on Depthwise Separable Convolutions. In an Xception model the data goes in
through the entry flow, followed by the middle that is repeated eight times be-
fore it goes into the exit flow. The figure below shows how the Xception model
looks like [14]

Figure 3.9: A look inside Xception model

14

3.5 Depthwise Separable Convolutions

To understand the first main point we take a deeper look into Depthwise Separable
Convolutions. Wang, 2018 informs readers about Separable Convolutions. Here, he
shares in details about the Depthwise Separable Convolution process. This partic-
ular convolution separates the kernel and performs two separate convolutions the
depthwise and the pointwise convolutions.[9]

From Fabian, 2019 we also learn that Depthwise Separable Convolutions are sup-
posedly more efficient in terms of computation time. Firstly, we venture into the
details of the convolution process. We take an input image containing a certain
number of input channels C and the certain number of dimensions A. Then we can
apply a convolution of a certain filter size dxd. For a single kernel the operation cost
is K2 ∗ d2 ∗ C and for N number of kernels the cost becomes K2 ∗ d2 ∗ C ∗N . This
is a very expensive operation that greatly increases the computation cost. Thus
Depthwise Separable Convolution has been introduced.

Following the Depthwise Convolution we apply a convolution of size d ∗ d ∗ 1 rather
than d ∗ d ∗ C. The computation is performed only over a single channel. Now the
size of the first created volume is K ∗K ∗ C instead of K ∗K ∗N . Then we move
on to the next step which is Pointwise Convolution.[14]

Wang, 2018 also explains pointwise convolution as being a type of convolution which
only uses 1 ∗ 1 kernel . The kernel iterates through every single point and has a
depth equal to the number of channels. In the next step the convolution is done
with size 1∗1∗N over the K ∗K ∗C volume. This ends up being the size K ∗K ∗N .
By following this method the computation has been decreased by a factor of 1/N .
However in Xception implementation the Pointwise convolution is performed before
Depthwise Convolutions.

Figure 3.10: Implementation of Xception

15

Xception performs way better than Inception v3 on larger image classification datasets
which contains 17,000 classes but we don’t see any drastic improvements on the Im-
ageNet dataset. Both Xception and Inception perform with the same number of
parameters.

Figure 3.11: Implementation of Xception

Figure 3.12: Xception versus Inception v3 on large dataset without fully connected
layers

Figure 3.13: Xception versus Inception v3 on large dataset with fully connected
layers

16

Chapter 4

Data Analysis

As the threat of misinformation grows with Deepfake many institutes and sources
are made available online with required data and resources to help anyone willing
to create reliable detection mechanisms. Kaggle.com allows their users to find and
use data sets and hold machine learning competitions and one they have provided
a dataset for a Deepfake detection challenge. This particular dataset contains 800
video files, where we have both a collection of fake and real videos. From this set
of files 400 videos are used to train/validation and the other half id for testing
purposes. Each video file in the training folder is identified by their labels which
confirms if their contents are real or manipulated. If a video file is labeled as fake it
has another label called original containing the name of the initial video file. Thus
we choose to fully utilize this particular dataset and teach and test our model for
detecting manipulated video files.
A short list of the data table from our dataset is provided showing how the data are
placed in the table.

Figure 4.1: Portion of the dataset json file

We can see a label is given to every video file and if they are fake and the link of
the original video is available.

17

The next table shows the total number of missing data in the original column which
is the list of all unaltered videos.

Figure 4.2: Number of REAL videos in dataset

A bar chart showing the number of REAL and FAKE videos in the dataset In

Figure 4.3: Percentage of REAL and FAKE video files in dataset

the next page we’ll show some random frames from REAL and FAKE video files in
datasets, showing different positions and movements of the subject are shown below.
These video files will be used to train our program and learn the differences between
REAL and FAKE.

18

Figure 4.4: Sample frame A from Fake videos

Figure 4.5: Sample frame B from Fake videos

Figure 4.6: Sample frame C from Fake videos

19

Figure 4.7: Sample frame A from Real videos

Figure 4.8: Sample frame B from Real videos

Figure 4.9: Sample frame C from Real videos

20

This particular dataset contains various types of video files in different lighting con-
ditions and videos containing multiple subjects which is required to detect possible
deepfakes in such cases.

