
Analysis of software fault prediction using Machine Learning

Algorithm

by

Dipanker Shaha
16201104

Md Mamun Uddin
16201088

Akash Chandra Paul
16301171

Bishal Roy
16201054

A thesis submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Science and Engineering

Department of Computer Science and Engineering
Brac University
January 2021

© 2021. Brac University
All rights reserved.

Declaration

It is hereby declared that

1. The thesis submitted is our own original work while completing degree at Brac
University.

2. The thesis does not contain material previously published or written by a
third party, except where this is appropriately cited through full and accurate
referencing.

3. The thesis does not contain material which has been accepted, or submitted,
for any other degree or diploma at a university or other institution.

4. We have acknowledged all main sources of help.

Student’s Full Name & Signature:

Dipanker Shaha
16201104

Md Mamun Uddin
16201088

Akash Chandra Paul
16301171

Bishal Roy
16201054

i

Approval

The thesis titled “Analysis of software fault prediction using Machine LearningAl-
gorithm” submitted by

1. Dipanker Shaha (16201104)

2. Md Mamun Uddin (16201088)

3. Akash Chandra Paul (16301171)

4. Bishal Roy (16201054)

Of Fall, 2020 has been accepted as satisfactory in partial fulfillment of the require-
ment for the degree of B.Sc. in Computer Science on January 8, 2021.

Examining Committee:

Supervisor:
(Member)

DR.Muhammad Iqbal Hossain
Assistant Professor

Department of Computer Science and Engineering
BRAC University

Program Coordinator:
(Member)

DR.Md.Golam Rabiul Alam
Associate Professor

Department of Computer Science and Engineering
BRAC University

Head of Department:
(Chair)

DR.Mahbubul Alam Majumdar
Professor

Department of Computer Science and Engineering
BRAC University

ii

통신왕
Stamp

Abstract

Today software performs a requisite role in our daily lives. Software’s complexity
keeps growing. The increasing complexity of any software system making it very
difficult to improve its quality. The performance of the software depends on its bug-
free operation. The main goal of developing any software is to identify and resolve
bugs that may be required in various situations before the schedule is established.
Software fault prediction is a way that seeks to classify fault-prone software modules
by using specific underlying characteristics of software project before actual testing
tends to start. Separate researchers have previously examined several classification
ways for the prediction of software bugs. The output of various techniques varies
from software to software, and no one technique is always successful throughout all
fields. Nowadays, machine learning is widely using in software defect detection. We
can save our valuable time and reduce costs by using machine learning algorithms in
fault prediction. There are many machine learning algorithms used for the prediction
of defects in software systems. Although most of the work is available for software
systems classification, either fault-prone or non-fault prone, little attempt has been
done to predict the fault ensemble techniques. We have set up a strategy in this
paper to use some machine learning algorithms and Boosting Algorithms to analyze
their performance on the promise dataset and unified Dataset. We have selected
six machine learning algorithms, and they are KNN, Random Forest, Decision Tree,
MLP, SVM, Naiıve Bayes, Logistic Regression and two Boosting Algorithms such as
XGBoost and AdaBoost Algorithm. We applied those algorithms to our two types
of datasets, such as the Unified Dataset and Promise Dataset (JM1, PC1, CM1).
We have decided to analyze the best machine learning algorithm based on their
maximum accuracy. We will ensure the best machine learning algorithm analysis
for the unified and promise dataset.

Keywords: Software fault prediction; Machine learning; Data protection; XG-
Boost; Support Vector Machine; Logistic regression; pre-process; AdaBoost.

iii

Dedication

We would like to dedicate our thesis report to our parents for their constant support.
Special gratitude towards our close friends and our Supervisor DR.Muhammad Iqbal
Hossain.

iv

Acknowledgement

Firstly, all praise to the almighty for whom our thesis has been completed without
any significant interruption.
Secondly, to our supervisor Dr Muhammad Iqbal Hossain, Assistant Professor sir
for his kind support and advice in our work. He helped us whenever we needed help.
Finally to our parents without their support, it may not be possible. We are now
on the verge of our graduation with their kind encouragement and prayer.

v

Table of Contents

Declaration i

Approval ii

Abstract iii

Dedication iv

Acknowledgment v

Table of Contents vi

List of Figures viii

List of Tables 1

1 Introduction 2
1.1 Motivation . 3
1.2 Problem Statement . 3
1.3 Objective and Contribution . 4
1.4 Thesis Orientation . 5

2 Related Work 6
2.1 Background . 6
2.2 Literature Review . 6
2.3 Algorithms . 8

2.3.1 K-Nearest Neighbor Algorithm 9
2.3.2 Random Forest . 9
2.3.3 SVM (Support Vector Machine) 10
2.3.4 Naive Bayes Algorithm . 11
2.3.5 Decision Tree . 12
2.3.6 MLP Algorithm . 12
2.3.7 XG Boost . 13
2.3.8 AdaBoost . 13

3 Proposed Model 15
3.1 Dataset description . 15

3.1.1 Data preprocessing . 22
3.1.2 Feature Selection . 23

3.2 Model Description . 23

vi

4 Experimentation 25

5 Result Analysis (ROC) 30
5.1 Roc Curve . 30

5.1.1 CM1 ROC curve . 30
5.1.2 PC1 ROC curve . 33
5.1.3 JM1 ROC curve . 36
5.1.4 Unified Dataset ROC curve 39

6 Conclusion and Future Plan 45

Bibliography 47

vii

List of Figures

2.1 K-NN Algorithms . 9
2.2 Ramdom Forest Algorithms . 10
2.3 SVM Algorithms . 11
2.4 Decision Tree Algorithms . 12
2.5 MLP Algorithms . 13
2.6 Adaboost Algorithms . 14

3.1 Histogram of Defect’s Frequency for CM1 Dataset 17
3.2 Heatmap of input data for CM1 dataset 17
3.3 Histogram of Defect’s Frequency for PC1 Dataset 18
3.4 Heatmap of input data for PC1 dataset 18
3.5 Histogram of Defect’s Frequency for JM1 Dataset 19
3.6 Heatmap of input data for JM1 dataset 19
3.7 Histogram of Defect’s Frequency for Unified Dataset 22
3.8 Heatmap of the input data for unified dataset 22
3.9 Workflow of the System . 23