Figure 4.10: Video frame containing two subjects, only one of their faces is manip-
ulated

Figure 4.11: Video taken in low lighting condition

21

Now let’s look at some individual video files which might not be helpful to train at
all which we will consider as garbage data. One of the frame from such video looks
like Figure 4.12 For these types of videos, we will discard them from our dataset. We

Figure 4.12: Video frame without any faces in it

didn’t find the best way to remove them automatically, so we used python to show
frames of videos and manually decided whether or not we should keep the videos
for the dataset. This way we ended up with 387 videos for our dataset. We chose

Figure 4.13: Very low light video

to disregard and skim through videos with very bad lighting conditions like the one
in figure 4.13 as well because the face detection mechanism cannot detect any face
from such video files. The face is not even clear for the naked eye to detect. Because
the number of videos we will use for training is not high enough we will disregard
videos such as the one in figure 4.13.

22

Chapter 5

Data Processing

The first step of processing all the data that we have is understanding the limita-
tions we have at this moment. Since access to a good GPU equipped computer was
not possible, the biggest bottleneck to train our data would come down to the GPU
Video encoding when using ffmpeg. Tensorflow would also gain some advantages if
used with CUDA cores of NVIDIA GPUs. As such we used CPU to process our data.

Beforing diving into processing, let’s learn some information about the tools we’re
about to use

5.1 Tools Used

5.1.1 Tensorflow

Goldsborough (2016), shares the information about a symbolic math library mainly
based on dataflow and differentiable programming known as Tensorflow. This library
can perform operation with multiple CPUs and GPUs and is not limited to running
on single systems. The Tensorflow system is designed to permit clean deployment
of compassion amongst various platforms, and transforms single computer gadgets
to clusters of servers to mobile and other devices. All computations in TensorFlow
are expressed as stateful dataflow graphs. From the paper we learned Neural Net-
works can carry out operations on multidimensional facts arrays, that are known
as tensors. Thus, TensorFlow gets its name from the arrays. This tool isa gadget
mastering machine that operates on a big scale and in heterogeneous environments.
As for the flow part of its name it uses dataflow graphs to symbolize computation.
The nodes in the dataflow graph are mapped across multiple machines in a cluster,
and inside a gadget throughout more than one computational device. Its structure
is designed to offer flexibility to any utility developer. TensorFlow supports many
applications by providing a focal point on education and inference on deep neural
networks. The TensorFlow Distributions library implements an imaginative and pre-
scient of opportunity concept tailored to the cutting-edge deep-mastering paradigm
of quit-to-quit differentiable computation. Building on basic abstractions, it gives
bendy constructing blocks for probabilistic computation. Distributions offerspeedy,
numerically strong strategies for producing samples and computing statistics, e.g.,
logdensity. Bijectors offer composable volume-monitoring modifications with au-
tomated caching.Together those permit modular creation of excessive dimensional

23

distributions and modifications now no longer viable with preceding libraries. Com-
putational graphs are used by TensorFlow to get the system to learn about the
algorithms. [3]

5.1.2 Torch

Collobert, Bengio and Mariethoz (2002), in their paper about the machine learning
library known as Torch informs us about the creation and usage of Torch. Here, this
library is built based on an item situated worldview. Moreover, Torch is executed
using the language C++. This library is accompanied by some expansive classes
for the disentanglement of alteration due to existing calculations. The first of these
classes is the DataSet class. This particular Torch class is tasked with handling all
information. The next class is called Machine which functions by representing a
black-box which takes an input and some parameters to provide with an output.
The third class is called Trainer and it selects an optimal set of parameters for the
Machine class following a given criteria and DataSet. Furthermore it also performs
test operations using a different or same DataSet. Then comes the fourth class known
as Measurer and it performs printing of files on different proportions of interest
which could be something like a classification or a mean-squared error. From all the
classes a basic idea of Torch can be established. This library first uses the DataSet
to produce a given number of “preparing models”. Secondly, the Trainer offers these
models to the Machine which provides an output that is fed back to the Trainer to
fix the parameters for the Machine. As this process continues the Measures runs to
find the efficiency of the system. However, some Machines can only be trained by
some specific Trainers. Gradient Machines can only train with the help of gradient
descent. Similarly, Support Vector Machines can only train by a trainer specialized
on constrained quadratic problems. Finally, distribution including Gaussian mixture
models needs either gradient descent or Exception-Maximization Trainer. [1]

5.1.3 OpenCV

OpenCV is a computer vision library. Computer Vision is defined for understanding
meaningful descriptions of physical objects from the image. OpenCV was built to
provide an infrastructure for computer vision. This library has a huge range of opti-
mized machine learning and computer vision algorithms. These algorithms include
object identification, detecting and recognizing faces, object movement tracking, etc.
OpenCV provides support for C++, Python, Java and MATLAB programming lan-
guages and works on Windows, Linux, Android and Mac Operating Systems.

The common features in OpenCV are read and write images, save and capture im-
ages/videos, filter or transform the image, detecting faces,eyes,cars in images or
videos, perform feature detection, background subtraction, and tracking objects.

Major functionalities of OpenCV are image and video processing, object and feature
detection, computational photography. [25]

From an education material on stackshare Unknown n.d. Informs us OpenCv was
designed to speed up computation and provide more attention to real-time appli-

24

cations. This library faster performance is because it is optimized with C/C++
language and takes advantage of multi-core processing. 28

25

5.2 Face Detection

Right now we are using the Haar-Cascade classifiers to detect objects. It’s an open-
source classifier which can be found in the openCV github repository. We have an
ObjectDetector class in which we’re feeding some of the classifiers from haar-cascade
to detect Faces and Eyes for now. We might add some more detection (eg. Smile,
profile, neck/chin) later on to have better accuracy. Then for now we’re taking some
real and fake videos and passing them through detect objects functions which use
the ObjectDetector class to detect and show objects all with the help of OpenCV.
This is the initial step towards finding, as this step makes sure we have a proper
pixel location of the faces so we can distinguish between the faces and the back-
ground before we dive deeper into detecting the face wrapping artifacts to reach a
conclusion using our proposed method.

Fabien in his article “A guide to face detection using python” describes the working
of the Haar-Cascade classifiers in detail. In Haar features are some common features
in most human faces which includes, a dark eye region or a bright nose region. These
features are detected using intensity difference within a face. The calculation is done
by the addition of pixels in black areas and subtraction in white areas.

RectangleFeature =
∑

(Pixelsblackarea) −
∑

(Pixelswhitearea) (5.1)

The above equation is applied as a convolutional kernel over the entire image. When
the features get selected, they are trained with Adaboost classification to create an
ensemble model. This helps to point towards a single feature that has the best
negative and positive examples. Cascade classifiers are used to increase detection
rate and reduce computation time. It rejects sub-windows that do not contain a face
and accepts the ones that do. Multiple classifiers are applied to every sub-windows.
The classifiers here are trained using Adaboost. [13]

Figure 5.1: Cascade Classifiers Working Mechanism

26

So to start the face detection process, we load the haar-cascade classifiers and see if
can detect faces properly

Figure 5.2: Haar-cascade classifiers

The results came out like this:

Figure 5.3: Face Detection Results

27

5.3 Seperation and Training

Since we are using 387 videos to train our model, we separate those video files for
training and validation. We have used a 80/20 split for training, validation and
already have 400 videos for testing.

For the training and validation dataset, we took 15 frames from each video, detected
the faces in there, saved a separate image file of just the face and labeled the data in
relation to their parent video file, We classified two classes, train dataset and vali-
dation dataset. Here are a couple examples of the final images we used for training.

Figure 5.4: Final Images for the model (REAL)

Figure 5.5: Final Images for the model (FAKE)

28

Then the model was defined as such: Since we are building our custom Xception
model, we are using their pre-trained model’s weight ‘imagenet‘ as a base. Then
we are applying our custom classifier GlobalAveragePooling2D, Dense at 1024 with
relu activation.

The kernel size is the size of the filters used in feature detection. Next, stride rep-
resents the number of steps we should move in each convolution step and lastly
padding represents the number of pixels added to an image during processing. After
convolution in one layer batch normalization is performed. In this layer the out-
puts from the previous layers are optimized and it allows each layer to learn more
independently.
ReLU represents rectified linear activation function which is in charge of transform-
ing the weighted sum input from the node into the activation of the node or an
output. This is a piecewise linear function which outputs the inputs directly if it’s
positive or else it outputs a zero.

Lastly, Max Pooling or maximum pooling is an operation that calculates the largest
value in each feature map. This highlights the most present features in the map.

The loss function for the model is Binary crossentropy, activation function is relu and
for optimizer we chose Adam. Binary crossentropy answers with only two choices yes
or 1 and no or 0. Cross entropy is a difference between two probability distributions
and entropy alone is the number of bits required to transmit a randomly selected
event from a probability distribution.