5.1 Random Forest and Decision Tree ROC Curve 31
5.2 KNN and MLP ROC Curve . 31
5.3 Näıve Bayes and SVM ROC curve . 32
5.4 XGBoost and AdaBoost ROC Curve 32
5.5 Combined ROC curve of all algorithms 33
5.6 Random Forest and Decision Tree ROC Curve 34
5.7 KNN and MLP ROC Curve . 34
5.8 Näıve Bayes and SVM ROC curve . 35
5.9 XGBoost and AdaBoost ROC Curve 35
5.10 Combined ROC curve of all algorithms 36
5.11 Random Forest and Decision Tree ROC Curve 37
5.12 KNN and MLP ROC curve . 37
5.13 Näıve Bayes and SVM ROC Curve 38
5.14 XGBoost and AdaBoost ROC Curve 38
5.15 Combined ROC curve of all algorithms 39
5.16 Random Forest and Decision Tree ROC Curve 40
5.17 KNN and MLP ROC Curve . 40
5.18 Näıve Bayes and SVM ROC Curve 41
5.19 XGBoost and AdaBoost ROC Curve 41
5.20 Combined ROC curve of all algorithms 42

viii

List of Tables

3.1 Promise Dataset Attribute . 15
3.2 Number of attributes . 16
3.3 Number of Instance . 16
3.4 Class Distribution . 16
3.5 Unified dataset attributes . 20
3.6 Unified dataset attributes . 21

4.1 CM1 Experiemnts Result . 26
4.2 PC1 Experiemnts Result . 27
4.3 JM1 Experiemnts Result . 28
4.4 Unified Dataset Experiemnts Result 29

5.1 accuracy table of all four datasets for all Eight algorithms 42
5.2 comparison of related paper accuracy with our accuracy 43
5.3 comparison of related paper AUC with ours AUC 44

1

Chapter 1

Introduction

Predicting software bug is a way that is used to improve software quality. Fault han-
dling is a significant issue in the process of software advancement. The presence of
severe flaws involves high potential risks that are caused by the project disruption.
Besides, it similarly reduces the quality of the project also increases the expense
of maintenance. Early detection of errors minimizes the time and cost of imple-
mentation. To achieve bug-free software is very tough because there may remain
some masked flaws, even if everything is implemented carefully. The real challenge
for software engineering is developing a software bug prediction model that could
predict defective modules in the early stage. Fault prediction is an eventual develop-
ment activity. Because early fault predicting improves user satisfaction and software
performance, reducing the time and maintenance cost. Fault prediction offers the
developers to concentrate on faulty modules and fix the problem. Many machine
learning algorithms are used for predicting software bug to predict defects in the
early stages. Many researchers have explored the vital connection between software
metrics and fault proneness. Several studies have shown that machine learning al-
gorithms are the most efficient way for predicting software bugs. Fault prediction is
considered by using a machine-learning algorithm to classify flaws in the initial im-
provement period. K-nearest neighbour Algorithm, Logistic Regression, Multilayer
Perceptron, Random Forget, Support Vector Machine, Decision Tree, Naive Bayes,
and Boosting Algorithm are the most efficient machine-learning algorithm to predict
early bug from software or dataset. However, some machine learning algorithms are
not effective in detecting faults. Because some machine learning algorithms cannot
predict the maximum accuracy of the dataset. It is essential to identify the best
machine learning algorithm to get the maximum accuracy of a dataset and predict
the fault as soon as possible. The software fault prediction analysis depends on ma-
chine learning algorithm accuracy, recall, precision, F-measures, and the classifiers’
ROC curves.

2

1.1 Motivation

Software bugs are a critical issue in the software industry. Sometimes one small
mistake leads to an enormous loss of money and time. The amount of time and
money it takes to improve software after the implementation is much higher than
during the SDLC process. If we study historical bugs of software and its cost, it
will always motivate us to decrease this loss. In 1998, NASA’s Climate Orbiter
spacecraft lost in space because a bug failed to convert the English unit to metric
[1]. It causes $125 million. Then, Europe’s satellite Ariane 5 used its predecessor
working software, but it’s fast engines faced bugs, which is why the software tried
to squeeze a 64-bit number into 16-bit space [2]. As a result, the satellite started
self-destruction after thirty-six seconds. The losses of this project were $8 billion.
In 2004, the EDS buildup and It system for U.K.’s Child Support Agency [3]. This
system overpays 1.9 million people, which causes $7 billion. Soviet Gas Pipeline
Explosion in 1982, the CIA made a conspiracy and stole software components of the
Soviet Union’s gas pipeline controlling software, which lead to a massive explosion
[4]. In 2013, Mt. GOX said that a hacker hacked 850,000-bitcoins [5]. Furthermore,
the Heathrow terminal 5 baggage handling system collapsed when handling the
passenger’s baggage [6].

In 10 days, overall, 42 thousand bags failed to travel with their owner. The mariner,
one spacecraft in 1962, crashed because of a software error [7]. The error caused
by the omission of a hyphen in the computing instructions only for guidance prob-
lems allowed them to send incorrect signals to the spacecraft. The project’s losses
amounted to $18 million. In 1988, the Morris Worm program crashed thousands of
computers because it attempted to make an error [8]. One of the most extensive
software bug failures is the Patriot Missile error [9]. The attack on army barracks
failed to be detected by the U.S. Patriot Missile system. The British Airways system
failure occurred because of a system error, which implies that 100 flights cancelled
and 200 delayed [10]. Moreover, the most recent virus ransomware attacks are also
the most significant failure of software. We can understand that software defects
are a very complex problem; that is why we should test our software as much as
possible before launching the software [1].

1.2 Problem Statement

Several machine learning algorithms often use to identify faults in various sectors like
software testing, detect diseases, and analyze big data Etc. A broad range of ma-
chine learning algorithms can automatically predict the fault proneness module—the
Machine learning algorithm classified as classification. Many Machine Learning Al-
gorithms will explain in this section. Image recognition is currently mainly focused
on the Convolutional Neural Network (CNN) algorithm. CNN is also used to place
and detect hidden faults in industrial objects and devices.

3

As an example of a machine learning technique, Vector Machine is a classifier for
data unseen. It works by constructing an N-dimensional hyperplane and supports
a Vector Machine for finding an optimal hyperplane that can separate the vector’s
clusters. For maximizing the margin, SVM modeling finds the oriented hyperplane.
SVM may use a kernel function for mapping the data into various spaces to manage
the nonlinear separator between points. The hyperplane is used for space separation.
There are many classification trees in Random Forest Algorithm. The classification
trees are acknowledged as decision trees. Each tree in the forest is put down to the
input vector, where each tree provides a classification result. Tree voting for the
class. Then most classification votes are determined by the forest.

Bootstrap aggregating is familiar as a bagging algorithm. It is a method that is
frequently sampled from the dataset based on a uniform distribution of probability.
Each bootstrap sample size and the original data are identical. For instance, it has
the possibility that the sampling is done with replacement to happen many times
during the corresponding training dataset. Artificial Neural Network is well popular
lately, like Multilayer Perceptron (MLP). Any issues, like pattern recognition, could
be solved with MLP. Maximum two secret layers included in the Multilayer Per-
ceptron. This technique retrieves the closest stored example by using an entropic
measure.

1.3 Objective and Contribution

We are working with machine learning algorithms, and we apply different algorithms
in our historical bug dataset. We also worked with a very new dataset that is unified.
It is a combination of well-known publicly available five promise datasets. Then
we perform different preprocessing approaches to make our dataset usable for the
algorithms. We know that the raw dataset is noisy and not in a state that can
be used for any algorithms. We choose eight machine learning algorithms for each
dataset, and after running those algorithms, we get accuracy for each algorithm. We
compare these eight algorithms with accuracy and analysis, which algorithms give
the highest accuracy. Lastly, we also make comparisons between our four datasets
and their accuracy for each algorithm.

Software bugs are a common issue in today’s world. No one could say that their
software is 100% bug-free. Software quality depends on that issue. That is why,
in this sector, extensive study is needed to improve software quality. Here we are
giving a general guideline on software bug prediction. Which type of algorithms is
used for which type of software bug prediction. Suppose there is any probability
of software bugs when we are working on software. Our work will give an idea of
a software buggy or not. Our research also assists other researchers in this area.
Researchers can get an idea of which should work; we are analyzing the algorithms.
If any researcher works with bug prediction without any prior knowledge, our paper
will give them a general guideline. It is a crucial part of the research that most

4

researchers are misguided or work on the wrong path, but for them, this paper is
a path for them to go ahead in this sector and find more critical issues of software
bugs and resolve these issues.

1.4 Thesis Orientation

Chapter 1 - Introduction where motivation, problem statement, objectives and con-
tribution are discussed.

Chapter 2 - Background where Literature Review and Related Machine Learning
Algorithm has been discussed.

Chapter 3 - The proposed Model is organized with our promised dataset and unified
dataset description, Pre-processing of those dataset, Feature selection, and Model
Description.

Chapter 4 - Experimentation reflects all our dataset accuracy with the table using
machine learning and boosting algorithms.

Chapter 5 - Result Analysis and Data Visualization section discussed the ROC
curve of all machine learning algorithms and the combination of all algorithms with
histogram and heatmap.

Chapter 6 - Conclusion and Future Works, where we have discussed our thesis work
and our future work.

Bibliography - We have included several references in this thesis paper, mostly re-
lated to our work.

5

Chapter 2

Related Work

2.1 Background

Software fault is also called a defect issue where the expected and actual results do
not match each other. It may also be a computer program error, flaw, failure, or
error. Most bugs come off spontaneously from the developers’ errors and failures.

The software fault prediction method intends to recognize fault-prone software mod-
ules using some software project’s underlying properties before the actual software
testing begins. It contributes to optimized costs and effort to achieve the desired
software quality. When the software’s size and complexity increase, it becomes more
challenging to predict software flaws. A model may incorporate software to faulty
and non-faulty prone modules, to maintain a high-quality software level. In the
procedure of faulty and non-faulty prone, the prediction of defective-prone modules
causes more costly and more time-consuming.

Bug prediction develops the software advancement method in terms of production
expense, reduces the preservation period. The machine learning algorithm is used
for predicting software bug and maintainability. In work done by S. Delphine et al.
[11], they tried to use a model for this process and used several machine learning
algorithms. Random forest algorithm is preferable and got the highest accuracy for
their model. In work done by P. S. Bishnu et al. [12] they have judged the efficiency
of the Quadtree-based K-Means clustering algorithm for predicting faulty software
modules.

2.2 Literature Review

From the research paper [11], Software testing is an important software development
process and software testing work as input for software fault prediction. Sometimes,
the Näıve Bayes algorithm is used for software fault prediction and software per-

6

formance measurement. The alternatives bayesian works to create a network using
fewer nodes. Here they compared 15 bayesian networks using ROC curves, and they
also used H-measure.

In this paper [12],Quad tree-based K-Means algorithms use for predicting bugs in
program modules. They compare the original k-mean outcome with the Quad tree-
based K-Means algorithms. Finally, they compare these algorithms’ error rates with
other existing algorithms and take the best one.

This paper [13],This paper is based on predicting bugs In the software source code
using supervised machine learning algorithms. This bug prediction model can be
applied in any SDLC model. Here they used decision trees, Logistic regression
and näıve Bayes to build their model to use historical datasets. Finally, they used
random forest and got the highest accuracy. K-fold validation is used in a dataset
to reduce biases

This paper [14], works with a new methodology, which is fault injection. For both
automatic test case generation and fault detection, this method is used. Here LBT
testing is automated black box requirement testing, and this machine learning ap-
proach integrates with L* algorithm. This approach’s goal can divide into three
phases: automated test case generation, based on formal requirement model con-
struction of automatic verdict, and automated fault injection.

This paper [15], is based on the study of the failure of traditional defect prediction
design. CNN used for the defect prediction. First, they find token vectors. Then
they convert these token vectors into numerical vectors. Next, they use this nu-
merical vector on CNN, which helps CNN learn both the program’s semantic and
structural features. Finally, they combined this feature with hand-crafted features
to get better software prediction.

In this paper [16], for the improvement of open source software activities, they
proposed a deep learning-based approach. The users and the members of the project
detect bugs in software using bug tracking systems. However, there is one problem
that no software tool still cannot analyze this data of software bug tracking systems.
They work on this issue to work on software bug tracking systems using deep learning
to learn more about this fault data.

According to paper [17],], SFP is a process of machine learning used for software
testing, managing an efficient solution, and trained with faulty and non-faulty cat-
egories. It uses different types of non-faulty samples based on single class SVM for
100 times and ensures the model’s real-time data. This model builds an efficient
predator in software testing’s early life that will be an SFP solution for software.

7

This paper [18] is written about the fault-prone prediction, which is efficient and
accurate. To predict the statistical fault method, machine learning method, neural
networking techniques, clustering technique. Here they use clustering techniques to
improve the NASA metrics data program’s scheduling and planning for cost avoid-
ance after adequate verification. This clustering model gives better performance by
finding faulty and non-faulty software product modules. They finally find the best
model, which gives the best performance among them.