Loss =
1

outputsize

outputsize∑
i=1

yi × log ŷi + (1 − yi) × log(1 − ŷi) (5.2)

This formula allows us to calculate the loss in terms of 1 or 0.
This formula allows us to calculate the loss in terms of 1 or 0. Here, the variable
represents the i-th scalar value in model output. Binary crossentropy is very useful
for model training and can solve many classification problems at the same time as
each classification choice has only one of two possibilities yes or no.

Optimizers such as Adam are algorithms that function to change attributes of neural
networks to reduce losses during processing. They reduce the losses and provide us
with a satisfactory result. We will use Adam (Adaptive Moment Estimation)for
optimization. It is fast and convergence is rapid and rectifies vanishing learning rate
with high variance. Using Adam is simple and it takes less memory and is invariant
to diagonal rescale of the gradients. Moreover, it is effective for problems containing
a large number of data or parameters or both and problems with noisy or sparse
gradients. Although the computation cost is higher than other optimizers Adam is
best to train neural networks in the least time with most efficiency.

29

Some important terms when training the model are:

• Epoch: One epoch means the algorithm will iterate through the whole dataset
one time. We use more than a single epoch to get better accuracy as the
weight values are changed multiple times in the neural network to provide
a more optimal result. The right number of epochs needed is different for
each dataset and for our purposes we try the training in different stages with
different numbers of epochs.

• Batch size: These refers to the number of training examples present in a
batch. We cannot push the entire dataset into the neural network to iterate
at once so they are divided in batches.

• Learning rate: It is simply the rate in terms of probability that a model
learns from training neural networks. Its value is in the range of 0 to 1. A
learning rate shows how fast a model is trained to solve the problem. With a
lesser learning rate more epochs are necessary as small changes appear in the
weights in each iteration, but a high learning rate provides faster changes and
requires lesser epochs. If a learning rate is very high the model converges very
fast leading to a suboptimal result then again if it is too small the process may
get stuck.

The training was done on a Laptop with Intel i5 5200U Mobile Processor with no
dedicated GPU. If we had access to a newer machine with a better process and GPU
we could have done a lot more training and fine tuning the algorithm.

The training of the model is done in two stages. For the first stage we chose 5
epochs and a batch size of 16. First state learning rate we chose 1e−3. Then for the
next stage we chose 20 epochs with batch size of 8. The learning rate was 1e−4. A
trained model is compiled after each iteration and the last generated model is kept
as the final. We had 16 batch sizes in the first stage and 32 in the second stage.

We can see the results of that training in the next page.

30

Figure 5.6: Accuracy Graph for first model

31

Figure 5.7: Loss Graph for first model

The first final model generated validation accuracy of 0.7141 (Mean) and 0.6871
(Median) after a couple of iterations.

This could be made even better. So we started training a second model, after a few
trial and error, we came up with the final version with the same epoch of 5 in first
stage and 20 in second stage. But in this model we changed the learning rate of the
first stage to 5e−3 and the second stage to 5e−4. We increased the batch size to 64
and 32 respectively for the first and second stage.

The accuracy and the loss graph for the final model:

32

Figure 5.8: Accuracy Graph for second model

We tried a variant of different prediction method, out of all of them, first image
prediction was the worst and mean and median of multiple images seemed to have
the best validation accuracy.

33

Figure 5.9: Loss Graph for second model

As we can see from Figure 5.8, at epoch 12 the validation accuracy rate of 0.8387
(Mean), and for median it was 0.8065, this was the best result we could achieve so
far. After epoch 12 there was likely noise and the the model was overfitting.

34

Chapter 6

Result

We have attempted a number of times to optimize the results. We first started with
a downscaled image of 150x150, and only the dense layer was modified. After train-
ing that model we did not achieve the best result, we had around 0.5 of accuracy.
Later on we worked with the full 300x300 images with more modifications to the
dense layer, SeperableConv and MaxPooling, which then got us the results of 0.8387
accuracy.

Testing our model also proved difficult, if we had access to a workstation CPU
and GPU, we would evaluate every frame of the video we’re trying to test. Since
our testing machine was very slow, we had to resort to testing 5 frames out of 30
frames in a second of video. We also tried to see if a lower bit-rate video which has
more artifacts would prove difficult to evaluate, which was true. We used ffmpeg
to convert the video with a crf 40 flag, which is a very low bitrate video and tested
them as well. The results are as follows:

Figure 6.1: Detection in high light environment

The above figure shows a successful artifact detection in this particular video frame
from a high quality video where the subject is outside with high light intensity.