In this paper [19], They work with NASA and MDP datasets in this paper[19] and
apply multi-classifiers to get the best results. To get the highest accuracy, they use
Help Vector Machine, Näıve Bayes and Random Forest classifiers.

The comparative analysis between bagging, boosting, stacking, and foundation
learning strategies is done in this paper [20]. For prediction, they use a promise
dataset. In this paper, they find that random forest classifiers should be stacked
with other classifiers to obtain a better prediction of faults. The performance of a

wide range of classification models within software defect prediction is benchmarked
in the paper[21]. The NASA MDP data set was used in the same paper to find AUC
for ten classification models.

The purpose of paper [21] intends to evaluate the software fault prediction capability
in terms of precision, f-measure, accuracy, recall, and ROC curve.

The most frequently studied machine learning algorithms are analyzed in the paper
[22]. For validation, they use the k-fold cross-validation technique. They use NASA’s
promised dataset repository in their paper.

2.3 Algorithms

At first, for predicting software fault using Machine Learning, we need a dataset.
We managed a promised dataset, and we analyse each attribute of what they reflect.
We started preprocessed our dataset. We know that our real-world raw data is not
consistent. Sometimes there will be errors or null values. There also be sometimes
unnecessary data which we do not want to use. So, we remove those unnecessary
and null data from the dataset.

Similarly, we divided the data set into training and test dataset. Over here we can
split our dataset for training, the one part of the dataset and rest of them are used
of testing. Most of the time, 80% of data are used for the training dataset and 20%

8

dataset used for testing the trained algorithm. For testing and to train the dataset,
we choose three algorithms to train using our dataset. They are-
1. K-nearest neighbour Algorithm (KNN)
2. Random Forget Algorithm
3. Support Vector Machine (SVM) Algorithm
4..Naive Bias Algorithm
5. Decision Tree Algorithm
6. Multilayer Perceptron (MLP) Algorithm
7.XG Boost Algorithm
8.AdaBoost Algorithm

2.3.1 K-Nearest Neighbor Algorithm

KNN is a predictive classification method that intensively examined for four decades
of pattern recognition. This algorithm has utilized to software flaws and revealed
promising outcomes. It is a simple algorithm that is used for classification and
regression problems. It works properly with multi-label classes. This algorithm
needs no training before giving forecasts, and new data can be attached, which will
not affect the accuracy of the algorithm.

Figure 2.1: K-NN Algorithms

2.3.2 Random Forest

For classifying software defects, a comparative study of different classification meth-
ods was performed. It uses to provide a reliable forecast outcome. Its default
hyperparameters deliver excellent outcomes and the method is excellent at avoiding
overfitting. We are using on public NASA datasets of PROMISE repository.

9

For both classification and regression functions, the Random Forest Algorithm can
be used. It allows maximum accuracy. The random forest classifier manages the
missing values, and the precision of a significant proportion of the data is maintained.
It can tackle with higher dimensionality a large data set.

Figure 2.2: Ramdom Forest Algorithms

In the random forest, we need to grow multiple trees in a model. Of all the other
trees in the forest, the forest picks the classifications with the most votes and takes
the average difference from different trees’ output. In general, multiple trees were
constructed by Random Forest and combined to gain more accurate results.

2.3.3 SVM (Support Vector Machine)

SVM is a machine learning algorithm used for issues with classification or regression
and outlier detection. Its aim is to develop the best line or decision boundary. A
hyperplane is the best line. The extreme points help to create that. The decision
boundary maximises the range from the closest data points of all the classes. SVMs
is unique from other classifier algorithms.

10

Figure 2.3: SVM Algorithms

2.3.4 Naive Bayes Algorithm

Näıve Bayes Classifier is an easy and most useful classifier algorithm that builds fast
machine learning models. It can execute fast forecasts. It uses for text classification.
Its uses for predicting the probability of various classes based on various attributes.
The Naive Bayes model is easy to build and it runs best when it has a small training
data set. For an extensive dataset, it may not measure better accuracy.

The Naive Bayes model is simple to create and especially helpful for extensive data
sets. The Bayes theorem presents a way to measure posterior probability P(c—x)
from P(c), P(x), and P(x—c). The equation has given below:

11

2.3.5 Decision Tree

Decision Tree is a supervised learning method but can typically use to overcome
problems with classification and regression. In this algorithm, the data is contin-
uously divided based on a certain parameter. There are two nodes in the decision
tree, the Decision Node, and the Leaf Node. Decision Tree is utilized to create
classification and regression models. It is applied to build data models. For the
decision-making process, it will predict class labels. The decisions are focused on
the characteristics of the initial data. It is a graphic representation to achieve all
possible solutions based on conditions to a decision. It is shaped like a tree. The
parent node is root node and growing on small branches.

Figure 2.4: Decision Tree Algorithms

2.3.6 MLP Algorithm

MLP is a supplement of neural network. It consists of three layers input, hidden
and output layer. First of all, input layer accepts the input signal for processing.
The output layer performs the required task, such as prediction and classification.
Output and hidden layer uses nonlinear activation function.

Like a feed-forward network in an MLP algorithm, data flows in the forward di-
rection

12

Figure 2.5: MLP Algorithms

from input to the output layer. The major use cases of MLP are prediction, pattern
classification, approximation and recognition.

2.3.7 XG Boost

XG Boost is the most used machine learning algorithm, whether it is a classification
or a regression problem. It is known for its good performance as compared to all
other machine learning algorithms. XG Boost is an implementation of decision trees
with gradient boosts optimised for speed and efficiency. It is a software library that
can download and install on the machine, then access various interfaces. The library
focuses on computational speed and model performance with a laser, as there are few
frills. XG Boost mostly uses for supervised learning in machine learning. It carries
out the decision tree algorithm of gradient boosting. It has many common names,
such as gradient boosting, gradient boosting machine, Etc. Boosting is nothing but
ensemble techniques where previous model errors resolve in the new models. These
models are applied immediately until no further progress is seen.

2.3.8 AdaBoost

AdaBoost is short for Adaptive Boosting. To improve the accuracy of classifiers, it
integrates several classifiers. AdaBoost is a method for an iterative ensemble. By
merging several poorly performing classifiers, the AdaBoost classifier creates a robust
classifier to get a strong classifier with high accuracy. The fundamental principle
behind AdaBoost is to train the data in every iteration to ensure that unexpected
observations are predicted accurately. It also fixed the weights of the classifiers.
If weights are taken on the training set, any machine learning algorithm may be
used as a base classifier. It is the perfect starting point for boosting understanding.
Besides, modern boosting techniques are based on AdaBoost, especially stochastic
gradient boosting machines.

13

AdaBoost Working Model:

Figure 2.6: Adaboost Algorithms

It is best used to improve the efficiency of binary classification issues in decision
trees. Besides, the first tree is generated, and the tree’s performance will use for
each training example. We also use it to weight how much attention the next tree
gives to us. Hence more weight is assigned to training knowledge that is difficult to
predict. However, less weight is given to instances that are easy to predict.

14

Chapter 3

Proposed Model

3.1 Dataset description

Promise Dataset (Jm1, Cm1, Pc1): Jm1, Cm1 and Pc1 all three of these
dataset publicly available NASA promise dataset [23].

Table 3.1: Promise Dataset Attribute

15

Table 3.2: Number of attributes

Table 3.3: Number of Instance

JM1 CM1 PC1
Number of In-
stance

10885 498 1109

Table 3.4: Class Distribution

Class
Distri-
bution

JM1 CM1 PC1

True False True False True False

Discrete 2106 =
19.35%

8779 =
80.65%

449 =
90.16%

4 =
9.83%

77 =
6.94%

1032 =
93.05%

Histogram and HeatMap of Promise Dataset

Histogram and HeatMap of CM1

Our dataset has 327 elements, and we preprocessed our dataset. From these 327val-
ues, we have 42 False values and 285 True values. We can see the frequency of
defects of our dataset in the histogram.

16

Figure 3.1: Histogram of Defect’s Frequency for CM1 Dataset

We use a heat map tool to visualise our software fault dataset, a two-dimensional
graphical representation of the matrix, and show the correlation among the input
data. Seaborn visualisation library is used to indicate the heat map of our input
data, as shown below.

Figure 3.2: Heatmap of input data for CM1 dataset

Histogram and HeatMap of PC1

Our dataset has 705 elements, and we preprocessed our dataset. From these 705
values, we have 61 False values and 644 True values. We can see the frequency of
defects of our dataset in the histogram.

17

Figure 3.3: Histogram of Defect’s Frequency for PC1 Dataset

We use a heat map tool to visualise our software fault dataset, a two-dimensional
graphical representation of the matrix, and show the correlation among the input
data. Seaborn visualisation library is used to indicate the heat map of our input
data, as shown below.

Figure 3.4: Heatmap of input data for PC1 dataset

Histogram and HeatMap of JM1

Our dataset has 10885 values. From these 10885 values, we have 8779 false value
and 2106 true values. We can see the frequency of defects of our dataset in the
histogram.

18

Figure 3.5: Histogram of Defect’s Frequency for JM1 Dataset

We use a heat map tool to visualise our software fault dataset, a two-dimensional
graphical representation of the matrix, and show the correlation among the input
data. Seaborn visualisation library is used for indicating the heat map of our input
data.

Figure 3.6: Heatmap of input data for JM1 dataset

19

Unified Dataset

This Unified dataset is the combination of 5 public datasets and this dataset is gen-
erated by using source code analysis [24] and [25]. those datasets are ,PROMISE –
Jureczko and Madeyski (2010), Eclipse Bug Dataset (Zimmermann et al. 2007),Bug
Prediction Dataset (D’Ambros et al. 2010), Bugcatchers Bug Dataset (Hall et al.
2014), GitHub Bug Dataset (Tóth et al. 2016).

Table 3.5: Unified dataset attributes

20

Table 3.6: Unified dataset attributes

Histogram and HeatMap of UNIFIED Dataset

Our dataset has 47,618 elements, and we preprocessed our dataset. From these
47618 values, we have 38838 False values and 8780 True values. We can see the
frequency of defects of our dataset in the histogram.

21

Figure 3.7: Histogram of Defect’s Frequency for Unified Dataset

We use a heat map tool to visualize our software fault dataset, a two-dimensional
graphical representation of the matrix, and show the correlation among the input
data. Seaborn visualization library is used to show the heat map of our input data,
as shown below.

Figure 3.8: Heatmap of the input data for unified dataset

3.1.1 Data preprocessing

For each dataset, we choose different preprocessing methods to reduce noise from
the dataset. We use the correlation matrix to see the correlation of each attribute to
others. Then we use the histogram to see our level of the dataset and the frequency
of the output feature of our dataset. Then we normalize our dataset to work within

22

it smoothly. We scaled our dataset attribute within zero to one. After that, as our
dataset is not balanced, we balanced our dataset using the Smote library; a balanced
dataset will give a more accurate result. Our all of this dataset, the frequency for
the output feature is nearly 80%, 20% we balanced our entire dataset.

3.1.2 Feature Selection

In the dataset, the feature is each column. We have input and our features to train
our model. For jm1, cm1 and pc1 dataset, we choose ‘defects’ for the output feature
and the rest of the feature is used for input for each algorithm. We choose each
feature in the input because we got very near values in the correlation. For, Unified
bug dataset, we select the “bug” feature for output and the rest of the features we
select as input.

3.2 Model Description

Figure 3.9: Workflow of the System

23

We used these six-classifier machine learning algorithms and two boosting algo-
rithms. We worked in Google Co-lab online IDE. We first chose four datasets for
our thesis work. We use the different preprocessing library and our programming
knowledge to preprocess our dataset. After that, we select our features for our
model. Then we split the dataset to train and test. In each dataset, we apply eight
different algorithms on the train part. Then we apply the test part on this model
to validate our model. We use precision, recall, F1 measures to validate our model.
Next, we get our accuracy by using classification metrics. After that, we get our
accuracy. Then we go to the evaluation part, where we use the confusion matrix
and ROC curve to evaluate our model. By using the ROC curve, we can visualize
our model performance.

24

Chapter 4

Experimentation

i. Confusion Matrix: This matrix actually helps to find the accuracy of algo-
rithms. It is a 2 by 2 matrix and helps to analyze the properties of classification
algorithms. This matrix gives all the values needed for accurate measurement. From
the below table, we can see that it gives True positive, false positive, false negatives
and true negatives. we can measure precision, recall and f1 from these attributes
for each algorithm. This matrix also helps to plot ROC curves.