35

Figure 6.2: Detection with multiple subjects in frame

Here, we are unable to detect two faces but in this case it is successful in detecting
the one face that has been swapped.

Figure 6.3: Detection with subject in low light setting

This particular video frame shows successful artifact detection from a high qual-
ity video where the subject is sitting back in a low light setting.

36

Figure 6.4: Detection in normal conditions

Figure 6.4 shows detection in a standard environment. Although detection rate is
slightly low in low lighting but it detects well in standard lighting conditions where
the face is clearly visible and subjects do not make rapid movements.

Figure 6.5: No artifact detection in strong lighting

The first detection is in an environment with very good lighting. Although it detects
no artifacts in this frame but it detects artifacts in other frames where light directly
falls on subjects face.

37

Figure 6.6: No detection with multiple subjects in frame

The second shows the detection of real faces when multiple subjects are present.
Here, only one face is detected and it shows our inefficiency in detecting Deepfakes
that will have multiple face swaps in a single frame.

Figure 6.7: No detection in normal condition

The bottom figures show no artifact detection in standard lighting conditions. This
type of videos with less movements and good lighting have the best detection rates.

38

Chapter 7

Comparison

7.1 Raw video vs. Encoded Video

As we tested our model against the raw video provided in the testing dataset, the
results were pretty good. But one of the limitation could be when the tested videos
are of very bad quality, to simulate this we encoded the video in ffmpeg with crf 40
flag, which results in a very blocky and video full of artifacts. The results are shown
below:

Figure 7.1: Raw video vs C40 video Score (Real Videos)

As we can clearly see, the compressed video clearly performs much worse than raw
videos provided in the test set. But we still are expecting good results as it can be
seen from the raw results, and the compressed videos are compressed to an extreme
which usually is not very common at all.

39

Figure 7.2: Raw video vs C40 video Score (Fake Videos)

7.2 Compare with Deepfake Detection from In-

consistent Head Poses

The SVM classifier achieves an AUROC of 0.89 in the proposed method for detecting
deepfakes from head poses.[10] Our method in comparison is better as it uses more
detailed features which are the face wrapping artifacts. Thus, the accuracy value of
0.8387 proves artifact detection using Xception architecture to have a similar result.

7.3 Compare with Detection by Optical Flow based

CNN

They ran their proposed method on the FaceForensics dataset. From their available
dataset they use 720 of the videos for training, 120 for validation and another 120
for testing. The result on VGG16 network yields 81.61 percent and ResNet50 yields
75.46 percent. [17] Again our method of artifact detection yields a higher percentage
and thus better detection.

7.4 Compare with another Detection by Face Wrap-

ping Artifacts

The paper that inspired our research still has a better result or similar result in
comparison to our result. They have trained and validated the network using dif-
ferent datasets whereas we only focused on a single dataset. A better comparison
is thus not possible as we performed the test on different datasets. In any case the
ResNet50 network used in detecting face wrapping artifacts scores 97.4 on UADF
dataset and scores an astounding 99.9 percent on DeepfakeTMIT dataset for low

40

quality video files and 93.2 percent on high quality files. [19]

7.5 Limitations

Our model was trained on a single dataset with a low amount of batch sizes because
of the lack of workstation GPU. Training on CPU was very time consuming even
with lower batch size, as such we couldn’t properly fine tune the model. We believe
with even more data and access to faster hardware we can bring the results to 0.90
or more. And lastly for testing the videos, again for hardware constrains we used
only a few frames from a typical 30fps video, resulting in a worse score for testing
videos.

41

Chapter 8

Conclusion

As we live in an era of constant contact with social media sites, it is fairly easy for
us to share and view Deepfake contents believing them to be true. As mentioned
before, we are no longer able to judge the authenticity of media files with the help of
our eyes alone. For these reasons’ steps must be taken to ensure Deepfake content
is filtered away and becomes easily identifiable. As technology advances even fur-
ther, we are yet unsure of the capabilities a computing system may process by the
next decade allowing further advances in creating and distributing fake contents like
Deepfake will become even more constant. Thus, steps need to be taken to detect
Deepfake and they have to be constantly updated as deepfake content gets more
advanced. Any method chosen has to be made in a manner that it would be able
to test videos for Deepfakes with utmost accuracy during content uploading and it
has to be fast to ensure profitability in detection mechanism. In our case, Testing
our model proved to be very difficult, if we had access to a workstation CPU and
GPU, we would have evaluated every frame of the video we’re trying to test. Since
our testing machine was very slow, we had to resort to testing 5 frames out of 30
frames in a second of video. We also tried to see if a lower bit-rate video which has
more artifacts would prove difficult to evaluate, which was true.