25

Table 4.1: CM1 Experiemnts Result

Here Random Forest its prediction accuracy is 91%, whereas, for AdaBoost with
random forest, its accuracy is 89%. For KNN its accuracy in software fault prediction
is 78%. For Decision Tree its accuracy in software fault prediction is 91%. For
XGBoost its accuracy in software fault prediction is 89%. For MLP its accuracy in
software fault prediction is 82%. For SVM its accuracy in software fault prediction is
74%. For Näıve Bayes its accuracy in software fault prediction is 80%. Here, we can
see that we have similar accuracy for Random forest and Decision Tree, AdaBoost
and XGBoost. The Random Forest and Decision tree have slightly more accuracy
than these algorithms.

26

Table 4.2: PC1 Experiemnts Result

Here Random Forest accuracy is 97%, whereas, for AdaBoost accuracy is 97%.
For KNN accuracy in software fault prediction is 88%. For the Decision Tree its
accuracy in software fault prediction is 91%. For XGBoost its accuracy in software
fault prediction is 96%. For MLP its accuracy in software fault prediction is 91%.
For SVM its accuracy in software fault prediction is 86%. For Näıve Bayes’s accuracy
in software fault prediction is 88%. Here, we can see that we have similar accuracy
for Random Forest and AdaBoost, Decision Tree and MLP, but the Random Forest
and AdaBoost have slightly more accuracy than these algorithms.

27

Table 4.3: JM1 Experiemnts Result

Here Random Forest its prediction accuracy is 88%, whereas, for AdaBoost, its
accuracy is 89%. For the KNN its accuracy in software fault prediction is 78%. For
the Decision tree its accuracy in software fault prediction is 82%. For XGBoost its
accuracy in software fault prediction is 81%. For MLP its accuracy in software fault
prediction is 68%. For SVM accuracy in software fault prediction is 79%. For Näıve
Bayes its accuracy in software fault prediction is 58%. Here, we can see that we
have similar accuracy for Random Forest and AdaBoost. So Random Forest and
AdaBoost have slightly more accuracy than these algorithms.

28

Table 4.4: Unified Dataset Experiemnts Result

Here Random Forest its prediction accuracy is 92%, whereas, for AdaBoost, its
accuracy is 92%. For KNN its accuracy in software fault prediction is 87%.For the
Decision Tree its accuracy in software fault prediction is 87%. For XGBoost its
accuracy in software fault prediction is 87%. For MLP its accuracy in software fault
prediction is 83%. For SVM its accuracy in software fault prediction is 70%. For
Näıve Bayes its accuracy in software fault prediction is 70%. Here, we can see that
we have similar accuracy for KNN and Decision Tree and XGBoost, but the Random
Forest and AdaBoost have slightly more accuracy than these algorithms.

29

Chapter 5

Result Analysis (ROC)

5.1 Roc Curve

A ROC curve is actually a way of visualizing the performance of one algorithm.
The ROC curve works with TPR and FPR. ROC curve plot is based on TPR as
the x-axis and FPR as the y-axis at several threshold settings. TPR and FPR on
the x-axis and y-axis give a different probability, and on this probability, the curve
is plotted. If the curve is above the middle line, the algorithms work well; the curve
under the threshold means algorithms give poor results here. For better accuracy,
the area under the curve should be high.

5.1.1 CM1 ROC curve

Here, there are some receiver operating characteristic (ROC) curves for the existing
algorithms. We used some machine learning algorithms and demonstrated the ROC
curve for each algorithm.

The Random Forest and Decision Tree ROC curve is given below:

30

(a) Random Forest ROC curve (b) Decision Tree ROC Curve

Figure 5.1: Random Forest and Decision Tree ROC Curve

We have applied KNN algorithm and MLP algorithm to our dataset and demonstrate
ROC curve.

(a) KNN ROC curve (b) MLP ROC curve

Figure 5.2: KNN and MLP ROC Curve

31

We have applied Näıve Bayes algorithm and SVM algorithm to our dataset and
demonstrate ROC curve.

(a) Näıve Bayes ROC curve (b) SVM ROC curve

Figure 5.3: Näıve Bayes and SVM ROC curve

We have applied XGBoost algorithm and AdaBoost algorithm to our dataset and
demonstrate ROC curve.

(a) XGBoost ROC curve
(b) AdaBoost with Random Forest ROC
curve

Figure 5.4: XGBoost and AdaBoost ROC Curve

32

We have combined all the algorithms and demonstrate a combined ROC curve, where
the y-axis plots the True positive rate and the false positive rate at the x-axis.

Figure 5.5: Combined ROC curve of all algorithms

Here in the combined ROC curve, we use Orange colour for Random Forest, Purple
for AdaBoost, Red for Decision Tree, Green for SVM, Yellow for XGBoost, Pink for
Naive Bayes, Blue for KNN and Black for MLP.

5.1.2 PC1 ROC curve

Here, there are some receiver operating characteristic (ROC) curves for the existing
algorithms. We used some machine learning algorithms and demonstrated the ROC
curve for each algorithm.

33

We have applied the Random Forest and Decision Tree algorithm to our dataset and
demonstrate the ROC curve

(a) Random Forest ROC curve (b) Decision Tree ROC Curve

Figure 5.6: Random Forest and Decision Tree ROC Curve

We have applied KNN algorithm and MLP algorithm to our dataset and demonstrate
ROC curve.

(a) KNN ROC curve (b) MLP ROC curve

Figure 5.7: KNN and MLP ROC Curve

34

We have applied Näıve Bayes algorithm and SVM algorithm to our dataset and
demonstrate ROC curve.

(a) Näıve Bayes ROC curve (b) SVM ROC curve

Figure 5.8: Näıve Bayes and SVM ROC curve

We have applied XGBoost algorithm and AdaBoost with Random Forest algorithm
to our dataset and demonstrate ROC curve.

(a) XGBoost ROC curve (b) AdaBoost ROC curve

Figure 5.9: XGBoost and AdaBoost ROC Curve

35

We have combined all the algorithms and demonstrate a combined ROC curve.
where the y-axis plots the True positive rate and the false positive rate at the x-
axis.

Figure 5.10: Combined ROC curve of all algorithms

Here in the combined ROC curve, we use Orange colour for Random Forest, Purple
for AdaBoost, Red for Decision Tree, Green for SVM, Yellow for XGBoost, Pink for
Naive Bayes, Blue for KNN and Black for MLP.

5.1.3 JM1 ROC curve

Here, there are some receiver operating characteristic (ROC) curves for the existing
algorithms. We used some machine learning algorithms and demonstrated the ROC
curve for each algorithm.

36

We have applied the Random Forest and Decision Tree algorithm to our dataset and
demonstrate the ROC curve.

(a) Random Forest ROC curve (b) Decision Tree ROC Curve

Figure 5.11: Random Forest and Decision Tree ROC Curve

We have applied KNN algorithm and MLP algorithm to our dataset and demonstrate
ROC curve.

(a) KNN ROC curve (b) MLP ROC curve

Figure 5.12: KNN and MLP ROC curve

37

We have applied Näıve Bayes algorithm and SVM algorithm to our dataset and
demonstrate ROC curve.

(a) Näıve Bayes ROC curve (b) SVM ROC curve

Figure 5.13: Näıve Bayes and SVM ROC Curve

We have applied XGBoost algorithm and AdaBoost with Random Forest algorithm
to our dataset and demonstrate ROC curve.

(a) XGBoost ROC curve (b) AdaBoost ROC curve

Figure 5.14: XGBoost and AdaBoost ROC Curve

38

We have combined all the algorithms and demonstrate a combined ROC curve.
where the y-axis plots the True positive rate and the false positive rate at the x-
axis.

Figure 5.15: Combined ROC curve of all algorithms

5.1.4 Unified Dataset ROC curve

Here, there are some receiver operating characteristic (ROC) curves for the existing
algorithms. We used some machine learning algorithms and demonstrated the ROC
curve for each algorithm.

39

We have applied the Random Forest and Decision Tree algorithm to our dataset and
demonstrate the ROC curve.

(a) Random Forest ROC curve (b) Decision Tree ROC Curve

Figure 5.16: Random Forest and Decision Tree ROC Curve

We have applied KNN algorithm and MLP algorithm to our dataset and demonstrate
ROC curve.

(a) KNN ROC curve (b) MLP ROC curve

Figure 5.17: KNN and MLP ROC Curve

40

We have applied Näıve Bayes algorithm and SVM algorithm to our dataset and
demonstrate ROC curve.

(a) Näıve Bayes ROC curve (b) SVM ROC curve

Figure 5.18: Näıve Bayes and SVM ROC Curve

We have applied XGBoost algorithm and AdaBoost with Random Forest algorithm
to our dataset and demonstrate ROC curve.

(a) XGBoost ROC curve (b) AdaBoost ROC curve

Figure 5.19: XGBoost and AdaBoost ROC Curve

41

We have combined all the algorithms and demonstrate a combined ROC curve.
where the y-axis plots the True positive rate and the false positive rate at the x-
axis.

Figure 5.20: Combined ROC curve of all algorithms

Here in the combined ROC curve, we use Orange colour for Random Forest, Purple
for AdaBoost, Red for Decision Tree, Green for SVM, Yellow for XGBoost, Pink for
Naive Bayes, Blue for KNN and Black for MLP.

Table 5.1: accuracy table of all four datasets for all Eight algorithms

Algorithm Unified
Dataset

JM1
Dataset

CM1
Dataset

PC1
Dataset

Random For-
est

92% 90% 91% 97%

Adaboost 92% 90% 89% 97%
Decision Tree 87% 83% 91% 91%
SVM 81% 79% 74% 89%
XGBoost 88% 82% 89% 96%
Naive
Bayesian

81% 79% 80% 88%

KNN 87% 80% 78% 88%
MLP 86% 79% 82% 91%

42

Table 5.2: comparison of related paper accuracy with our accuracy

From the above table, we can see for JM1; we get the highest 90% in both Random
forest and Adaboost. Compared with paper [19], they got 88% for their model and
got 87.93% in Random Forest, which is the highest accuracy in jm1 for this paper.
On the other hand, in this paper [21], they got 81.7% in the Random forest for Jm1.
Another paper [22] had their highest accuracy, also 80% in Decision Tree, but we
got 81%, which was a little ahead of them. Now, let’s talk about Cm1; we got 91%
highest accuracy in both Decision Tree and Random Forest. But paper[22] got 88%
in Random forest for Cm1 and paper [22] got 90% in Decision for Cm1 dataset. Next,
we get the highest accuracy in Pc1 is 97% in both Random forest and Adaboost.
in paper [19], they got the highest accuracy for pc1 is 93% for Random Forest and
SVM. In the meantime, the next team [21] also got good accuracy, which is 94%
in Random Forest for this dataset and in paper [20], they got the highest accuracy,
93% for this dataset in Decision Tree. From all of these analyses, we can conclude
that the Random forest always gives the best accuracy for those types. We also use
another dataset called a unified dataset, and no one still did not do any work on
this dataset, and we also got 92% accuracy for the Random forest.

43

Table 5.3: comparison of related paper AUC with ours AUC

In paper [20] and [26], we compare their AUC with ours. By using the random
forest in the jm1 dataset, we got 0.947, in pc1 dataset we got 0.9933 in cm1 dataset
we got 0.977 and paper [20], in jm1 dataset they got 0.754, in the pc1 dataset they
got 0.86, in the cm1 dataset, they got 0.764, and in paper [26], in the pc1 dataset,
they got 0.618. In the cm1 dataset, they got 0.573. We got the best AUC value
from these two papers. Using the decision tree algorithm in the jm1 dataset, we got
0.819 in the pc1 dataset; we got 0.907; in the cm1 dataset, we got a total of 0.817.
in paper [20], in jm1 dataset, they got 0.658, in pc1 dataset, they got 0.82, in the
cm1 dataset they got 0.746. This time also we got the best AUC value. By using
Naive Bayes in the jm1 database, we got 0.689; in the pc1 database, we got 0.679;
in the cm1 database, we got 0.775. On the other hand, in paper [20] using the jm1
dataset, they got 0.679; in the pc1 dataset, they got 0.668; in the cm1 dataset, they
got 0.668. In paper [26], in the pc1 dataset, they got 0.781, and in the cm1 dataset,
they got 0.734.

44

Chapter 6

Conclusion and Future Plan

This paper we have used six classifier machine learning algorithms and two boost-
ing algorithms (K nearest neighbours, Random Forest, SVM, Näıve Bayes, MLP,
Decision Tree, AdaBoost, XGBoost) to identify the best accuracy based on Unified
Dataset and promise dataset. We have found 92% accuracy on the Random Forest
and AdaBoost Algorithm for Unified Dataset, which is maximum from other ex-
isting papers. We have found 90% accuracy on the Random Forest and AdaBoost
Algorithm for JM1, which is maximum from other existing papers. We have found
91% accuracy on the Random Forest and Decision Tree Algorithm for CM1, which is
maximum from other existing papers. We have found 97% accuracy on the Random
Forest and AdaBoost Algorithm for PC1, which is maximum from other existing
papers. We have used different preprocessing libraries and our programming knowl-
edge to preprocess our dataset. We have shown our working accuracy through the
ROC curve and analyzed different algorithm accuracy using the comparison table.
We have tried our level best to measure the maximum accuracy at this stage. We
will identify the bug of software in the shortest possible time in our future work and
implement a hybrid algorithm to measure the maximum accuracy from any promise
dataset and unified dataset. Besides this, it will predict the bug of software, and
based on these characteristics, it will show the dataset’s output, whether it is effi-
cient. Our goal is to implement such a hybrid algorithm model, which will work for
any promise dataset to show the maximum accuracy. For this, we will be working
on several datasets in the future.