8.1 Future Plan

Our algorithm may provide a satisfactory result for some video files in evaluation
but it is not efficient enough. Sometimes, it finds artifacts in videos without any
manipulation done on them and we have yet not been able to test and train the
model in a larger dataset with both low and high quality videos. We would like
to change that in our future works where we would like to conduct the training
of the network with a larger number of frames taken from a single video file and
significantly increasing the batch size. We would also like to try and figure out a
different approach to reduce the computation speed while detecting Deepfakes. The
latest technology in Reface allows a 10 to 15 seconds Deepfake video in just about
thirty second to a minute from a single photograph. But it takes about five minutes
to determine legitimacy of a five second clip on a normal machine. As the speed
and quality of Deepfakes increases, it should be the same for detection mechanisms
to hold a value in fighting this unjust power of the AI systems. This process would

42

require us to have a better object detection mechanism than our current algorithm
to quickly detect faces and learn its features.

43

Bibliography

[1] J. M. Ronan Collobert Samy Bengio, “Torch: A modular machine learning
software library,” Tech. Rep., Oct. 2002.

[2] M. G. Jan Lukáš Jessica Fridrich, “Digital camera identification from sensor
pattern noise,” Tech. Rep., 2006.

[3] P. Goldsborough, “A tour of tensorflow,” Fakultät für Informatik Technische
Universität München, Tech. Rep., Oct. 2016.

[4] N. Valigi, “Short history of the inception deep learning architecture,” Oct.
2016. [Online]. Available: https://nicolovaligi.com/history- inception-deep-
learning-architecture.html.

[5] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,”
Google, Inc., Tech. Rep., 2017.

[6] K. Hao, “Deepfake-busting apps can spot even a single pixel out of place,”
Nov. 2018. [Online]. Available: https://www.technologyreview.com/2018/11/
01/139227/deepfake-busting-apps-can-spot-even-a-single-pixel-out-of-place/.

[7] Z. G. Marissa Koopman Andrea Macarulla Rodriguez, “Detection of deepfake
video manipulation,” University of Amsterdam Netherlands Forensic Insti-
tute, Tech. Rep., 2018.

[8] L. Matsakis, “Artificial intelligence is now fighting fake porn,” Feb. 2018. [On-
line]. Available: https://www.wired.com/story/gfycat-artificial-intelligence-
deepfakes/.

[9] C.-F. Wang, “A basic introduction to separable convolutions,” Aug. 2018.
[Online]. Available: https://towardsdatascience.com/a-basic-introduction-to-
separable-convolutions-b99ec3102728.

[10] S. L. Xin Yang Yuezun Li, “Exposing deep fakes using inconsistent head
poses,” University at Albany, State University of New York, University at
Albany, State University of New York, USA, Tech. Rep., Nov. 2018.

[11] S. L. Yuezun Li Ming-Ching Chang, “Exposing ai generated fake face videos
by detecting eye blinking,” University at Albany, Tech. Rep., 2018.

[12] E. Brown, “Half of americans do not believe deepfake news could target them
online,” Nov. 2019. [Online]. Available: https://www.zdnet.com/article/half-
of-americans-do-not-believe-deepfake-news-could-target-them-online/.

[13] M. Fabien, “A guide to face detection in python,” Apr. 2019. [Online]. Avail-
able: https://towardsdatascience.com/a-guide-to-face-detection-in-python-
3eab0f6b9fc1.

44

https://nicolovaligi.com/history-inception-deep-learning-architecture.html
https://nicolovaligi.com/history-inception-deep-learning-architecture.html
https://www.technologyreview.com/2018/11/01/139227/deepfake-busting-apps-can-spot-even-a-single-pixel-out-of-place/
https://www.technologyreview.com/2018/11/01/139227/deepfake-busting-apps-can-spot-even-a-single-pixel-out-of-place/
https://www.wired.com/story/gfycat-artificial-intelligence-deepfakes/
https://www.wired.com/story/gfycat-artificial-intelligence-deepfakes/
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://www.zdnet.com/article/half-of-americans-do-not-believe-deepfake-news-could-target-them-online/
https://www.zdnet.com/article/half-of-americans-do-not-believe-deepfake-news-could-target-them-online/
https://towardsdatascience.com/a-guide-to-face-detection-in-python-3eab0f6b9fc1
https://towardsdatascience.com/a-guide-to-face-detection-in-python-3eab0f6b9fc1

[14] ——, “Xception model and depthwise separable convolutions,” Mar. 2019.
[Online]. Available: https://maelfabien.github.io/deeplearning/xception/.

[15] K. S. Haya R. Hasan, “Combating deepfake videos using blockchain and smart
contracts,” Tech. Rep., 2019.

[16] J. Y. Huy H. Nguyen Fuming Fang and I. Echizen, “Multi-task learning for
detecting and segmenting manipulated facial images and videos,” SOKENDAI
(The Graduate University for Advanced Studies), National Institute of Infor-
matics, The University of Edinburgh, SOKENDAI (The Graduate University
for Advanced Studies), Kanagawa, Japan, National Institute of Informatics,
Tokyo, Japan, The University of Edinburgh, Edinburgh, UK, Tech. Rep., Jun.
2019.

[17] A. D. B. Irene Amerini Leonardo Galteri and R. Caldelli, “Deepfake video
detection through optical flow based cnn,” Tech. Rep., 2019.

[18] D. Samson, “Number of deepfake videos online rises 84 percent in less than a
year,” Oct. 2019. [Online]. Available: https://www.techtimes.com/articles/
245628/20191009/number-of-deepfake-videos-online-rises-84-percent-in-less-
than-a-year.htm.

[19] S. L. Yuezun Li, “Exposing deepfake videos by detecting face warping ar-
tifacts,” University at Albany, State University of New York, University at
Albany, State University of New York, USA, Tech. Rep., May 2019.

[20] C.-Y. L. Chih-Chung Hsu Yi-Xiu Zhuang, “Deep fake image detection based on
pairwise learning,” National Pingtung University of Science and Technology,
Department of Management Information System, National Pingtung Univer-
sity of Science and Technology,1, Shuefu Road, Neipu, Pingtung 91201, Tai-
wan, Tech. Rep., Jan. 2020.

[21] “Convolutional neural networks,” Jun. 2020. [Online]. Available: https://en.
wikipedia.org/wiki/Convolutional neural network.

[22] H. Davis, “How deepfake technology actually works,” 2020. [Online]. Available:
https://screenrant.com/deepfake-videos-explained-how/.

[23] B. Dickson, “What are convolutional neural networks (cnn)?,” Jan. 2020. [On-
line]. Available: https://bdtechtalks.com/2020/01/06/convolutional-neural-
networks-cnn-convnets/#:%7E:text=Convolutional%20neural%20networks%
2C%20also%20called,a%20postdoctoral%20computer%20science%20researcher.
&text=The%20early%20version%20of%20CNNs,)%2C%20could%20recognize%
20handwritten%20digits..

[24] S. Greengard, “Will deepfakes do deep damage?,” Jan. 2020. [Online]. Avail-
able: https://cacm.acm.org/magazines/2020/1/241708-will-deepfakes-do-
deep-damage/fulltext.

[25] “Keras vs opencv – differences between opencv and keras,” Jul. 2020. [Online].
Available: https://data-flair.training/blogs/keras-vs-opencv/.

[26] D. Scott, “Deepfake porn nearly ruined my life,” Feb. 2020. [Online]. Available:
https://www.elle.com/uk/life-and-culture/a30748079/deepfake-porn/.