45

Bibliography

[1] R. L. Hotz, “Mars probe lost due to simple math error,” Los Angeles Times,
vol. 1, 1999.

[2] D. N. Arnold, “The explosion of the ariane 5,” 2000.

[3] “3 of the worst it disasters in history,” 2016.

[4] S. Kettmann, “Soviets burned by cia hackers,” Wired News (www. wired. com),
2004.

[5] C. Decker and R. Wattenhofer, “Bitcoin transaction malleability and mtgox,”
in European Symposium on Research in Computer Security, Springer, 2014,
pp. 313–326.

[6] H. of Commons Transport Committee et al., “The opening of heathrow ter-
minal 5,” London, House of Commons, 2008.

[7] J. MACNEIL, “Mariner 1 destroyed due to code error, july 22, 1962,” 2019.

[8] L. Milner, “The morris worm, 30 years since first major attack on the internet,”
2018.

[9] Y.-G. Guéhéneuc, “Département d’informatique et de recherche opérationnelle
université de montréal, québec, canada guehene@ iro. umontreal. ca hiver
2008,” 2008.

[10] L. Milner, “British airways passengers stranded after it failures,” 2019.

[11] K. Dejaeger, T. Verbraken, and B. Baesens, “Toward comprehensible software
fault prediction models using bayesian network classifiers,” IEEE Transactions
on Software Engineering, vol. 39, no. 2, pp. 237–257, 2012.

[12] P. S. Bishnu and V. Bhattacherjee, “Software fault prediction using quad
tree-based k-means clustering algorithm,” IEEE Transactions on knowledge
and data engineering, vol. 24, no. 6, pp. 1146–1150, 2011.

[13] S. D. Immaculate, M. F. Begam, and M. Floramary, “Software bug prediction
using supervised machine learning algorithms,” in 2019 International Confer-
ence on Data Science and Communication (IconDSC), IEEE, 2019, pp. 1–7.

[14] H. Khosrowjerdi, K. Meinke, and A. Rasmusson, “Virtualized-fault injection
testing: A machine learning approach,” in 2018 IEEE 11th International Con-
ference on Software Testing, Verification and Validation (ICST), IEEE, 2018,
pp. 297–308.

[15] M. R. Lyu, “Department of computer science and engineering the chinese
university of hong kong,” Department of Computer Science and Engineering,
CUHK, vol. 20, 2010.

46

[16] Y. Tamura, S. Ashida, and S. Yamada, “Fault identification tool based on deep
learning for fault big data,” in 2016 International Conference on Information
Science and Security (ICISS), IEEE, 2016, pp. 1–4.

[17] A. Kaur, P. S. Sandhu, and A. S. Bra, “Early software fault prediction using
real time defect data,” in 2009 Second International Conference on Machine
Vision, IEEE, 2009, pp. 242–245.

[18] L. Chen, B. Fang, and Z. Shang, “Software fault prediction based on one-class
svm,” in 2016 International Conference on Machine Learning and Cybernetics
(ICMLC), IEEE, vol. 2, 2016, pp. 1003–1008.

[19] P. Singh and S. Verma, “Multi-classifier model for software fault prediction.,”
Int. Arab J. Inf. Technol., vol. 15, no. 5, pp. 912–919, 2018.

[20] M. Akour, I. Alsmadi, and I. Alazzam, “Software fault proneness prediction:
A comparative study between bagging, boosting, and stacking ensemble and
base learner methods,” International Journal of Data Analysis Techniques and
Strategies, vol. 9, no. 1, pp. 1–16, 2017.

[21] G. P. Bhandari and R. Gupta, “Machine learning based software fault predic-
tion utilizing source code metrics,” in 2018 IEEE 3rd International Conference
on Computing, Communication and Security (ICCCS), IEEE, 2018, pp. 40–
45.

[22] P. D. Singh and A. Chug, “Software defect prediction analysis using machine
learning algorithms,” in 2017 7th International Conference on Cloud Comput-
ing, Data Science & Engineering-Confluence, IEEE, 2017, pp. 775–781.

[23] J. Sayyad Shirabad and T. Menzies, The PROMISE Repository of Software
Engineering Databases. School of Information Technology and Engineering,
University of Ottawa, Canada, 2005. [Online]. Available: http://promise.site.
uottawa.ca/SERepository.

[24] F. Rudolf, T. Zoltán, L. Gergely, S. István, and G. Tibor, “A public unified
bug dataset for java and its assessment regarding metrics and bug prediction,”
Software Quality Journal, vol. 28, no. 4, pp. 1447–1506, 2020.

[25] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy, “A public unified
bug dataset for java,” in Proceedings of the 14th International Conference on
Predictive Models and Data Analytics in Software Engineering, 2018, pp. 12–
21.

[26] R. S. Wahono, N. S. Herman, and S. Ahmad, “A comparison framework of
classification models for software defect prediction,” Advanced Science Letters,
vol. 20, no. 10-11, pp. 1945–1950, 2014.

47

http://promise.site.uottawa.ca/SERepository
http://promise.site.uottawa.ca/SERepository

	Declaration
	Approval
	Abstract
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Objective and Contribution
	Thesis Orientation

	Related Work
	Background
	Literature Review
	Algorithms
	K-Nearest Neighbor Algorithm
	Random Forest
	SVM (Support Vector Machine)
	Naive Bayes Algorithm
	Decision Tree
	MLP Algorithm
	XG Boost
	AdaBoost

	Proposed Model
	Dataset description
	Data preprocessing
	Feature Selection

	Model Description

	Experimentation
	Result Analysis (ROC)
	Roc Curve
	CM1 ROC curve
	PC1 ROC curve
	JM1 ROC curve
	Unified Dataset ROC curve

	 Conclusion and Future Plan
	Bibliography

		2021-01-20T17:54:33+0600
	Dr. Md. Golam Rabiul Alam