45

https://maelfabien.github.io/deeplearning/xception/
https://www.techtimes.com/articles/245628/20191009/number-of-deepfake-videos-online-rises-84-percent-in-less-than-a-year.htm
https://www.techtimes.com/articles/245628/20191009/number-of-deepfake-videos-online-rises-84-percent-in-less-than-a-year.htm
https://www.techtimes.com/articles/245628/20191009/number-of-deepfake-videos-online-rises-84-percent-in-less-than-a-year.htm
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://screenrant.com/deepfake-videos-explained-how/
https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/#:%7E:text=Convolutional%20neural%20networks%2C%20also%20called,a%20postdoctoral%20computer%20science%20researcher.&text=The%20early%20version%20of%20CNNs,)%2C%20could%20recognize%20handwritten%20digits.
https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/#:%7E:text=Convolutional%20neural%20networks%2C%20also%20called,a%20postdoctoral%20computer%20science%20researcher.&text=The%20early%20version%20of%20CNNs,)%2C%20could%20recognize%20handwritten%20digits.
https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/#:%7E:text=Convolutional%20neural%20networks%2C%20also%20called,a%20postdoctoral%20computer%20science%20researcher.&text=The%20early%20version%20of%20CNNs,)%2C%20could%20recognize%20handwritten%20digits.
https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/#:%7E:text=Convolutional%20neural%20networks%2C%20also%20called,a%20postdoctoral%20computer%20science%20researcher.&text=The%20early%20version%20of%20CNNs,)%2C%20could%20recognize%20handwritten%20digits.
https://bdtechtalks.com/2020/01/06/convolutional-neural-networks-cnn-convnets/#:%7E:text=Convolutional%20neural%20networks%2C%20also%20called,a%20postdoctoral%20computer%20science%20researcher.&text=The%20early%20version%20of%20CNNs,)%2C%20could%20recognize%20handwritten%20digits.
https://cacm.acm.org/magazines/2020/1/241708-will-deepfakes-do-deep-damage/fulltext
https://cacm.acm.org/magazines/2020/1/241708-will-deepfakes-do-deep-damage/fulltext
https://data-flair.training/blogs/keras-vs-opencv/
https://www.elle.com/uk/life-and-culture/a30748079/deepfake-porn/

[27] C. Willen, “Kristen bell says she was ’shocked’ to learn that her face was
used in a pornographic deepfake video,” Jun. 2020. [Online]. Available: https:
//www.insider.com/kristen-bell-face-pornographic-deepfake-video-response-
2020-6.

[28] “Keras resnet: Building, training scaling residual nets on keras,” [Online].
Available: https : / / missinglink . ai / guides / keras / keras - resnet - building -
training- scaling- residual- nets- keras/#:%7E:text=Residual%20Network%
20(ResNet)%20is%20a, or%20thousands%20of%20convolutional%20layers .
&text=ResNet%20stacks%20up%20identity%20mappings,the%20activations%
20from%20previous%20layers..

46

https://www.insider.com/kristen-bell-face-pornographic-deepfake-video-response-2020-6
https://www.insider.com/kristen-bell-face-pornographic-deepfake-video-response-2020-6
https://www.insider.com/kristen-bell-face-pornographic-deepfake-video-response-2020-6
https://missinglink.ai/guides/keras/keras-resnet-building-training-scaling-residual-nets-keras/#:%7E:text=Residual%20Network%20(ResNet)%20is%20a,or%20thousands%20of%20convolutional%20layers.&text=ResNet%20stacks%20up%20identity%20mappings,the%20activations%20from%20previous%20layers.
https://missinglink.ai/guides/keras/keras-resnet-building-training-scaling-residual-nets-keras/#:%7E:text=Residual%20Network%20(ResNet)%20is%20a,or%20thousands%20of%20convolutional%20layers.&text=ResNet%20stacks%20up%20identity%20mappings,the%20activations%20from%20previous%20layers.
https://missinglink.ai/guides/keras/keras-resnet-building-training-scaling-residual-nets-keras/#:%7E:text=Residual%20Network%20(ResNet)%20is%20a,or%20thousands%20of%20convolutional%20layers.&text=ResNet%20stacks%20up%20identity%20mappings,the%20activations%20from%20previous%20layers.
https://missinglink.ai/guides/keras/keras-resnet-building-training-scaling-residual-nets-keras/#:%7E:text=Residual%20Network%20(ResNet)%20is%20a,or%20thousands%20of%20convolutional%20layers.&text=ResNet%20stacks%20up%20identity%20mappings,the%20activations%20from%20previous%20layers.
https://missinglink.ai/guides/keras/keras-resnet-building-training-scaling-residual-nets-keras/#:%7E:text=Residual%20Network%20(ResNet)%20is%20a,or%20thousands%20of%20convolutional%20layers.&text=ResNet%20stacks%20up%20identity%20mappings,the%20activations%20from%20previous%20layers.

		2021-01-15T14:55:27+0600
	Zavid Parvez

		2021-01-20T17:52:34+0600
	Dr. Md. Golam Rabiul Alam

